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Abstract—In this paper, we propose a new linear multiuser re- be known or may be changing over time. On the other hand,
ceiver for synchronous code-division multiple-access (CDMA) sys- the MF and the decorrelator receivers are linear receivers that

tems, referred to as the orthogonal multiuser (OMU) receiver. Un- onlv require knowledge of the signature vectors. The MF opti-
like the linear minimum mean-squared error (MMSE) receiver, yreq 9 9 § P

the OMU receiver depends only on the signature vectors and does mally compensates for the white noise, *?U't does.not exploit the
not require knowledge of the received amplitudes or the channel Structure of the MAI; the decorrelator optimally rejects the MAI
signal-to-noise ratio (SNR). Several equivalent representations of for linearly independent signature vectors, but does not consider
the receiver are developed with different implications in terms of  the white noise. A difficulty often encountered when using the

implementation. In the first, the receiver consists of a decorrelator decorrelator is that the noise component in the receiver output
demodulator followed by an optimal whitening transformation on

a space formed by the signatures. In the second, the receiver con-¢an have a I_arge variance and a covariance structure with a very
sists of a bank of correlators with correlating vectors that are pro- high dynamic range.
jections of a set of orthogonal vectors, and are closest in a least Recently, a new linear multiuser receiver referred to as the
squares sense to the decorrelator vectors and also closest in a leasprthogonal multiuser (OMU) receiver was proposed as a com-
squares sense to the signature vectors. In the third, the receiver .o mige hetween the MF and the decorrelator [2], [3]. Like the
consists of a single-user matched filter (MF) followed by an optimal - . -
whitening transformation on a space formed by the signatures. MF and the decorrelator, th'_s receiver reqwreg knowledge of th_e
We derive exact and approximate expressions for the probability Signature vectors only and is, therefore, designed to operate in
of bit error, as well as the asymptotic signal-to-interferencel-noise  environments in which the channel parameters are unknown or
ratio (SINR) in the large system limit. The analysis suggests that time varying. The OMU receiver was developed in [2] under

over a wide range of channel parameters the OMU receiver can h mption of linearlv in ndent sianature v rs. In thi
outperform both the decorrelator and the single-user MF and per- the assumption of linearly independent signature vectors. In this

form similarly to the linear MMSE receiver, despite not knowing paper, We_prOV|de a much more thorough deve!opment of the
the channel parameters. OMU receiver and extend the results to include linearly depen-

Index Terms—Code-division multiple access (CDMA), least ?ent&gnatl:rti V(EC():S:LS' we .also_lqﬁvelopltoqls to anal)t/zz ’.[hespet—
squares, multiuser detection, normalized tight frame, orthogonal- _ormance ofthe recelver: e ar_]a ysIS, pre_sen eaimn _eC
ization, subspace whitening, whitening. tion VI, strongly suggests that in certain cases this new receiver
outperforms the MF and the decorrelator and approaches the
performance of the linear MMSE receiver, even though the re-
ceived amplitudes of the users and the noise variance are un-

ULTIUSER receivers for detection of code-divisiorknown.

multiple-access (CDMA) signals try to mitigate the Three equivalent representations of the new receiver are de-
effect of multiple-access interference (MAI) and backgrounéeloped in Section Ill. In the first, developed in Section IlI-A,
noise. These include the optimal multiuser receiver, the lineiae receiver consists of a decorrelator demodulator followed by
minimum mean-squared error (MMSE) receiver, the decorran optimal MMSE whitening transformation [4], [3] on a space
lator, and the matched filter (MF) receiver [1]. formed by the signature vectors. This whitening transformation

Both the optimal receiver and the linear MMSE receiver rds designed to optimally decorrelate the outputs of the decorre-
quire knowledge of the channel parameters, namely, the nol@tr prior to detection, and in that way compensate for the noise
level and the received amplitudes of the users’ signals. Th&ghancement of the decorrelator receiver. Specifically, it mini-
are many scenarios, however, where these parameters maymiaes the mean square error (MSE) between the vector output of

the decorrelator and the output of the whitening transformation,
so that distortion to the output vector is minimized under the

Manuscript received February 1, 2002; revised March 26, 2003. The workwfhitening constraint. In the second, developed in Section I11-B,

Y. C. Eldar was supported by the Taub Foundation. The work of A. M. Chapye demodulator consists of a bank of correlators with corre-
was supported in part by a Natural Sciences and Engineering Research COlfglﬂlng vectors that are projections of a set of orthogonal vec-
of Canada Fellowship.

