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MMSE Whitening and Subspace Whitening in quantum mechanics [6], and later applied to the design of optimal
_ ) frames [9], [10].
Yonina C. EldayMember, IEEEand Alan V. Oppenheinfellow, IEEE  paralleling the concept of LS orthogonalization, in this paper we de-
velop an optimal linear whitening transformation. Our criterion for op-
Abstract—This correspondence develops a linear whitening transforma timality is motivated by the fact that, in general, whitening a data vector
tion that minimizes the mean-squared error (MSE) between the original or SIgpaI introduces dlstor_tlon to _the_values of t_he (_Jlata_relatlve to the
and whitened data, i.e.,one that results in a white output that is as close Unwhitened data. In certain applications of whitening, it may be de-
as possible to the input, in an MSE sense. When the covariance matrix of sirable to whiten the data while minimizing this distortion. Therefore,
the data is not invertible, the Whitening transformation is designed to Opti- in this Correspondence we propose Choosing a linear Whitening trans-
mally whiten the data on a subspace in which it is contained. The optimal ¢, aion that minimizes the mean-squared error (MSE) between the
whitening transformation is developed both for the case of finite-length I . . . . .
data vectors and infinite-length signals. original and whltgned data, ie., that results in a white output that is
as close as possible to the input in an MSE sense. We refer to such
a whitening transformation as a minimum MSE (MMSE) whitening
transformation. Extensions of this concept to other forms of covariance
shaping are considered in [4], [11].
|. INTRODUCTION Applications of MMSE whitening and subspace whitening to
- . . . . L q’natched-filter detection, multiuser detection, and LS estimation are
Data whitening arises in a variety of contexts in which it is usefi

. . "Considered in [3], [5], [12]-{14]. The essential idea in the detection
to either decorrelate a data sequence prior to subsequent processing, of . . : - .
ications is to improve the detection performance by optimally

to control the spectral shape after processing. Examples in which da

S . . .. “Whjtening the output of conventional receivers prior to detection usin
whitening has been used to advantage include enhancing directio % 9 b P 9

. . o - . . MMSE or subspace MMSE whitening transformation. As we
arrival algorithms by prewhitening [1], [2], and improving probability . . . . ” . .
L s . ’show by simulations in [3] and analytically in [5], in many cases this
of correct detection in multisignature systems [3], [4] and multius

Hpproach can, in fact, lead to improved detection performance.
wireless communication systems [5] by prewhitening. PP ' ! P P

Whitening of a random sequence parallels closely the concept of %To illustrate the use of MMSE whitening and subspace whitening in

th lizati f t of vect Specificall th lizi ore detail, we consider here an application of these ideas to LS es-
OfO%%T;'SZ%'%T ?asamsae qnvet(r;]gr;ét oaezéfsrsy’t:; r?égor;aet'zé?geitsﬁ%ation. This application is developed and explored in more detail in
v Invov ppIng veck W v iﬁ], [13]. Specifically, we consider the problem of estimating a set of
through a linear transformation so that the inner product between ny S .
urknown deterministic parametexbserved through a known linear

two vectors in the set is zero. Similarly, whitening a zero-mean randq[r nsformation and corrupted by additive noise. The traditional LS

sequence involves mapping the sequence to a new sequence throu ifhator chooses as its estimate the parameters that minimize the LS

Iel?eeriretr:?sn;f?rzgitelozsr?ctg?; tzheergxgﬁ]cctztt'gz (e);theecgt(i):#gf?;:nﬁwﬁgr between the observed data and the estimated noise free data that
q ’ P ProGiStild be obtained with the estimated parameters. Dependinf,on

of two random variables is an inner product, the mathematics assq%?e errors ire might result in small errors in the output in which case

ated with whitening of a random sequence parallels the mathema?h resulting LS estimate can be a poor estimate of the paranaeters

assomate(_j W'.th orthogonallz!ng a set of vectprs. . . In the infinite-dimensional case, this problem corresponds to linear LS
Any whitening transformation cascaded with a linear unitary tran?-

Index Terms—Mean-squared error (MSE) whitening, subspace whiten-
ing, whitening.

