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Scanning and Prediction in
Multidimensional Data Arrays
Neri Merhav, Fellow, IEEE,and Tsachy Weissman, Member, IEEE

Abstract—The problem of sequentially scanning and predicting
data arranged in a multidimensional array is considered. We in-
troduce the notion of ascandictor, which is any scheme for the se-
quential scanning and prediction of such multidimensional data.
The scandictabilityof any finite (probabilistic) data array is de-
fined as the best achievable expected “scandiction” performance on
that array. The scandictability of any (spatially) stationary random
field on is defined as the limit of its scandictability on finite
“boxes” (subsets of ), as their edges become large. The limit is
shown to exist for any stationary field, and essentially be indepen-
dent of the ratios between the box dimensions. Fundamental lim-
itations on scandiction performance in both the probabilistic and
the deterministic settings are characterized for the family of differ-
ence loss functions. We find that any stochastic process or random
field that can be generated autoregressively with a maximum-en-
tropy innovation process is optimally “scandicted” the way it was
generated. These results are specialized for cases of particular in-
terest. The scandictability of any stationary Gaussian field under
the squared-error loss function is given a single-letter expression
in terms of its spectral measure and is shown to be attained by the
raster scan. For a family of binary Markov random fields (MRFs),
the scandictability under the Hamming distortion measure is fully
characterized.

Index Terms—Autoregressive representations, Gaussian fields,
Kolmogorov’s formula, Markov random fields (MRFs), prediction,
random fields, scandiction, scanning.

I. INTRODUCTION

T HE main motivation for this work comes from predictive
coding, a compression technique used for encoding im-

ages, voice signals, video signals, and other types of data. The
basic idea consists of scanning the data array, constructing a
model of the data, employing a predictor corresponding to the
model, and then encoding the prediction error. Examples for
predictive coding include linear prediction coding (LPC)-based
voice coders (e.g., [1]) and image coders (e.g., [2]). The com-
pression efficiency of such schemes naturally boils down to the
efficiency of the prediction scheme employed. Now, assuming
that the encoder that acts on the prediction error is fixed, the de-
grees of freedom left to be optimized are the predictor itself and
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the scanning strategy, i.e., the choice of the order at which the
data are scanned. In this work, we take a first step in addressing
the question of the optimal strategy for scanning and prediction
of data contained in a multidimensional array.

In typical prediction problems the data are most naturally
assumed ordered as a one-dimensional time series. In such prob-
lems, sequentiality usually dictates only one possibility for scan-
ning the data, namely, the direction of the flow of time. However,
when the dimension of the data arrayis larger than (e.g., in
image and video coding applications, [2]–[5]) there is no nat-
ural direction of the flow of time and the question of the optimal
scheme for scanning and predicting the data arises naturally.

For a concrete treatment of this question, we shall introduce
the notion of a “scandictor,” which is any scheme for the se-
quential scanning and prediction of data arranged in a multidi-
mensional array, or, more generally, data which is indexed by
a set which may not be naturally and uniquely ordered. For ex-
ample, suppose that the data is arranged in an rectan-
gular grid, e.g., an image where the data represents gray-level
values. A scandictor operates as follows: At each time unit

, having observed the values of the grid at the
sites visited thus far, the scandictor chooses theth site (out of
the remaining unobserved sites), makes a
prediction for the value at that site, and is then allowed
to observe that value. The loss at timeis given by a fixed
loss function . The goal is to minimize the cumulative
“scandiction” loss .

Arising naturally in the multidimensional setting, the ques-
tion of optimally scanning the data for prediction turns out to
be an intricate one already for the one-dimensional case. To see
this, consider the simple symmetric first-order Markov process
defined autoregressively by

(1)

where , , are independent and identically distributed
(i.i.d.), taking values in , with
distribution

if

otherwise

, and addition in (1) is modulo- . Assume fur-
ther, for concreteness, that is uniformly distributed over

, so that the process is stationary. Suppose
now that, for some large, we are interested in “scandicting”
the data in a way that will minimize the expected
number of prediction errors. At first glance, the autoregressive
representation of the process may seem to suggest that the
trivial scan (left to right) is optimal. This indeed turns out to be
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the case, as our results will show, if . However,
when (i.e., when staying in the previous
location is less probable than a transition into each of the other
states), it can be shown by direct calculation that scanning first
the data indexed by the odd points (say, from left to right) and
then “filling in” the even points, attains better performance than
the trivial scan. For a concrete numerical example, it is easily
verified that for simple random walk on the ternary
alphabet , the expected error rate of the trivial scan-
dictor is , while that of the “odds-then-evens” scandictor is

. We shall elaborate on this example in Section V.
For the probabilistic setting, we define the “scandictability”

of a source as the limit of the expected average loss per symbol
for large blocks, when using the optimal scandictor for these
blocks. By a subadditivity argument, this limit can be shown to
exist for any (spatially) stationary source and be independent of
the ratios between the edges of the “box” confining the array. In
particular, one can take the infinite limit in one dimension first,
and only then the limit in the other dimension.

After introducing the notions of a scandictor and scan-
dictability in a general setting, we shall focus in Section III
on the case where the data, as well as the predictions, are real
valued, and loss is measured with respect to (w.r.t.) a difference
loss function.1 Two approaches for assessing fundamental
limitations on scandiction performance will be developed.
The first, in Section III-A, will be based on the observation
that for any sufficiently well-behaved (smooth) scandictor,
the map which takes the data array into the sequence of
scandiction errors is a volume-preserving injection. As will be
elaborated on later, this observation leads to several general
lower bounds on scandiction performance in a probabilistic
as well as an “individual-data-array” setting. The second
approach, in Section III-B, is based on minimum description
length (MDL)-type lower bounds [6]–[8]. More specifically,
we extend an idea, which was applied in [9, Subsec. III.A] in
the context of universal prediction of probabilistic time series,
to the case of scandiction of “individual” data arrays. Given
an arbitrary scandictor, the idea is to construct a probability
distribution such that an MDL-type lower bound for this
distribution leads to a lower bound on the loss of the scandictor.
As will be seen, one of the merits of this approach is that it
allows to dispose of the regularity (smoothness) assumption
needed for the validity of the converse results in Section III-A.

In Section IV, we pay special attention to the stationary
Gaussian field on . The main probabilistic result of Sec-
tion III is applied to this special case. The scandictability of any
stationary Gaussian field under the squared-error loss function
is given a single-letter expression in terms of its spectral
measure. Specifically, it is shown to be given by the power
of the innovation process corresponding to any half-plane.
In particular, this is shown to imply that the scandictability
of the stationary Gaussian field is (asymptotically, for large
rectangular arrays) achieved with any scan which corresponds
to a total order on induced by any half-plane, a notion which
will be made precise.

1That is, whenl(F ; x ) = �(x � F ) for some�(�).

In Section V, we consider the case where the alphabet and the
prediction space are identical and finite. Furthermore, in order
to paraphrase the type of arguments employed in Section III
in the context of -valued observations and predictions,
we assume here that the alphabet forms a group so that the
subtraction operation is well defined and the loss function is
of the form . Results pertaining to
the fundamental limitations on scandiction performance for
this setting are derived analogously as in Section III, where
“volume-preservation” arguments are replaced by “cardi-
nality-preservation” ones. These results are then specialized
to the case of the Hamming distortion measure. For a large
family of MRFs, namely, those that can be autoregressively
represented, the scandictability is fully characterized.

