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Low-Correlation, Large Linear Span Sequences From
Function Fields

Chaoping Xing, P. Vijay Kumar, Fellow, IEEE, and Cunsheng Ding, Member, IEEE

Abstract—A general method of generating families of binary se-
quences with low correlation as well as large linear span is pre-
sented. The lower bound on the linear span is on the order of the
square root of the period of each sequence within the family. The
design makes use of the theory of function fields. Two example ap-
plications of this method are presented in which the underlying
function fields are the rational and elliptic function fields respec-
tively.

Index Terms—Correlation, function fields, linear span, pseudo-
random sequences, sequences.

I. INTRODUCTION

A COMMONLY used method of generating low-correlation
sequences is described below.

Let , prime, and let be a fixed in-
teger. Let denote the finite field of elements. Let be the
collection of all polynomials over of degree . Let be
a primitive element in . Let denote the collection of se-
quences

where denotes the trace from . The sequences in
all have period dividing . Let denote the subset of

consisting of sequences of period .
Two periodic sequences are said to be cyclically equivalent

if one is a cyclic shift of the other. Let be partitioned into
equivalence classes where all the sequences within an equiva-
lence class are cyclically equivalent. Let be the subset of

obtained by picking one representative from each equiva-
lence class. Let denote the polynomials associated to the
sequences in .
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Let be a complex, primitive th root of unity. Then the
correlation between theth and th sequences at shiftis given
by

and may be regarded as an exponential sum [5], [3] whose mag-
nitude can be upper-bounded using the Weil–Carlitz–Uchiyama
bound

either or

For example, setting , , odd, in the method
generates one instance of the well-known and optimal Gold se-
quence family. A generalization of this method to Galois rings
generates the sequence families described in [4].

One disadvantage of this method, however, is that the se-
quences produced by this method have short linear span. (The
linear span of a periodic sequence is the length of a shortest
linear feedback shift register that is capable of generating the
sequence.) For example, in the case of the Gold sequence family
of length , odd, the linear span is upper-bounded by

. One method of increasing the linear span is to replace the
polynomial by a rational function .

The present paper takes this idea one step further first by
working over an arbitrary function field (the above approach can
be viewed as working on the rational function field) and second
by constructing families of sequences in such a way that the pe-
riod, the maximum correlation value, and the minimum linear
span can all be related to the number of places of degree one
(rational points) on an appropriately constructed Artin–Schreier
extension of the underlying function field.

The use of function fields in sequence construction is not new
(see [2], [4], [9]) since the Weil–Carlitz–Uchiyma bound on ex-
ponential sums referred to above is itself based on an estimate
of the number of places of degree one of an Artin–Schreier ex-
tension of the rational function field, i.e., the function field cor-
responding to the projective line.

Our approach makes it possible to design sequence families
where the period is not necessarily of the commonly found form

for some prime .
The parameters of two example constructions arising from

the method presented here appear in Table I.
In Table I, is an integer satisfying one of the following con-

ditions:

1) is an odd integer between and
;

2) ;
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TABLE I

3) if is even, and
if is odd.

We now introduce some definitions.

Definition 1.1: The linear complexity of a nonzero binary
periodic sequence is defined to be the smallest
positive integer such that there exist binary numbers

with satisfying

for all . The linear complexity of is denoted by .

Definition 1.2: Let and be
two binary sequences of period(it is allowed that and are
the same). Then their correlation at shift, with ,
is given by

Definition 1.3: Let be a family of
binary sequences of period. We put

and

or

The next section of the paper presents some results on func-
tion fields that we will make use of. Section III presents the gen-
eral construction. Sections IV and V present specific examples
of this construction that relate to the rational and elliptic func-
tion fields, respectively.

II. SOME BACKGROUND ON FUNCTION FIELDS

We first fix some notation for this section. As in the previous
section, is the power of a prime.

global function field with full constant field
(we simply say that is a function field);
genus of ;
set of all places of ;
number of rational places of ;
normalized discrete valuation corresponding a
place of .

A divisor of is a formal sum

where is a finite subset of and each is an integer. The
degree of is defined by

and the support of given by

For a nonzero elementof , let and denote the
set of zeros and poles of, respectively. Define the zero and
pole divisors of via

respectively.
Then, [8, p. 18]. For a divisor , we

form the vector space

where is the principal divisor of .
Then is a finite-dimensional vector space over. By the
Riemann–Roch theorem [8], we have

(1)

and equality holds if .