. . . ) o ) econvolution of noisy data which is well known to be highly sensitive
formation will result in a different whitening transformation, so tha " . . . . :
R additive noise, when the signal-to-noise ratio (SNR) is low or mod-

tri1enl|r|1eia:1trtan§{orma\t/|\7':1"th?nt wr:nltens a“datt? \r/]ect?:N%ritm:ir:te Ierrt]gf%rate or the dynamic range of the spectrum of the linear transformation
sighat IS not unique. € In some appiications o ening certajq high. Exploiting the results developed in this paper for linear MMSE
conditions might be imposed on the whitening transformation such SRitening. i . o .

. . whitening, in Section V we apply MMSE whitening to the LS estimator
causality or symmetry, there have been no general assertions of OPlhat we control the spectral shape and the dynamic range of the es-
mality for various choices of a linear whitening transformation.

timation error. This leads to a new estimator which we refer to here as

Recently, the concept of least-squares (LS) orthogonalization f{ﬁg whitened LS (WTLS) estimator. This estimator is a special case of

been introduced .[6]_[8] in which an _orthogonal set of vectors is co%? more general covariance shaping LS estimator, developed in [12].
structed from a given set of vectors in such a way that the orthogorl\a

L . S we show, regardless of the valueaothere is always a threshold
vectors are as close as possible in a LS sense to the given set of vec% below which the WTLS estimator yields a lower MSE than the
LS orthogonalization was originally motivated by a detection proble :

s estimator.
In Section II, we derive the linear MMSE whitening transformation

for a finite-length data vector with positive definite covariance matrix.
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onto the subspacke andl,. denotes thern x m identity matrix. The
adjoint of a transformation is denoted by", theMoore—Penrose pseu-
doinversg15] is denoted by-)*, and(-) denotes an optimal vector or
transformation. The cross covariance of random variablaadb is
denoted byov(a, b), andE(-) denotes expectation.

2) if ¢ is chosen to minimize the MSE then

m

£

1
o= —
m

Proof: Let C, have an eigen decompositid?, = VDV",
whereV is a unitary matrix andD is a diagonal matrix with diagonal
elementsd; > 0. Definea = V*a andb = V*b. Then we have

Leta € R™ denote a zero-meanandom vector with positive def- immediately that the covariance afis V*C.V = D so that the
inite covariance matri,,. We wish to white@ the vectora using a elements ofa are uncorrelatedcov(ay, @) = drbr, wWhereay
whitening transformatio to obtain the random vectdr = Wa, denotes théth component o&. Furthermore, sinc¥™ is unitary and
where the covariance matrix éfis given byC, = ¢*I,, for some C» = ¢’I.,, the covariance ob is ¢°I,,, and the MSE defined by
¢ > 0. Thus, we seek a transformati®# such that (2) betweerz andb is equal to the MSE between andb. With W
and W denoting the optimal whitening transformations in the new
and original coordinate systems, respectively, it is straightforward to
show that
for somec > 0. We refer to any¥ satisfying (1) as a whitening trans-
formation.

Given a covariance matri€’,, there are many ways to choose a
whitening transformatioW satisfying (1), for example, using the
eigen decomposition or Cholesky factorization(f [16]. Although
there are an unlimited number of whitening transformations satisfyingMse =
(1), no general assertion of optimality is known for the outpst Wa
of these different transformations. In particular, the white randonereq, = E(72) are the eigenvalues @, andb, denotes théth
vectorb = Wa may not be “close” to the input vectar If the vector component ob. From the Cauchy—Schwarz inequality

II. OPTIMAL WHITENING TRANSFORMATION

C,=WC.W* =1, 1)

W =VWVv". ?)

To determind;'V , we expresswuse Of (2) as

m

Z E ((Wk — Bk)Q

k=1

m m

):Z de +mec® —2 Z E(arbr) (4)
k=1 k

=1

b undergoes some noninvertible processing, or is used as an estimator

of some unknown parameters represented by theaddten we may
wish to choose the whitening transformation such thistclose toa

in some sense. This can be particularly important in applications i, equality if and only ifb,

which b is the input to a detector, so that we may wish to whigen
prior to detection, but at the same time minimize the distortion to
by choosingW so thatb is close toe. Applications of this type have

been recently investigated in various contexts including matched-fil
detection [3], [4] and multiuser detection [5]. We, therefore, propose a
whitening transformation that is optimal in the sense that it results in a

random vectob that is as close as possibledon MSE. Specifically,

-2

—_ —_ . 1/2 . .
E(@br) < |B@be)| < (E (@) E (bk,)) = PE (%) (5)
d (¢/v/di)a, with probability one
w.p. 1). Note, thath;, can always be chosen proportionalap since
the variablesi;. are uncorrelated.