The bottom line of this work is in attaining upper and lower
bounds on the achievable scandiction performance for the case
of a difference loss function. In particular, we characterize a
family of stochastic processes for which the bounds coincide.
This family includes all processes (or multidimensional fields)
which can be autoregressively represented with an innovation
process which has a maximum-entropy distribution w.r.t. the rel-
evant loss function. Any stationary Gaussian field, for example,
belongs to this family, under the squared-error loss. We find that
an optimal scandictor for such processes is one corresponding
to the autoregressive way in which they can be represented.

The essence of our approach for obtaining a lower bound on
scandiction performance is based on the observation that for any
sufficiently well-behaved (smooth) scandictor, the map which
takes the data array into the sequence of scandiction errors is
a volume-preserving injection. This implies that for any such
scandictor, the volume of the set of all data arrays for which
the scandiction loss is beneath a certain value is the same as
the volume of the -“ball” of a radius which equals this value.
Therefore, the least expected scandiction error cannot be less
than the radius of a -sphere whose volume is equal to the
volume of the set of typical sequences of the given source. In
other words, since objects cannot “shrink” under the mapping
from source sequences onto scandiction error sequences, the
best scenario that one can hope for is the one where the typ-
ical set of source sequences, which possesses most of the prob-
ability, is mapped onto a-sphere in the domain of the error
sequences. In particular, this happens to be the case with au-
toregressively generated processes having a maximum-entropy
innovation process, and, therefore, this lower bound is indeed
tight for this class of processes. Thus, for example, if thecom-
ponents of the innovation process are i.i.d. with entropythen
(by the converse to the asymptotic equipartition property (AEP))
the latter probability is small when the radius is taken such that
the volume of the -“ball” is (exponentially) less than (cf.
Fig. 1 for a schematic illustration of this point).

The scandiction problem that we consider seems to be in-
herently different from standard problems involving cumulative
loss minimization of predictors. While the latter are usually con-
cerned with various online prediction scenarios, in this frame-
work we are interested, in parallel to the prediction strategy, in
finding the best strategy for scanning the data. To the best of our
knowledge, the problem of finding the best scanning strategy,
as it is formulated in this work, has not been previously consid-
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Fig. 1. The volume-preserving mappingT , taking the source sequence into the error sequence associated with the scandictor(	; F ).

ered in the literature. The issue of choosing the order by which
pixels are scanned has been shown to be a consequential one in
the context of universal compression of multidimensional data
arrays. This was demonstrated by employing the self-similar
Peano–Hilbert scan [10], [11] in the “individual-image” setting
of [12] (cf. also [13] for the stochastic setting). As we elaborate
on in Section II, however, in the context of (nonuniversal) com-
pression of probabilistic multidimensional data or, equivalently,
of scandiction under the logarithmic loss function, the scheme
used for the scan is completely immaterial: the scandictability
(which, in this case, coincides with the entropy) is achieved by
any scan (provided, of course, that the corresponding optimal
predictor for that scan is employed). The incentive for this work
was the fact that under loss functions other than the logarithmic
loss it isa priori unclear which scan achieves optimum perfor-
mance. Finally, we remark that while most of the results of this
work are asymptotic in nature, they can often lead to conclu-
sions of nonasymptotic value. For example, the asymptotically
optimal normalized expected scandiction (Hamming) loss for
the process discussed above (see (1)) will be shown to equal

when . It is easy to see, however, that for
a block of length , trivial scandiction gives expected loss of

. Thus, given any , it is clear how large the
block length must be to attain optimum scandiction to within.

The following summarizes a few of the central themes and
conclusions of this work, as previously discussed and as will be
elaborated on and established later.

1) Volume preservation considerations as a basis for lower
bounds.

2) Suboptimality of natural scandiction even for simple
processes.

3) Optimal scandiction performance for all stationary
Gaussian fields is attained by the lexicographic (raster)
scan. In particular, in one dimension, optimal scandiction
is attained by the trivial scan for all stationary Gaussian
processes.

4) If a process or field is autoregressively generated with
innovations having a maximum-entropy distribution, then
it is optimally scandicted the way it was generated.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the notation, formulate the general setting,
and formally introduce the notion of a “scandictor” and the con-
cept of “scandictability.” Sections III–V are as elaborated on
above. Section VI contains some concluding remarks along with
some directions for related future work. For simplicity of the
presentation we treat the case of a two-dimensional data array

throughout the paper. All the results carry over to higher dimen-
sions in a straightforward way.

II. THE MODEL, NOTATION, AND DEFINITIONS

We shall assume the alphabet, denoted generically by, to
be either the real line, or a finite set. We let denote
the set of all possible realizations. Let further denote the
space of probability measures on(equipped with the cylinder

-algebra), and denote by the subspace consisting of all
(spatially) stationary measures, i.e., measures that are invariant
under all shifts , , where .
For let denote the space of (Borel) probability
measures on . An element of , , will
be referred to as arandom field, astationary random field, and
a random field on , respectively.

For , we will use the notation to denote
. For any positive integer , let be the

square of all with both coordinates nonnega-
tive and strictly less than.

For , we let denote the restriction
of to . Let denote the class of finite subsets of.
For a source we denote by expectation w.r.t.
(though we omit the subscript when it is clear from the context).
For any , define as the interior diameter of

s.t. (2)

where we let denote the closed ball of radiuscentered
at under the -norm on . Following [14], we further let
denote the system of all rectangles of the form

with , . We let denote the subset of
consisting of all boxes of the form

with . For any and , we shall let the
standard notation signify the set
and stand for . We shall let denote
the point . The cardinality of a set will be denoted
by . For we let denote their inner product,
i.e., . If is a sequence of sets then

is synonymous to “ and
.” If is a sequence of reals then

is synonymous to “ is nondecreasing
(nonincreasing) and .”
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For a finite set of random variables, jointly distributed ac-
cording to the probability distribution , we shall let
as well as denote the entropy. More precisely, the com-
ponents of will be either all discrete valued or all continuous
valued, so that in the latter case and will stand for
the differential entropy. Throughout this work, we take all log-
arithms to the natural base and entropy is measured in nats. For
a discrete- (continuous-) valued random variablewe shall let

denote the expectation of when is distributed
according to the probability mass function (PMF) (probability
density function (PDF)2 ) . For and a random field

taking values in with continuous-valued components,
we shall consider its PDF as a function in-
tegrating to unity, with the obvious interpretation. For any finite
set , we let denote the set of all probability measures
on .

For and data arrays on with real-valued compo-
nents we denote

and we let denote the data array formed by
component-wise addition.

A. “Scandiction” Defined

Given data that are indexed by the set, a scandictoris a
scheme for the sequential scanning and prediction of this data.
We formalize this as follows.

Definition 1: A scandictorfor the finite set of sites is
given by a pair as follows:

• , the “scan,” is a sequence of measurable mappings
, where , with the property that

(3)

• , the predictor, is a sequence of measurable mappings
, where .

We shall let denote the class of all scandictors for the set
of sites .

