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Abstract. The probability of observing xt at
time t, given past observations x1...xt−1 can be
computed with Bayes’ rule if the true generat-
ing distribution µ of the sequences x1x2x3... is
known. If µ is unknown, but known to belong to
a class M one can base ones prediction on the
Bayes mix ξ defined as a weighted sum of dis-
tributions ν ∈M. Various convergence results
of the mixture posterior ξt to the true poste-
rior µt are presented. In particular a new (ele-
mentary) derivation of the convergence ξt/µt→1
is provided, which additionally gives the rate of
convergence. A general sequence predictor is al-
lowed to choose an action yt based on x1...xt−1

and receives loss ℓxtyt
if xt is the next symbol

of the sequence. No assumptions are made on
the structure of ℓ (apart from being bounded)
and M. The Bayes-optimal prediction scheme
Λξ based on mixture ξ and the Bayes-optimal in-
formed prediction scheme Λµ are defined and the
total loss Lξ of Λξ is bounded in terms of the total
loss Lµ of Λµ. It is shown that Lξ is bounded for
bounded Lµ and Lξ/Lµ→1 for Lµ→∞. Conver-
gence of the instantaneous losses are also proven.

Keywords. Bayesian sequence prediction; gen-
eral loss function and bounds; convergence; mix-
ture distributions

1 Introduction

Setup. We consider inductive inference problems in the
following form: Given a string x1x2...xt−1, we want to pre-
dict its continuation xt. We assume that the strings which
have to be continued are drawn from a probability distri-
bution µ. The maximal prior information a prediction
algorithm can possess is the exact knowledge of µ, but in
many cases the true generating distribution is not known.
In order to overcome this problem a mixture distribution ξ
is defined as a wν weighted sum over distributions ν∈M,
where M is any discrete (hypothesis) set including µ. We

∗This work was supported by SNF grant 2000-61847.00 to Jürgen
Schmidhuber.

assume that M is known and contains the true distribu-
tion, i.e. µ∈M. Since the posterior ξt can be shown to
converge rapidly to the true posterior µt, making decisions
based on ξ is often nearly as good as the infeasible optimal
decision based on the unknown µ [MF98]. In this work we
compare the expected loss of predictors based on mixture
ξ to the expected loss of informed predictors based on µ.

Contents. Section 2 introduces concepts and nota-
tion needed later, including strings, probability distri-
butions, mixture distributions, expectations, and vari-
ous types of convergence and distance measures. Sec-
tion 3 summarizes various convergence results of the mix-
ture distribution ξ to the true distribution µ. We pro-
vide a new (elementary) derivation of the posterior con-
vergence in ratio, which is not based on Martingales,
but on the Hellinger distance, and compare it to related
known results [Doo53, LV97, Vov87, VL00a]. Section
4 introduces the decision theoretic setup, where an ac-
tion/prediction yt results in a loss ℓxtyt

if xt is the next
symbol of the sequence. Improving upon previous results
in [MF98, Hut01a, Hut01b], the expected total (or cumula-
tive) loss Lξ made by the Bayes-optimal prediction scheme
based on mixture ξ minus the expected total loss Lµ of the
optimal informed prediction scheme based on µ is bounded
by O(

√

Lµ). Some popular loss functions, including the
absolute, square, logarithmic, Hellinger, and error loss are
discussed. A Proof of the loss bound is given in Section 5.
Convergence of the instantaneous losses are briefly stud-
ied in Section 6. Section 7 recapitulates the assumptions
made in this work and possible relaxations, mentions some
optimality properties of ξ proven in [Hut02a], and provides
an outlook to future work.

2 Preliminaries

Strings and Probability Distributions. We denote
strings over a finite alphabet X by x1x2...xn with xt ∈
X . We abbreviate xn:m := xnxn+1...xm−1xm and x<n :=
x1...xn−1. We use Greek letters for probability distribu-
tions/measures, especially ρ for arbitrary ones, µ∈M for
the true (generating) one, ν∈M for arbitrary ones in M,
and ξ for the mixture (1). Let ρ(x1:t) be the probabil-
ity that an (infinite) sequence starts with x1...xt. The
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conditional ρ probability that a given string x1...xt−1 is
continued by xt is ρt := ρ(xt|x<t) = ρ(x1:t)/ρ(x<t). The
considered prediction schemes will be based on these pos-
teriors.

Mixture distributions. Let M :={µ1,µ2,...} be a finite
or countable set of candidate probability distributions on
strings. We define a weighted average on M

ξ(x1:n) :=
∑

ν∈M

wν ·ν(x1:n),
∑

ν∈M

wν = 1, wν > 0. (1)

ξ is called a Bayes-mixture. The weights wν may be inter-
preted as the prior belief in environment ν∈M. The most
interesting property the mixture distribution ξ is that it
multiplicatively dominates all distributions in M:

ξ(x1:n) ≥ wν ·ν(x1:n) for all ν ∈ M. (2)

In the following, we assume that M is known and con-
tains the true distribution, i.e. µ ∈ M. If M is cho-
sen sufficiently large, then µ ∈M is not a serious con-
straint. Generic classes, especially where M contains all
(semi)computable probability distributions are discussed
in [Sol78, LV97, Hut01a, Hut02a]. Generalizations to the
case where M does not contain µ are briefly discussed
in [Hut02a] and more intensively in a related context in
[Grü98].

