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Scanning and Prediction In
Multidimensional Data Arrays

Neri Merhay Fellow, IEEE,and Tsachy WeissmaiMember, IEEE

Abstract—The problem of sequentially scanning and predicting the scanning strategy, i.e., the choice of the order at which the
data arranged in a multidimensional array is considered. We in- data are scanned. In this work, we take a first step in addressing

troduce the notion of ascandictor which is any scheme for the se- 1 question of the optimal strategy for scanning and prediction
quential scanning and prediction of such multidimensional data. f dat tained i ltidi - |

The scandictability of any finite (probabilistic) data array is de- Ordata (?on bl . |n_ a multidimensionat array.

fined as the best achievable expected “scandiction” performanceon [N typical prediction problems the data are most naturally

that array. The scandictability of any (spatially) stationary random assumed ordered as a one-dimensional time series. In such prob-
field on Z™ is defined as the limit of its scandictability on finite |ems, sequentiality usually dictates only one possibility for scan-
boxes” (subsets ofZ™), as their edges become large. The limitis 4 the data, namely, the direction of the flow of time. However,

shown to exist for any stationary field, and essentially be indepen- . . . .
dent of the ratios between the box dimensions. Fundamental lim- When the dimension of the data arréjs larger thari (e.g., in

itations on scandiction performance in both the probabilistic and image and video coding applications, [2]-{5]) there is no nat-
the deterministic settings are characterized for the family of differ-  ural direction of the flow of time and the question of the optimal
ence loss functions. We find that any stochastic process or random scheme for scanning and predicting the data arises naturally.
field that can be generated autoregressively with a maximum-en- g4 5 concrete treatment of this question, we shall introduce

tropy innovation process is optimally “scandicted” the way it was . N . n L
generated. These results are specialized for cases of particular in-the notion of a “scandictor,” which is any scheme for the se-

terest. The scandictability of any stationary Gaussian field under quential scanning and prediction of data arranged in a multidi-
the squared-error loss function is given a single-letter expression mensional array, or, more generally, data which is indexed by

in terms of its spectral measure and is shown to be attained by the g set which may not be naturally and uniquely ordered. For ex-
raster scan. For a family of binary Markov random fields (MRFs), ample, suppose that the data is arranged inam n» rectan-
the scandictability under the Hamming distortion measure is fully | ' id . h the dat t | |
characterized. gular grid, e.g., an image where the data represents gray-leve
_ _ o values. A scandictor operates as follows: At each time Lisit
Index Terms—Autoregressive representations, Gaussian fields, t < my - ne, having observed the values of the grid atthe 1
Kolmogorov's formula, Markov random fields (MRFs), prediction, t_ L it 2(’1 thus far. th dict h Shesit t of
random fields, scandiction, scanning. sites visited thus far, the scandictor choosesithesite (outo
the remainingn, - no — (¢t — 1)] unobserved sites), makes a
prediction F; for the valuez; at that site, and is then allowed
. INTRODUCTION to observe that value. The loss at tirhés given by a fixed

HE main motivation for this work comes from predictive0Ss function/(£;, z;). The goal is to minimize the cumulative
T coding, a compression technique used for encoding infcandiction” lossy >, 21" I(Fy, @)
ages, voice signals, video signals, and other types of data. Thévrising naturally in the multidimensional setting, the ques-
basic idea consists of scanning the data array, constructingoé‘ of optimally scanning the data for prediction turns out to
model of the data, employing a predictor corresponding to tR€ an intricate one already for the one-dimensional case. To see
model, and then encoding the prediction error. Examples ﬁg}ls consider the simple symmetric first-order Markov process
predictive coding include linear prediction coding (LPC)-base#gfined autoregressively by
voice _coder_s _(e.g., [1]) and image coders (e.qg., [2]). The com- Xpsr = Xy + Wi 1)
pression efficiency of such schemes naturally boils down to the
efficiency of the prediction scheme employed. Now, assumitghereW;, ¢ > 1, are independent and identically distributed
that the encoder that acts on the prediction error is fixed, the del-d.), taking values in{0, 1, ..., M — 1} (M > 3), with
grees of freedom left to be optimized are the predictor itself afiéstribution

1—p, ifi=0

PI‘(Wt = Z) = { .
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the case, as our results will showpik (M —1)/M. However, In Section V, we consider the case where the alphabet and the
whenp > (M — 1)/M (i.e., when staying in the previousprediction space are identical and finite. Furthermore, in order
location is less probable than a transition into each of the otherparaphrase the type of arguments employed in Section llI
states), it can be shown by direct calculation that scanning fiist the context of R-valued observations and predictions,
the data indexed by the odd points (say, from left to right) ande assume here that the alphabet forms a group so that the
then “filling in” the even points, attains better performance thasubtraction operation is well defined and the loss function is
the trivial scan. For a concrete numerical example, it is easity the form I(F}, z:) = p(z: — F;). Results pertaining to
verified that for simple random wallp = 1) on the ternary the fundamental limitations on scandiction performance for
alphabet( M = 3), the expected error rate of the trivial scanthis setting are derived analogously as in Section Ill, where
dictor is1/2, while that of the “odds-then-evens” scandictor iévolume-preservation” arguments are replaced by “cardi-
3/8. We shall elaborate on this example in Section V. nality-preservation” ones. These results are then specialized
For the probabilistic setting, we define the “scandictabilityto the case of the Hamming distortion measure. For a large
of a source as the limit of the expected average loss per symfawhily of MRFs, namely, those that can be autoregressively
for large blocks, when using the optimal scandictor for thesepresented, the scandictability is fully characterized.
blocks. By a subadditivity argument, this limit can be shown to The bottom line of this work is in attaining upper and lower
exist for any (spatially) stationary source and be independentfunds on the achievable scandiction performance for the case
the ratios between the edges of the “box” confining the array. & a difference loss function. In particular, we characterize a
particular, one can take the infinite limit in one dimension firsfamily of stochastic processes for which the bounds coincide.
and only then the limit in the other dimension. This family includes all processes (or multidimensional fields)
After introducing the notions of a scandictor and scamwhich can be autoregressively represented with an innovation
dictability in a general setting, we shall focus in Section llprocess which has a maximum-entropy distribution w.r.t. the rel-
on the case where the data, as well as the predictions, are szant loss function. Any stationary Gaussian field, for example,
valued, and loss is measured with respect to (w.r.t.) a differertoelongs to this family, under the squared-error loss. We find that
loss functiont Two approaches for assessing fundamentah optimal scandictor for such processes is one corresponding
limitations on scandiction performance will be developedo the autoregressive way in which they can be represented.
The first, in Section IlI-A, will be based on the observation The essence of our approach for obtaining a lower bound on
that for any sufficiently well-behaved (smooth) scandictoscandiction performance is based on the observation that for any
the map which takes the data array into the sequence sofficiently well-behaved (smooth) scandictor, the map which
scandiction errors is a volume-preserving injection. As will biakes the data array into the sequence of scandiction errors is
elaborated on later, this observation leads to several generalolume-preserving injection. This implies that for any such
lower bounds on scandiction performance in a probabilistacandictor, the volume of the set of all data arrays for which
as well as an “individual-data-array” setting. The secorttie scandiction loss is beneath a certain value is the same as
approach, in Section IlI-B, is based on minimum descriptiathe volume of thep-“ball” of a radius which equals this value.
length (MDL)-type lower bounds [6]-[8]. More specifically, Therefore, the least expected scandiction error cannot be less
we extend an idea, which was applied in [9, Subsec. Ill.A] ithan the radius of @-sphere whose volume is equal to the
the context of universal prediction of probabilistic time seriesplume of the set of typical sequences of the given source. In
to the case of scandiction of “individual” data arrays. Giventher words, since objects cannot “shrink” under the mapping
an arbitrary scandictor, the idea is to construct a probabilitsom source sequences onto scandiction error sequences, the
distribution such that an MDL-type lower bound for thidest scenario that one can hope for is the one where the typ-
distribution leads to a lower bound on the loss of the scandictaral set of source sequences, which possesses most of the prob-
As will be seen, one of the merits of this approach is that dtbility, is mapped onto a-sphere in the domain of the error
allows to dispose of the regularity (smoothness) assumptisaquences. In particular, this happens to be the case with au-
needed for the validity of the converse results in Section lll-Atoregressively generated processes having a maximum-entropy
In Section IV, we pay special attention to the stationanynovation process, and, therefore, this lower bound is indeed
Gaussian field orZ2. The main probabilistic result of Sec-tight for this class of processes. Thus, for example, iftleem-
tion lll is applied to this special case. The scandictability of anyonents of the innovation process are i.i.d. with entrépthen
stationary Gaussian field under the squared-error loss functiday the converse to the asymptotic equipartition property (AEP))
is given a single-letter expression in terms of its spectrdie latter probability is small when the radius is taken such that
measure. Specifically, it is shown to be given by the powehe volume of the-“ball” is (exponentially) less than™ (cf.
of the innovation process corresponding to any half-plangig. 1 for a schematic illustration of this point).
In particular, this is shown to imply that the scandictability The scandiction problem that we consider seems to be in-
of the stationary Gaussian field is (asymptotically, for largkerently different from standard problems involving cumulative
rectangular arrays) achieved with any scan which corresporidss minimization of predictors. While the latter are usually con-
to a total order o2 induced by any half-plane, a notion whichcerned with various online prediction scenarios, in this frame-
will be made precise. work we are interested, in parallel to the prediction strategy, in
finding the best strategy for scanning the data. To the best of our
knowledge, the problem of finding the best scanning strategy,
IThatis, wherl(F, a.) = p(a, — F,) for somep(-). as itis formulated in this work, has not been previously consid-
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{z" : Leg,py(a™) < d}
{ef : Ximy p(ei) < nd}

T(w,r)

Fig. 1. The volume-preserving mappifigs, ), taking the source sequence into the error sequence associated with the scadi¢tor

ered in the literature. The issue of choosing the order by whittiroughout the paper. All the results carry over to higher dimen-
pixels are scanned has been shown to be a consequential orsgdns in a straightforward way.

the context of universal compression of multidimensional data

arrays. This was demonstrated by employing the self-similar Il. THE MODEL, NOTATION, AND DEFINITIONS

Peano—Hilbert scan [10], [11] in the “individual-image” setting .
. : We shall assume the alphabet, denoted generically,
of [12] (cf. also [13] for the stochastic setting). As we elaboratge either the real line, or sfinite set. We @?: AL dlfnt;?e

gpelgsisoicgggrg’bgﬁmggr&:&g&?;gg;?g;glfég?;g?l\é?qﬁsglgﬁ%he set of all possible realizations. Let furthet(Q2) denote the
L o . ace of probability measures @n(equipped with the cylinder
of scandiction under the logarithmic loss function, the schemg P . ures fr(equipped wi i

. ) . . . g-algebra), and denote byt (2) the subspace consisting of all
useq for' the'scan 'S co'mpletely !mmaterlal. the §cand.|ctablll ¥patially) stationary measures, i.e., measures that are invariant
(which, in this case, coincides with the entropy) is achieved

any scan (provided, of course, that the corresponding opti der all shiftsp;: @ — Q, i € 77, where(f;z); = ;.