Definition 2.1: An element is called degenerate if can
be written as the form for some and .
Otherwise, is nondegenerate.

Lemma 2.2: If there exists a place of such that
is prime to , then is nondegenerate.

Proof: Suppose that is degenerate, i.e., is of the form
for some and . Then we have

This contradicts . The proof is complete.

For a nondegenerate elementof , we can construct an
Artin–Schreier extension over. The following results can be
found in [8, Proposition VIII.2.8].

Lemma 2.3:Let be a nondegenerate element of, then
is an irreducible polynomial of . Let be a

root of , then is cyclic extension of degree
over , and .

Remark 2.4: If and are two roots of , then
there exists an element such that . Hence,

, i.e., the field is unique for any root of
. We denote the field by .

The following lemma provides us with an estimate of the
genus of such an Artin–Schreier extension.

Lemma 2.5:Let be a nondegenerate element of, then the
genus of satisfies

where is the degree of the pole divisor of .
Proof: A place of is ramified in only if is

a pole of . If is ramified, then is totally ramified and the
different exponent of is at most .
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It follows from the Hurwtiz formula that

(2)

where is the set of all places of and is the different
exponent of .

We have

Our result follows from the above inequality.

Next we look at the Hamming weight of trace vectors asso-
ciated with nondegenerate elements and some rational places
of .

Lemma 2.6:Let be distinct rational places.
Let be a nondegenerate element ofsuch that
for all . Let be the set of rational places
of lying above those rational places of that are outside

. Then the Hamming weight of the vector

equals

where is the residue class ofmodulo , denotes
the number of rational places of , and denotes the car-
dinality of the set .

Proof: We refer to [8, Proposition VIII.2.8] for the proof
of the special case where is the rational function field. For a
fixed , if and only if can be written as the
form for some . This is equivalent
to the fact that completely splits into rational places in

, where satisfies the equation

Let be the number of rational places in
which split completely in . It is clear that

and the Hamming weight of

is equal to

Remark 2.7: It is obvious that

The following lemma provides a sufficient condition under
which a set of elements of are -linearly independent.

Lemma 2.8:Let be elements of . Sup-
pose there exist distinct places of such
that if and only if for all .
Then are -linearly independent.

Proof: Suppose that there exist elements
of with for some such

that , i.e.,

(3)

Hence, and . This contra-
dicts (3).

An -automorphism is an automorphism of keeping
all elements of fixed. denotes the group of all

-automorphisms of . The following results can be easily
proved.

Lemma 2.9 (see [1], [8]):Let , ,
and , then

1) is also a place of with ;

2) ;

3) if .

In this paper, we are interested only in the rational function field
and the function fields of elliptic curves. The automorphisms
of these two types of function fields will be discussed in Sec-
tions IV and V.

III. T HE GENERAL CONSTRUCTION

From now on, we always assume that the characteristicof
is equal to . We also fix some notation for this section.

a rational place of ;
an automorphism in ;
the least positive integer satisfying , i.e.,

and for all .

Put for all integer . Then for
all and are pairwise distinct
rational places for any fixed . For an element with

, define the binary sequence

It is clear that divides the period of . The following result
provides a sufficient condition under whichequals the period
of .

Proposition 3.1: Let satisfy . Suppose
that is the unique pole of with , and

are pairwise distinct. If
satisfies

then the period of is equal to .
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Proof: Suppose is not the period of , then there exists
a positive integer with such that is the period of .
Consider the function

Note that is the unique pole of. Hence, is the unique
pole of for all . It follows from Lemma 2.9 that is
a nonzero element. The degree of the pole divisor ofsatisfies

(4)

However, we have

for all . Thus,

since is the period of . Hence,

is the zero vector. By Lemma 2.6

i.e.,

(5)

By the Hasse–Weil theorem, we have

(6)

By Lemma 2.5, we get

(7)

Combining (6) with (7) gives

(8)

Combining (5) with (8) yields

This contradicts our condition. Hence the period ofis equal
to .

Theorem 3.2:Let satisfy . Suppose
that is the unique pole of with , and

are pairwise distinct. Then
the linear complexity of satisfies

where .
Proof: Denote by . If , we have nothing to

prove. Hence, we may assume that . Then there exist
binary numbers such that and

for all . Put

then is nondegenerate by Lemmas 2.9 and 2.2 since
is the unique pole of for any . Moreover,

.
Consider

We obtain

By Lemma 2.6, we have

Hence, by the Hasse–Weil bound and Lemma 2.5

Our result follows.

