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The Separability of Standard Cyclic -ary Gray Codes

A. J. van Zanten and I Nengah Suparta

Abstract—A Sharp lower bound is derived for the cyclic list distance
between two codewords, having Hamming distance , in the standard

-ary Gray code of length , for 1 and for even values
of . The bound generalizes a similar result in the binary case.

Index Terms—Cyclic code, Gray code, separability.

I. INTRODUCTION

A binary Gray code of lengthn is an ordered sequence (list) of all 2n

n-bit strings (codewords) such that successive codewords differ in ex-
actly one bit position. The best known example of such an ordered code
is thebinary reflected Gray code(cf., e.g., [8], [10] and also Section II),
sometimes calledstandard binary Gray code.A question of theoretical
as well as of practical relevance is the following. If two codewords in
a Gray code, or in any ordered code, differ inm positions, how far
are they separated from each other in the list of codewords? The larger
this list distance of the code, the smaller the number of bit errors will
be when transmitting codewords by means of analog signals (cf. [10]).
Stated more precisely, when we index the codewords in the list from0
until 2n � 1, and if two codewordsgi andg j have Hamming distance
dH(gi; g j) = m, can we find a bounding functionb such that the list
distance satisfiesdL(gi; g j) � b(m), for 1 � m � n? Of course,
the most interesting bounding function is a function giving sharp lower
bounds for all values ofm, i.e., such that for everym-value there ex-
ists at least one pair of codewords with list distanceb(m). The ques-
tion of finding this uniquely determined function is called thesepara-
bility problem(cf. [9], [10]). We shall use the termseparability function
for a functionb—occasionally denoted asb(m)—yielding sharp lower
bounds for1 � m � n. In [9], Yuen solves the separability problem
for the binary standard Gray code. The separability function in this case
appears to bed 2

3
e. The derivation of this expression is accomplished

by making use of theindex systemof the standard Gray code, i.e., the
relationship between a codewordgi and its indexi, 0 � i � 2n�1 (cf.
e.g. [8]). Along similar lines, Cavior in [1] derives a sharp upper bound
for the list distance in this code, being2n � d 2

3
e, 1 � m � n. In

both papers, the list of codewords is interpreted as a linear (noncyclic)
list, which implies thatdL(gi; g j) is defined asji� jj. Now, it is well
known that the standard Gray code is acyclic Gray code, i.e., also the
last codeword differs from the first one in precisely one bit position.
Therefore, it is natural to introduce thecyclic list distancedefined as

D gi; g j = minfji� jj; 2n � ji� jjg (1)

(cf. also [7]). With respect to this notion the results of Yuen and Cavior
can be combined in the following implication

dH gi; g j = m! D gi; g j �
2m

3
: (2)
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We call this implication theseparability propertyof the standard binary
Gray code.

Next we will derive a more general separability property which holds
for the standardN -ary Gray code whenN is even. Although an index
system for this code is known (cf. [4]), it will appear that such a system
is not needed to prove the result. Throughout this correspondence, the
terms list and Gray code (which is represented by that list) are inter-
changeable. The columns of this list are numbered from right to left by
1; 2; . . . ; n.

II. PRELIMINARIES AND DEFINITIONS

As is well known, anN -ary Gray codeN > 0 of lengthn is an
ordered list of allNn codewords of lengthn over the set of integers
S = f0; 1; . . . ; N � 1g, such that each codeword differs from the
previous one in exactly one position. The natural numberN is called
the radix of the code (cf. [3]). The notion ofN -ary Gray code is, of
course, a generalization of a binary Gray code whose radix is equal to
two. If also the last codeword of the list differs in one position from the
first codeword, one speaks of acyclicN -ary Gray code. In this case,
the Hamming distance of any codeword to its two immediate neighbors
in the list is equal to one, where the list is considered to be a cyclic
list. More specifically, one can require that ifgi is the ith codeword
in the list with coordinatesgik 2 S; 1 � k � n, and if gi+1 differs
from gi only in thejth position, one either hasgi+1j = gij + 1 or
gi+1j = gij � 1; modN , for all values ofi with 0 � i � Nn

� 1.
Such a code can be defined as aminimal-changeN -ary Gray code.
Here, we identify the codeword with indexNn with the codeword with
index0. One could also say that codewords which are neighbors in this
list are atLee distance1 from each other, with respect to the ringZZZN

(cf. [6, p. 1750]). In this correspondence, the termN -ary Gray code
applies to this type of cyclic codes. If the above property only holds for
0 � i < Nn

� 1, and not fori = Nn
� 1, the code will be called a

noncyclicN -ary Gray code.
A well-knownN -ary Gray code is thereflectedN -ary Gray codeof

lengthn, n 2 ZZZ
+, denoted byG(n; N), and recursively defined as

G(n; N) =

0 G(n� 1; N)

1 G(n� 1; N)R

2 G(n� 1; N)
...

...