) . ) . . C7? ili
predictor for that scan is employed). The incentive for this worrla er zfs;,u?ez OﬁgMéfél(i?:::‘? ;?;s(ga)czj\/(t)f ((g)o rjl/)t (pg))t\’;ﬁmty

was the fact that under loss functions other than the Iogarithne)lcé‘ referred to as endom field astationary random fieldand

loss it isa priori unclear which scan achieves optimum perforé random field onB, respectively.
mance. Finally, we remark that while most of the results of this . S
For n > 1, we will use the notationy? to denote

work are asymptotic in nature, they can often lead to concly- yn). For any positive integes, let V, be then x n
sions of nonasymptotic value. For example, the asymptoticaE u’ér‘e' bf Z\Ii ~ (1. 1) € 72 with both'coorginates ormega-
optimal normalized expected scandiction (Hamming) loss f?l(/ and strictly le sic, than

the process discussed above (see (1)) will be shown to equ 2 . -
. C 4 = 1 Pr=ave
pwhenp < (M — 1)/M. Itis easy to see, however, that for "’fl—‘orv € 7°, we letz(V) = {x(i)}icv denote the restriction

a block of lengthn, trivial scandiction gives expected loss oﬁf z € Q1o V. LetV denote the class of finite subsetsz.
, ’ . L or a sourc Q) we denote b expectation w.r.t
p+2 [2=L —p. Thus, given any >0, it is clear how large the @ € M(©Q) W exp @

block length must be to attain optimum scandiction to within (though we omit the subscript when itis clear from the context).

. . 7? ineD i i i
The following summarizes a few of the central themes an':c?r anyV C 77, defineD(V) as the interior diameter 6f

conclusions of this work, as previously discussed and as will be D(V) def sup{r: Jcs.t.B(c, r) C V} )
elaborated on and established later. T

1) Volume preservation considerations as a basis for lowdpere we let3(c, r) denote the closed ball of radiusentered
bounds. atc under thd;-norm onZ2. Following [14], we further leRR o

2) Suboptimality of natural scandiction even for simpldeénote the system of all rectangles of the form
Processes. - : V =770 (fmy, n1] x [ma, ny))

3) Optimal scandiction performance for all stationary
Gaussian fields is attained by the lexicographic (rastemth mx, ni € Z, m; < ni. We letRY, denote the subset of
scan. In particular, in one dimension, optimal scandictioRg consisting of all boxes of the form
is attained by the trivial scan for all stationary Gaussian V=220 ([0, m] x [0, na])
processes.

4) If a process or field is autoregressively generated witkith n;, < Z,.ForanyV C 7% andi € 72, we shall let the
innovations having a maximum-entropy distribution, thegtandard notatio” + i signify the set{j € 7%: j —i € V}
itis optimally scandicted the way it was generated.  and—V stand for{j € Z>: —j € V'}. We shall letl denote

The remainder of the paper is organized as follows. In Sette point(1, 1) € Z2. The cardinality of a set will be denoted

tion Il, we present the notation, formulate the general settingy | - |. Fori, j € Z? we let(i, j) denote their inner product,
and formally introduce the notion of a “scandictor” and the cone., i1j1 + i2j2. If {4, } is a sequence of sets theh, ~ A
cept of “scandictability.” Sections lI-V are as elaborated of4,, \, A) is synonymous to4,, C A, 1 (4, 2 A,41) and
above. Section VI contains some concluding remarks along witkd,, = A (N4, = A).” If {A,} is a sequence of reals then
some directions for related future work. For simplicity of thed,, ,” A (A4, \, A) is synonymous to{'4,,} is nondecreasing
presentation we treat the case of a two-dimensional data ar(agnincreasing) anidm A,, = A.”
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For a finite set of random variablé$, jointly distributed ac- given loss function. Note that property (3) implies that no site
cording to the probability distributiony, we shall letH(N) s visited more than once so that all the sitesibhave been
as well asH (qn) denote the entropy. More precisely, the comeovered after preciselp3| steps. We let

ponents ofV will be either all discrete valued or all continuous L
valued, so thatin the latter caBE N) andH(qN)wnlstand for Ly, py(2(B)) = T Z I(Fy, 2(Ty)) @)
the differential entropy. Throughout this work, we take all log- |B] =1

arithms to the natural base and entropy is measured in nats. §@hote the normalized cumulative loss, w.r.t. the loss fundtion
a discrete- (continuous-) vaIL_Jed random varia@lwg shall let ofthe scandictof¥, F) € S(B) when operating on the restric-
E,f(Z) denote the expectation ¢{Z) whenZ is distributed {jon of 1 to B. Note that a scandictor, according to Definition 1,
according to the probability mass function (PMF) (probability not allowed to randomize its prediction or choice of the next
density function (PDF)) ¢(-). For B € V and a random field sjte  That is, its strategy at each point is deterministic (given
Y (B) taking values ifR” with continuous-valued componentsihe available information). Similarly, as in the case of standard
we shall consider its PD-) as a function;: R” — [0, co)in- prediction, however, it is easy to show that there is no loss of

tegrating to unity, with the obvious interpretation. For any finitgstimality in this restriction insofar as expected performance is
setY, we letM;(X) denote the set of all probability measureggpcerned.

onx.
For B C 72 and data arrays oB with real-valued compo-  Definition 2: Given a loss functiori, we define thescan-
nents.r(Bj, y(B) € RB we denote dictability of any source) € M(Q) onB € V by
e U(l, = inf Eq,L X(B 5
I#(B) =¥ (B) oo & ma; — i 98 = o Blsqp) Pantor B )

where Eg,, denotes expectation wheXi(B) has been gener-
Yated byQ 5. We further define thecandictabilityof @ € M(Q2)
by

and we letz(B) + y(B) € R denote the data array formed b
component-wise addition.

A. “Scandiction” Defined

Given data that are indexed by the g&ta scandictoris a
scheme for the sequential scanning and prediction of this dasdienever the limit exists.

We formalize this as follows. Note that the scandictability @@ € M(2) is defined as the
Definition 1: A scandictorfor the finite set of site®? € Vis limit of the scandictability of the finitely indexed fieldQy,, .
given by a pai(¥, F') as follows: Thus, henceforth, the term “scandictor &t will be short-hand
. T, the “scan,” is a sequence of measurable mappintg minology for the m_ore_precise phrasing “sequence of scan-
(v, |£|1, whereU,: A"~ — B, with the property that ictors for the respective f|eld3Vn.”.V\/_e also remark that while
o most of our results are asymptotic in nature, they can lead to
{\111, Wo(y1), Wa(yn, o), .-, ¥yp (y'lBl’l)} = B,  nonasymptotic conclusions.
|B|—1 B|-1 Notice the special case where= [, is the logarithmic loss
vy €4 - () function. When the alphabet is finite, the prediction space is

U(l, Q) = lim U(L Qv,) ®)

» I, the predictor, is a sequence of measurable mappin@s: My(4), and
{F} Li‘l, whereF;: A*=! — A, hog(F, a) = —log F(a), a€ A )
We shall letS(B) denote the class of all scandictors for the sei this case, for any3 € V andQp € M(B), the scan-
of sitesB. dictability coincides with the (normalized) entropy, i.e.,
A scandictor(¥, F) € S(B) operates as follows: The U(log, Q5) = LH Qp). (8)
scandictor gives its first predictiof; for the value at sitel;. (hos: @) 1B (@s)

It then moves to sitel; and incurs a los$(Fy, (¥1)). The The proof of this simple fact extenderbatimfrom the case
scandictor now gives its predictiof, = F5(z(V¥1)) (based of regular predictability (cf., e.g., [15], [9]) by showing that to
on the valuer(V,) observed at sit&,) for the value at site every scandicto(V, F') € S(B) there corresponds a proba-
Uy = Wy(z(¥y)), it then moves to sitél, and incurs a loss bility measureQ g, ) on AP such that

[(Fy, z(V5)). Similarly, the scandictor gives itsh prediction Eg, Liy. m)(X(B)) = Eq, [~ log Quu. (X (B))]

(1<t<|B)) - R R~
Using the fact thaD(Qg||@g) > 0 forall Qg € M(B)itis
Fy = Fy(x(¥1), 2(¥2), ..., 2(¥e-1)) then easy to show tr(lrixgl |1|LI(Q)B) is an attainable Iov(ver)bound
(based on the values(V¥,), (¥s3), ..., z(¥;_1) observed on the scandictability/(Ii.s, @ 5). Another way of seeing why
at the previously visited sites) for the value at site = (8) should hold is to note that the expected loss of the optimal
Uy (2(Vy), 2(Ps), ..., (P, 1)), itthen moves to sitd, and predictor (under log loss) associated with any scan is given by
incurs a losd(F;, z(¥,)), wherel: A x A — [0, 00) is a asummation of conditional entropies, which always sum up to

_ __the joint entropy, regardless of the scan. Hence, not only does
2Here and throughout the sequel by a “continuous-valued random variable”

we mean one with a distribution which is absolutely continuous w.r.t. Lebesgﬁgua_-"ty (8) hold, but the S_C&nqi_Ctab”i_ty is attainemscan'
measure, i.e., one with a PDF. In this context, the scandictability notion of Definition 2 can be
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regarded an extension of entropy for the case of a general loskemma 3: Let f: (Z,)™ — [0, co) be subadditive sep-

function. arately in each of its arguments, i.e., for all< 7 < m,
Analogously, as with the notation for entropy, we shall somes, ..., am, b;, ¢; € Z4

times writeU (I, X(B)) (resp.,U(l, X)) instead ofU(l, Q) Flar, oo bt i enny am) < flar -y by ey am)

(resp.,U(l, Q)) when it is clear from the context tha (1) e = T

(resp.,X) is distributed according t@ 5 (resp.,Q). The defini- +Hflar, oooci e am). (12)

tion of U(l, Q) in (6) through a limit over the squarés may Then for every

seem, at first glance, somewhat arbitrary. The justification for {a(n) _ (agn)7 as,’f))}nn

such a definition lies in the following.
. with (min1<i<m agn)) — 00
Theorem 1: For any stationary soura@ € M,(Q2) -

(n)
a) the limit in (6) exists; and lim % = inf #_ (13)
b) for any sequencédB,} of elements ofRy satisfying TR e €O T
D(B,,) — oo, we have i=1 i=1

o . The proof (cf., e.g., [16, Lemma 5.2.1]) is a straightforward gen-
ut. Q) = nli{%o Ul Qp,) = A1en7£D U(l, Qa)- (9) eralization of that from the univariate case (cf., e.g., [17, Lemma
6.1.11]).