We, therefore, conclude that if the constairt (4) is specified, then

= ¢D™'/?, and from (3)

W = VD Vv = 0 V2 (6)

among all possible whitening transformations we seek the one tha#lternatively, we may choose to further minimize (4) with respect

minimizes the total MSE given by

m

SMSE = Z F (((l}.» - bL:)Z) =FE((a- b)*(a' - b))

k=1

@)

subject to (1), where; andb; are thekth components o andb,
respectively. We may wish to constraint the constaint (1), or may
chooser such that the total MSE is minimized.

The MMSE whitening transformation is given by the following

theorem.

Theorem 1 (MMSE Whitening Transformatiorletae € R™ be a
random vector with positive definite covariance matix = VDV™,
whereD is a diagonal matrix with diagonal elements > 0 andV is

a unitary matrix. LeWW be the optimal whitening transformation that

minimizes the MSE defined by (2), between the inguind the output
b = Wa with covariancel, = ¢*I,,, wherec > 0. Then

W =aVD V2V* = a2

where
1) if c is specified thenx = ¢;
1if the meanE(a) is not zero, then we can always defite= a — E(a) so

that the results hold foe'.

2n this correspondence, we define a random veettw be white if the co-
variance ofa, denoted”,, is given byC, = I for somec > 0.

to c. Substitutingbd;. (¢/+/dy)ar back into (4), we choose to

minimize
me’ — QCZ Vdk. ()
k=1
The optimal value of, denoted by, is therefore given by
. 1 m
é=— Z Vdy (8)
k=1
and the optimal whitening transformation is
W =¢vD™ PV =cCy'2 )
O

Itis interesting to note that the MMSE whitening transformation has
the additional property that it is the unigggmmetriavhitening trans-
formation [17] (up to a possible minus sign). It is also proportional to
the Mahalanobis transformation, that is frequently used in signal pro-
cessing applications incorporating whitening (see, e.g., [18], [1], [2]).

1. OPTIMAL SUBSPACEWHITENING
A. Subspace Whitening

Suppose now that is a zero-mean random vector/Ri™ with non-
invertible covariance matri€',, whererank(Cy,) = n < m, and let
Y C R™ denote the range space@f,. It then follows that for any
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v eV Cow =
a, and, consequently, any realization of the random vectas in )

w.p. 1.3 In this case, there is no whitening transformafinsuch that

WC.W* = *I,,. Instead, we propose whiteniagon the spacg’
in which it is contained, which we refer to asbspace whitening

Letbd denote the output of a subspace whitening transformatian of
Sincea € V, we require thab € V. In addition, we require that the

representation df in terms of some orthonormal basis ris white,

which implies that the representation in terms of any orthonormal basis3) definew”
for V is white. We now translate these conditions to conditions on the i

covarianceC';, of b.

Denote byC, = VDV™ the eigen decomposiiton &', where
V is a unitary matrix with orthonormal columns where the first:
columns{v;, 1 < k < n} span the range space 6f,, andD is a
diagonal matrix with diagonal elements whered; > 0, 1 < k< n
andd, = 0, n + 1 < k < m. It then follows that lies inV if and
only if the null space o€, containsV*, i.e., if and only if

Cb'l)k = 0, n+1 S k S m. (10)

Next, letV; denote the matrix of columngv,, 1 < k < n} that

form a basis fo. Then the representation bfin this basis for) is

b, =Vib, b, € R", and the covariance &f, isViC,V . Therefore,

b, is white onV if and only if C,, satisfies

Vie,, =7, (11)

for somec > 0. Combining (10) and (11) we conclude tias white
onV if and only if

C, =Py = *VIV* (12)
wherePy is the orthogonal projection operator onfaand
= I, 0
I= .
[ ; O] (13)

B. MMSE Subspace Whitening Transformation

We now seek a subspace whitening transformd#tnsuch that the
vectorb = W ,a is white on the range spagéof C,, and is as close

0, so thatv*e = 0 w.p. 1 for any realization of
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2) W, = a.V(DYH)V* = a.(CY?)! is an optimal subspace
whitening transformation where
a) if c is specified ther, = ¢,
b) if ¢ is chosen to minimize the MSE then

1 n
aq:;; @7

= W.P) wherePy is an orthogonal projection
ontoV andW , is any optimal subspace whitening transforma-
tion; then

a) WV is unique, and is given by
WY = a,V(D'/*)'V" = a,(C)/?),

b) W.a = WYa wp.1,
c) b = W.a is unique w.pl.