Expectations and convergence measures. We use
E[..] to denote expectations w.r.t. the “true” distribution
µ and abbreviate Et[..] :=E[..|x<t]. If [..] depends on x1:t

only, i.e. is independent of xt+1:∞, we have

E[..] :=
∑′

x1:t∈X t

µ(x1:t)[..] and Et[..] :=
∑′

xt∈X

µ(xt|x<t)[..],

where
∑′

sums over all xt or x1:t for which µ(x1:t) 6= 0.
Similarly we use P[..] to denote the µ probability of event
[..]. We need the following kinds of convergence of a ran-
dom sequence z1,z2,... to (a random variable) z∗:

with probability 1 (w.p.1) P[zt
t→∞−→ z∗] = 1

in probability (i.p.) ∀ε :P[|zt − z∗| ≥ ε]
t→∞−→ 0

in mean sum (i.m.s.)
∑∞

t=1 E[(zt − z∗)
2] < ∞

in the mean (i.m.) E[(zt − z∗)
2]

t→∞−→ 0

Convergence in one sense may imply convergence in an-
other sense. The following implications are valid, strict,
and complete:

i.m.s. ր
ց

w.p.1

i.m.
ց
ր i.p.

Convergence i.m.s. is very strong: it provides a rate of con-
vergence in the sense that the expected number of times
t in which zt deviates more than ε from z∗ is finite and
bounded by

∑∞
t=1E[(zt−z∗)

2]/ε2.

Distance Measures. We need several distance measures
between probability distributions yi ≥ 0, zi ≥ 0,

∑

iyi =
∑

izi=1, i={1,...,N}, namely the

absolute distance: a =
∑

i |yi − zi| (3)

square or Euclidian distance: s =
∑

i(yi − zi)
2

Hellinger distance: h =
∑

i(
√
yi −

√
zi)

2

relative entropy or KL divergence: d =
∑

i yi ln
yi

zi
absolute divergence: b =

∑

i yi| ln yi

zi
|

All bounds we prove in this work heavily rely on the fol-
lowing inequalities:

s ≤ d, h ≤ d, b − d ≤ a ≤
√
2d. (4)

See [Hut01a], [CT91, Lem.12.6.1], and [BM98, p178] for
proofs of s≤d, a≤

√
2d, and h≤d, respectively. b−d≤a

is elementary and follows from −lnx≤ 1
x−1. Inequality

s≤ d is a generalization of the binary N =2 case used in
[Sol78, Hut01c, LV97]. If we insert

X = {1, ..., N}, N = |X |, i = xt, (5)

yi = µt := µ(xt|x<t), zi = ξt := ξ(xt|x<t) (6)

into (3) we get various instantaneous distances (at time t)
between µ and ξ. If we take the expectation (over x<t)
and sum over t= 1..n, (

∑n
t=1E[...]) we get various total

distances between µ and ξ:

at(x<t) :=
∑

xt
|µt − ξt|, An :=

∑n
t=1 E[at]

st(x<t) :=
∑

xt
(µt − ξt)

2, Sn :=
∑n

t=1 E[st]

ht(x<t) :=
∑

xt
(
√
µt−

√
ξt)

2, Hn :=
∑n

t=1 E[ht]

dt(x<t) :=
∑

xt
µt ln

µt

ξt
, Dn :=

∑n
t=1 E[dt]

bt(x<t) :=
∑

xt
µt| ln µt

ξt
|, Bn :=

∑n
t=1 E[bt]

(7)

3 Convergence of ξ to µ

For Dn the following representation and bound is well
known and crucial [Sol78, LV97, Hut01a]

Dn ≡
n
∑

t=1

E[dt(x<t)] = E[ln
µ(x1:n)

ξ(x1:n)
] ≤ lnw−1

µ < ∞

(8)
The inequality follows from (2). The following theo-
rem summarizes various bounds and convergence results
needed later. The major new part is Theorem 1(iv) which
allows for an elementary proof of ξt/µt→1 w.p.1 based on
the Hellinger distance.

Theorem 1 (Convergence of ξ to µ) Let there be se-
quences x1x2... over a finite alphabet X drawn with prob-
ability µ(x1:n) for the first n symbols. The mixture con-
ditional probability ξ′t := ξ(x′

t|x<t) of the next symbol x′
t
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given x<t is related to the true conditional probability
µ′
t :=ξ(x′

t|x<t) in the following way:

i)
∑n

t=1 E[
∑

x′

t
(µ′

t − ξ′t)
2] ≡ Sn ≤ Dn ≤ lnw−1

µ < ∞

ii)
∑

x′

t
(µ′

t − ξ′t)
2 ≡ st(x<t) ≤ dt(x<t)

t→∞−→ 0 w.p.1

iii) ξ′t − µ′
t → 0 for t → ∞ w.p.1 (and i.m.s) for any x′

t

iv)
∑n

t=1 E[(
√

ξt
µt

− 1)2] ≤ Hn ≤ Dn ≤ lnw−1
µ < ∞

v)
√

ξt
µt

→ 1 i.m.s and ξt
µt

→ 1 w.p.1 for t → ∞
vi) bt−dt ≤ at ≤

√
2dt, Bn−Dn ≤ An ≤

√
2nDn,

where µt, ξt are defined in (6), dt, Dn are the relative
entropies (7), and wµ is the weight (1) of µ in ξ.