Theorem 1, proof of which is given later, justifies the notion - ) o
of scandictability as introduced in Definition 2 and substantj-  Proof of Theorem 1:Fix Q € M, (€2). Since the firstitem

ates the significance of this entity as the fundamental limit df!lows from the second item by takin§,, = V,,, it will suffice
prediction performance for stationary data arranged in a refg-establish the fact that for any sequerjés, } of elements of
angular array, when any scheme for sequentially scanning the SatisfyingD(B,,) — oo

data is allowed. It tells us that the scandictability of a stationary lim U(l, @g,) = inf U(l, Qa). (14)
data array is independent of the ratios between the edges of the e AERa

rectangle confining the array when these become large. FurtHfay-stationarity of@, it will suffice to restrict attention ta&Rp,,
more, Theorem 1 assures us of the fact that if one’s goal is8Mely, to prove that for anyB,,} C R, with D(B,,) — oo
achieve the predictability (of any stationary source) to within lim U(l, Qp,) = inf U(l, Qa). (15)
somes > ( of a large rectangular box, it suffices to partition the n—ee AERG

data into rectangular nonoverlapping blocks congruent to amy this end, definef: (Z)? — [0, o) by

A satisfyingU(l, Qa) < U(l, Q) + e. Finally, we note that

def
by letting! = li,; Theorem 1 and (8) recover what is known a1, a2) = 01020 (I, Qv(ay, a)) (16)
about the entropy of random fields, cf. [14, Theorem 15.12)here
[16, Theorem 5.2.1]. def

V((Il, (lg) =7°n ([0 (ll) X [0, (12)).

Basically, the only property we rely upon for establishing
Theorem 1 is the subadditivity df (I, Q). Specifically,

) W€ The subadditivity off is a direct consequence of Lemma 2 and
have the following.

the stationarity of). The proof is completed by an appeal to
Lemma 2: For any@ € M(Q2) andV, V' € V Lemma 3. O

[VuV'|U(, Qvov:) < VU, Qv)+|V'|U(, Qv). (10) Noég thgtl.it also gnllows Lrocrjnbthe i'bovehd?.rivgtions tr:jgt the
. . scandictability can be reached by taking the limits “one dimen-

) Proof: Note first thatdleffV nve#0 We_ Fan take, gionatatime” (note that this does not follow directly as a special
instead of V', V. = V/\V'=V' n V<. The validity of the 456 of Theorem 1 b) because the diameter does not tend to in-
lemma for disjoint subsets, together Wlth the obvious fact thf?ﬁity). To see this, let{e, } be any sequence of positive reals
VIU(l, Qp) < [V'|U(I, Qv) would imply the lemma for gatisfyinge,, — 0. Let nowl,, be the scandictability when the
V. V'. We can, therefore, assume thatn V' = 0. By the it dimension is sent to infinity and the other one is fixed at
definition of U (I, Qvuv-) it will clearly suffice to establish the ;, (note that it necessarily exists by subadditivity in that first
existence of W, F) € S(V U V) for which dimension). Construct now the increasing sequefog} by

EqLwy, py(X(B)) < [VIU(, Qv) + VU1, Qvr). (11) letting my, _be the smgll_est integer which is larger than _,
o _ , and which is also sufficiently large so thét,,,, ,, — Un| < e,
But this is easy: takgl, I) € S(V U V") to be the scan- 17 - genoting the scandictability of the x n rectangle. By
dictor obtained t_)y concatgnatu@gu F)}, and(9, F)t,,.,_ (.e., Theorem 1, we know that tHan,, .. Uy, exists and equals
the scheme which scandlc/:ts the set of sitesaccording 10 e scandictability. On the other hand, by construction of the
(¥, )3, and then the set”” according to(V, F)3.), where sequencem,}, the limit of {U/,,, ,,} must coincide with the

we let (¥, )y, € S(V) denote the scandictor achieving they antity obtained by taking the limits “one dimension at a time.”
infimum in (5)3 O

The relevance of subadditivity to establishing the existence
of a limit is manifested in the following lemma. . THECASEA = R

3If the infimum is not achieved, take anyachiever and the proof carries We dedicate this S_ec_tion to the case where the source al-
through. phabet and the predictions are real valued. Furthermore, we
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shall focus on the case where the loss function is of the forth, (p, @) is taken overSp(B), instead of overS(B) as
I(F,y) = p(y — F), where the functiorp(z) is monotoni- in the right-hand side of (5). Theorem 1 is easily verified
cally increasing forz > 0, monotonically decreasing far < to hold for Up(p, @) and Up(p, Q) as well. Similarly
0, andp(0) = 0. With a slight abuse of notation, we shallas with the quantities of Definition 2, we shall sometimes
write U(p, Q@) andU(p, Q) for U(l, @p) andU(l, Q), re- write Up(p, X(B)) and Up(p, X) when the underlying
spectively, whed(F, y) = p(y—F). We assume thax-) issuf-  distributions are clear. Note that in nonpathological cases,
ficiently “steep” in the sense thdt e—*r(*) dz < oo for every when the components of (B) are continuous valued and the
s > 0 and, following [9], we define theog-moment-generating conditional distribution ofX;, i € B, given the values oK (B)
functionassociated with the loss functiarby at other sites is a continuous functional of these values, we have
B _ ep(z) Up(p, )_((B)) = Ul(p, )_((B)) and_UD(p, X) = U(p_, X).
A(s) = —log / € dz|, 5>0 (17)  we omit the proof of this fact (which can be more rigorously
formulated), as it is cumbersome in detail but straightforward.
The key is to note that even when the scandictor achieving
v(d) = inf[sd — A(s)], d> 0. (18) U(p, X(B)) is nota member af(B), it is enough that it can
s>0 ! . . .
be approximated arbitrarily well by membersy(B) in order
for Up(p, X(B)) = U(p, X(B)). One important example of a
random field trivially satisfyind/p (p, X (B)) = U(p, X(B))
gs(2) = eI (19) forall B € VandUp(p, X) = U(p, X) is the Gaussian field
wheres is tuned so that,p(%) = d, E, being the expecta- Of Section IV (as the optimal predictor is always linear and,
tion operation w.r.tg,. For a reason that will be clear from the2 fortiori, continuously differentiable).
proof of the first item of Proposition 4 later (cf., in particular, Letnow, foranyB €V and any scandictdv, F') € S(B),
(A1) of Appendix A), we refer tay,(-) as amaximum-entropy the transformatiofi(y, r): R” — RI”| be defined by
dist.ributic_Jn W.I’.t.'p. It can be seen thajf(d) is strictly mono- Tiw, ry(x(B)) = (x(\pl) —Fy, x(Uy) = Fy, ...,
tonically increasing and concave fér> 0 and, therefore, the " (\I, ) _F ) (23)
inverse functiony=1(-) exists and is continuous. Two additional |5l |5l
important aspects eﬂd), which will be of later use, are encap_Where\IJt andFt on the I’ight-hand side of (23) are, respectively,
sulated in the fo”owing proposition' whose proof is deferred t%]e tth Site andtth prediction aSSOCiated W|th the ScandiCtor
the Appendix. (W, F') when operating or(13). In words, Ty, py mapsz(53)
N into the sequence of prediction errors incurred when the scan-
Proposition 4: dictor (¥, F) operates on(B). For anyB € V, we extend the
1) For any PDFy(-) notion of volume tadR? in the trivial way: order the sites d®
V(E,p(Z)) > H(q) (20) arbitrarily and identify any:(B) € R5 with the corresponding
pointinRIZ!. A measurable map: R® — RIZ! will be said to

with equality if and only ifg() = ¢ (") for somes > 0. pe5lume preservinif Vol(G) = Vol(T(G)) for all measur-
2) Foralln > 1andalld > 0 ableG.

and theone-sided Fenchel-Legendre transfasfm\(-) by

As remarked in [9], the function(d) can be interpreted as the
differential entropy associated with the PDF

1 log Vol [ 4 em: Zp(ei)énd < log 2+v(d)- 1) Theorem 5: For anyB €V and gny slcj;ndic_to@l, F) e
n Pt n Sp(B), the transformatiofl(y, ry: R” — RI”! defined by (23)
is one-to-one and volume preserving.

3) Proof of Theorem 5:We assume a fixed3 € V and
.1 v B (U, F) € Sp(B) throughout the proof. The mappifgy, r)
nllnc}o n log Vol ({el : Z}p(ei) Snd}) =7(d). (22) can be decomposed as follows. IT&t: R® — R!Z! be defined
1= by
A. Volume-Preserving Injections Ty (z(B)) = (33(\1’1), o(Uy), ..., x (‘IJ\BI)) (24)

In this subsection, we make the observation that the ma _
from the data array to the sequence of prediction errors as8 d letlr: RIZI — RIZ! be defined by
ciated with any (sufficiently smooth) scandictor is one-to-ong;. (y|lB|) = (y1 — Fy, 92 — Fa(y1), -
and volume preserving. As will be seen, this fact is key to the \Bl-1
derivation of lower bounds on scandiction performance based Y8 — FiB| (y1 )) . (25)
on volume considerations.

ForanyB € V, let Sp(B) denote the subset &f(B) con-

sisting of those scandictors which have a predictor Tw,ry=TroTy (26)

F={F: R~ — R}Li‘l so it suffices to show that bothr andTy are one-to-one and
consisting of functions that are continuous and have continuou®ume preserving. To this end note first tHBt is clearly
first derivatives. We shall let/p(p, Q) and Up(p, Q) be one-to-one as, given the sequence of prediction errors (the
defined analogously t&/(p, Q) andU(p, Q) of Definition right-hand side of (25)), assuming the predictoris known,
2, with the only difference that the infimum for definingthe source sequency.ilB| is uniquely determined. As for the

cey

Clearly
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volume-preservation property of this transformation, it is easy Remark: As is clear from the above proof, the one-to-one
to see that the associated Jacobian (which exists as, by pheperty holds forany scandictor(¥, F') € S(B). As for
hypothesis(U, F') € Sp(B)) is a lower-triangular matrix with volume preservation, the conditid®, ') € Sp(B) allowed
diagonal entries which are all equaltdfor all values Oflel) for the simple argument based on evaluation of the Jacobian
Hence, the determinant of the Jacobian of this mapping equafgshe mapTr. With a somewhat more elaborate argument it
unity everywhere, which implies thdi is volume preserving. can be shown that it is enough, for example, that the functions
Moving on to considefl'y, note first thatly is obviously defining the predictor associated witt¥, F') be piecewise
measurable (by the measurability of the mappings defidihg differentiable.
and one-to-one as knowledge of the values observed along an
scan of the sites il uniquely determines(B). To establish the
volume-preservation property @iy we define apermutation
of B as any map) from {1, 2, ..., |B|} onto B. Letting ®p
denote the class of dIB|! permutations oB, the following two
simple observations can be made.