Part 3 of Theorem 2 states the intuitively reasonable fact, which also
follows from the proof in the Appendix, th&¥ . is uniquely specified
onV but can be arbitrary oiv*. However, since the input to the
whitening transformation lies it¥ w.p. 1, the choice ofi#, on V*
does not affect the outpéit(w.p. 1).

IV. OPTIMAL WHITENING OF STATIONARY RANDOM PROCESSES

We now consider optimal whitening and subspace whitening of a
stationary random process.

A. MMSE Whitening

Let a[n] be a zero-mean stationary random process with positive
spectrumS, (w). Suppose we wish to white(rn], i.e., find a linear
time-invariant (LTI) whitening filter with frequency respon¥g(w),
such that the spectruisy,(w) of the filter outputh[n] = a[r] * w[n] is
Sp(w) = ¢* for somee > 0. Since [18]

Sy(w) = Sa(w)|W(w)|? (15)
W (w) is a whitening filter if and only if
W(w)|)* =S, Hw). (16)

as possible t@ in the MSE sense. Thus, we seek the transformation From all possible whitening filters satisfying (16) we seek the filter

that minimizes (2) subject to
C,=W.C.W: =2VIV* (14)

wherel is given by (13). A
The MMSE subspace whitening transformation, denotet#hy is

that minimizes
svse = E ((a[n] — b[n])?) 17)

so thath[n] is as close as possible épr] in an MSE sense.
The MMSE whitening filter is given by the following theorem.

derived in the Appendix in an analogous manner to the derivation ofTheorem 3 (MMSE Whitening Filter)Let a[n] denote a random
the MMSE whitening transformation of Section Il, and is summarizegyocess with positive spectrush, (w). Let 1 (w) be the frequency re-
in the following theorem. sponse of the optimal whitening filter with impulse respori$e] that

Theorem 2 (MMSE Subspace Whiteningeta € R™ be a random minimizes the MSE define_d by (17), between ti;e input] and the

vector with covariance matri€, = VDV* with rank(C,) = n < °utputb[n] = a[n] x w(n] with spectrums; (w) = ¢ for ¢ > 0. Then
m, whereD is a diagonal matrix with diagonal elemenis > 0,
1<k <nandd; =0,n+1 <k < m,andV is a unitary matrix.
Let ) denote the range space@f, spanned by the first columns of \where
V. LetW, be any subspace whitening transformation that minimizes 1)
the MSE defined by (2), between the inputand the outpud with
covarianceC, = ¢*Py = VIV*, wherel is given by (13) and
¢ > 0. Then s= L

1) W . is not unique;

2

W(w) = 08 (w) /?

if ¢ is specified thew = ¢;
2) if ¢ is chosen to minimize the MSE then

Sé/2(uJ) dw.

-7

:27r

3Throughout this section, when we say a random vector lies in a subspace wilote that the MMSE whitening filter is the unique zero-phase filter
mean w.p.l. that satisfies (16).
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Proof: Expanding (17) we have

o

Sap(w)dw (18)

T

S AN B |
EmsE = 5 /_T Sa(w)dw + ¢

whereS,; (w) is the cross spectrum betweejm] andb[n] and is given
by [18]
Sap(w) = W (w)Sa(w). (19)

It, therefore, follows that minimizing (18) with respectifa] is equiv-
alent to maximizing

c= [ Supw)dw = /T FTW () ds (20)

where we used (16). Now

e= /” EW N w)dw < /7 AW W) dw

= /ﬂ S (W) dw (21)

with equality if and only if
W) = W @)l = LSV w) (22)

or, equivalently

W(w) = eS, 2 (w). (23)
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V. APPLICATION TOLS ESTIMATION

We now consider an application of MMSE whitening to the problem
of estimating the unknown deterministic parameterm the linear
model

y=Hz+n 27)

where H is a knownn x m matrix andn is a zero-mean random
vector with covarianc&,,. For simplicity of exposition, we assume
thatC,, = ¢°I,,. This application is developed in more detail in [12],
[13].