Proof. The inequality in (ii) follows from the definitions
(7) and from the entropy inequality s≤ d (4). From the
definition and finiteness of D∞ (8) and from dt(x<t)≥ 0

one sees that
√

dt(x<t)
i.m.s.−→ 0 for t→∞, which implies

dt(x<t)
w.p.1−→ 0. The (first) inequality in (i) follows from

(ii) by taking the E expectation and the
∑n

t=1 sum. (iii)
follows from (i) by dropping

∑

x′

t
. (iv) and (v) are related

to (i) and (iii), but are incomparable convergence results.
(iv) is proven as follows:

Et[(
√

ξt
µt

− 1)2] =
∑

xt

′ µt(
√

ξt
µt

− 1)2 = (9)

=
∑

xt

′ (
√
ξt −

√
µt)

2 ≤ ht(x<t) ≤ dt(x<t).

The inequalities follow from (7) and h≤d (4). (iv) now fol-
lows by taking the E expectation and the

∑n
t=1 sum. (v)

follows from (iv) by the definition of convergence i.m.s.,
which implies convergence w.p.1. The first two inequal-
ities in (vi) immediately follow from inequalities (4) and
definitions (7). The third inequality of (vi) follows from
the first by linearity of E and

∑

. The last inequality
follows from

1
nAn ≡ 1

n

∑n
t=1 E[at] ≤ 1

n

∑n
t=1 E[

√
2dt] ≤ (10)

≤ 1
n

∑n
t=1

√

E[2dt] ≤
√

1
n

∑n
t=1 E[2dt] ≡

√

2
nDn

where we have used Jensen’s inequality for exchanging the
averages ( 1n

∑n
t=1 and E) with the concave function

√
.

✷

Since the conditional probabilities are the basis of the
prediction algorithms considered in the next section and
ξ′t converges rapidly to µ′

t, we expect a good prediction
performance if we use ξ as a guess of µ. Performance
measures are defined in the next section.

Without the use of the Hellinger distance, a somewhat
weaker statement than (v) can be derived from (vi):

E| ln µt

ξt
|=E[bt]≤E[dt]+E[

√
2dt]≤E[dt]+

√

2E[dt]
t→∞−→ 0,

since E[dt]→ 0. I.e.
√

|lnµt

ξt
| i.m.−→ 0, which implies ξt

µt

i.p.−→
1. The explicit appearance of n in the last expression of
(vi) prevents proving stronger convergence of ξt/µt w.p.1
from (vi). Similarly [Bar00, Th.2] shows (in our notation)

convergence of lnµ(x1:t)
ξ(x1:t)

in L1-norm, which implies ξt
µt

i.p.−→1,

but is also not strong enough to derive (v).
The elementary proof for (v) w.p.1 given here does not

rely on the semi-martingale convergence Theorem [Doo53,
pp. 324–325] as the proof of Gács in [LV97, Th.5.2.2]. Fur-
thermore, (iv) (and (i)) give a “rate” of convergence in the
sense that the number of times ξt can depart from µt by
more than ε in the sense of |

√

ξt/µt−1|>ε (or |ξ′t−µ′
t|>ε)

is bounded by ε−2lnw−1
µ . Note also the subtle difference

between (iii) and (v). If x1:∞ is a µ-random sequence,
and x′

1:∞ is any (possibly constant and not necessarily µ-
random) sequence then µ′

t−ξ′t converges to zero, but no
statement is possible for ξ′t/µ

′
t, since lim infµ′

t could be
zero. On the other hand, if we stay on the µ-random se-
quence (x′

1:∞ =x1:∞), (v) shows that ξt/µt→ 1 (whether
infµt tends to zero or not does not matter). Indeed, it
is easy to see that ξ(1|0<t)/µ(1|0<t) ∝ t → ∞ diverges
for M = {µ,ν}, µ(1|x<t) :=

1
2 t

−3 and ν(1|x<t) :=
1
2 t

−2,
although 01:∞ is µ-random [Hut02a].
An interesting open question is whether ξ converges to µ

(in difference (iii) or ratio (v)) individually for all Martin-
Löf (M.L.) random sequences. Convergence M.L. implies
convergence w.p.1, but the converse may fail on a set of
sequences with µ-measure zero. A convergence M.L. re-
sult would be particularly interesting for M being the set
of all enumerable semimeasures and ξ being Solomonoff’s
universal prior. Vovk’s interesting results [Vov87] are not
strong enough to settle this point, and the proof given in
[VL00a] is incomplete. See [Hut02a] for further discus-
sions.