A scandictor operates as follows: The
scandictor gives its first prediction for the value at site .
It then moves to site and incurs a loss . The
scandictor now gives its prediction (based
on the value observed at site ) for the value at site

, it then moves to site and incurs a loss
. Similarly, the scandictor gives itsth prediction

(based on the values observed
at the previously visited sites) for the value at site

), it then moves to site and
incurs a loss , where is a

2Here and throughout the sequel by a “continuous-valued random variable”
we mean one with a distribution which is absolutely continuous w.r.t. Lebesgue
measure, i.e., one with a PDF.

given loss function. Note that property (3) implies that no site
is visited more than once so that all the sites ofhave been
covered after precisely steps. We let

(4)

denote the normalized cumulative loss, w.r.t. the loss function,
of the scandictor when operating on the restric-
tion of to . Note that a scandictor, according to Definition 1,
is not allowed to randomize its prediction or choice of the next
site. That is, its strategy at each point is deterministic (given
the available information). Similarly, as in the case of standard
prediction, however, it is easy to show that there is no loss of
optimality in this restriction insofar as expected performance is
concerned.

Definition 2: Given a loss function, we define thescan-
dictability of any source on by

(5)

where denotes expectation when has been gener-
ated by . We further define thescandictabilityof
by

(6)

whenever the limit exists.

Note that the scandictability of is defined as the
limit of the scandictability of the finitely indexed fields .
Thus, henceforth, the term “scandictor for” will be short-hand
terminology for the more precise phrasing “sequence of scan-
dictors for the respective fields .” We also remark that while
most of our results are asymptotic in nature, they can lead to
nonasymptotic conclusions.

Notice the special case where is the logarithmic loss
function. When the alphabet is finite, the prediction space is

, and

(7)

In this case, for any and , the scan-
dictability coincides with the (normalized) entropy, i.e.,

(8)

The proof of this simple fact extendsverbatimfrom the case
of regular predictability (cf., e.g., [15], [9]) by showing that to
every scandictor there corresponds a proba-
bility measure on such that

Using the fact that for all it is
then easy to show that is an attainable lower bound
on the scandictability . Another way of seeing why
(8) should hold is to note that the expected loss of the optimal
predictor (under log loss) associated with any scan is given by
a summation of conditional entropies, which always sum up to
the joint entropy, regardless of the scan. Hence, not only does
equality (8) hold, but the scandictability is attained byanyscan.
In this context, the scandictability notion of Definition 2 can be
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regarded an extension of entropy for the case of a general loss
function.

Analogously, as with the notation for entropy, we shall some-
times write (resp., ) instead of
(resp., ) when it is clear from the context that
(resp., ) is distributed according to (resp., ). The defini-
tion of in (6) through a limit over the squares may
seem, at first glance, somewhat arbitrary. The justification for
such a definition lies in the following.

Theorem 1: For any stationary source

a) the limit in (6) exists; and
b) for any sequence of elements of satisfying

, we have

(9)

Theorem 1, proof of which is given later, justifies the notion
of scandictability as introduced in Definition 2 and substanti-
ates the significance of this entity as the fundamental limit on
prediction performance for stationary data arranged in a rect-
angular array, when any scheme for sequentially scanning the
data is allowed. It tells us that the scandictability of a stationary
data array is independent of the ratios between the edges of the
rectangle confining the array when these become large. Further-
more, Theorem 1 assures us of the fact that if one’s goal is to
achieve the predictability (of any stationary source) to within
some of a large rectangular box, it suffices to partition the
data into rectangular nonoverlapping blocks congruent to any

satisfying . Finally, we note that
by letting Theorem 1 and (8) recover what is known
about the entropy of random fields, cf. [14, Theorem 15.12],
[16, Theorem 5.2.1].

Basically, the only property we rely upon for establishing
Theorem 1 is the subadditivity of . Specifically, we
have the following.

Lemma 2: For any and

(10)

Proof: Note first that if we can take,
instead of , . The validity of the
lemma for disjoint subsets, together with the obvious fact that

would imply the lemma for
. We can, therefore, assume that . By the

definition of it will clearly suffice to establish the
existence of for which

(11)

But this is easy: take to be the scan-
dictor obtained by concatenating and (i.e.,
the scheme which scandicts the set of sitesaccording to

and then the set according to ), where
we let denote the scandictor achieving the
infimum in (5).3

The relevance of subadditivity to establishing the existence
of a limit is manifested in the following lemma.

3If the infimum is not achieved, take any"-achiever and the proof carries
through.

Lemma 3: Let be subadditive sep-
arately in each of its arguments, i.e., for all ,

(12)

Then for every

with

(13)

The proof (cf., e.g., [16, Lemma 5.2.1]) is a straightforward gen-
eralization of that from the univariate case (cf., e.g., [17, Lemma
6.1.11]).

Proof of Theorem 1:Fix . Since the first item
follows from the second item by taking , it will suffice
to establish the fact that for any sequence of elements of

satisfying

(14)

By stationarity of , it will suffice to restrict attention to ,
namely, to prove that for any with

(15)

To this end, define by

(16)

where

The subadditivity of is a direct consequence of Lemma 2 and
the stationarity of . The proof is completed by an appeal to
Lemma 3.

Note that it also follows from the above derivations that the
scandictability can be reached by taking the limits “one dimen-
sion at a time” (note that this does not follow directly as a special
case of Theorem 1 b) because the diameter does not tend to in-
finity). To see this, let be any sequence of positive reals
satisfying . Let now be the scandictability when the
first dimension is sent to infinity and the other one is fixed at

(note that it necessarily exists by subadditivity in that first
dimension). Construct now the increasing sequence by
letting be the smallest integer which is larger than
and which is also sufficiently large so that ,

denoting the scandictability of the rectangle. By
Theorem 1, we know that the exists and equals
the scandictability. On the other hand, by construction of the
sequence , the limit of must coincide with the
quantity obtained by taking the limits “one dimension at a time.”

III. T HE CASE

We dedicate this section to the case where the source al-
phabet and the predictions are real valued. Furthermore, we
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shall focus on the case where the loss function is of the form
, where the function is monotoni-

cally increasing for , monotonically decreasing for
, and . With a slight abuse of notation, we shall

write and for and , re-
spectively, when . We assume that is suf-
ficiently “steep” in the sense that for every

and, following [9], we define thelog-moment-generating
functionassociated with the loss functionby

(17)

and theone-sided Fenchel–Legendre transformof by

(18)

As remarked in [9], the function can be interpreted as the
differential entropy associated with the PDF

(19)

where is tuned so that , being the expecta-
tion operation w.r.t. . For a reason that will be clear from the
proof of the first item of Proposition 4 later (cf., in particular,
(A1) of Appendix A), we refer to as amaximum-entropy
distribution w.r.t. . It can be seen that is strictly mono-
tonically increasing and concave for and, therefore, the
inverse function exists and is continuous. Two additional
important aspects of , which will be of later use, are encap-
sulated in the following proposition, whose proof is deferred to
the Appendix.

Proposition 4:

1) For any PDF

(20)

with equality if and only if for some .

2) For all and all

(21)

3)

(22)

A. Volume-Preserving Injections

In this subsection, we make the observation that the map
from the data array to the sequence of prediction errors asso-
ciated with any (sufficiently smooth) scandictor is one-to-one
and volume preserving. As will be seen, this fact is key to the
derivation of lower bounds on scandiction performance based
on volume considerations.