N � 1 G(n� 1; N)�

G(1; N) =

0

1

2
...

N � 1

(3)

whereG(n�1; N)R denotes the listG(n�1; N) in reversed ordered.
The symbol� stands forR only whenN is even, otherwise it should be
deleted. It will be obvious thatG(n; N) is a cyclicN -ary Gray code
if N is even and a noncyclicN -ary Gray code ifN is odd and larger
than1 (cf. [3]).

The codeG(n; N) will be called thestandardN -ary Gray code.
In the remaining part of this correspondence, we only consider even
values ofN .
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III. EQUIVALENCE OF ORDEREDCODES

Let Vn;N denote the set of all cyclic minimal-changeN -ary Gray
codes of lengthn. Let G be some code inVn;N . We shall introduce
a number of transformations mappingG to some other (possibly the
same) element ofVn;N :

i) if p is a permutation of the integers1; 2; . . . ; n; then pG is
the code of lengthn obtained by permuting the columns ofG
according top;

ii) if a is the cyclic permutation(0; 1; 2; . . . ; N � 1), thenaiG
is the code of lengthn obtained by permuting the integers in the
ith column according toa, for somei 2 f1; 2; . . . ; ng;

iii) if b is the permutation(0; N � 1)(1; N � 2) � � � (N
2
� 1; N

2
),

then biG is the code of lengthn obtained by permuting
the integers in theith column according tob, for some
i 2 f1; 2; . . . ; ng (cf. [5] and also [2, Ch. 2]).

It will be clear that all these transformations define mappings ofVn;N
onto itself, and also that these transformations generate a group of order
n!(2N)n. (Observe that the permutationsa andb generate the dihedral
groupDN of order2N .) We remark that the subgroup generated by the
transformations ii) is isomorphic to the translation groupG!G+a;

a2Sn. Furthermore, applying transformation iii) to columnn in case
of G(n; N), yields the reversed codeG(n; N)R.

Definition 3.1: Codes which can be transformed into each other by
applying one or more of the transformations i)–iii) are called equivalent
codes.

The relevance of this definition will become clear from the following
proposition.

Proposition 3.2: Equivalent codes satisfy the same separability
property.

The proof is immediate by observing that Hamming distances and
list distances are not affected by the transformations i)–iii).

IV. CONTRACTIONS OFORDEREDCODES

LetG be some code inVn;N . Take twok-strings

a := a1 a2 � � � ak 2 S
k and i := i1 i2 � � � ik

with 1� i1 < i2 < � � �< ik � n, for some fixedk-value,1� k � n.
The stringa will be called abit patternandi aposition vector.We now
consider the sublist ofG consisting of all codewords which haveaj
on positionij , for 1 � j � k. Leaving out the common bit patterna
from these codewords provides us with an ordered code of codeword
lengthn � k. We call this code thecontractionof G with respect to
the pair(a; i), and we writeG(a; i). In particular, we can contract the
standardN -ary Gray codeG(n; N) with respect to some pair(a; i).
The resulting code will be denoted byG(n; N ; a; i).

Proposition 4.1: Let G(n; N) be the standardN -ary Gray code,
n > 1, and letN be even. Then for any pair(a; i), the contraction
G(n; N ; a; i) is a cyclic Gray code equivalent to the standard Gray
codeG(n � k; N).

Proof: SinceN is even,G(n; N) is cyclic. We shall prove the
proposition by applying mathematical induction ton.

a) The statement is true forn = 2, as can be verified by inspection.

b) Assume the statement holds for all codeword lengths less than
n. Consider the sublist of all codewords ofG(n; N) containing
patterna on positioni. If ik = n, this sublist is either part of a
sublistanG(n� 1; N) or of a sublistanG(n� 1; N)R. In the
first case, the codeG(n � k; N ; a; i) can be considered as the

contractionG(n� 1; N ; a0; i0), with a0 = a1a2 � � � ak�1 and
i0 = i1 i2 � � � ik�1. By the induction assumption, this last code
is equivalent toG(n � 1� k + 1; N) = G(n � k; N). In the
second case, we proceed similarly, making use of the equivalence
of G(n � k; N) andG(n � k; N)R (cf. the remark prior to
Definition 3.1). If ik 6= n, the contraction process yields a code
of type

G (n; N ; a; i) =

0 G (n� 1; N ; a; i)

1 G (n� 1; N ; a; i)R

2 G (n� 1; N ; a; i)
...

...