Kote that we can, conversely, look ngl, F) the inverse
transformation of I(y, ), i.e., the transformation taking
the prediction error sequence associated with the scandictor
(¥, F) into the original data array(B). More specifically,

T&,{ % RIZI — REB is given as follows: For any

1) For any¢ € ®p, the mapping;: RZ — RIZ!, defined by W= (Wi, Ws, ..., Wg)) € RZI
Ty(x(B)) = (x(d(1)), z(4(2)), -, z(o(|IB])) (27) if (B) = T3y r) (W) thenz(B) can be autoregressively con-
is volume preserving (as it corresponds to a relabeling 8fructed using? as the innovation process according to
the axes). o(U) = FL + Wy, 2(Us(x(V1))) = Fa(z(V;)) + W
2) For each:(B) € R® there exists a uniqug € ®3 such o
that and so forth. Note that Theorem 5 |mplles that for any scan-
dictor (¥, F) € Sp(B), the mappmgl“\p F) IS one-to-one
Ty(z(B)) = Ty(z(B)). (28) and volume preserving. We thus have the following corollary

to Theorem 5.

Let nowGz C R” be an arbitrary Borel set. For eaghe @5 Corollary 6: For anyB € V and any scandictqf¥, F) €

define Sp(B), we have the following.
G = {@(B) € Gp: Ty(x(B)) = Ty(z(B))} 1) Let X(B) be a discrete- or continuous-valued random
(note thatGY, is Borel by the measurability of the map- field on B and letN = (N1, Ny, ..., Nip)) € RIZ be
pings defining). By the above second simple observation,  the error sequence associated with the scand{dtor”)
{G%} s, is a disjoint partition oG 3, i.e., YI_V:“G” operating onX(B), i.e, N = T, p)(X(B)).
, en
U Ga=Gs and G3NnGL =0 Vo#¢. (29)
P H(N) = H(X(B)). (36)
Consequently, we have
2) LetW = (Wi, Ws, ..., Wip|) € RIBI be a discrete-
b or continuous-valued random vector and }6¢B) be a
Vol(Tw (G'p)) = Vol ( (¢g ¢ )) (30) random field onB autoregressively defined by (B) =
T(jl, F)( ). Then
:V01< U T\p(G‘g)> (31) H(X(B)) = H(W). (37)
o€EdPp
_ Z VOI(T\I;(Gd) ) (32) To derive another corollary note that Theorem 5 implies, in
ol B particular, that for allB € V, (¥, F) € Sp(B)
= Y Vol(T4(G%)) (33) 3|
¢€Z;B N Vol ellB‘ € AlBIZ Z p(e,) < nd
= 3 Vol(Gy) (34) = B
$EDy = Vol ({:L(B) € A”: L(@,F)(z(B)) < d}) . (38)
= Vol(G), (35)  combined with the third item of Proposition 4, this implies that

where() the measurability &fy and the fact that’z as well as forlarge B € V and any scandictai, F') € Sp(B)
theG%’s are Borel guarantee that all quantities in (30)—(32) are B Blv(d
WeII-oIBefined. Equa?ion (31) follows fr?)m the facts(tha)t t(he )sets Vol({w(B) € A Liw, p(w(B)) < d}) ~ el 217,
in {GB}¢€¢,B are disjoint and thaly is one-to-one. Equation Thus, ifGg C AP is a set of a volume which is exponentially
(32) follows from the fact thal’y is one-to-one and, hence, thdarger thanel B17(@, then Ly, ) (z(B)) > d for all z(B) €
setsin{ Ty (G%) }pen, are d|S]0|nt Equation (33) follows from Gz \ .75, where the volume of 5 is an exponentially negligible
the definition of the setx{? and (34) follows from the first fraction of the volume of7 5. More formally, (22) and (38) lead
simple observation above. O to the following.
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Corollary 7: Foranya > ~(d) ande < a—~(d), there exists SinceT(jI}(n)_ F(n))(-) is volume preserving, this implies that in
no such that for alls € ¥ with |B| = no, forallGg € R®  order for Ly, (X (B,)) < d, the innovation vectohV ™)
with Vol(Gg) > eP|*, and any scandictd¥, F) € Sp(B)  through whichX (B,.) was defined must lie in a set whose

Liy.py(#(B)>d  Va(B)eGp\Js (39) Vvolume is< ¢lB-I(#-=<) But the fact that (42) holds implies
(by an AEP-type argument) that the probability of this being
the case is arbitrarily small for sufficiently large This line of
argumentation leads to

liminf Up(p, X(B,)) > d

where

Vol(.Jp) ~|1B
—VOI(GB) <e . (40)
Corollary 7 is an “individual-sequence” type of result whiclwheneverd < ~~(H.,), which implies the left inequality in
gives a lower bound on scandiction loss for “most” sequencéb). This is the essential idea behind the formal proof that fol-

in Gp. We now progress to derive a result for the probabilistiows. Prior to the proof of Theorem 9, we note the following
setting. For future reference, we first state the following, whidiwo corollaries regarding the tightness of the upper and lower
is a direct consequence of (38) and the second item of Propdsiunds in (45), which are direct consequences of Theorem 9

tion 4. and the first item of Proposition 4.

Corollary 8: For anyB € V and any scandictar¥, F') € Corollary 10: Let X = (X, X»,...) be a stochastic
Sp(B) process autoregressively generated by
ﬁ log Vol ({z(B) € RB: Ly, py(z(B)) < d}) X = fu(XT Y+ Wy, t>1 (46)

where {f:}+>1 is a sequence of continuously differentiable
—— +v(d). (41) functionsf;: R"=! — R and {W,} are i.i.d. with ap-max-
imum-entropy distribution. Thetl (p, X) = Ep(W1).

~ We can now state the following result, whose main signif- corollary 10 implies that the scandictor achieving (asymp-
icance is in the introduction of single-letter upper and lowgptically) optimal performance for a stochastic process repre-
bounds on scandiction performance in the probabilistic settingantaple in the form (46) is that which scans the data from left
satisfying|B,,| — oc. LetW = {W,};>1 be a sequence of generally we have the following.

independent continuous random variables, where the der‘Sit!CoroIIary 11: Letthe setting of Theorem 9 hold and suppose
function of W; is fw, (), Var(log fw;(W:)) < € < o0, and fyrther that there exists a continuous random vari&ilewith
for which there exist valueH. andp. such that a max-entropy distributiotfiyy (-) = ¢.(-) for somes > 0 such

1 B that H(W,) = H, andEp(W,) = p.. Then
— H(W; H, 42 .
B 2 TV = (42) lim Up(p. X(Ba) = p. (47)
and
|Bo| Note that, in particular, Corollary 11 tells us that for large
1 Z Ep(Wi) = ps. (43) B € V, if X(B) is autoregressively generated via any scan-
|Bn| = dictor (¥, F') € Sp(B) and the innovation process has in-

Let further {(¥(™), F(™)}, <, be an arbitrary sequence sucifiependent components with a maximum-entropy distribution
that (W), F™) € Sp(B,). Finally, let, for each, X (B,.) w.rt. p, then the optimal scandictor fok'(B) is (¥, F7) it-

be the random field o3, which is autoregressively gener-S€!f- When the innovations are not maximum entropy, charac-
ated by the scandicté® (™), F() with the innovation process terizing optimal scandiction performance is currently an open

wm Z (W W W e problem. In general, when there is a gap between the left- and
(W1, Wo, oo, Wis,) the right-hand side of (45), both the upper bound and the lower
X(Bn) = T&,l(n)? F(n))(W("))- (44) bound are to “blame.” One demonstration of this is the process
Then mentioned in Section | (see (1)) when> (M — 1)/M. For a
1 o concrete example, consider scandiction under Hamming loss of
v~ (H) < liminfUp(p, X(Bn)) the simple random walk defined bY, ;1 = X; + W1, where
< limsup Up(p, X(Bn)) < ps. (45) the process takes valuesfin, 1, 2}, addition is modula, and
n—oe - 1, wp.1/2
The upper bound in (45) is easily seen to be attainable by t= {27 w.p.1/2.

employing the scandictg¢® (), F(")) from which X (B,,) was

generated. To see why the lower bound in (45) should hold n
thatifd is such that/(d) < H, then, by Corollary 8, there exists
e > 0 such that for alln sufficiently large and any scandictor(z0.227092)_ On the other hand, as one can show via “brute-

(¥, F) € Sp(Bn) force” calculations for this case [25], optimal scandiction for
Vol({z(B,) € R®": Ly, p)(2(B,)) < d}) < elB+I(H-=2) " this process is attained by the odds-then-evens predictor, which

For this process, the right-hand side of (45) giv¢3 (attained
trivial scandiction), while the left-hand side is easily veri-
fied to be given by the root of the equatidiid) + d = 1
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is easily verified to attain scandiction loss ®f8. Evidently, Thus, there existaq(d, §) such that for alln > ng(d, §) and
for this process there is a gap between the upper and the loal(V, F') € Sp(B, ) we have
bound in (45), and neither are tight. We shall return to the ex-
ample from Section | in Section V, where the finite-alphabet Pr {L(‘I’*F)(X(B")) = d}
version of Corollary 11 (Corollary 20) will be shown to imply < Pr ({L<¢7F)(X(Bn)) <d}n {W(") € AQB"‘)})
the optimality of the trivial scan for the range pfliscussed in (n) (1B.])
Section |. +Pr {W ¢ Al }

Two concrete examples for the significance of Corollary 11
are as follows.

. . . a / w(™): L z(B,))<d A(E‘B”‘)
Gaussian Innovation and Squared-Error Los$there exists i v, ) (#(Ba))<d}0 )

a GaussiafV, with H(W,)= H, andEp(W,) =02, p(z) =22, S (w™) dw™ +5/2 (54)
Corollary 11 gives < /
lim Up(p, X(By,)) = 0. (48) T s Lew, ) (@(Ba) <d}nad#r Dy
n—oo 67|B7l|(H*7€) dw(n) + 5/2
This fact will play a key role in the proof of the main result of n) (1B.))
Section IV. = Vol ({w t Lew, Fy(2(Bn)) < d} nAZ"" )
Laplacian Innovation and Absolute-Error Loss$f W, in e | Bal(Ho—2) 5/2
Theorem 9 is Laplacian, i.efiv.(z) = 35 e~1#1/5 for some )
B > 0 so thatE|W,| = 3, andp(z) = |z|, Corollary 11 gives < Vol ({w t Liw, p)(2(Br)) < d})
lim Up(p, X(B)) = f. (49) e 1BullHe=e) 4 5/9
| = Vol ({#(Ba): Lew, )(2(Ba)) < d})
Proof of Theorem 9:To establish the upper bound on the o= Bnl(H. _E) +6/2 (55)
limit supremum in (45) note that for all the normalized cu- low 2
mulative loss of the scandict¢ (™), F(®)) when applied to < exp {|B | ( 982 N(d) - H, + e)} +6/2  (56)
X(B,) is given by | Bn|

| 1B gexp{—|Bn|< *;V(d) - 1|(§2|>}+5/2 (57)
Ly, pony(X(By)) = Bl ;P(Wi)- (50) < n (58)
Thus, where the inequality in (54) follows by takingy(d, ) suffi-
limsup Up(p, X(Bn)) < limsup ELg o, pooy(X(B,))  ciently large so that
o o ~ Pe{W ¢ A0BDY <6/2, V> no(d,5) (59)
= limsup B > (W) which is possible by (53). Equality in (55) follows from the