For any , let denote the subset of con-
sisting of those scandictors which have a predictor

consisting of functions that are continuous and have continuous
first derivatives. We shall let and be
defined analogously to and of Definition
2, with the only difference that the infimum for defining

is taken over , instead of over as
in the right-hand side of (5). Theorem 1 is easily verified
to hold for and as well. Similarly
as with the quantities of Definition 2, we shall sometimes
write and when the underlying
distributions are clear. Note that in nonpathological cases,
when the components of are continuous valued and the
conditional distribution of , , given the values of
at other sites is a continuous functional of these values, we have

and .
We omit the proof of this fact (which can be more rigorously
formulated), as it is cumbersome in detail but straightforward.
The key is to note that even when the scandictor achieving

is not a member of , it is enough that it can
be approximated arbitrarily well by members of in order
for . One important example of a
random field trivially satisfying
for all and is the Gaussian field
of Section IV (as the optimal predictor is always linear and,
a fortiori, continuously differentiable).

Let now, for any and any scandictor ,
the transformation be defined by

(23)

where and on the right-hand side of (23) are, respectively,
the th site and th prediction associated with the scandictor

when operating on . In words, maps
into the sequence of prediction errors incurred when the scan-
dictor operates on . For any , we extend the
notion of volume to in the trivial way: order the sites of
arbitrarily and identify any with the corresponding
point in . A measurable map will be said to
bevolume preservingif for all measur-
able .

Theorem 5: For any and any scandictor
, the transformation defined by (23)

is one-to-one and volume preserving.
Proof of Theorem 5:We assume a fixed and

throughout the proof. The mapping
can be decomposed as follows. Let be defined
by

(24)

and let be defined by

(25)

Clearly

(26)

so it suffices to show that both and are one-to-one and
volume preserving. To this end note first that is clearly
one-to-one as, given the sequence of prediction errors (the
right-hand side of (25)), assuming the predictoris known,
the source sequence is uniquely determined. As for the
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volume-preservation property of this transformation, it is easy
to see that the associated Jacobian (which exists as, by the
hypothesis, ) is a lower-triangular matrix with
diagonal entries which are all equal to(for all values of ).
Hence, the determinant of the Jacobian of this mapping equals
unity everywhere, which implies that is volume preserving.

Moving on to consider , note first that is obviously
measurable (by the measurability of the mappings defining)
and one-to-one as knowledge of the values observed along any
scan of the sites in uniquely determines . To establish the
volume-preservation property of we define apermutation
of as any map from onto . Letting
denote the class of all permutations of , the following two
simple observations can be made.

1) For any , the mapping , defined by

(27)

is volume preserving (as it corresponds to a relabeling of
the axes).

2) For each there exists a unique such
that

(28)

Let now be an arbitrary Borel set. For each
define

(note that is Borel by the measurability of the map-
pings defining ). By the above second simple observation,

is a disjoint partition of , i.e.,

and (29)

Consequently, we have

(30)

(31)

(32)

(33)

(34)

(35)

where the measurability of and the fact that as well as
the ’s are Borel guarantee that all quantities in (30)–(32) are
well-defined. Equation (31) follows from the facts that the sets
in are disjoint and that is one-to-one. Equation
(32) follows from the fact that is one-to-one and, hence, the
sets in are disjoint. Equation (33) follows from
the definition of the sets and (34) follows from the first
simple observation above.

Remark: As is clear from the above proof, the one-to-one
property holds forany scandictor . As for
volume preservation, the condition allowed
for the simple argument based on evaluation of the Jacobian
of the map . With a somewhat more elaborate argument it
can be shown that it is enough, for example, that the functions
defining the predictor associated with be piecewise
differentiable.

Note that we can, conversely, look at , the inverse
transformation of , i.e., the transformation taking
the prediction error sequence associated with the scandictor

into the original data array . More specifically,
is given as follows: For any

if then can be autoregressively con-
structed using as the innovation process according to

and so forth. Note that Theorem 5 implies that for any scan-
dictor , the mapping is one-to-one
and volume preserving. We thus have the following corollary
to Theorem 5.

Corollary 6: For any and any scandictor
, we have the following.

1) Let be a discrete- or continuous-valued random
field on and let be
the error sequence associated with the scandictor
when operating on , i.e., .
Then

(36)

2) Let be a discrete-
or continuous-valued random vector and let be a
random field on autoregressively defined by

. Then

(37)

To derive another corollary note that Theorem 5 implies, in
particular, that for all

(38)

Combined with the third item of Proposition 4, this implies that
for large and any scandictor

Thus, if is a set of a volume which is exponentially
larger than , then for all

, where the volume of is an exponentially negligible
fraction of the volume of . More formally, (22) and (38) lead
to the following.
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Corollary 7: For any and , there exists
such that for all with , for all

with , and any scandictor

(39)

where

(40)

Corollary 7 is an “individual-sequence” type of result which
gives a lower bound on scandiction loss for “most” sequences
in . We now progress to derive a result for the probabilistic
setting. For future reference, we first state the following, which
is a direct consequence of (38) and the second item of Proposi-
tion 4.

Corollary 8: For any and any scandictor

(41)

We can now state the following result, whose main signif-
icance is in the introduction of single-letter upper and lower
bounds on scandiction performance in the probabilistic setting.

Theorem 9: Let , , be an arbitrary sequence
satisfying . Let be a sequence of
independent continuous random variables, where the density
function of is , , and
for which there exist values and such that

(42)

and

(43)

Let further be an arbitrary sequence such
that . Finally, let, for each ,
be the random field on which is autoregressively gener-
ated by the scandictor with the innovation process

, i.e.,

(44)

Then

(45)

The upper bound in (45) is easily seen to be attainable by
employing the scandictor from which was
generated. To see why the lower bound in (45) should hold note
that if is such that then, by Corollary 8, there exists

such that for all sufficiently large and any scandictor

Since is volume preserving, this implies that in

order for , the innovation vector
through which was defined must lie in a set whose
volume is . But the fact that (42) holds implies
(by an AEP-type argument) that the probability of this being
the case is arbitrarily small for sufficiently large. This line of
argumentation leads to

whenever , which implies the left inequality in
(45). This is the essential idea behind the formal proof that fol-
lows. Prior to the proof of Theorem 9, we note the following
two corollaries regarding the tightness of the upper and lower
bounds in (45), which are direct consequences of Theorem 9
and the first item of Proposition 4.

Corollary 10: Let be a stochastic
process autoregressively generated by

(46)

where is a sequence of continuously differentiable
functions and are i.i.d. with a -max-
imum-entropy distribution. Then .

Corollary 10 implies that the scandictor achieving (asymp-
totically) optimal performance for a stochastic process repre-
sentable in the form (46) is that which scans the data from left
to right and predicts for the value at. Somewhat more
generally we have the following.

Corollary 11: Let the setting of Theorem 9 hold and suppose
further that there exists a continuous random variablewith
a max-entropy distribution for some such
that and . Then

(47)

Note that, in particular, Corollary 11 tells us that for large
, if is autoregressively generated via any scan-

dictor and the innovation process has in-
dependent components with a maximum-entropy distribution
w.r.t. , then the optimal scandictor for is it-
self. When the innovations are not maximum entropy, charac-
terizing optimal scandiction performance is currently an open
problem. In general, when there is a gap between the left- and
the right-hand side of (45), both the upper bound and the lower
bound are to “blame.” One demonstration of this is the process
mentioned in Section I (see (1)) when . For a
concrete example, consider scandiction under Hamming loss of
the simple random walk defined by , where
the process takes values in , addition is modulo-, and

w.p.

w.p. .