4 Loss Bounds

Setup. A prediction is very often the basis for some deci-
sion. The decision results in an action, which itself leads
to some reward or loss. We assume that the action itself
does not influence the environment. Let ℓxtyt

∈ IR be the
received loss when acting yt∈Y, and xt∈X is the actual
outcome. In many cases the prediction of xt can be iden-
tified or is already the action yt. X ≡Y in these cases.
For convenience we name an action a prediction in the fol-
lowing, even if X 6=Y. The true probability of the next
symbol being xt, given x<t, is µ(xt|x<t). The expected
loss when predicting yt is Et[ℓxtyt

]. The goal is to mini-
mize the expected loss. More generally we define the Λρ

prediction scheme

y
Λρ

t := arg min
yt∈Y

∑

xt

ρ(xt|x<t)ℓxtyt
(11)
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which minimizes the ρ-expected loss.1 As the true distri-
bution is µ, the actual µ-expected loss when Λρ predicts
the tth symbol and the total µ-expected loss in the first n
predictions are

l
Λρ

t (x<t) := Et[ℓxty
Λρ
t

], LΛρ
n :=

n
∑

t=1

E[l
Λρ

t (x<t)]. (12)

Let Λ be any (causal) prediction scheme (deterministic or
probabilistic does not matter) with no constraint at all,
predicting any yΛt ∈Y with losses lΛt and LΛ

n similarly de-
fined as (12). If µ is known, Λµ is obviously the best pre-
diction scheme in the sense of achieving minimal expected
loss

LΛµ
n ≤ LΛ

n for any Λ. (13)

We prove the following loss bound for the Λξ predictor
based on mixture ξ:

Theorem 2 (Loss bound) Let there be sequences
x1x2... over a finite alphabet X drawn with probability
µ(x1:n) for the first n symbols. A system taking action
(or predicting) yt∈Y given x<t receives loss ℓxtyt

∈ [0,1] if
xt is the true tth symbol of the sequence. The Λρ-system
(11) acts (or predicts) as to minimize the ρ-expected loss.
Λξ is the prediction scheme based on the mixture ξ. Λµ

is the optimal informed prediction scheme. The total

µ-expected losses L
Λξ
n of Λξ and L

Λµ
n of Λµ as defined in

(12) are bounded in the following way

0≤L
Λξ
n −LΛµ

n ≤Dn+

√

4L
Λµ
n Dn +D2

n ≤ 2Dn+2

√

L
Λµ
n Dn

where the relative entropy Dn (8) is bounded by lnw−1
µ <

∞.

The implications of Theorem 2 can best be read off from
the following corollary.

Corollary 3 (Loss bound) Under the same conditions
as in Theorem 2 the following relations hold

i) L
Λξ
∞ is finite ⇐⇒ L

Λµ
∞ is finite,

ii) L
Λξ
∞ ≤ 2D∞ ≤ 2 lnw−1

µ for det. µ if ∀x∃yℓxy = 0,

iii) L
Λξ
n /L

Λµ
n = 1 +O((L

Λµ
n )−1/2) → 1 for L

Λµ
n → ∞,

iv) L
Λξ
n − L

Λµ
n = O(

√

L
Λµ
n ),

Let Λ be any prediction scheme.

v) L
Λµ
n ≤ LΛ

n ,

vi) LΛ
n ≥ L

Λξ
n − 2

√

L
Λξ
n Dn ≥ L

Λξ
n −O(

√

L
Λξ
n ),

vii) L
Λξ
n /LΛ

n ≤ 1 +O((LΛ
n)

−1/2).

1argminy(·) is defined as the y which minimizes the argument. A

tie is broken arbitrarily. If Y is finite, then y
Λρ

t always exists. For

infinite action space Y we assume that a minimizing y
Λρ

t ∈Y exists,
although even this assumption may be removed.

The Corollary is a trivial consequence of Theorem 2 and

(13). (vi) follows from Theorem 2 by replacing L
Λµ
n with

LΛ
n and solving the quadratic inequality w.r.t. LΛ

n . The

main message is that the total loss L
Λξ
∞ of the mixture Λξ

predictor is finite if the total loss L
Λµ
∞ of the informed Λµ

predictor is finite, and that L
Λξ
n /L

Λµ
n →1 if L

Λµ
∞ is not fi-

nite. (vi) shows that no (causal) predictor Λ whatsoever
achieves significantly less (expected) loss than Λξ. Worst
case bounds for aggregating strategies, especially the one
derived in [CB97], explicitly depend on the comparison
class. There are always predictors which perform signifi-
cantly better than the aggregating strategy. On the other
hand these algorithms have the remarkable property that
the bounds hold for any sequence, whereas our bounds
only hold in an expected sense and depend on the environ-
ment µ∈M. See [Hut01b] for a more detailed discussion
of the bounds in general and this duality in particular.

Loss Bound of Merhav & Feder. The first general loss
bound with no structural assumptions on µ and ℓ (except
boundedness) has been derived in a survey paper by Mer-
hav and Feder in [MF98, Sec.3.1.2]. (The special case
of the error-loss has earlier been considered in [BCH93]).

They showed that the regret L
Λξ
n −L

Λµ
n is bounded by

ℓmax

√
2nDn for ℓ∈ [0,ℓmax]. Assuming ℓmax=1 (general

ℓmax can be recovered by scaling) their bound reads (in
our notation)

L
Λξ
n − LΛµ

n ≤ An ≤
√

2nDn. (14)

In Section 6 we prove l
Λξ

t (x<t)− l
Λµ

t (x<t) ≤ at(x<t) ≤
√

2dt(x<t). Taking the the expectation E and the average
1
n

∑n
t=1 and using Theorem 1 shows (14).