Many signal processing estimation problems can be represented by
the linear model (27), and consequently, this problem has been studied
extensively in the literature (see, e.g., [19], [18]). A common approach
to estimating the parameterss to restrict the estimator to be linear and
unbiased, and then seek the estimator of this form that minimizes the
variance [19]. The optimal estimator is the well-known LS estimator

#s = (H'H)'H"y (28)
which also minimizes the LS error defined by
£Ls = ||’.l/—:f/||2 = (y—?))*(y—fl) (29)

wherey = Hz.

The LS estimator seeks the estimate:dhat results in an estimated
data vecton that is as close as possible to the original data vegtor
However, in an estimation context, typically we are more interested in
minimizing the error betwees and the estimate af. In many cases,
the data vectoy is not very sensitive to changesan so that a large
error in estimatinge may translate into a small error in estimating the
data vectowy, in which casezrs may be a poor estimate af This

We conclude that it is specified, then the MMSE whitening filter is effect is especially predominant at low to moderate SNR, where the

given by

W(w) =Sy 3 (w). (24)
We may further wish to minimize the MSE with respectt®ubsti-

tuting b[r] = @[n] * a[r] into (18) wherew[n] is the inverse Fourier

transform ofi¥’ (w) and minimizing with respect tg the optimal value

of cis

E (a[n](a[n] x @w[n])) = QL SM2(wydw

w

oJ—m

(25)

LA*,:

and the MMSE whitening filter i81 (w) = &5, */*(w). 0

data vectow is typically affected more by the noise than by changes
in z; the exact SNR range will depend on the properties of the model
matrix H. To improve the performance of the LS estimator at low to
moderate SNR, we propose a modification of the LS estimate based
on the concept of MMSE whitening, which we refer to as the WTLS
estimator.

Sinceds = # + n wherei = (H*H) ' H*n, the covariance of
the noise componenmtin 21,5 is equal to the covariance of s, which
is given bys* (H* H)~*. Evidently, the estimation error resulting from
the LS estimator can have a large variance and a covariance structure
with a large dynamic range. These properties of the estimation error
tend to limit the performance of the LS estimator. Therefore, toimprove
the performance of the LS estimator, we propose whitening the noise

The MMSE whitening filter given by Theorem 3 is reminiscent Ofcomponentin the estimat@r.s on the space in which itis contained, so

the MMSE whitening transformation given by Theorem 1. The optim

at we control the dynamic range and spectral shape of the covariance

whitening transformation is proportional to the inverse square root_ 81‘c the estimation error. From Theorem 1, it follows that the optimal

the input covariance matrix, and is symmetric. Similarly, the Fouri
transform of the optlmal whitening flltc_er is propornonal to the iNVersgh o WTLS estimator, denoted by s,
square root of the input spectral density function, and has zero phase.

B. MMSE Subspace Whitening

%hitening transformation is proportional W = (H*H)'/? so that

has the form
Zwrrs = S(H H)*ars = p(H H)/*H"y (30)

for some constanty, where we introduce the notatio(h)”2 =

. . . " - A/2yF
When the correlation function afi»] is not positive definite so that (¢) 79T

S.(w) = 0 for somew, in analogy to the finite-dimensional case, we
propose whitening[r] on the subspace to which it is confined, whic
is equivalent to whitening[n] over the frequency intervals for which

Sa(w) # 0. Thus, the subspace whitening filter satisfies

W () = {

S; ' (w),  wsuchthatS,(w) #0

(26)
w such thatS, (w) = 0.

arbitrary,

The frequency response of the MMSE subspace whitening filter is

given by Theorem 3 at frequencies for whi¢h(w) # 0, and is
arbitrary otherwise.