For this process, the right-hand side of (45) gives (attained
by trivial scandiction), while the left-hand side is easily veri-
fied to be given by the root of the equation

. On the other hand, as one can show via “brute-
force” calculations for this case [25], optimal scandiction for
this process is attained by the odds-then-evens predictor, which
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is easily verified to attain scandiction loss of . Evidently,
for this process there is a gap between the upper and the lower
bound in (45), and neither are tight. We shall return to the ex-
ample from Section I in Section V, where the finite-alphabet
version of Corollary 11 (Corollary 20) will be shown to imply
the optimality of the trivial scan for the range ofdiscussed in
Section I.

Two concrete examples for the significance of Corollary 11
are as follows.

Gaussian Innovation and Squared-Error Loss:If there exists
a Gaussian with and , ,
Corollary 11 gives

(48)

This fact will play a key role in the proof of the main result of
Section IV.

Laplacian Innovation and Absolute-Error Loss:If in
Theorem 9 is Laplacian, i.e., for some

so that , and , Corollary 11 gives

(49)

Proof of Theorem 9:To establish the upper bound on the
limit supremum in (45) note that for all the normalized cu-
mulative loss of the scandictor when applied to

is given by

(50)

Thus,

(51)

where the last equality follows from (43).
We now progress to establish the lower bound on the limit

infimum in (45). To this end, fix an arbitrary and
an arbitrary . Let further

and let denote the -typical set with respect to de-
fined as follows:

(52)

where . As easily
shown in Appendix B, to follow from the hypotheses that

that (42) holds and that , for all

(53)

This is the analog for our setting of the standard-typicality
result of the i.i.d. case (cf., e.g., [18, Theorem 9.2.2, item 1]).

Thus, there exists such that for all and
all we have

(54)

(55)

(56)

(57)

(58)

where the inequality in (54) follows by taking suffi-
ciently large so that

(59)

which is possible by (53). Equality in (55) follows from the
fact that the transformation taking into , namely,

, is volume preserving (Theorem 5). Inequality (56)
follows from Corollary 8. Inequality (57) follows since

. Inequality (58) follows by taking a sufficiently large
such that, in addition to satisfying (59), the first term

in (57) is upper-bounded by for all . This is
possible since . Consequently, for all
and all

(60)

The fact that the right-hand side does not depend on
implies that for all

(61)

which, in turn, implies

(62)
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The arbitrariness of and on the
right-hand side of (62) completes the proof.

In the course of the preceding proof (cf., in particular, the
inequalities leading to (58)) we have, in fact, established the
following result, from which (45) was easily derived.

Corollary 12: Let the setting of Theorem 9 hold. For any

(63)

and for any

(64)

In fact, the convergence in (63) and (64) is exponentially (in
) rapid (because the convergence of

to is.

B. An Alternative Route to a Converse on Scandictability
Performance

The observation that is measure preserving for any
was the key to the results of the previous

subsection. When the scandictor, in , is not a member
of , however, the volume-preservation property may no
longer hold. In this subsection, we take a somewhat different
route for the derivation of lower bounds, utilizing MDL-type
lower bounds [6]–[8]. We shall use an approach which was ap-
plied in [9, Subsec. III.A] in the context of prediction of time
series. This will lead, in particular, to lower bounds on scan-
diction performance for scandictors which are not necessarily
members of .

Let be a general class of information sources
emitting continuous-valued random variables. Suppose that the
source alphabet is some bounded interval. With a customary
abuse of notation, we shall let denote
the PDF of when emitted by . Let be an
arbitrary probability measure on (which is equipped with a

-algebra) and assume that is such that is
a measurable function of for every . Following [7],
we shall refer to this measurability assumption asAssumption
A. Let now denote independent random points
selected from under . Suppose, without loss of generality,
that has generated . Let denote the average
probability of error in the random coding sense; namely, the
probability that and are such that for some

, . Mathematically

(65)

Now let be the largest integer such that

(66)

and, finally, define therandom coding -capacity with respect
to as

(67)

Note that can be upper-bounded by the union
bound

(68)

so clearly is lower-bounded by the largest integer
for which the right-hand side of (68) is less than, namely,

(69)

Though the precise expression for is hard to obtain,
the lower bound in (69) is easier to work with in many cases
(and will be made use of in the sequel). Let further denote
the mathematical expectation with respect toand let
denote the differential entropy of under . The following
is one of the main results of [7].

Theorem 13 [7, Theorem 3]:Let satisfy As-
sumption A and let be any probability measure on. Then,
for every , , every PDF , and every

(70)

for every except for a subset of points such that

(71)

The preceding theorem [7, Theorem 3] is, in fact, formulated
for the discrete case, where are finite-alphabet
sources and is, correspondingly, a PMF. The proof of the con-
tinuous version presented above is easily seen to carry over
(under our Assumption A and the assumption that the source
alphabet is a bounded interval) from the finite-alphabet case.

For , Theorem 13 can now be applied to derive a lower
bound on the attainable scandiction performance for “most”
data arrays in a given subset of , of the type obtained in
Corollary 7. Specifically, let be a deterministic
(“individual”) data array indexed by the elements of. Suppose
that we observe a noisy version , where

is a stochastic noise field with continuous-valued com-
ponents. We will assume first that the components of and

(and hence also of ) are bounded. We shall be in-
terested in the attainable performance of an arbitrary scandictor

when the underlying data array belongs
to a certain subset of . Let denote
the expected scandiction performance of on

when the underlying data array is . We further let
denote the random coding-capacity with respect

to of the additive channel when the
input is constrained to . An application of Theorem 13, let-
ting the clean data array play the role of , the role of

, the role of , and the role of ,
gives the following. For every PDF that is independent of

, we have

(72)
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for every except for a subset of points
such that

(73)

Taking a route similar to that taken in [9, Sec. III.A] (cf. deriva-
tion in (29)–(32) therein), for the given , we
now define a PDF on as follows:

(74)

where the ’s and ’s on the right-hand side are those as-
sociated with the scandictor , is a locally
bounded away from zero “prior” on, and is the max-
imum-entropy distribution defined in (19). Note that for each
, the bracketed expression in the right-hand side of (74) is

a bona fidePDF and, consequently, so is . Furthermore,
according to the main result of [19] (cf. also [9, eq. (30)]),

can be approximated as follows:

(75)

where the remainder is an increasing function of
. Since the components of are assumed

bounded, is bounded as well by some constant.
Substituting into (72) implies that

(76)

for all . The concavity of allows to insert
the expectation into the argument of on the left-hand side
of (76) which gives

(77)

for all . Narrowing down even further, assume
henceforth that the components of are i.i.d. and uni-
formly distributed on . To make the dependence
explicit, we add the superscript in the notation for expecta-
tion, thus writing . For this case, we clearly have

(78)

To get a more explicit handle on the right-hand side of (77) for
this case, we now lower-bound as follows.
Letting denote the PDF of when the underlying
data array is , it is clear that for any and any

(79)

Combining this with the lower bound (69) we obtain

(80)

Substituting (78) and (80) into the right-hand side of (77) gives

(81)

for all . By maintaining a regime
where , , , , ,

, ,

, and , we have by (72) and (73) and
the continuity of established the following.