Y. C. Eldar was with the Research Laboratory of Electronics, Massachi®rs, and are closest in a least squares sense to the decorrelator
setts Institute of Technology, Cambridge, MA 02139 USA. She is now with t’%ectors and also closest in a least squares sense to the signa-
Technion-Israel Institute of Technology, Haifa 32000, Israel (e-mail: yonina . . .
ee.technion.ac.i). re vectors. In the third, developed in Section IlI-C, the re-

A. M. Chan is with the Research Laboratory of Electronics, Massachuse@giver consists of an MF demodulator followed by an optimal
Inititztf of Technology, Cambridge, MA 02139 USA (e-mail: chanal@alunpy\SE whitening transformation on a space formed by the sig-
mlé?)mr)r.lunicated by D. N. C. Tse, Associate Editor for Communications. Nature vectors, which minimizes the MSE between the vector

Digital Object Identifier 10.1109/TIT.2003.815761 output of the MF and the output of the whitening transformation.

. INTRODUCTION

0018-9448/03$17.00 © 2003 IEEE



ELDAR AND CHAN: AN OPTIMAL WHITENING APPROACH TO LINEAR MULTIUSER DETECTION 2157

These three representations are mathematically equivalent, bu 1

they provide further insight into the OMU receiver and may have & j: —h
different implications in terms of implementation. The proper-
ties of the OMU receiver as well as efficient methods for its @ :'j I
implementation are summarized in Section IV.

The whitening approach proposed in this paper is different ¥ — ]
from previous whitening approaches to multiuser detection
[5]-[8]. In the decorrelating decision-feedback detector of [5], -
the components of the output vector of the feedforward filter am :F I
are indeed whitened, but not according to the criterion used by
the OMU demodulator. Rather, the whitening transformatiolp _ _ _ _
in [5] is chosen in anticipation of a nonlinear feedback 100 ig. 1. General linear receiver comprised of a bank of correlators with

) == : ! Faorrelating vectorg,,, followed by a bank of detectors.
A noise-whitening approach is also used in [6], where the

whitening has a different context. Unlike the decorrelating We denote vectors i (M arbitrary) by boldface lower-

decision-feedback detector and the OMU detector, where the .
cgse letters, e.ga, where themth component ot is denoted

whitening is performed across users in the same symbol perig 4. Matrices inCY¥ <M are denoted by boldface uppercase

the detector in [6] performs whitening of the power SpeCtruletters, e.g.8. The range space and null space of the marix

of the received chip waveform followed by MF detection of the .
desired user. Though this method results in poorer performa are denoted bR (S) and\'(§), respectivelyl), denotes the

than typical multiuser detectors, it can be applied to a broa P M identity matrix,(-)" denotes the Hermitian conjugate of

. . . e corresponding matrik;)" denotes th&loore—Penrose pseu-
set of circumstances, e.g., interferers are not required to be P an &) b

. . oinversg15], and(-) denotes an optimal vector or matrix. The
locked and despreaded, and the spreading codes of mterfereﬁh clement and thesth column of a matrix are denoted b
are not required to be known. The approaches in [7], [8] & y

similar in concept to the approach in [6]. f mk and[-],, respectivelyP,, denotes the orthogonal projec-

i h )
In Section V, we show that the OMU demodulator maxt—Ion operator onto the subspaldeandz/™ denotes the orthog

imizes both the total signal-to-interference ratio (SIR) argtal complement dif. The sign ofa is denoted bygn(a), and
: . : ; S equal tol for ¢ > 0 and—1 for a < 0. A prime attached to
the total signal-to-noise ratio (SNR) at the output subject 10 . . .
L . . a random variable or vector denotes the variable or vector with
the whitening constraint when the signature vectors have_ a . ; .
. . : . the conditional mean given the transmitted data subtracted, e.g.,
certain symmetry property called geometric uniformity [9],, ) .
. . 4’ = a — E(a|b), whereb is the vector of transmitted data.
[10] which holds, for example, for pseudonoise (PN) sequences . : .
. ) : X Consider anM-user white Gaussian synchronous CDMA
corresponding to maximal-length shift-register sequences [1

[11]. The OMU demodulator also approximately Maximized stem where each user transmits information by modulating a

both the total output SIR and the total output SNR for nearﬁgnatur.e sequence. The discrete-time model for the received
: . : o |gnalr is given by
orthogonal signature vectors. This provides some additiona
justification for this receiver. r=SAb+n (1)
In Section VI, we evaluate the performance of the OMU
receiver. We first derive exact and approximate expressiopfiereS = [s|ss|---|sa] is the N x M matrix of signa-
for the probability of error. We then analyze the asymptotigires withs,, € CV being the signature vector of theth user,