The above theorem indicates that the linear complexity of
is good if the period is relatively large compared with

and . Now we want to look at the correlation of such
sequences.

Theorem 3.3:Let be two elements of with
and for all and

(it is allowed that ). Suppose that is
nondegenerate for some . Then the correlation satisfies

where is the degree of the pole divisor of .
Proof: Put . By the definition, we have
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By the Hasse–Weil bound and Lemma 2.5, we have

It is also clear that the size of is at most .
Hence,

The proof is complete.

IV. EXAMPLE CONSTRUCTIONOVER THE RATIONAL FUNCTION

FIELD

Assume that is even in this section. We fix some notation
again for this section:

fixed primitive element of ;
rational function field;
automorphism of : ;
unique zero of .

Let be the unique zero of
for all , and put . Then
are pairwise distinct for any fixed . Moreover,
for all since is the identity. Let be the set of all
places of degree . There is a one-to-one correspondence
between and the set of all monic irreducible polynomials
of degree of . Therefore, the size of is equal
to the number of monic irreducible polynomials of degreeof

and is given [5] by

where is the Möbius function.

Lemma 4.1:Let . If and , then
are pairwise distinct for any

fixed .
Proof: It is sufficient to show that for any

. Let be the monic irreducible polynomial with
unique zero . Then is the unique zero of

. In order to prove that , we need
to show that any roots of are not roots of

. Let be a root of . We want to show that
is not a root of . This is equivalent to showing that

is not a root of . Suppose that is a root of . Since
all roots of are , there exists an integer

with such that , i.e., .
This yields

(9)

Since , we have .
Knowing , we obtain from (9) that , i.e.,

. This contradicts the fact that is an irreducible
polynomial of degree since .

By the above lemma, we find that for with ,
the action of the cyclic group of order on

divides into equivalent classes. Each class
contains places of degree. We choose only one place from
each class. Thus, we obtainplaces of degree

It is clear that for

For each , let be the monic irreducible polyno-
mial of degree of with the unique zero . Put

Then is the unique pole of and . Consider
the family of binary sequences

where

Theorem 4.2:Let and
. Let be the family of binary sequences as

constructed above. Then is of size and each
sequence in is of period . Moreover

Proof: By the condition ,
we get . It follows from
Proposition 3.1 that the period of each sequence inis

. Let for some . Then
is the unique pole of and are

pairwise distinct. By Theorem 3.2, we have

for all . This means that

Now let and be two sequences of (it is allowed that
). For , consider the function

is the unique pole of and is the unique pole of
.

Case 1: , then since

thus is not a pole of and

Therefore, is nondegenerate by Lemma 2.2.
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Case 2. and . Then , thus,
the same arguments as in Case 1 show thatis nondegenerate.

For both cases, is nondegenerate. By Theorem
3.3, we obtain

Since , it is clear that sequences
are pairwise distinct. Hence, the size of is equal to

. The proof is complete.

We rewrite Theorem 4.2 into the following form by taking
.

Theorem 4.3:Let , let

and

Then there exists a family of binary sequences such that

a) ;
b) each sequence in is of period ;
c)

d)

Corollary 4.4:

i) Let , then there exists a family of binary se-
quences such that

a) ;
b) each sequence in is of period ;
c)

d)

ii) Let be a positive integer and a prime satisfying
and .

Then there exists a family of binary sequences such
that

a)

b) each sequence in is of period ;
c)

d)

Proof: Note that

Taking gives the results from Theorem 4.3.
Note that

for a prime . Taking gives the results from Theorem 4.3.

V. EXAMPLE CONSTRUCTIONOVER ELLIPTIC FUNCTION

FIELDS

We assume that is even again in this section. First let us
review some results on elliptic curves [1], [6], [7]. Let be
the function field of an elliptic curve defined over with at
least one rational place. Then all rational places of form a
finite Abelian group. Let be the set of all rational places.
We can take as the zero element of . The number of
rational places of is always between and

. Furthermore, for any , the number of places of
degree is determined by the number of rational places. More
precisely, suppose that has rational places, then the
number of places of degree of is determined by

where are two roots of the quadratic equation
. In particular

For a rational place , let denote the rational
place

where stands for the addition operation of the group .

Lemma 5.1 (see [1, pp. 194 and 195]):Let be the
function field of an elliptic curve with at least one rational place

. Then for any rational place of , there exists a unique
automorphism of such that for any place of
degree , is a principal divisor. In
particular, is the identity, and for all .