Theorem 14: , ,
such that: with , with

, and

(82)

where

(83)

As opposed to the previous subsection, where the converse
statements were valid for scandictors with a continuously differ-
entiable predictor, Theorem 14 holds for an arbitrary scandictor.
Note also that when is small, on the left-hand side
of (82) is close, under sup-norm, to . One example of a way
of exploiting this it to let denote the subset of con-
sisting of all scandictors which are-Lipschitz in the sense that

(84)

for all . Note, for example, that any
scandictor with a deterministic (non-data-de-
pendent) scan, such that the functions comprisingare

-Lipschitz, is a member of . Note also that when
the underlying data array is and the components
of are then, with probability ,

and, hence,

(85)

We thus have the following corollary to Theorem 14.

Corollary 15: , ,
such that: with , with

, and

(86)

where

(87)
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Note that similarly to Corollary 7, Corollary 15 is a purely
“individual-sequence” statement. Where the former was valid
for scandictors in , the latter holds for those in .
Note also that Corollary 15 can be further specialized as follows
(the details, which are similar to those in the proof of Corollary
7, can be made precise and are only sketched here for brevity).
For such that is large, for any scandictor

we know, from the previous subsection, that

is exponentially equivalent to . Hence, for large ,
taking

in Corollary 15 implies that is the optimal scandictor
for the set in the sense that there is no Lipschitz scandictor
that can perform better than for most data arrays in

. This is true because, while attains a scandiction
error no larger than for every (by definition),
any alternative scandictor will have scandiction error essentially
lower-bounded by (by inequality (86)) for all but a set of data
arrays whose volume is a negligible fraction of the volume of

.
To see the connection between Corollary 15 and the lower

bound of Theorem 9, note that if is assumed generated
by a probabilistic source of entropy rate, then by letting
above be the typical set (of exponential size ) one gets
a lower bound of on the scandiction performance of
any scandictor on most typical sequences, from which the same
lower bound for expected scandiction performance is easily at-
tained, essentially recovering the lower bound of Theorem 9.

To end this subsection we point out that the derivation of
Theorem 14 and Corollary 15 was based on an application of
Theorem 13 with the assignment . This
gave an upper bound on the ratio between the volumes of the sets

and . Other choices of can similarly give analogs of
the above results with upper bounds on the ratio between the

-measures of the sets and .

IV. SCANDICTABILITY OF THE STATIONARY

GAUSSIAN FIELD ON

We dedicate this section to the scandictability of the spatially
stationary Gaussian field on with respect to the squared-error
loss function. The main result and the analysis carries over to

, for any .
To fix notation, we recall here the basics regarding spec-

tral representations of wide-sense (second-order) stationary pro-
cesses. There are no fundamental differences between the time-
series and the multidimensional case. Let be
a wide-sense stationary (w.s.s.) and centered process taking (in
general) complex values: , ,

. For any , let denote the closed span
of , i.e., the smallest closed subspace which contains
each , (under the scalar covariance product). For any

and , we will let denote the projection
of onto (in other words, is the best linear pre-
dictor of in terms of ).

The extension of Herglotz’s theorem [20, Sec. 4.3] to the mul-
tidimensional case dates at least as far back as [21], asserting the
following representation of the covariance:

(88)

where , thespectral measure, is a nonnegative and bounded
measure over .

A subset is called ahalf planeif

is closed to addition

(89)

A half-plane defines a total order relationship on via

(90)

Examples for half-planes include

or (91)

where the corresponding total order is known as thelexico-
graphic order. If is irrational, the subset

(92)

is easily verified to be a half-plane as well.
The following result is due to Helson and Lowdenslager [22]

(cf. also [23, Sec. 1.2.3]). It is a nontrivial generalization of the
well-known Szegö’s theorem (also known in the literature as
Kolmogorov’s formula [20, Sec. 5.8]).

Theorem 16 [22]: Let be a w.s.s. process
and let denote the density function associated with the abso-
lutely continuous component in the Lebesgue decomposition of
its spectral measure. Then for any half-plane

(93)

Note that , where, in the
right-hand side, we use the total order relationship defined by.
Under this convention
is the best linear predictor of based on its infinite “past.” In
the sequel, we shall write as shorthand notation for

, where the total order relationship should be
clear from the context.

The main result of this section is the following.

Theorem 17:Let be any stationary Gaussian field on.
Let be the squared-error loss function. Then

(94)

where is the density function associated with the absolutely
continuous component in the Lebesgue decomposition of the
spectral measure of .

For notational convenience in what follows, we let de-
note the right-hand side of (94). To discuss the implication of
Theorem 17 and for future reference, we make an explicit note
of the following elementary fact, which is easily established
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using the properties of Hilbert spaces (cf., e.g., [20, Problem
2.18]).

Fact 1: Let , , satisfy for some
. Then

(95)

Note, in particular, that Theorem 16 combined with Fact 1 imply
that if is distributed according to (the w.s.s.), if is any
half-plane, and if we let

(96)

where is with respect to the total order defined by,
then

(97)

One notable consequence of the combination of Theorem 17
with (96) and (97) is that for large rectangles of a stationary
Gaussian field:The scandictability is (essentially) attained by
any scandictor which scans the data according to the total order
defined by any half-plane (and, of course, employs the corre-
sponding optimal linear predictor).

Another consequence of Theorem 17 and (96) and (97) is
that of all w.s.s. fields with a given spectrumthe Gaussian field
is hardest to scandict. To see this note that the performance
(i.e., the normalized cumulative mean-square error (MSE)) of
the scandictor which achieves optimum performance in the
Gaussian case depends only on the second-order statistics of
the field. In the non-Gaussian case, however, it may not be the
optimal scheme.

The main idea behind the proof of Theorem 17 is the fol-
lowing. Fix a half-space . The fact that

is a two-dimensional white noise process (due to the orthogo-
nality principle) and is Gaussian (because of the Gaussianity
of and the linearity of ) implies that it
is a Gaussian i.i.d. process and, in particular, has components
with a maximum-entropy distribution w.r.t. the squared loss
function. Since is generated autoregressively by

(i.e., ), then the conditions
of Corollary 11 are satisfied, e.g., by (recall that

is the rectangle whose lower left corner is at
the origin). By predicting on finite, growing rectangles,
we are approximating better and better the optimal predictor,
based on the infinite past (associated with). This idea is made
precise in the formal proof which follows.

Proof of Theorem 17:Let be distributed
according to . Let be an arbitrary increasing se-
quence of positive integers satisfying

(98)

By item b) of Theorem 1 it will suffice to show that

(99)

Furthermore, since is a Gaussian field on , for any
scan the corresponding optimal (under the MSE criterion)

predictor is a linear combination of the values of the field at
the previously observed sites.A fortiori, such a predictor con-
sists of smoothly differentiable functions so that

for each and, consequently, we will be done upon showing
that

(100)

To this end, we fix a half-space, say, for concreteness,of
(91) so that, in the remainder of the proof, inequalities between
members of should be understood in the sense of the lexico-
graphic order. Note that this total order also induces a determin-
istic (data-independent) scan on any according to which
site is reached before site if and only if . We
construct now the sequence inductively through
the following steps.