T2

performance of the receiver in the large system limit wheg — diag(A1, ..., Ayr) is the matrix of received amplitudes
random Gaussian signatures and accurate power control @ A,, > 0 being the amplitude of the:th user's signal,
used. Specifically, we show that the output signal-to-interfes- = [by, b,, ..., by]* is the data vector witlb,, being the

ence+ noise ratio (SINR) of the output of the OMU receiveinth user’s transmitted symbol, amdis a noise vector whose

converges to a deterministic limit. Our method of proof caslements are independe®/ (0, o%). We assume that all data

be easily modified to characterize the performance of oth@sctors are equally likely with covariandg; . For concreteness,

multiuser detectors in the large system limit as well [12}ve also assume that, € {1, —1}.

Using these results, we compare the asymptotic performanc@ased on the observed signalwe design a linear receiver

of the OMU receiver to that of the decorrelator, MF, and lineag detect the information transmitted by each user, which can be

MMSE receivers [13], [14], [12]. The analysis demonstratémplemented using a bank of correlators, as depicted in Fig. 1.

that in the large system limit, the OMU receiver often performg/e restrict our attention to receivers that do not require knowl-

better than both the MF and the decorrelator receivers, whighige of the received amplitudes,, or the noise levetr?. The

motivates the use of the OMU receiver in scenarios in whigeceived signat is cross-correlated with/ vectorsg,, € CV

the channel parameters are unknown. so thatz,,, = ¢,r, where the vectorg,, are to be determined

and are functions of the signature vectors only. htta user’s

bitis then detected ds, = sgn(z,,). Since the noiseless vector

S Ab lies in the subspadé spanned by the signature vectsys,
Before proceeding to a detailed development of the OMU rere also assume that the correlating vectgydie in U.

ceiver, in this section we summarize some notation and providdf we choose the vectoig,, = s, in Fig. 1, then the resulting

a formulation and overview of our problem. demodulator is equivalent to the single-user MF demodulator

Il. PROBLEM FORMULATION
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Fig. 2. Alternative representation of Fig. 1 in terms of a linear transformation of the decorrelator outputs. An additional representatiorecaedieyatgplacing
the decorrelator vectons,, by the signature vectoss,,, and by changing the linear transformatiBraccordingly.

[1]. Choosing the vectorg,, = v.,,, Wwherew,, are the columns then the overall demodulator may be expressed as an MF fol-
of V.= (8T)* = §(8*8)%, leads to the decorrelator receiverlowed by a linear transformation of the MF outputs.
introduced by Lupas and Verdu [16]. When the signature vec-
tors are linearly independent, the decorrelator optimally rejects [II. THE OMU DEMODULATOR
the MAI. For linearly dependent signature vectors, which is t
case, for example, when the number of ugéris larger than the
signature lengthV, the decorrelator no longer rejects the MAI.  AS motivated in Section II, we would like to choose the trans-
In either case, the inverse operation of the decorrelator may &ymationB in Fig. 2 to improve the performance of the decor-
hance the white noise, resulting in degraded performance. fglator. It was noted in [13] and [16] that the decorrelator does
deed, the noise component at the output of the decorrelator oft@ generally lead to optimal decisions, since, in general, the
has a large variance and a covariance structure with a very hitflise components in the outputs = v}, r of the decorrelator
dynamic range. demodulator are correlated. Specifically, from the properties of
To develop the OMU receiver, we note that a bank of corréhe pseudoinverse [15], we have ti#itS = Pys)., where
lators as depicted in Fig. 1 with vectags, € U is equivalent Pars): is the orthogonal projection onto the orthogonal com-
to a demodulator with correlating vectors that spariollowed ~plement of the null spac&/(S) of S, so that the vector output
by an appropriate linear transformation on the demodulator ogtof the decorrelator is equal to
puts. In particular, the receiver of Fig. 1 is equivalent to the re- . .
ceiver of Fig. 2, where,,, are the decorrelator vectors and the a=V'r=_PysrAb+V'n )
transformationB is constructed from the decorrelator vector
v, and the correlating vectotg, of Fig. 1. Specifically, with
Q denoting the matrix of columng,,, the vector output of
Fig. 1is eq_ual ta@*r, and the _ve_ctor output of Fig. 2 is equal C, =o?V*'V = 02(878)18*5(5*8)!
to BV™r. Since the vectorg,, lieinl/, Q = P,Q = vVviQ, 9 cant 2 a* avi
where we used the fact that from the properties of the pseudoin- =0"P(s)+(875)" = 07(575)". ©)