Bound (14) and our bound (Theorem 2) are in general

incomparable. Since 2D∞ is finite and L
Λµ
n ≤ n, bound

(14) can be at best a factor
√
2 and an additive constant

better than our bound. On the other hand, for large n

and for L
Λµ
n < n

2 our bound is tighter. The latter condition
is satisfied if the best predictor Λµ suffers small instanta-
neous loss < 1

2 on average. Significant improvement occurs

if L
Λµ
n does not grow linearly with n, but is for instance

finite (see Corollary 3, especially (i) and (ii)).

Example loss functions. The case X≡Y with unit error
assignment ℓxy=1−δxy (δxy =1 for x= y and δxy =0 for
x 6=y) has already been discussed and proven in [Hut01a].

In this case L
Λρ
n ≡ E

Θρ
n is the total expected number of

prediction errors. For X = Y = {0,1}, Λρ is a thresh-

old strategy with y
Λρ

t =argminy∈{0,1}{ρ1ℓ1y+ρ0ℓ0y}=0/1

for ρ1
>
< γ, where γ := ℓ01−ℓ00

ℓ01−ℓ00+ℓ10−ℓ11
and ρi = ρ(i|x<t).

In the special error case ℓxy = 1−δxy, the bit with the
highest ρ probability is predicted (γ = 1

2 ). In the fol-
lowing we consider some standard loss functions for bi-
nary outcome X = {0,1} and continuous action y in the
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unit interval Y = [0,1]. The absolute loss is defined as

ℓxy = |x− y| ∈ [0,1]. The Λρ scheme predicts y
Λρ

t =
argminy∈[0,1]{ρ1(1−y)+ρ0y}= 0/1 for ρ0

>
< ρ1. Since all

predictions y lie in the subset {0,1}⊂ [0,1] and |x−y|=
1−δxy for y∈{0,1} this case coincides with the binary er-
ror case above. The same holds for the α-loss |x−y|α with

0<α≤ 1. The µ-expected loss is l
Λρ

t =µ(i|x<t) for the i
with ρi>

1
2 . For the quadratic loss ℓxy=(x−y)2∈ [0,1] the

action/prediction y
Λρ

t =argminy∈[0,1]{ρ1(1−y)2+ρ0y
2}=

ρ1 is proportional to the ρ-probability of xt = 1 and

l
Λρ

t =Et(1−ρ(xt|x<t))
2. For the α-loss |x−y|α with α>1

we get y
Λρ

t =(1+ α−1
√

ρ0/ρ1)−1. For arbitrary finite alpha-
bet X and vector-valued predictions y the quadratic loss
may be generalized to ℓxy = 1

2y
TAxy+bT

xy+cx. The
Hellinger loss can be written for binary outcome in the

form ℓxy = 1−
√

|1−x−y| ∈ [0,1] with y
Λρ

t = ρ21/(ρ
2
0+ρ21)

and l
Λρ

t = 1− (µ0ρ0+µ1ρ1)/
√

ρ20+ρ21. The logarithmic
loss ℓxy =−ln|1−x−y| ∈ [0,∞] is unbounded. But since

the corresponding action is y
Λρ

t = ρ1 the expected loss is

l
Λρ

t =−Etlnρ(xt|x<t). Hence l
Λξ

t − l
Λµ

t = dt and the total

loss excess L
Λξ
n −L

Λµ
n = Dn ≤ lnw−1

µ is finitely bounded
anyway and Theorem 2 is not needed.

5 Loss Bound Proof

Main steps. The first inequality in Theorem 2 has al-
ready been proven (13). For the second and last inequal-
ity, we start looking for constants A>0 and B>0, which
satisfy the linear inequality

L
Λξ
n ≤ (A+ 1)LΛµ

n + (B + 1)Dn. (15)

If we could show

l
Λξ

t (x<t) ≤ A′l
Λµ

t (x<t) +B′dt(x<t) (16)

with A′ :=A+1 and B′ :=B+1 for all t≤n and all x<t, (15)
would follow immediately by summation and the definition

of Ln andDn. With the abbreviations the m=y
Λµ

t and s=

y
Λξ

t and the abbreviations (5) and (6) the loss and entropy

can then be expressed by l
Λξ

t =
∑

iyiℓis, l
Λµ

t =
∑

iyiℓim and
dt=

∑

iyiln
yi

zi
. Inserting this into (16) we get

N
∑

i=1

yiℓis ≤ A′
N
∑

i=1

yiℓim +B′
N
∑

i=1

yi ln
yi
zi

(17)

By definition (11) of y
Λµ

t and y
Λξ

t we have

∑

i

yiℓim≤
∑

i

yiℓij and
∑

i

ziℓis≤
∑

i

ziℓij (18)

for all j. Actually, we need the first constraint only for
j= s and the second for j=m. In the final paragraph of

this section we reduce the problem to the binary N = 2
case, which we will consider in the following. We take
∑1

i=0 instead of
∑2

i=1 for convenience.