Remark 5.2:All rational places of form a finite
Abelian group that is isomorphic to the divisor class group of
degree zero of . If we take as the zero element of the group
and is a rational place, then

An elliptic curve is called cyclic if the rational places of its
function field form a cyclic group.

Lemma 5.3 (see [6, Theorem 3]):Put . Let be an
integer satisfying one of the following three conditions:

i) is an odd integer between and
; or
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ii) ; or

iii) if is even, and
if is odd.

Then there exists a cyclic elliptic curve over such that its
function field has rational places.

Lemma 5.4:Let be the function field of a cyclic elliptic
curve over . Let be a generator of and a
place of degree of . Suppose the order of is
prime to . Then for all and

are pairwise distinct for any
fixed .

Proof: For any

In order to prove that , are pair-
wise distinct for any fixed , we only need to show that

only if . Suppose , i.e.,
. Then

is a principal divisor. Therefore, since
is a generator of , that is, . The proof is
complete.

Let be the function field of a cyclic elliptic curve of order
, a generator of . Put for

all . For , let be the set of all places of
degree . Assume . According to Lemma 5.4, the
action of on divides into

equivalent classes. Each class contains
places of degree. We choose only one place from each class.
Thus, we obtain places of degree

It is clear that for

For each , as

we can find an element

It is obvious that is the unique pole of and .
Consider the family of binary sequences

where

Theorem 5.5:Let be an integer satisfying one of three con-
ditions in Lemma 5.3. Let
and . Let be the family of binary sequences

as constructed above. Then is of size
and each sequence in is of period . Moreover

Proof: By Lemma 5.3, there exists a cyclic elliptic curve
with rational places. Let be the function field of the
curve. Employing exactly similar arguments as in the proof of
Theorem 4.2 and the results of Proposition 3.1, Theorems 3.2
and 3.3, we can get our results.

We rewrite Theorem 5.5 into the following form by taking
.

Theorem 5.6:Let be an integer, let be an integer
satisfying one of three conditions in Lemma 5.3. Let

and

Then there exists a family of binary sequences such that

a) ;
b) each sequence in is of period ;
c)

d)

Corollary 5.7:

i) Let and let satisfy conditions ii) or iii) in Lemma
5.3. Then there exists a family of binary sequences
such that

a) ;
b) each sequence in is of period ;
c)

d)

ii) Let and let satisfy one of three conditions in
Lemma 5.3. In addition, suppose .
Then there exists a family of binary sequences such
that

a) ;
b) each sequence in is of period ;
c)

d)

Proof: Note the fact that
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and is an odd number. Taking in Theorem 5.6
gives the results of part i). Note the fact that

and . Taking in
Theorem 5.6 gives the results of part ii).

REFERENCES

[1] M. Eichler, Introduction to the Theory of Algebraic Numbers and Func-
tions. New York: Academic, 1951.

[2] G. Gong, T. Berson, and D. Stinson, “Elliptic curve pseudo-random se-
quence generators,” inProc. 6th Annual Workshop on Selected Areas in
Cryptography (Lecture Notes in Computer Science). Berlin, Germany:
Springer-Verlag, 1999, vol. 1758, pp. 34–48.

[3] T. Helleseth and P. V. Kumar, “Sequences with low correla-
tion,” in Handbook of Coding Theory, V. Pless and C. Huffman,
Eds. Amsterdam, The Netherlands: Elsevier, 1998.

[4] P. V. Kumar, T. Helleseth, and A. R. Calderbank, “An upper bound for
Weil exponential sums over Galois rings and applications,”IEEE Trans.
Inform. Theory, vol. 41, pp. 456–468, Mar. 1995.

[5] R. Lidl and H. Niederreiter,Finite Fields. Cambridge, U.K.: Cam-
bridge Univ. Press, 1997.

[6] H.-G. Rück, “A note on elliptic curves over finite fields,”Math. Comp.,
vol. 49, pp. 301–304, 1987.

[7] J. H. Silverman, The Arithmetic of Elliptic Curves. New York:
Springer-Verlag, 1986.

[8] H. Stichtenoth,Algebraic Function Fields and Codes. Berlin, Ger-
many: Springer-Verlag, 1993.

[9] C. P. Xing and K. Y. Lam, “Sequences with almost perfect linear
complexity profiles and curves over finite fields,”IEEE Trans. Inform.
Theory, vol. 45, pp. 1267–1270, May 1999.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