The scaling3 is chosen to minimize the total variance of the data

terrory — ¢, where the data estimageis given by

§=Hiawris = SH(H H)/*H"y.
Using (31) we may express this covariance as
E(y-9)0w-19))
= E(y" (L, - pHEH)'"H)y')

(€1Y)

=Tt ((1,1 — GH(H*H)'*H" )2)

=o® (n+ PT(H H) - 20T:(H H)'))  (32)
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MSE

-10 -5 0 5 10 15 20 25 30 35
SNR [dB]

Fig. 1. MSE in estimating a set of AR parameters using the LS estimator and the WTLS estimator.

wherey’ = y — E(y), andg’ = ¢ — E(§). Minimizing (32) with Examples presented in [12], [4] indicate that in a variety of applications

respect tg?, the optimal value of is given by {wc can be quite large.
In Fig. 1, we illustrate the performance advantage in using the WTLS
Tr ((H*H)I/Z) estimator with one simulation from [12]. In this figure, we plot the
F=—™ 7/ (33) MSE in estimating a set of autoregressive (AR) parameters in an au-
Tr(H H) toregressive moving average (ARMA) model contaminated by white

) ) noise, using both the WTLS and the LS estimators from 20 noisy ob-
Analysis of the MSE of the WTLS estimator [12] demonstrates th@ls\rvations of the channel, averaged over 2000 noise realizations, as a
the traditional LS estlmator for all values of the unknown parametekggm the f,gure in th|s example, the WTLS estimator 5|gn|f|cant|y out-

Specifically, let¢ = |l[|*/(o?m) denote the SNR pe{ dimension.performs the LS estimator. Further simulations presented in [4], [12]
Thenwith{Ax, 1 < k < m} denoting the eigenvalues B H, where  strongly suggest that the WTLS estimator can significantly decrease
we assume thall has full rank, and denoting the MSE of the estimation error over the LS estimator for a wide range
of SNR values.
i /\1/2
= k=t APPENDIX
> Ak SUBSPACEMMSE WHITENING

Let@ = V*a andb = Vb, whereb is white onV so thatb has

the MSE of the WTLS estimator is less than or equal to the MSE of t§8variance’, = ¢~ *VIV*.The covariance df is thenV*C,V = D,

LS estimator fol’ < (we, where and the covariance dfis V*C,V = ¢*I. As in MMSE whitening,
instead of seeking a subspace whitening transformation that minimizes
the MSE betwegn andb, we may seek a transformati®¥, such that

the vectoh = W.a is as close as possible @ and such thak has

(1/m) i At —

Cwo = = (34) . . : . .
a2 - 1’ covariance:"I. From (3) it then follows thatV, = VW. V", where
W is the optimal subspace whitening transformation that minimizes
and 9 the MSE betweer andb. .
7y = arg max ‘M\i/z - 1( . (35) Using the Cauchy—Schwarz inequality, it follows tH&, is such

thatby = cay.//dx for 1 < k < n. Since the covariance éfmust

Note that(wc is a worst case bound. In practice, the WTLS estimatdre equal tor’T, W, must also be chosen so thatr(bz) = 0 for
will outperform the LS estimator for higher values of SNR thign:. n+1 < k < m. Now, the covariance a@f is D, where the:th diagonal
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element ofD is equal td) for n + 1 < k < m. Consequentlyj, = 0 Deviation Bounds for Wavelet Shrinkage
w.p.1forn +1 < k < m. Therefore, we conclude th# . is block

diagonal. The upper left x n block is a diagonal matrix, with diagonal

Dawei Hong and Jean-Camille Birget

elements:/\/d,; the lower right block is arbitrary, sinde = @, = 0

regardless of the choice of this block. We, therefore, ch¥Bséobea  Abstract—We analyze the wavelet shrinkage algorithm of Donoho and
diagonal matrix with the first. diagonal elements equal¢g+/d; and Johnstone in order to assess the quality of the reconstruction of a signal

the remaining diagonal elements equabtarhus,W. = c(D'/?)t,

and

obtained from noisy samples. We give a deviation estimate for the maximum

squared error (and, consequently, for the average squared error), under

the assumption that the signal comes from a Hdlder class, and the noise

samples are independent, of zero mean, and bounded. Our main technique

WS — cV(Dl/z)‘LV* — U(C}L/z)%- (36) is Talagrand’s isoperimetric theorem. Our result shows a better behavior
of the wavelet shrinkage.

If we choose to minimize the MSE with respectitas well, thenit ~ Index Terms—beviation bound, maximum squared error, wavelet

is straightforward to show that the optimal value-a$ given by
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