B′
1

∑

i=0

yi ln
yi
zi

+

1
∑

i=0

yi(A
′ℓim−ℓis)

?
≥ 0 (19)

The cases ℓim > ℓis∀i and ℓis > ℓim∀i contradict the
first/second inequality (18). Hence we can assume ℓ0m≥
ℓ0s and ℓ1m ≤ ℓ1s. The symmetric case ℓ0m ≤ ℓ0s and
ℓ1m≥ ℓ1s is proven analogously or can be reduced to the
first case by renumbering the indices (0↔ 1). Using the
abbreviations a:=ℓ0m−ℓ0s, b:=ℓ1s−ℓ1m, c:=y1ℓ1m+y0ℓ0s,
y=y1=1−y0 and z=z1=1−z0 we can write (19) as

f(y, z) := (20)

B′[y ln y
z + (1−y) ln 1−y

1−z ] +A′(1−y)a− yb+Ac
?
≥ 0

for zb≤ (1−z)a and 0≤a,b,c,y,z≤1. The constraint (18)
on y has been dropped since (20) will turn out to be true
for all y. Furthermore, we can assume that d:=A′(1−y)a−
yb≤0 since for d>0, f is trivially positive. Multiplying d
with a constant ≥ 1 will decrease f . Let us first consider
the case z ≤ 1

2 . We multiply the d term by 1/b≥ 1, i.e.
replace it with A′(1−y)ab −y. From the constraint on z
we known that a

b ≥ z
1−z . We can decrease f further by

replacing a
b by z

1−z and by dropping Ac. Hence, (20) is

proven for z≤ 1
2 if we can prove

f1(y, z) := B′[...] +A′(1−y) z
1−z − y

?
≥ 0 for z ≤ 1

2 . (21)

In the next paragraph of this section we prove that it holds
for B≥ 1

A+1. The case z≥ 1
2 is treated similarly. We scale

d with 1/a≥ 1, i.e. replace it with A′(1−y)−y b
a . From

the constraint on z we know that b
a ≤ 1−z

z . We decrease f

further by replacing b
a by 1−z

z and by dropping Ac. Hence
(20) is proven for z≥ 1

2 if we can prove

f2(y, z) := B′[...] +A′(1−y)− y 1−z
z

?
≥ 0 for z ≥ 1

2 . (22)

In the second next paragraph of this section we prove that
it holds for B ≥ 1

A +1. So in summary we proved that
(15) holds for B ≥ 1

A +1. Inserting B = 1
A+1 into (15)

and minimizing the r.h.s. w.r.t. A leads to the last bound

of Theorem 2 with A=

√

Dn/L
Λµ
n . Actually inequalities

(21) and (22) also hold for B≥ 1
4A+ 1

A , which, by the same
minimization argument, proves the slightly tighter second
bound in Theorem 2. Unfortunately, the current proof is
very long and complex, and involves some numerical or
graphical analysis for determining intersection properties
of some higher order polynomials. This or a hopefully
simplified proof will be postponed. The cautious reader
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may check the inequalities (21) and (22) numerically for
B= 1

4A+ 1
A . ✷

Binary loss inequality for z≤ 1
2 (21). We now prove

f1(y,z)≥0 for z≤ 1
2 and suitable A′≡A+1 and B′≡B+1.

We do this by showing that f1≥ 0 at all extremal values
and “at” boundaries. f1 →+∞ for z → 0, if we choose
B′>0. For the boundary z= 1

2 we lower bound the relative
entropy by the sum over squares s≤d (4)

f1(y,
1
2 )≥ 2B′(y− 1

2 )
2+A′(1−y)−y≥ 0 for B≥ 1

4A+ 1
A

as can be shown by minimizing the r.h.s. w.r.t. y. Further-
more forA≥4 and B≥1 we have f1(y,

1
2 )≥2(1−y)(3−2y)≥

0. Hence f1(y,
1
2 )≥0 for B≥ 1

A+1, since for A≥4 it implies
B≥ 1 and for A≤ 4 it implies B≥ 1

4A+ 1
A . The extremal

condition ∂f/∂z=0 (keeping y fixed) leads to

y = y∗ := z · B
′(1−z) +A′

B′(1−z) +A′z
.

Inserting y∗ into the definition of f1 and, again, replacing
the relative entropy by the sum over squares (ylny

z +(1−
y)ln 1−y

1−z ≥2(y−z)2), which is a special case of s≤d (4), we
get

f1(y
∗,z)≥ 2B′(y∗−z)2+A′(1−y∗) z

1−z −y∗= z(1−z)·g1(z)
[B′(1−z)+A′z]2 ,

g1(z) := 2B′A′2z(1−z)+[(A′−1)B′(1−z)−A′](B′+A′ z
1−z ).