_ =t (51) fact that the transformation taking™) into =(B,,), namely,
P T 1”) Py is volume preserving (Theorem 5). Inequality (56)

where the last equality follows from (43). follows from Corollary 8. Inequality (57) follows since <
We now progress to establish the lower bound on the nm Inequality (58) follows by taking a sufficiently large

infimum in (45). To this end, fix an arbitrary < v~ *(H.) and no(d §) such that, in addition to satisfying (59), the first term

an arbitrarys > 0. Let further in (57) is upper-bounded by/2 for all n > ng(d, §). This is
. [H.=~(d) 5/2 possible sincéB,,| — co. Consequently, for ath > n(d, )
€=minq————, 0/ and all(¥, F) € Sp(B,)
and letA™ denote the-typical set with respect tgy (-) de- ELw, 7y (X (Bn))
fined as follows: = E[Lw, (X (Bn))| Liw, /) (X(Br)) < d]
Al = {(wl Wa, ..., Wy) ER™: Pr{Lew, r)(X(B,)) <d}
1 +E [L(\vaF)<X(Bn))| Lew, 7)(X(By)) > d
’_Ebgfw(whw% "'7wm)_H* SE} (52) ’ (I_PT{L(\D,F)(X(BTL)) Sd})
where fw (w1, wa, ..., wn) = [Iy fw,(wi). As easily 2 0+d(1=Pr{Lew,n(X(Bd)) < d})
shown in Appendix B, to follow from the hypotheses that > d(1-19). (60)
Var(log fiv,(W;)) < C < oo The fact that the right-hand side does not depen@lonF’) €
impli > ,
that (42) holds and thaB,| — o, for all > 0 Sp(By) implies that for alln > no(d, 6)
Up(p, X(Bn)) = d(1 - 6) (61)

lim Pr{W<"> € AngnD} ~ 1. (53)

This is the analog for our setting of the standartypicality
result of the i.i.d. case (cf., e.g., [18, Theorem 9.2.2, item 1]). liminf Up(p, X(Bn)) > d(1 —9). (62)

n—oo

which, in turn, implies
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The arbitrariness off < ~~'(H(W;)) andé > 0 on the Note thatP.(M, n, w) can be upper-bounded by the union
right-hand side of (62) completes the proof. O bound

In the course of the preceding proof (cf., in particular, th€.(M, n, w) < (M — 1) - / w (d9)/ dy™
inequalities leading to (58)) we have, in fact, established the 'n-’\ ) y" if” .
following result, from which (45) was easily derived. Soy™ w0« for(y™) = fo(y™)} (68)

i . o clearlyM (n, 8, w) is lower-bounded by the largest integer
Corollary 12: Let the setting of Theorem 9 hold. For an)fw for which the right-hand side of (68) is less thamamely,

d < ’Y_l(H*)
M(n, 6, w)
lim sup Pr{Lw, r)(X(Bn)) <d} =0 (63) 5
T (Y, F)ESD (Bn) > .
Sy w(d0) [ cqn Ay fo(y™)w{0': for(y™) > fo(y™)}

and for anyd > p. (69)
HILH;O @ F)Seuf 5 )Pr {Lew.»(X(Bn)) <d}=1. (64) Though the precise expression 6 (n, ¢, w) is hard to obtain,
’ v the lower bound in (69) is easier to work with in many cases
In fact, the convergence in (63) and (64) is exponentially (iind will be made use of in the sequel). Let furtiigy -} denote
|B,,) rapid (because the convergencef W™ ¢ AUP*D}  the mathematical expectation with respecfd@nd letH, (Y ™)
to 0 is. denote the differential entropy of"™ under fy. The following

is one of the main results of [7].
B. An Alternative Route to a Converse on Scandictability )
Performance Theorem 13 [7, Theorem 3]Let {fq, § € A} satisfy As-

sumption A and letv be any probability measure an Then,

The observation thdl(y, ) is measure preserving for anyso, everys > 0,0 < § < 1, every PDFy(-), and everys > 1
(U, F') € Sp(B) was the key to the results of the previous -

subsection. When the scandictor, ${B), is not a member ~ Fel=1loga(Y")] > Ho(Y™) + (1 = £)Cr(n, 6, w)  (70)
of Sp(B), however, the volume-preservation property may nfor everyf € A except for a subset of points, C A such that
longer hold. In this subsection, we take a somewhat different 6CRr(n, 6, w) +2
route for the derivation of lower bounds, utilizing MDL-type w(As) < Cn(n, 6, @) (71)
lower bounds [6]—-[8]. We shall use an approach which was ap- o
plied in [9, Subsec. Ill.A] in the context of prediction of time The preceding theorem [7, Theorem 3] is, in fact, formulated
series. This will lead, in particular, to lower bounds on scafer the discrete case, whefgfy, § € A} are finite-alphabet
diction performance for scandictors which are not necessarfigurces and is, correspondingly, a PMF. The proof of the con-
members ofSp (B). tinuous version presented above is easily seen to carry over
Let {fs, & € A} be a general class of information source§inder our Assumption A and the assumption that the source
emitting continuous-valued random variables. Suppose that élghabet is a bounded interval) from the finite-alphabet case.
source alphabéf is some bounded interval. With a customary ForB € V, Theorem 13 can now be applied to derive a lower
abuse of notation, we shall I€§(y™) = fs(y1, - .., yn) denote bound on the attainable scandiction performance for “most”
the PDF ofY™ = Y7, ...Y,, when emitted byfy. Letw be an data arrays in a given subset Bf, of the type obtained in
arbitrary probability measure oh (which is equipped with a Corollary 7. Specifically, let:(B) € R” be a deterministic
o-algebra) and assume thafy, 9 € A} is such thatfy(y") is  (‘individual”) data array indexed by the elementsifSuppose
a measurable function @ffor everyy™ € Z". Following [7], thatwe observe a noisy versioi( B) = x(B) + W (B), where
we shall refer to this measurability assumptionfasumption W (1) is a stochastic noise field with continuous-valued com-
A. Letnow®q, ..., ©,, denoteM independent random pointsponents. We will assume first that the components(d#) and
selected from\ underw. Suppose, without loss of generality, W (B) (and hence also df (B)) are bounded. We shall be in-
that®; has generated™. Let P. (M, n, w) denote the average terested in the attainable performance of an arbitrary scandictor
probability of error in the random coding sense; namely, tH&, F) € S(B) when the underlying data array B) belongs

probability that®1, ..., ©,; andY™ are such that for some to a certain subsef z of R”. Let £, 5y L(w, p) (Y (B)) denote
2<i <M, fo,(Y™) > fo,(Y™). Mathematically the expected scandiction performance(®f, F') € S(B) on
Y (B) when the underlying data array i§B). We further let
P.(M,n,w)=1- / w (dﬂ)/ dy™ Cr(B, 6, w) denote the random codirgcapacity with respect
A yneIn to w of the additive channél (B) = x(B) + W (B) when the

Fo(y™)[1 — w{0: for(y™) > fo(y™) M1 (65) inputis constrained t6 5. An application of Theorem 13, let-

. ting the clean data array( B) play the role o®, G5 the role of

Now let M (n, , w) be the largest intege¥l such that A, Y(B) the role ofy™, andVol(-)/Vol(G ) the role ofw(.),
P.(M,n,w) <6 (66) gives the following. For every PDf-) that is independent of

i i . . z(B), we have
and, finally, define theandom coding)-capacity with respect
tow as Eyp)[—logq(Y(B))]

> H(W(B))+ (1 - ©)Cr (B 5 L”) (72)

Cr(n, 6, w)déf log M (n, 6, w). (67) "7 Vol(Gg)
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for everyz(B) € G except for a subset of pointss C G Combining this with the lower bound (69) we obtain

such that Vol(-) §Vol(Gp)
Vol ) _ 5Cn (37 5 vffilé',),)) Lo Cr <37 6, —V01<GB)) > log [—AlBl } . (80)
Vol(Gp) < Voll) : (73)  substituting (78) and (80) into the right-hand side of (77) gives
ECR (B7 57 Vol(GB)) EA I V(B > 1 1 IOgVOI(GB) low A
Taking a route similar to that taken in [9, Sec. IIl.A] (cf. deriva- =(B) . nY(B) 27 ((1-¢) |B| telog
tion in (29)—(32) therein), for the give(, F') € S(B), we logs log|B| R
now define a PDF of? as follows: +(1-¢) Bl 28] E) (81)
q(y(B)):/ dsv(s) for all z(B) € Ggp \ Jg. By maintaining a regime
J0 wheree — 0,6 — 0, |B] — 00, A — 0, elogA — 0,
|| 0 <a< ZlogVol(Gg) < b < o0 510g[w] — 00
: S([y(W,) = Fy(y(T0), ..., y(W, 74 i 1B Br= ’ N ’
Ll;ll CD t(y(T0), y(Pe 1))])} (74) glog{%] — o0, andé /e — 0, we have by (72) and (73) and

) ) the continuity ofy~!(-) established the following.
where the¥,’s and F};’s on the right-hand side are those as-

sociated with the scandict¢®, F) € S(B), v(-) isalocally =~ Theorem 14:Vn > 0,0 < a < b < o0, Ing = no(n, a, b)
bounded away from zero “prior” o, and¢,(-) is the max- such that¥ B € V with [B| > ng, VGp € RP with a <
imum-entropy distribution defined in (19). Note that for eachg; log Vol(G5) < b, andY (¥, F) € S(B)

s, the bracketed expression in the right-hand side of (74) is _, (log Vol(Gp)

a bona fidePDF and, consequently, so i¢-). Furthermore, () Lew, r)(Y(B)) >~y (T) -

according to the main result of [19] (cf. also [9, eq. (30)]), ]

—log q(y(B)) can be approximated as follows: Va(B) €Gp\Jp (82)

. where
—logq(y(B)) =Bl - inf [s - Lew, p)(y(B)) = A(s)] Vol(J)
s o B
1 A <. 83
+ 5 log Bl + R(y(B)) Vol(G) =" )
=Bl (Lew, r) (y(B))) As opposed to the previous subsection, where the converse
4 llog |B| + R(y(B)) (75) statements were valid for scandictors with a continuously differ-
2

entiable predictor, Theorem 14 holds for an arbitrary scandictor.
where the remaindef?(y(B)) is an increasing function of Note also that when > 0 is small,Y (3) on the left-hand side
L, r)(y(B)). Since the components gf(B) are assumed of (82) is close, under sup-norm,463). One example of a way
bounded,(y(B)) is bounded as well by some constait of exploiting this it to letSX ( B) denote the subset 6 B) con-