• At the first step, are defined to be the
prediction errors when scanning lexicographically
and employing the optimal linear predictor. That is, if

is the th site reached when scanning lex-
icographically, then

(101)

• At the th step, the components
are defined to be the prediction errors when

scanning lexicographically and employing
the optimal linear predictor which bases its prediction
for site on the values observed at
the previously scanned sites of as well as
on (which is known from the th step). That
is, if is the th site reached in the
lexicographic scan of then

(102)

Clearly, the components of are zero mean (the optimal linear
predictor is always unbiased), Gaussian (each is a finite linear
mixture of components of a Gaussian field), and independent
(by the orthogonality principle). Furthermore, by the construc-
tion of , Theorem 16, Fact 1, and the stationarity ofwe
have

(103)

On the other hand, for each , there are clearly more than
sites for which

By stationarity, this means that the MSE associated with each
such , namely, the variance of for ’s corresponding to such
’s, is upper-bounded by

Consequently, for each suchwe have, for the correspond-
ing

(104)
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where was defined in (96). At the remaining sites of
, the corresponding clearly satisfies

(105)

Hence, we have both

(106)

and (by the Gaussianity of each )

(107)

Equations (106) and (107), combined with (98), imply that
satisfies (42) and (43) for and
. Furthermore, letting stand for the scan

corresponding to that by which
was constructed and correspond to the associated optimal
linear predictor, clearly, and

Thus, the setting of Theorem 9 holds and Corollary 11 (recall, in
particular, the Gaussian example following it) implies that (100)
holds, thereby completing the proof.

We point out that the proof idea extends to the case of any
stationary field that can be autoregressively repre-
sented as

(108)

where is an i.i.d. field (the innovation process
with continuous-valued components), is a mea-
surable map, and is w.r.t. any half-plane. Slightly more
formally, must be such that for any Borel

a.s.

(109)

where is the PDF of the ’s. For such ,
the above proof idea easily extends to show that

(110)

with equality when is a maximum-entropy distribution
w.r.t. .

V. THE CASE

We dedicate this section to the case where the components of
the data array, as well as the predictions of the scandictors, take

values in the same finite alphabet. We shall further assume
throughout this section that the subtraction operation is well de-
fined and that, as in Section III, we have a difference loss func-
tion. This will allow us to follow a line of reasoning analogous
to that from the case of real-valued observations and predictions
treated in previous sections. In particular, the volume-preserva-
tion arguments of Section III are replaced here by (somewhat
simpler) “cardinality-preservation” arguments, to obtain lower
bounds on the attainable scandiction performance.

More concretely, assume throughout this section that
is a group. That is, the operationis associative and there exists

such that

(111)

Following the usual convention, for we write for
. We assume that the loss function is of the form

(112)

for a given satisfying if and only
if . Let now, analogously as in Section III, for any

and any scandictor , the transformation
be defined by

(113)

where and on the right-hand side of (23) are, respec-
tively, the th site and th prediction associated with the scan-
dictor when operating on and the subtractions on
the right-hand side of (113) are in the group sense of (111).
In words, maps into the sequence of pre-
diction errors incurred when the scandictor operates on

. For any scandictor , given the sequence of predic-
tion errors, the data array is uniquely (autoregressively)
determined (recall analogous discussion following the proof of
Theorem 5). Hence we have the following fact.

Fact 2: For any scandictor , the transforma-
tion defined in (113) is one-to-one.

An immediate consequence of Fact 2, which is key to the re-
sults of this section, is the following discrete analog of equation
(38):

(114)

We now define quantities analogous to those in Section III as
follows:4 The log-moment generating functionassociated with
the loss function is defined by

(115)

and itsone-sided Fenchel–Legendre transformis, as before, de-
fined by

(116)

4We maintain the notation from the previous sections to emphasize the
analogy.
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Analogously as for the continuous case, the function can
be interpreted as the entropy associated with the PMF

(117)

where is tuned so that (for sufficiently
small so that such anexists), (as before) being the expec-
tation operation w.r.t. . It is also easy to verify5 that is a
maximum entropy distribution for the discrete case as well, i.e.,
that

(118)

with equality on the right-hand side if and only if .
Hence, the first item of Proposition 4 holdsverbatimfor this
case as well. Furthermore, (118) implies that the right-hand side
of (116) is the explicit expression for the more qualitative form

(119)

Since is continuous (as is seen from its definition (116))
it follows, e.g., by combining the relation (119) with a typical-
sequences analysis [24], that

(120)

which is the discrete-alphabet analog of (22). Equation (120),
combined with (114), implies that for large and any
scandictor

Thus, if is a set of size which is exponentially larger
than , then for all

, where the size of is an exponentially negligible fraction
of the size of . More formally, (120) and (114) lead to the
following.

Theorem 18:For any and , there exists
such that: For all with , for all

with , and any scandictor

(121)

where

(122)

Theorem 18 is an “individual-sequence” type of result. For
the probabilistic setting, we have the following analog of The-
orem 9.

Theorem 19:Let , , be an arbitrary se-
quence satisfying . Let be a sequence
of independent -valued random variables converging in distri-
bution to some . Let further be an arbi-
trary sequence of scandictors, where .
Finally let, for each , be the random field on which
is autoregressively generated by the scandictor
with the innovation process ,
i.e.,

(123)

5The proof follows that from the continuous case (cf. proof of the first item
of Proposition 4)verbatimup to the replacement of integrals by sums.

Then

(124)

The proof of Theorem 19 is analogous to (though simpler
than) that of Theorem 9.

Proof Sketch:The upper bound in (124) is established
by considering the expected performance of
on which, by construction of , is precisely

, which converges to . For the
lower bound, we observe that, by the AEP6 and Fact 2, for any

and sufficiently large , if with

then with probability . In particular, for large
and any scandictor , we can take

Since, as discussed above, , if
then we will have with probability .
Using this line of reasoning, one can show that

whenever , which implies the lower bound in
(124).

For simplicity, in the hypotheses of Theorem 19 we have re-
quired the convergence in distribution of to , which
implies in the present finite-alphabet setting that (42) and (43)
hold.7

Since, as discussed earlier, the first item of Proposition 4
holds for the current setting, Theorem 19 implies, similarly as
Corollary 11 from the continuous case, the following.

Corollary 20: Let the setting of Theorem 19 hold and sup-
pose further that has a maximum-entropy distribution (i.e.,
of the form (117)) w.r.t. . Then

(125)

In what follows we apply Theorem 19 and Corollary 20 to a
few concrete cases of special interest.

Let be any half-plane (so that inequalities among elements
of appearing henceforth are w.r.t. the total order defined by

). Let , , be a stationary random field,
governed by , which can be autoregressively rep-
resented as

(126)

where , , is an i.i.d. field (the innovation
process), is a given mapping, and addition in
the right-hand side of (126) is in the group sense of this section.

6In particular, Theorem 22 of Appendix B can be harnessed for this setting to
show that for any" > 0, largen, and set of size� e , the probability
of (W ; W ; . . . ; W ) belonging to that set is�".

7This is in contrast to the continuous setting of Section III, where convergence
in distribution does not imply that (42) and (43) hold.
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In other words, the conditional distribution of based on its
past is given by

a.s.