T
verse VV' = R,. We may, therefore, express the output 0If—'rom (3) it follows that if the vectors,, are not orthogonal, then

Fig. 1 as the outputs of the decorrelator are correlated. Intuitively it seems
Q'r = Q*(VT)*V*r — BV'r plausilt_)le th_ateliminating this common (linear) information may
potentially improve the performance of the detector. Further-
with B = (VTQ)*. In the absence of noise, the decorrelatanore, the pseudoinverse operation in (3) may result in a noise
leads to optimal decisions. Thus, in this case chooBlrg I, componentwith alarge variance and a spectral shape with a high
in the receiver of Fig. 2 will result in an optimal receiver fordynamic range. To improve the performance of the decorrelator
detecting the transmitted symbols. However, in the presencereteiver it is, therefore, desirable to shape the covariance of the
noise, the decorrelator does not generally lead to optimal dedecorrelator outputs prior to detection, and in that way com-
sions. We may therefore wish to further process the outputspEnsate for its noise enhancement properties. Therefore, when
the decorrelator prior to detection. the signatures are not orthogonal, we propose to decorrelate the
We may also choose the correlating vectors of Fig. 2 to Io@ise components in the outputs of the decorrelator prior to de-
equal to the signature vectors, so that the receiver of Fig. 1 cartbetion, so that we control the dynamic range and spectral shape
implemented as an MF demodulator followed by a linear transf the covariance of the receiver output. We emphasize that this
formationB = (STQ)* on the MF outputs. This representatiortask does not require estimating the variance of the noise or the
may be of interest since, in many practical receivers, the MF deceived amplitudes of the users’ vectors.
modulator serves as a front-end whose objective is to obtain éata whitening arises in a variety of signal processing and
vector representation of the continuous-time received signalcmmunication contexts in which it may be useful to decorre-
we choose to linearly process these outputs prior to detectitate a data sequence either prior to subsequent processing, or to

%. Decorrelator Representation of the OMU Demodulator

SI‘he covariance of the noise compong&fitn in a is equal to the
covariance ok — E(alb), and is given by
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control the spectral shape after processing. Examples in whighiteninga on the subspace in which it lies, which is referred
data whitening has been used to advantage include enhancingalassubspace whitenint], [3]. The noise component in the
rection-of-arrival algorithms by prewhitening [17], [18]. Ratheputput of the subspace transformatisis said to be white on
than choosing the whitening transformation arbitrarily, in th¥ if its covariance matrixC,. is given by
following we suggest choosing an optimal whitening transfor- 9 opipx
mation that whitens the decorrelator output and at the same Co =0°Py =0"RIR ©)
time minimizes the distortion to the unwhitened vector. In Segshere the firstk’ columns ofR form an orthonormal basis for
tion VI, we analyze the performance of the resulting receivgr and K is the dimension o¥, andI is the M x M matrix
and show that in many cases this approach does in fact lead I 0
. ~ K
to improved performance over the decorrelator and the MF re- I= [ ]
ceivers, which provides justification for our method. 0 0
When the signature vectoss, are linearly independent, we The condition (6) implies that the representation of the noise
may decorrelate the outputs of the decorrelator by choaBingcomponent of in terms of any orthonormal basis fBris white
in Fig. 2 such that is whitenedt Specifically, in this case, the in the conventional sense. As in the linearly independent case,
covariance matrixC, = o%(8*S)~! of the noise component in we seek a subspace whitening transformalérsatisfying
ais invertible and, therefore, there is a whitening transformation 9
’ 1 * * T * 2
W such that the covariance matrix of the noise component of WC.W" =o"W(5"S)'W" = oIy (®)
z = Wais given byC,. = o*I);. Indeed, any transformation sych that (5) is minimized. A more elaborate discussion on sub-
W satisfying space whitening can be found in [4]. In the remainder of the
WC.W" = o>W(8*8)"'W* = o°I, (4) paper, we use th(_a term whitening to denote both whitening and
subspace whitening.
is a valid whitening transformation. We then base our detectionThe solution to the general MMSE whitening problem has
ong, so that thenth user’s bit is detected &g, = sgu(z,). been obtained in [4], and is incorporated in the following the-
There are many ways to choose a whitening transformatiorem.
W satisfying (4), fpr e_xample using the elgendecom.posmon Theorem 1 (MMSE Whitening [4])Let z € CM be a
or Cholesky factorization o€, [19]. Since the detection is . ; . N
a 1= . zero-mean random vector with covariance maffix= UDU
based on the output of the whitening transformation, we pro-_: . . .
) o .~ with rank(C,) = K < M, whereU is a unitary matrix and
pose choosing the whitening transformati##h that results in . — ; .
is a diagonal matrix with the firsk' elements positive and
an outputz that is as close as possible in an MSE sense to the
e remaining diagonal elements equabtd_et V denote the
outputa of the decorrelator so that we minimize the distortion
range space of’. spanned by the firsk columns ofU. Let