Substituting into (72) implies that sisting of all scandictors which afé-Lipschitz in the sense that
|B|- Eupy [v (Lew, 7)(Y(B)))] = HW(B)) |Lw, py(@(B)) = Liw, py (@' (B))| < K||z(B) — 2'(B)]|o
+(1—¢)Cr <B, 5, M) _LegiBI= R (76) (84)
Vol(Gp) 2 for all z(B), 2/(B) € RPB. Note, for example, that any

forallz(B) € Gp \ Jp. The concavity ofy(-) allows to insert scandictor(¥, F) € S(B) with a deterministic (non-data-de-
the expectation into the argument-gf.) on the left-hand side pendent) scan, such that the functions comprisifigare

of (76) which gives K-Lipschitz, is a member o%(B). Note also that when
Bl -~ (Eyp L Y(B)) > H(W(B the underlying data array is:(B) and the components
1Bl (Bamy Lw. 1y (Y ))\)/01_(') @ 1)) of W(B) are Ul[-n/2,n/2] then, with probability 1,
+(1 — 6)CR <B/ (57 m) — 5 log |B| —R (77) ||$(B) — Y(B)”oo S 7]/2 and, hence,
m
forall 2(B) € G\ Ji. Narrowing down even further, assumé =@ L@, HY (B)) < L, p)(@(B)) + Kn/2,
henceforth that the components @f(B) are i.i.d. and uni- Y (U, F) e S¥(B), z(B) e RB. (85)

formly distributed on[—A/2, A/2]. To make the dependencee thus have the following corollary to Theorem 14.
explicit, we add the superscrigd in the notation for expecta-

tion, thus writingE2%,  {-}. For this case, we clearly have Corollary 15: V7 > 0,0 < a < b < 00, 3ng = no(n; a, b)
such thatV B € V with |B] > ng, VGp € RB with a <

H(W(B)) = |B|log A. (78) L logVol(Gp) < b,andVK > 0, (U, F) € S¥(B)

|B]
To get a more explicit handle on the right-hand side of (77) for log Vol(G'g)

3 . —1
this case, we now lower-bour@z (B, ¢, \,Zf(—gl)) as follows. L(w, m)(@(B)) 27 ( B ) — (K +2)n/2,
Letting ff(B)(-) denote the PDF of ( B) when the underlying Vz(B) e Gp\Jp (86)

data array isc(B), it is clear that for any:(B) € Gz and any

y(B)
Vol(J
Vol («/(B): £y (u(B)) > fm(u(B))) < AL (79) % <n. (®7)

where
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Note that similarly to Corollary 7, Corollary 15 is a purely The extension of Herglotz's theorem [20, Sec. 4.3] to the mul-
“individual-sequence” statement. Where the former was validliimensional case dates at least as far back as [21], asserting the
for scandictors irSp (B), the latter holds for those i6% (B). following representation of the covariance:

Note also that Corollary 15 can be further specialized as follows 1 ,

(the details, which are similar to those in the proof of Corollary (1) = 2n)i / emNG(dr),  nez' (88)

7, can be made precise and are only sketched here for brevity). [0, 2m)¢ ) _

For B € V such that B| is large, for any scandict¢fr, Fy) € W ereG, the spectral measuras a nonnegative and bounded
Sp(B) we know, from the previous subsection, that measure oveo, 2W?d- .

A subsetS C 7?2 is called ahalf planeif
S is closed to addition S U (-S) =7%, Sn(-S) = {0}.
is exponentially equivalent tel?17(9), Hence, for larggB], (89)
taking

Vol({w(B) € RP: Liw,, r,)(@(B)) < d})

A half-planeS defines a total order relationship @s via

(i, ) < (k, 1) = (k—i, l—j) €S. (90)
for the set7 g in the sense that there is no Lipschitz scandictor )
that can perform better thaf¥,, Fy) for most data arrays in =~ Stex = {(m, n) € 2% [m > 0] or[m =0, n > 0]} ~ (91)

Gp. This is true because, whil@g, Fy) attains a scandiction where the corresponding total order is known as lthéco-

error no larger thaw for everyz(B) € Gg (by definition), graphic order If « is irrational, the subset
any alternative scandictor will have scandiction error essentially

Gp = {a(B) € RP: Ly, p)(@(B)) < d)

— 2,

lower-bounded byl (by inequality (86)) for all but a set of data Sa = {(m, n) € Z°: ma+n > 0} (92)
arrays whose volume is a negligible fraction of the volume ¢ easily verified to be a half-plane as well.

GpB. The following result is due to Helson and Lowdenslager [22]

To see the connection between Corollary 15 and the lowgf. also [23, Sec. 1.2.3]). Itis a nontrivial generalization of the
bound of Theorem 9, note thatif(3) is assumed generatedwell-known Szegd's theorem (also known in the literature as

by a probabilistic source of entropy rakg, then by lettingG'sz  Kolmogorov’s formula [20, Sec. 5.8)).
above be the typical set (of exponential siz&€!") one gets

a lower bound ofy~!(H) on the scandiction performance of Theorem 16 [22]: Let X i {Xf}*ezz be_a W.S.S. Process
Eqﬂg letg denote the density function associated with the abso-

any scandictor on most typical sequences, from which the sa | ) in the Leb q o ¢
lower bound for expected scandiction performance is easily tely continuous component in the Lebesgue decomposition o

tained, essentially recovering the lower bound of Theorem 9.S SPectral measure. Then for any half-plahe
To end this subsection we point out that the derivation ¢ 2
p aton f | o — Xo((—5)\ {0})]
Theorem 14 and Corollary 15 was based on an application o
Theorem 13 with the assignment:) = Vol(-)/Vol(G ). This 1
gave an upper bound on the ratio between the volumes of the sets =P 42 '/[0 . logg(A)dA . (93)
Jg andG . Other choices af(-) can similarly give analogs of '
the above results with upper bounds on the ratio between thgqte that(—S) \ {0} = {s € 7% s < 0}, where, in the

w-measures of the selg; andGp. right-hand side, we use the total order relationship definesl.by

Under this conventioio((—S)\{0}) = Xo({s € Z% s < 0})
IV. SCANDICTABILITY OF THE SQTAT'ONARY is the best linear predictor of, based on its infinite “past.” In
GAUSSIAN FIELD ON Z the sequel, we shall writés < 0} as shorthand notation for

We dedicate this section to the scandictability of the spatialfy € Z*: s < 0}, where the total order relationship should be
stationary Gaussian field @ with respect to the squared-erroiclear from the context. o _
loss function. The main result and the analysis carries over tol e main result of this section is the following.

z¢, foranyd > 1. _ _ Theorem 17:Let  be any stationary Gaussian field @A.
To fix notation, we recall here the basics regarding SP€Fat p(-) be the squared-error loss function. Then
tral representations of wide-sense (second-order) stationary pro-

cesses. There are no fundamental differences between the time- 1
8 o ) U(p, =e — log fo () dA 94
series and the multidimensional case. Dét= {X;},cz« be (p, Q) eXp{4 2 _/0,%)2 o8 fo(A) } 04

a wide-sense stationary (w.s.s.) and centered process takm%rére fo is the density function associated with the absolutely

general) complex values\; € L%, EX; = 0, E(X;X,) = . . ”»
R(t—s). ForanyV’ C 72, letH(X (V') denote the closed Spancontmuou:s component in the Lebesgue decomposition of the
sgectral measure @p.

of {X:}+ev, i.€., the smallest closed subspace which contain
eachX,, t € V (under the scalar covariance product). For any For notational convenience in what follows, we J% de-

t € 7?2 andV C 72, we will let X;(V') denote the projection note the right-hand side of (94). To discuss the implication of
of X, onto (V) (in other words X, (V') is the best linear pre- Theorem 17 and for future reference, we make an explicit note
dictor of X, in terms of{ Xy }yev). of the following elementary fact, which is easily established
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using the properties of Hilbert spaces (cf., e.g., [20, ProblgonedictorF’ is a linear combination of the values of the field at
2.18)). the previously observed site&.fortiori, such a predictor con-
Fact 1: Let{B,}n>1, B, C Z?, satisfyB,, /' B for some sists of smoothly differentiable functions so that

B C 7?%. Then
- U(p./ X(Vmﬂ» = UD(ﬂ-/ X(an))

. 2 . 2
E ‘Xo - Xo(Bn)| \\E ‘Xo - XO(B)‘ : (95 for eachn and, consequently, we will be done upon showing
Note, in particular, that Theorem 16 combined with Fact 1 impkpat
that if X is distributed according to (the w.s.$)) if S is any ] 5
half-plane, and if we let ,}5{; Up(p, X (V) = 05 (100)

~ 2
L) ‘Xo - Xo({s<0}n(V, —[n/2] - 1))‘ - 04 To this end, we fix a half-space, say, for concretenégs, of

(91) so that, in the remainder of the proof, inequalities between

(96) members oZ? should be understood in the sense of the lexico-
where{s < 0} is with respect to the total order defined By ~graphic order. Note that this total order also induces a determin-
then istic (data-independent) scan on dnye ) according to which

site; € V is reached before sitee V ifand only if i < 5. We
en N\ 0. ©7) construct now the sequeni = {W, },>; inductively through

One notable consequence of the combination of Theorem W following steps.

with (96) and (97) is that for large rectangles of a stationary ¢ At the first step,Wy, ..., W, ). are defined to be the
Gaussian fieldThe scandictability is (essentially) attained by ~ prediction errors when scanning,,, lexicographically
any scandictor which scans the data according to the total order ~ and employing the optimal linear predictor. That is, if

defined by any half-plané (and, of course, employs the corre- i € Vp,, is thetth site reached when scanniig,, lex-
sponding optimal linear predictor) icographically, then
Another consequence of Theorem 17 and (96) and (97) is W, = Xi — Xi({s < i} 0 Vi) (101)

that of all w.s.s. fields with a given spectruhe Gaussian field

is hardest to scandictTo see this note that the performance °* At the n + 1th step, the component®/(,, )241, -- -,
(i.e., the normalized cumulative mean-square error (MSE)) of  W(m,.,,)> are defined to be the prediction errors when
the scandictor which achieves optimum performance in the scanningV,,, ., \ V.., lexicographically and employing
Gaussian case depends only on the second-order statistics of the optimal linear predictor which bases its prediction
the field. In the non-Gaussian case, however, it may not be the for sitei € V., ., \ Vi, on the values observed at

optimal scheme. the previously scanned sites ©f,,., \ V.., as well as
The main idea behind the proof of Theorem 17 is the fol-  on X(V,,,) (which is known from thenth step). That
lowing. Fix a half-space. The fact that is, if i € V.., \ Vi, is thetth site reached in the

lexicographic scan o¥;,,,, ., \ Vi, then

is a two-dimensional white noise process (due to the orthogo- Win,p24e = Xi = Xi ({{s <i} N Vi U Vi, ) -

nality principle) and is Gaussian (because of the Gaussianity (102)

of X = {X,}icz> and the linearity ofX;(-)) implies that it Clearly, the components & are zero mean (the optimal linear

is a Gaussian i.i.d. process and, in particular, has componepitedictor is always unbiased), Gaussian (each is a finite linear
with a maximum-entropy distribution w.r.t. the squared log®ixture of components of a Gaussian field), and independent
function. Since{X;};cz> is generated autoregressively byby the orthogonality principle). Furthermore, by the construc-