We have reduced the problem to showing g1 ≥ 0. If the
bracket [...] is positive, then g1 is positive. If the bracket is
negative, we can decrease g1 by increasing z

1−z ≤1 in (B′+
A′ z

1−z ) to 1. The resulting expression is now quadratic in

z with minima at the boundary values z=0 and z= 1
2 . It

is therefore sufficient to check

g1(0) ≥ (AB − 1)(A+B + 2) ≥ 0 and

g1(
1
2 ) ≥ 1

2 (AB − 1)(2A+B + 3) ≥ 0

which is true for B≥ 1
A . In summary we have proved (21)

for B≥ 1
A+1 and A>0. ✷

Binary loss inequality for z≥ 1
2 (22). We now prove

we show f2(y,z)≥0 for z≥ 1
2 and suitable A′≡A+1>1 and

B′≡B+1>2 similarly as in the last paragraph by proving
that f2 ≥ 0 at all extremal values and “at” boundaries.
f2→+∞ for z→1. The boundary z= 1

2 has already been
checked in in the last paragraph. The extremal condition
∂f/∂z=0 (keeping y fixed) leads to

y = y∗ := z · B′z

(B′ + 1)z − 1
.

Inserting y∗ into the definition of f2 and replacing the
relative entropy by the sum over squares s≤d (4), we get

f2(y
∗,z)≥ 2B′(y∗−z)2+A′(1−y∗)−y∗ 1−z

z = z(1−z)·g2(z)
[(B′+1)z−1]2 ,

g2(z) := [(A′−1)B′z−A′+2z(1−z)](B′+1−1
z )+2(1−z)2.

We have reduced the problem to showing g2 ≥ 0. Since
(B′+1− 1

z )≥ 0 it is sufficient to show that the bracket is
positive. We solve [...]≥0 w.r.t. B and get

B ≥ 1− 2z(1− z)

z
· 1
A

+
1− z

z
.

For B≥ 1
A+1 this is satisfied for all 1

2 ≤z≤1. In summary
we have proved (22) for B≥ 1

A+1 and A>0. ✷

General loss inequality (17). We reduce

f(y,z) :=B′
N
∑

i=1

yi ln
yi
zi

+A′
N
∑

i=1

yiℓim−
N
∑

i=1

yiℓis ≥ 0 (23)

for
∑N

i=1 zidi ≥ 0, di := ℓim − ℓis (24)

to the binaryN=2 case. We do this by keeping y fixed and
showing that f as a function of z is positive at all extrema
in the interior of the simplex ∆:={z:∑izi=1,zi≥0} of the
domain of z and “at” all boundaries. First, the boundaries
zi→0 are safe as f →∞ for B′> 0. Variation of f w.r.t.
to z leads to a minimum at z=y. If

∑

izidi≥0, we have

f(y,y)=
∑

i

yi(A
′ℓim−ℓis)≥

∑

i

yi(ℓim−ℓis) =
∑

i

zidi ≥ 0.

In the first inequality we used A′ > 1. If
∑

izidi < 0, z=
y is outside the valid domain due to the constraint (24)
and the valid minima are attained at the boundary ∆∩P ,
P := {z :∑izidi=0}. We implement the constraints with
the help of Lagrange multipliers and extremize

L(y, z) := f(y, z) +B′λ
∑

zi +B′µ
∑

zidi.

∂L/∂zi=0 leads to yi = y∗i := zi(λ+µdi). Summing this
equation over i we obtain λ=1. µ is a function of y for
which a formal expression might be given. If we eliminate
yi in favor of zi, we get

f(y∗, z) =
∑

i cizi with

ci := (1 + µdi)(B
′ ln(1 + µdi) +A′ℓim − ℓis).

In principle µ is a function of y but we can treat µ directly
as an independent variable, since y has been eliminated.
The next step is to determine the extrema of the func-

tion f =
∑

cizi for z∈∆∩P . For clearness we state the
line of reasoning for N =3. In this case ∆ is a triangle.
As f is linear in z it assumes its extrema at the vertices of
the triangle, where all zi=0 except one. But we have to
take into account a further constraint z∈P . The plane P
intersects triangle ∆ in a finite line (for ∆∩P={} the only
boundaries are zi → 0 which have already been treated).
Again, as f is linear, it assumes its extrema at the ends of
the line, i.e. at edges of the triangle ∆ on which all but
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two zi are zero. With a similar line of arguments for N>3
we conclude that a necessary condition for a minimum of
f at the boundary is that at most two zi are non-zero.
But this implies that all but two yi are zero. If we had
eliminated z in favor of y, we could not have made the
analogous conclusion because yi =0 does not necessarily
imply zi=0. We have effectively reduced the problem of
showing f(y∗,z)≥ 0 to the case N =2. We can go back
one step further and prove (23) for N =2, which implies
f(y∗,z)≥0 for N=2. A proof of (23) for N=2 implies, by
the arguments given above, that it holds for all N . This
is what we set out to show here. ✷

The N =2 case has been proven in the previous para-
graphs. This completes the proof of Theorem 2. ✷

6 Instantaneous Losses

Since L
Λξ
n −L

Λµ
n is not finitely bounded by Theorem 2 it

cannot be used directly to conclude analogously l
Λξ

t −l
Λµ

t →
0. It would follow from ξt→µt by continuity if l

Λξ

t and l
Λµ

t

were continuous functions of ξt and µt. l
Λµ

t is a continuous

piecewise linear concave function, but l
Λξ

t is an, in general,
discontinuous function of ξt (and µt). Fortunately it is
continuous at the one necessary point ξt=µt. This allows

to bound l
Λξ

t −l
Λµ

t in terms of ξt−µt.