(127)

where is the PMF of . For this case, one can use Theorem
19, very similarly to (yet even more simply than) the way that
Theorem 9 was used to establish Theorem 17, to show that

(128)

with equality when has a maximum-entropy distribution
w.r.t. . Furthermore, the upper bound on in (128) is
achieved via the deterministic scan induced by the half-plane.
In particular, when the distribution of is maximum entropy,
such a scan achieves the optimum scandiction performance.

For a concrete example, let stand for Hamming loss

if

otherwise
(129)

so that the associated maximum-entropy distributions are easily
seen to be of the form

if

otherwise
(130)

for . For an MRF characterized by (126) or,
equivalently, by (127), where is distributed according to ,
we thus have

(131)

Specializing this observation even further, consider now the bi-
nary case where and denotes modulo-addition. For
this case, if , then has a max-
imum-entropy distribution. Furthermore, here it is easy to see
that (127) holds for some if and only if

a.s. (132)

We thus have the following.

Corollary 21: Let be a binary field satisfying
(132) (w.r.t. any half-plane ). Then

(133)

where the (asymptotically) optimal performance is achieved by
scanning the data according to the order corresponding to.

The following are examples for special cases covered by
(131).

Symmetric First-Order Markov Source in One Dimension:
This case was mentioned in Section I. If is a first-order

Markov process (on ) with the autoregressive representation
(1), (131) implies that when , the optimal scan-
dictor (for Hamming loss, i.e., minimum expected number of
errors) is the trivial one, namely, that which scans the data from
left to right and predicts the previously observed value. Note that
the line of argumentation leading to (131) (and hence to the opti-
mality of trivial scandiction for the autoregressive process under
discussion) is no longer valid for the case ,
as for this case the distribution (130) is no longer max-entropy
with respect to Hamming loss. Indeed, it is beyond the scope of

this work but can be shown [25] that it is the “odds-then-evens”
scandictor which is optimal for this range of(trivial scandic-
tion being strictly suboptimal for this case).

Certain Eight Nearest Neighbors Binary MRF’s:Take, for
concreteness, and suppose that is a binary MRF on

governed by such that

a.s.

(134)

Suppose further that

(135)

where . The presentation (135) has an equiva-
lent eight-nearest-neighbors presentation, cf. [23, Sec. 2.2.5] for
details. Corollary 21 implies that for this case,
which can be achieved via the lexicographic scan.

Unfortunately, general MRFs (even as simple as four-nearest-
neighbor ones) do not adhere to an autoregressive representation
of the type in (126), for which the results of this section hold.
Even standard fields susch as the Ising and the Potts model do
not have such a representation, and the characterization of their
scandictability remains an open problem.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

The bottom line of this work is the following conclusion. If a
stochastic process or field can be autoregressively represented
with a max-entropy innovation process, then it is optimally scan-
dicted using the scandictor associated with the said representa-
tion. The optimality criterion discussed in this work for the sto-
chastic setting was expected normalized scandiction loss. The
volume-preservation argument used, however, can actually be
shown to lead to the following much stronger conclusion. The
scandictor associated with the autoregressive representation (as-
suming a max-entropy innovation process) is optimal also in the
error-exponent sense (i.e., has the best large deviations perfor-
mance) for all threshold values. The interested reader is referred
to [27] for the details.

Suppose that rather than a single loss function we are pre-
sented with a list of loss functions with respect to which scandic-
tion performance is to be evaluated. In this context, given a list
of loss functions , it is natural to try and charac-
terize the achievable region of the vector of corresponding losses

. Analogs of lower and upper bounds on scandic-
tion performance in previous sections for the case of multiple
loss criteria would be in terms of inner and outer bounds on the
achievable region. Such bounds can be obtained by generalizing
the techniques of Section III. The interested reader is referred to
[26, Sec. 6].

In the remainder of this section, we outline future research
directions related to this work. The first direction pertains to as-
sessing the tightness of the upper and lower bounds in Theorem
9 (see (45)) for the case where the distribution ofis not max-
imum entropy. Suppose, for example, that the field is
autoregressively generated by some ,
where the driving noise is zero-mean Gaussian, yet performance
is evaluated relative to the absolute loss function . Or,
conversely, that the driving noise is Laplacian and performance
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is evaluated under squared-error loss. Is it still true in these cases
that the optimal scandictor for is ? An af-
firmative answer would imply that the “blame” for the gap be-
tween the upper and lower bounds in (45) lies in the lower bound
and that, in fact, (47) holds in cases other than when the distri-
bution of is maximum entropy.

Another direction is that of universal scandiction. It is not
hard to extend the idea underlying universal predictors and con-
struct universal schemes for the scandiction setting. The scan-
dictors resulting from such an approach, however, are far too
complex to have any practical value. Thus, it is of interest to
find universal scandictors of moderate complexity.

An additional direction for future research is that of scandic-
tion under the large-deviations performance criterion. Is there
no loss of optimality in restricting attention to deterministic
(given the observations) scandictors for this case? Is it still true
that an autoregressively generated field is best scandicted the
way it was generated? A partial answer (in the affirmative) to
the latter question was given in the recent work [27].

Finally, we mention the problem of noisy scandiction. Sup-
pose that a scandictor is to operate on a noise-corrupted image
(e.g., a Gaussian image corrupted by additive white Gaussian
noise), yet its performance is evaluated relative to the clean
image (cf., e.g., [28], [29], for the time-series origin of this
problem and for its motivation). Do the main results of this work
carry over to the noisy setting? In particular, does the main re-
sult of Section IV carry over to the case of a Gaussian image
corrupted by additive white Gaussian noise?

Some of the above issues are under current research.

APPENDIX A
PROOF OFPROPOSITION4

Proof of Item 1): According to [18, Theorem 11.1.1],

(A1)

where the right-hand side of (A1) holds with equality if and only
if . To see why this implies item 1) let

and recall that is the differential entropy of , where
.

Proof of Item 2): Fix an and let be an i.i.d.
sequence . On the one hand clearly

(A2)

so that

(A3)

On the other hand, by the nonasymptotic upper bound in
Cramér’s theorem (cf. [17, Theorem 2.2.3] and, in particular,
remark c) therein), we have

(A4)

where

(A5)

and

(A6)

Combining inequality (A4) with (A6) we obtain

(A7)

where the last equality follows by the fact that is monoton-
ically increasing in . Combining equality (A3) with (A7) gives

(A8)

Finally, taking the limit of the left-hand side of (A8) as
gives the desired result.

Proof of Item 3): Let be an i.i.d. sequence
drawn according to the PDF (recall (19)), where is tuned
so that . It is then easy to verify that the differ-
ential entropy of is . Furthermore, letting

, the weak law of large num-
bers implies

(A9)
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Evidently, carries most of the probability mass and,
therefore, must have volume which is exponentially no less than

(cf., e.g., [18, Theorem 9.2.3]). More precisely

(A10)

Combining inequality (A10) with the continuity of and
item 2) of the proposition completes the proof.

APPENDIX B
PROOF OFEQUATION (53)

By the hypotheses of Theorem 9 we have

and

It would, therefore, be more than enough to prove the following
weak law of large numbers.

Theorem 22:Let be uncorrelated random vari-
ables with

and . If then in
.

Proof:

(B1)
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