{N;} (e, X; = N; + X;({s < 0} + 1)), then the conditions tion of W, Theorem 16, Fact 1, and the stationarityfwe

of Corollary 11 are satisfied, e.g., % (V,,)}..>: (recall that have
V., € Vs then x n rectangle whose lower left corner is at

the origin). By predicting{ X;} on finite, growing rectangles,
we are approximating better and better the optimal predict
based on the infinite past (associated wi)h This idea is made 9 .
precise in the formal proof which follows. (g1 = 2my)” Sit€si € Vi, for which

Proof of Theorem 17:Let X = {X,},cz> be distributed s <ip Vo o} 2 (s <0 {Vi, — [mn/2] - 1433}
according toQ. Let {m, },>1 be an arbitrary increasing se-By stationarity, this means that the MSE associated with each

{Ni = Xi = Xi({s < 0} + ) }iere

Var(W;) > 05, V. (103)

%h the other hand, for eagh> 1, there are clearly more than

quence of positive integers satisfying suchi, namely, the variance ¥, for ¢'s corresponding to such
M 111 — 0 (98) i's, is upper-bounded by
v 2
By item b) of Theorem 1 it will suffice to show that E(Xo = Xo({s <0} N (Vin, — [ma/2]-1)))".
lim U(p, X(Vyn,)) = oé. (99) Consequently, for each sughwe have, for the correspond-
n—00 " ing W,

Furthermore, sinc& (V,,, ) is a Gaussian field ol,,,, , for any

n

scanV¥ the corresponding optimal (under the MSE criterion) Var(W;) < aé, + €m, (104)
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where {¢,,} was defined in (96). At the remaining sites oWalues in the same finite alphahét We shall further assume
V..., the correspondingV; clearly satisfies throughout this section that the subtraction operation is well de-
Var(W;) < R(0). (105) fined and that, as in Section Ill, we have a difference loss func-
tion. This will allow us to follow a line of reasoning analogous
Hence, we have both to that from the case of real-valued observations and predictions
Vol treated in previous sections. In particular, the volume-preserva-
Z p(Wr) tion arguments of Section Il are replaced here by (somewhat
simpler) “cardinality-preservation” arguments, to obtain lower

2
Mpt1 — 2My, 2 bounds on the attainable scandiction performance.
—_— (UQ + Emn)
_|._

nl =t

2
oH < ——
¢ Vi
<

Mp41 More concretely, assume throughout this section tHat+)
. (mn+1 —2m, ) 2 is agroup. That s, the operatignis associative and there exists
Mp+1

-R(0)  (106) 0 e A such that
and (by the Gaussianity of eaéti,)

Vae A, 3I(—a)€ A:ra+(—a)=(—a)+a=0. (111)

Following the usual convention, far, b € A we writea — b for

1 ) 2
5 log[2meag)] a+ (—b). We assume that the loss functikn -) is of the form

I‘/nlnl u—

< 1 H(W,) | I(F, a)=p(a F) | VF,a€e A | (112)

[Vin., = for a givenp: A — [0, co) satisfyingp(a) = 0 if and only

m —om\21 if @ = 0. Let now, analogously as in Section lll, for any
< (M> = log [2me (08 + &m,. )] B €V and any scandictqi, F) € S(B), the transformation
Mn+1 2 \ Tiy, p): AP — AIP| be defined by
+|1- <—m”2 2m"> ] : %log[ZweR(O)]. (107) Tew,r)(z(B)) = (z(V1) — Fi, (V) — F>, ...,
n+1

. . . . v (¥p) - Fim)  (113)
Equations (106) and (107), combined with (98), imply that ) _
W = {W,},>: satisfies (42) and (43) foB,, = V,,, and where ¥, and F; on the right-hand side of (23) are, respec-
W. ~ N(Ol a_é ). Furthermore, lettinge (™) stand for the scan tvely, theith site andth prediction associated with the scan-

corresponding to that by which™ — (W, ..., Wi, |) dictor (¥, F') when operating o (B) and the subtractions on

was constructed anB(™) correspond to the associatednaiotimaltfr:ewgggggand sﬂzs;((l B%)3 )eafBlri]nigethgerosl:aZuS::s: (;)ffp(rlell)'
(v, F) ‘ -

' ' () )
linear predictor, clearly, ¥/, ) € Sp(Vmm,,) and diction errors incurred when the scandict8r, ') operates on

X(Vin,) = T(E,l(n), F(n))(W(n))- x(B). For any scandictarl, F'), given the sequence of predic-
Thus, the setting of Theorem 9 holds and Corollary 11 (recall, fign errors, the data array(B) is uniquely (autoregressively)
particular, the Gaussian example following it) implies that (10@)etermined (recall analogous discussion following the proof of
holds, thereby completing the proof. 0 Theorem 5). Hence we have the following fact.

) . Fact 2: For any scandictof¥, F') € S(B), the transforma-
We point out that the proof idea extends to the case of agy, Tiy, py: AB S AlB! defined in (113) is one-to-one.

stationary field) € M, (€2) that can be autoregressively repre- Ap immediate consequence of Fact 2, which is key to the re-
sented as sults of this section, is the following discrete analog of equation
X, = f(X({s <O} +1)) + W, (108) (38):

|B|
whereW = {W,},cz: is an i.i.d. field (the innovation process | { |51 ¢ 415l Z/’(e'i) < nd
with continuous-valued component$),R1*<} — Ris a mea- )
surable map, anfls < 0} is w.r.t. any half-plane. Slightly more
formally, Q@ € M (£2) must be such that for any Bor€IC R

VBeV, (¥, F)e S(B). (114)

Q (Xo € I'|Fpocoy) = /1 fw.(a—f(X({s <O}))daas. e now define quantities analogous to those in Section Ill as
(109) follows:* Thelog-moment generating functi@ssociated with

where fw, (+) is the PDF of thd¥,’s. For suchQ € M,(Q), the loss functiorp is defined by

= {=(B) € A%: Ly, py(x(B)) < d}|,

the above proof idea easily extends to show that —sp(2)
) As)=—log |> e, s>0  (115)
77 (Hy) S U(p, Q) < ps (110) =
with equality whenfyy, () is a maximum-entropy distribution and itsone-sided Fenchel-Legendre transfdsyas before, de-
W.I.L p. fined by
V. THECASE A < o0 Y(d) = ;I;i(;[sd — A(s)], d>0. (116)

We dedicate this section to the (_:ase where the com_ponents @ve maintain the notation from the previous sections to emphasize the
the data array, as well as the predictions of the scandictors, taka&logy.
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Analogously as for the continuous case, the functi¢h) can Then
be interpreted as the entropy associated with the PMF Y LH(W,)) < liminf U(p, 2(By))

gs(z) = e7POHAE) ey (117) .
wheres > 0 is tuned so thaF;p(Z) = d (for d sufficiently < hflfip Ulp, #(Bn)) < Ep(W.).  (124)

small so that such anexists),t, (as before) being the expec-
tation operation w.r.tz,. It is also easy to verifythatq,(-) is a The proof of Theorem 19 is analogous to (though simpler
maximum entropy distribution for the discrete case as well, i.éhan) that of Theorem 9.

that Proof Sketch:The upper bound in (124) is established
Eqp(Z) < Esp(Z) = H(q) < H(gs) (118) by considering the expected performance (@™, (™)
on z(B,) which, by construction ofz(B,), is precisely
with equality on the right-hand side if and only ¢f = g,. B Z‘B"' Ep(W;), which converges taEp(W,). For the

Hence, the first item of Proposition 4 holgsrbatimfor this Iower bound, we observe that, by the AE&hd Fact 2, for any
case as well. Furthermore, (118) implies that the right-hand side. 0 and sufficiently larger, if Jz, ¢ AP~ with
of (116) is the explicit expression for the more qualitative form
v(d) = e A _ HD). (119)
r(2)< thenxz(B,,) € Jp, with probability <e. In particular, for large

Since~(+) is continuous (as is seen from its definition (116)), ;g any scandlctc(r\IJ F) € 8(B,), we can take
it follows, e.g., by combining the relation (119) with a typical-

sequences analysis [24], that I, = {x(Byn) € AP": Ly, p)(2(By)) < d}.

n o Since, as discussed abovl, ~ e!B»17(D if H(W,) > ~(d)
. ) =< =
{61 €4 ; plei) =< nd} 7(d) (120) then we will haveL g, ry(z(By)) < d with probability < e.

which is the discrete-alphabet analog of (22). Equation (120JSind this line of reasoning, one can show that

1 Tg. | < el Bal (W) =)

1
lim —log
n—oo N

combined with (114), implies that for largB € V and any hmmf Ulp, 2(B,)) > d
scandicton(¥, F) € S(B)

{2(B) € AP: Ly, ) (2(B)) < d}| = P, whenevewl < v~ (H(W.)), which implies the lower bound in
Thus, ifGp C A® is a set of size which is exponentially Iarger(124)' O

thane!® (@, thenL(y ry(z(B)) > dforall z(B) € Gp \ For simplicity, in the hypotheses of Theorem 19 we have re-
Jp, where the size of 3 is an exponentially negligible fraction quired the convergence in distribution{d¥; } ;> to W.., which
of the size ofG 5. More formally, (120) and (114) lead to theimplies in the present finite-alphabet setting that (42) and (43)
following. hold?

Since, as discussed earlier, the first item of Proposition 4
holds for the current setting, Theorem 19 implies, similarly as
Corollary 11 from the continuous case, the following.

Theorem 18:Foranya > (d) ande < a—~(d), there exists
no such that: For alB € V with |B| > ng, forallGg C AB
with |G | > elPle, and any scandictdi, F) € S(B)

Lew, ry((B)) > d, Vz(B) € Gg \ Jp (121) Corollary 20: Let the setting of Theorem 19 hold and sup-
i pose further thatV,, has a maximum-entropy distribution (i.e.,

where - of the form (117)) w.r.tp. Then
|Gi| < o 1Ble. (122) lim U(p, z(Bn)) = Ep(W.). (125)

Theorem 18 is an “individual-sequence” type of result. For In what follows we apply Theorem 19 and Corollary 20 to a
the probabilistic setting, we have the following analog of Thdew concrete cases of special interest.
orem 9. Let S be any half-plane (so that inequalities among elements
of 72 appearing henceforth are w.r.t. the total order defined by
S). Let X = {X;}iez2, Xt € A, be a stationary random field,
governed byQ € M,(2), which can be autoregressively rep-
resented as

Theorem 19:Let {B,},>1, B, € V, be an arbitrary se-
quence satisfyingB,,| — co. LetW = {W,;},>; be a sequence
of independenti-valued random varlables converging in distri-
bution to soméV,. Let further{(¥(™) F(™)}, -, be an arbi-
trary sequence of scandictors, Wh(éﬁe("), FM) € S(B,). X =f(X({s <0} +1)+ W, (126)
Finally let, for eachn, ©(B,,) be the random field of3,, which
is autoregressively generated by the scandi¢iof®), F(™)
with the innovation procesd’ (™) = (Wi, W, ..., Wz, ),

whereW = {W,}iez2, W; € A,isani.i.d.field (the innovation
process)f: A1*<0} — A is a given mapping, and addition in
the right-hand side of (126) is in the group sense of this section.

ie.,
_ (n) 8In particular, Theorem 22 of Appendix B can be harnessed for this setting to
x(Bn) = T(‘I/(n) Py (W " ) (123) showthatforany > 0, largen, and set of size e™(H(W:)=<) the probability
of (Wy, Wa, ..., W,,) belonging to that set ise.