Theorem 4 (Instantaneous Loss Bound) Under the
same conditions as in Theorem 2, for discrete M the fol-

lowing relations hold for the instantaneous losses l
Λµ

t (x<t)

and l
Λξ

t (x<t) at time t of the informed and mixture pre-
diction schemes Λµ and Λξ:

i)
∑n

t=1 E[(l
Λξ

t − l
Λµ

t )2] ≤ 2Dn ≤ 2 lnw−1
µ < ∞

ii) 0 ≤ l
Λξ

t − l
Λµ

t ≤ ∑

xt
|ξt − µt| ≤

√
2dt

t→∞−→
w.p.1

0.

iii) 0 ≤ l
Λξ

t − l
Λµ

t ≤ 2dt + 2

√

l
Λµ

t dt
t→∞−→
w.p.1

0.

Proof. (ii) follows from

l
Λξ

t (x<t)− l
Λµ

t (x<t) ≡
∑

i yiℓis −
∑

i yiℓim ≤
≤ ∑

i(yi − zi)(ℓis − ℓim) ≤ ∑

i |yi − zi|·|ℓis − ℓim| ≤
≤

∑

i |yi − zi| ≤
√

2
∑

i yi ln
yi

zi
≡

√

2dt(x<t)

To arrive at the first inequality we added
∑

izi(ℓim−ℓis)
which is positive due to (18). |ℓis−ℓim|≤1 since ℓ∈ [0,1].
The last inequality follows from a≤

√
2d (4). (i) follows by

inserting (ii) and using (8). (iii) follows from the proof

of Theorem 2 by inserting B = 1
A +1=

√

l
Λµ

t /dt+1 into

(16). Convergence to zero holds for µ random sequences,

i.e. w.p.1, since l
Λµ

t ≤ 1 is bounded. The losses l
Λρ

t (x<t)
itself need not to converge. ✷

Note, that the inequalities in (ii) and (iii) hold for
all individual sequences. The sum/average is only taken
over the current outcome xt, but the history x<t is fixed.
Bound (ii) and (iii) are in general incomparable, but for

large t and for l
Λµ

t < 1
2 (especially if l

Λµ

t → 0) bound (iii)
is tighter than bound (ii).

7 Conclusions

Generalization. The only assumptions we made in this
work were that µ∈M, the loss ℓ is bounded to [0,1], and
that the decision yt does not influence the environment,
i.e. µ is independent yt. No other structural assumptions
on M and ℓ have been made. The case µ 6∈M is briefly
discussed in [Hut02a] and more intensively in [Grü98] in a
related context. Simple scaling allows loss functions in ar-
bitrary bounded interval [Hut01b]. Asymptotic loss/value
bounds for an acting agent influencing the environment
can be found in [Hut02b].

Optimality properties. In [Hut02a] we show that there
are M and µ∈M and weights wν such that the derived
loss bounds are tight. This shows that the loss bounds
cannot be improved in general, i.e. without making ex-
tra assumptions on ℓ, M, or wν . We also show Pareto-
optimality of ξ in the sense that there is no other predictor
which performs better or equal in all environments ν∈M
and strictly better in at least one. Optimal predictors (in
a decision theoretic sense) can always be based on a mix-
ture distribution ξ. This still leaves open how to choose
the weights. We give an Occam’s razor argument that
the choice wν ∼ 2−K(ν), where K(ν) is the length of the
shortest program describing ν, is optimal.

Outlook. The presented Theorems and proofs are in-
dependent of the size of X and hence should generalize
to countably infinite and continuous alphabets under (mi-
nor) technical conditions. An infinite prediction space Y
was no problem at all as long as we assumed the exis-

tence of y
Λρ

t ∈Y (11), but even this is not essential. The
Λρ schemes and theorems may be generalized to delayed
sequence prediction, where the true symbol xt is given
only in cycle t+d. Another direction is to investigate the
learning aspect of mixture prediction. Many prediction
schemes explicitly learn and exploit a model of the envi-
ronment. Learning and exploitation are melted together
in the framework of universal Bayesian prediction. A sep-
aration of these two aspects in the spirit of hypothesis
learning with MDL [VL00b] could lead to new insights. A
unified picture of the loss bounds obtained here and the
loss bounds for predictors based on expert advice (PEA)
could also be fruitful. Also, bounds which say that the ac-
tual (not expected) loss suffered by Λξ divided by the loss
suffered by Λµ is with high probability close to 1 for suffi-
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ciently large n, would be interesting. Maximum-likelihood
predictors may also be studied. See [Hut02a] for fur-
ther references and discussions on the relation Bayes and
PEA approaches and results, classification tasks, games of
chances, infinite alphabet, continuous classesM, universal
mixtures, and others.

Summary. We compared mixture predictions based on
Bayes-mixes ξ to the infeasible informed predictor based
on the unknown true generating distribution µ. Conver-
gence results of the mixture posterior ξt to the true poste-
rior µt have been derived. A new (elementary) derivation
of the convergence in ratio has been presented, including
a rate of convergence. The main focus was on a decision-
theoretic setting, where each prediction yt ∈X (or more
generally action yt ∈Y) results in a loss ℓxtyt

if xt is the
true next symbol of the sequence. We have shown that
the Λξ predictor suffers only slightly more loss than the
Λµ predictor, improving on various previous results.
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