N � 1 G (n� 1; N ; a; i)R

:

Again, by the induction assumptionG(n�1; N ; a; i) is equiv-
alent to the standard codeG(n�1�k; N). Applying Definition
3.1 shows thatG(n; N ; a; i) is equivalent toG(n� k; N).

V. SEPARABILITY OF THE STANDARD N -ARY GRAY CODE

We are ready now to prove our main result.

Theorem 5.1: Let G(n; N) be the standardN -ary Gray code of
lengthn, and letN be even. If the Hamming distance between two
codewordsg andh satisfiesdH(g; h) = m, then the list distance
betweeng andh satisfiesD(g; h) � d N

N �1
e. Moreover, this lower

bound is sharp for allm-values with1 � m � n.
Proof: We prove the theorem in two steps.

A) First we takem = n. In addition to the statement of the the-
orem, we shall also prove that there is a pair of codewords at
minimum distance, such that the shortest path connecting them
in the listG(n; N) contains the first codeword as well as the
last codeword of the list (3). Forn = 1 andn = 2, all above
statements are trivial. Assume all these statements are true for
all values less thann > 2. Let g andh be two codewords with
dH(g; h) = n. If we write g = gngn�1v andh = hnhn�1w,
it follows thatgn 6= hn; gn�1 6= hn�1 anddH(v; w) = n�2.
From (3), it follows thatv andw can be considered as code-
words ofG(n � 2; N) or of G(n � 2; N)R. It also follows
thatg andh are separated from each other by at least a number
p(� 1) of complete blocksG(n � 2; N) orG(n� 2; N)R of
sizeNn�2. SoD(g; h) is equal topNn�2 plus a term due to
the positions ofv andw in their respective blocksG(n� 2; N)
or G(n � 2; N)R. It will be obvious thatD(g; h) is minimal
if both contributions can be minimized simultaneously. This is
indeed possible by takingp = 1 and by selecting codewordsv
andw, which are both in a blockG(n�2; N) or both in a block
G(n � 2; N)R for oddp-values, as described in the beginning
of this proof. Due to the induction assumptionsD(g; h) is min-
imal for this choice ofv andw and its value is equal to

N
n�2 +

Nn�2

N2 � 1
=

Nn

N2 � 1
:

Therefore, the theorem also holds forn. In particular, we can
takeg = 0 andh = c 1 c 1 c � � �, with c = N�1, showing that
also the additional induction requirement is satisfied again. By
the principle of mathematical induction, the theorem has been
proved now for the casem = n.

B) If m < n, then g and h are equal ink := n � m posi-
tions, indicated by some position vectori = i1; i2; . . . ; ik.
The corresponding values of the coordinates will be given
by a = a1; a2; . . . ; ak. Now, we consider the contraction
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G(n; N ; a; i). Let v and w be the codewords in this con-
traction which correspond tog and h, respectively. So, we
havedH(v; w) = m. SinceG(n; N ; a; i) is equivalent to
G(m; N), it follows, by Proposition 3.2 and part A of this
proof, thatD(v; w) � d N

N �1
e in the contracted code. Hence,

we havea fortiori the same inequality forD(g; h), since
in G(n; N) the codewords corresponding to codewords of
G(n; N ; a; i) will, in general, be interlaced by codewords
which have no counterpart inG(n; N ; a; i). Finally, one can
easily prove that this bound is sharp by applying mathematical
induction ton � m, and using part A for the casen = m.

Corollary 5.2 (Yuen, Cavior):The separability function of the stan-
dard binary Gray code is equal tod 2

3
e.

REFERENCES

[1] S. R. Cavior, “An upper bound associated with errors in Gray code,”
IEEE Trans. Inform. Theory, vol. IT-21, p. 596, Sept. 1975.

[2] M. Cohn, “Affinem-ary Gray codes,”Inform. Contr., vol. 6, pp. 70–78,
1963.

[3] M. C. Er, “On generating theN -ary reflected Gray codes,”IEEE Trans.
Computers, vol. C-33, pp. 739–741, Aug. 1984.

[4] I. Flores, “Reflected number system,”IRE Trans. Electron. Computer,
vol. EC-5, pp. 79–82, 1956.

[5] E. N. Gilbert, “Gray codes and paths on then-cube,”Bell Syst. Tech. J.,
vol. 37, pp. 815–826, 1958.

[6] V. S. Pless and W. C. Huffman, Eds.,Handbook of Coding
Theory. Amsterdam, The Netherlands: Elsevier, 1998.

[7] F. P. Preparata and J. Nievergelt, “Difference-preserving codes,”IEEE
Trans. Inform. Theory, vol. IT-20, pp. 643–649, Sept. 1974.