SThe proof follows that from the continuous case (cf. proof of the first item 7Thisis in contrast to the continuous setting of Section Ill, where convergence
of Proposition 4)yerbatimup to the replacement of integrals by sums. in distribution does not imply that (42) and (43) hold.
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In other words, the conditional distribution &f, based on its this work but can be shown [25] that it is the “odds-then-evens”
past is given by scandictor which is optimal for this range pftrivial scandic-
_ e tion being strictly suboptimal for this case).
QXo = alX({s <0}) = pw(a - f(X({s <0})) as. Certain Eight Nearest Neighbors Binary MRF'§ake, for
(127) concretenessy = S\ and suppose tha is a binary MRF on

wherepyy is the PMF ofi¥; . For this case, one can use Theorers~ governed by € M, (©) such that

19, very similarly to (yet even more simply than) the way that, + _ ;1 x oM =0 (Xo=1|X X a.s
Theorem 9 was used to establish Theorem 17, to show that%( 0=1X({s <01))=Q (Xo=1|X(1,0, Xeo.-p) a5,

(134)
v HH(W)) < U(p, Q) < Ep(Wh) (128)
. ) . ~ Suppose further that
with equality whenW; has a maximum-entropy distribution
w.r.t. p. Furthermore, the upper bound éf{p, Q) in (128) is Q(Xo=1[X(_1,00=a, Xo,—1)=0b) =pa  (135)

achieved via the deterministic scan induced by the half-pﬁanewherepab € {c, 1 — c}. The presentation (135) has an equiva-

In particular, whe_n the d|str|bl_1t|on o7 is maximum entropy, lent eight-nearest-neighbors presentation, cf. [23, Sec. 2.2.5] for
such a scan achieves the optimum scandiction performance. . S )
; details. Corollary 21 implies thdf (py, Q) = ¢ for this case,

For a concrete example, lgt; stand for Hamming loss

. which can be achieved via the lexicographic scan.
(a) = 0, ifa=0 (129) Unfortunately, general MRFs (even as simple as four-nearest-
PHAG) = 1 otherwise neighbor ones) do not adhere to an autoregressive representation
so that the associated maximum-entropy distributions are ea&fy€ tyPe in (126), for which the results of this section hold.
seen to be of the form Even standard fields susch as the Ising and the Potts model do
1_ ifi=0 not have such a representation, and the characterization of their
pw (i) = { P - (130) scandictability remains an open problem.
p/(M —1), otherwise

forp < (M — 1)/M. For an MRF characterized by (126) or, VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

7

equivalently, by (127), wher&’, is distributed according i, The hottom line of this work is the following conclusion. If a
we thus have stochastic process or field can be autoregressively represented
Ulps, X) = p. (131) with a max-entropy innovation process, then itis optimally scan-

dicted using the scandictor associated with the said representa-
Specializing this observation even further, consider now the ltien. The optimality criterion discussed in this work for the sto-
nary case wherd = 2 and+ denotes modul@-addition. For chastic setting was expected normalized scandiction loss. The
this case, ifPr(W; = 1) = ¢ < 1/2, thenW; has a max- volume-preservation argument used, however, can actually be
imum-entropy distribution. Furthermore, here it is easy to ssbdown to lead to the following much stronger conclusion. The
that (127) holds for somé¢ if and only if scandictor associated with the autoregressive representation (as-

suming a max-entropy innovation process) is optimal also in the

QXo=1X({s <0}) €{e, 1 ¢} as. (132) error-exponent sense (i.e., has the best large deviations perfor-
We thus have the following. mance) for all threshold values. The interested reader is referred
Corollary 21: Let Q € M(2) be a binary field satisfying 0 57] for the details, . .

(132) (wirt. any half-plang). Then uppose thgt rather than a smgle loss functlon_we are pre-

sented with a list of loss functions with respect to which scandic-
Ulpa, Q) =¢ (133) tion performance is to be evaluated. In this context, given a list

where the (asymptotically) optimal performance is achieved l?f i loss functiondps, ..., pi), itis natural o try and charac-

scanning the data according to the order correspondiig to ¥rize the achievable region of the vector of corresponding losses

(di, ..., d). Analogs of lower and upper bounds on scandic-
The following are examples for special cases covered bign performance in previous sections for the case of multiple
(131). loss criteria would be in terms of inner and outer bounds on the

Symmetric First-Order Markov Source in One Dimension: achievable region. Such bounds can be obtained by generalizing
This case was mentioned in Section |.Xfis a first-order the techniques of Section Ill. The interested reader is referred to
Markov process (o1Z) with the autoregressive representatiof26, Sec. 6].
(1), (131) implies that when < (M —1)/M, the optimal scan-  In the remainder of this section, we outline future research
dictor (for Hamming loss, i.e., minimum expected number afirections related to this work. The first direction pertains to as-
errors) is the trivial one, namely, that which scans the data fra@essing the tightness of the upper and lower bounds in Theorem
leftto right and predicts the previously observed value. Note tha{see (45)) for the case where the distributiofigfis not max-
the line of argumentation leading to (131) (and hence to the optiium entropy. Suppose, for example, that the fi&ldB,,) is
mality of trivial scandiction for the autoregressive process undautoregressively generated by sofié™, F(™)) ¢ Sp(B,,),
discussion) is no longer valid for the case> (M — 1)/M, where the driving noise is zero-mean Gaussian, yet performance
as for this case the distribution (130) is no longer max-entrofyevaluated relative to the absolute loss functi¢n = | - |. Or,
with respect to Hamming loss. Indeed, it is beyond the scopearfnversely, that the driving noise is Laplacian and performance
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is evaluated under squared-error loss. Is it still true in these ca&ss the other hand, by the nonasymptotic upper bound in
that the optimal scandictor foX (B,,) is (U™, F(")? An af- Cramér's theorem (cf. [17, Theorem 2.2.3] and, in particular,
firmative answer would imply that the “blame” for the gap beremark c) therein), we have
tween the upper and lower bounds in (45) lies in the lower bound .
anq that, in fgct, (47_) holds in cases other than when the distri- Pr {Z p(X;) < nd} < 9e—ninfaca AL (@) (A4)
bution of W, is maximum entropy.

Another direction is that of universal scandiction. It is not
hard to extend the idea underlying universal predictors and cavhere
struct universal schemes for the scandiction setting. The scan- 1 @
dictors resulting from such an approach, however, are far tda () = log Be*) = log {2— / e*r(®) dz}
complex to have any practical value. Thus, it is of interest to @ J=a

i=1

find universal scandictors of moderate complexity. — “log(2a) + log [/a () dz} (A5)
An additional direction for future research is that of scandic- J—a

tion under the large-deviations performance criterion. Is theagd

no loss of optimality in restricting attention to deterministic\* (z) = sup[Az — A, ()]

(given the observations) scandictors for this case? Is it still true AER i

that an autoregressively generated field is best scandicted the Y e

way it was generated? A partial answer (in the affirmative) to = log(2a) + igﬁ _)\w ~log [/_a e )dZ”

the latter question was given in the recent work [27]. r . )
Finally, we mention the problem of noisy scandiction. Sup- > log(2a) + igg Az —log [/ e’ dz”

pose that a scandictor is to operate on a noise-corrupted image r T e

(e.g., a Gaussian image corrupted by additive white Gaussian = log(2a) — inf |—\z — <— log [/ e*r(®) dz} )}

noise), yet its performance is evaluated relative to the clean ACR | e

image (cf., e.g., [28], [29], for the time-series origin of this = log(2a) — inf [Sx _ <_10g [/ o~ 5p(2) dZD}

problem and for its motivation). Do the main results of this work sER NS

carry over to the noisy setting? In particular, does the main re- S log(2a) — inf (4 T en(®) J

sult of Section IV carry over to the case of a Gaussian image > log(2a) 550 |57 08 ,/_oo € *

corrupted by additive white Gaussian noise? = log(2a) — (). (A6)
Some of the above issues are under current research.
Combining inequality (A4) with (A6) we obtain

APPENDIX A .
PROOF OFPROPOSITION4 1 log Pr {Z p(X:) Snd} < loﬁ —inf A¥(x)
Proof of Item 1): According to [18, Theorem 11.1.1], " i=1 no esd
log2 . ] ]
Ep(7) < Bup(7) = H(g) < H(g.) (A1) < = 7 lufflog(2e) =y (@)

log 2

where the right-hand side of (A1) holds with equality if and only = 5% _log(2a)+sup~(x)

if ¢(-) = ¢s(-). To see why this implies item 1) l€f,p(Z) = lox 2 v=d

_ g

d and recall thaty(d) is the differential entropy ofs, where
Esp(Z) = d. O

Proof of Item 2): Fix ana > 0 and let{X;} be an i.i.d. where the last equality follows by the fact thet:) is monoton-
sequenceY; ~ U[—a, a]. On the one hand cléarly ically increasing inc. Combining equality (A3) with (A7) gives

Pr {zn: p(X;) < nd} %logVol ({Z p(X;) < nd} N[-a, a]") < 1052 +(d).

‘ i=1
1=1

—log(2a)+~(d) (A7)

n (A8)
Vol ({ > op(X;) < nd} N [—a, a]")

_ i=1 (A2) Finally, taking the limit of the left-hand side of (A8) as— o

(2a)" gives the desired result. O
so that Proof of Item 3): Let X3, X5, ..., X,, be ani.i.d. sequence

N drawn according to the PDf (+) (recall (19)), where is tuned
1 log Pr Z p(X;) < nd so thatEs;p(X1) = d. Itis then easy to verify that the differ-
n et v ential entropy ofX; is H(X1) = ~(d). Furthermore, letting

) n An(d_) = {x’f >, p(z;) < nd}, the weak law of large num-
= —log Vol ({Z p(X;) < nd} N[—a, a]n> —log(2a). bers implies
" i=1
(A3) lim Pr{X" € A, (d+¢)} =1, Ve > 0. (A9)
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Evidently, A,,(d + ) carries most of the probability mass and,
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