[8] E. M. Reingold, J. Nievergelt, and N. Deo,Combinatorial Algorithms:
Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[9] C. K. Yuen, “The separability of Gray code,”IEEE Trans. Inform.
Theory, vol. IT-20, p. 668, Sept. 1974.

[10] A. J. van Zanten, “Index system and separability of constant weight Gray
codes,”IEEE Trans. Inform. Theory, vol. 37, pp. 1229–1233, July 1991.

Disproof of a Conjecture on the Existence of Balanced
Optimal Covering Codes

Patric R. J. Östergård, Senior Member, IEEE

Abstract—The minimum number of codewords in a binary code
with length and covering radius is denoted by ( ), and
corresponding codes are called optimal. A code with words is said to
be balanced in a given coordinate if the number of0’s and 1’s in this
coordinate are at least 2 . A code is balanced if it is balanced in all
coordinates. It has been conjectured that among optimal covering codes
with given parameters there is at least one balanced code. By using a
computational method for classifying covering codes, it is shown that there
is no balanced code attaining (9 1) = 62.

Index Terms—Balanced code, code equivalence, covering code.

Manuscript received June 6, 2001; revised September 10, 2002. This work
was supported by the Academy of Finland under Grants 44517 and 100500.

The author is with the Department of Electrical and Communications En-
gineering, Helsinki University of Technology, 02015 HUT, Finland (e-mail:
patric.ostergard@hut.fi).

Communicated by S. Litsyn, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2002.807307

I. INTRODUCTION

We consider binary codes,C � Fn whereF = f0; 1g, and de-
note such a code of lengthn, cardinalityM , and covering radiusR by
(n; M)R. Givenn andR, we denote the least integerM such that an
(n; M)R code exists byK(n; R), and call(n; K(n; R))R codesop-
timal. A complete survey of all aspects of covering codes can be found
in [2].

The concept ofbalancedcodes was introduced in [3]. A binary code
of sizeM is said to be balanced in a given coordinate if the number of
0’s and1’s in this coordinate are at leastbM=2c. A code is balanced if
it is balanced in all coordinates. The following conjecture is stated in
[3]; see also [2, p. 149].

Conjecture. Among all optimal covering codes with given parame-
ters, at least one is balanced.

If the Conjecture would turn out to be true, it could be utilized in
the search for optimal covering codes. Clearly, there are optimal codes
that are not balanced, for example, the optimal(2; 2)1 codef00; 01g.
The Conjecture, however, only claims that there exists a balanced code.
Indeed, there exists a balanced(2; 2)1 code:f00; 11g.

The size of optimal binary codes has been determined in the fol-
lowing cases [3], [4], [7], [9], [10]: for perfect codes, for codes with
length at most9, for codes with size at most7, and for codes with
covering radius1 whose length exceeds that of Hamming codes by1.
Among these, balanced optimal codes are known for all other cases but
(9; 62)1 codes (using the classification in [9], [10] and direct combi-
natorial arguments).

A disproof must therefore be looked for among codes with length
at least9. Recently, the resultK(9; 1) = 62 was obtained in a CPU-
extensive computational proof by showing nonexistence of(9; 61)1
codes [7]. Two inequivalent(9; 62)1 codes have been published in the
literature: the codes in [8] and [12] are balanced in five and six coordi-
nates, respectively, and in the rest of the coordinates the number of0’s
and1’s is 30 and 32 (or vice versa). Consequently, this seemed to be a
possible instance for disproof of the Conjecture. Indeed, as we shall see
in Section II of this correspondence, there exists no balanced(9; 62)1
code.

II. THE DISPROOF

The computational method used in this work is from [7], which, in
turn, was developed from ideas in [1], [5], [11]. The basic idea of the
method is to construct ann�M matrix with the codewords as columns,
row by row. The search is pruned by using linear inequalities that follow
from the sphere-covering bound, by carrying out equivalence tests on
subcodes, and by assuming that no codeword occurs more than once in
the final code. We do not go into details here but refer the reader to [7].

In the search for balanced codes, we have the additional requirement
that the number of0’s and 1’s in each row (coordinate) be at least
bM=2c. This is easily implemented in the existing algorithm from [7].

Even if a classification of balanced codes is orders of magnitude
faster than a complete classification, the computation took about one
month of CPU time on 500-MHz PCs. The search was completed in a
few days by distributing it over a local network using the distributed
batch system autoson [6]. The number of inequivalent codes with
1 � n0 � 9 (corresponding ton0 � 62 matrices) is 1, 5, 30, 1068,
200 527, 13 123 199, 435 424, 45 718, 0, respectively, where the last
number disproves the Conjecture.

It would still be interesting to know whether there exist counterex-
amples forR > 1.
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