toa. Thus, among all possible whitening transformatiisve

seek the one that minimizes the total MSE given by W be any whltenln.g transformation that m|.n|m|zes f[he total
MSE between the input and the output with covariance
C, = c?Py = c2UIU", wherel is given by (7) and: > 0.

M
EMSE = Z E ((a’;n - ‘E;n)Z) Then
m=1

_EB((d - 7)"(d — 7)) 5) 1) if K = M, thenW is unique and is given by

W = UD™?U* = 072,
wherea/, anda/,, are themth components of’ = a — E(ab) i T

()

andz’ = z — E(z|b), respectively. 2) if K < M, then

If the signature vectors,, are linearly dependent, then the a) W is not unique,
noise components in the outputs are linearly dependent, i.e., b) W W = cU(Dl Z)TU* (Ci/Q)T is an optimal
they satisfy a deterministic linear relation. Thus, the vector noise wh|ten|ng transformation.

outputV"n of the decorrelator lies in a subspaéec C" with  Eyrthermore, leW” = W P, wherePy, is an orthogonal pro-

probability one (w.p1),2 which is the range space 8f and is jection ontoV andW is any optimal whitening transformation.
also, from (3), the range space®f. Since the elements 8“n  Then

are linearly dependent, the elements of the noise component i
z,i.e., the elements ¥ V*n, are also linearly dependent and,
therefore, cannot be statistically uncorrelated. In other words, WY = cUDY*U* = «(CV*)T;
the covariance matri€, = o¢2(S*8)t of the noise compo- -

nent ina is not invertible and, tt(werefz)re, there is no whitgning 2) Wz =Wz wp. 1.
transformationW satisfying (4). Therefore, in this case, we In Fig. 2, the noise component in the inutio the whitening
cannot whitern in the conventional sense. Instead, we proposeansformation has zero mean and covariadge= ¢(S*S)%.
From Theorem 1, an optimal whitening transformation is

™) WY is unique, and is given by

1in this paper, when we refer to the whitening of a random vectare explic-
itly mean whitening the noise componentnEquivalently, this corresponds to W _ (S'* 5)1/2 (9)
whiteninga — E(a|b). Similarly, when we say that a random veciois white - ’

we explicitly mean that the noise componentziris white, i.e. the covariance : - : :
matrix of the noise component i,  — E(a|b), is given byC. = c*1 for Note that in Fig. 2a is restricted to the range spaveof C,,

somec # 0. sinceV is also the range oF " anda = V"r. Consequently,
2when we say that a random vector lies in a subspace we meah.w.p.  the outputz is not affected by the action & on V1, so that
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any MMSE whitening transformation will result in the same Vo g2
outputz. e

B. Correlation Demodulator Representation of the OMU

Demodulator g,
As we have seen in Section I, any demodulator of the form of %‘ v
Fig. 2 is equivalent to a correlation demodulator of the form of !

Fig. 1 with correlating vectorg,,, that are the columns @ =
VB". Since the OMU demodulator consists of a decorrelator
followed by the MMSE whitening transformatidi’ given by
(9), itis equivalent to a bank of correlators with vectgys =

A h ~ é Fig. 3. Two-dimensional example of the OMU vectors. Since the veetprs
9., Whereg,,, = [G],,, and andw, are linearly independent, the OMU vectgrsandg, are chosen to be

) A* . . orthonormal and to minimizg_, (e;, e;) = >, (v: — g,, v; — g,).
G=VW =85(5"8)1(8*8)'/? = 8((8*8)"/*)I. (10)
vectors that are the correlating vectors of the OMU demodulator.
We now try to gain some insight into the vect@rs, which we | gt

refer to as the OMU vectors. M
From (10) and (8) we have that ers({Un} {90 ) = D W = 9.) W — 9,,)  (14)
Ak A A Ak A A % m=1
= * = * T =
GG=WVVW =W(SS)'Ww Py (11) denote the least squares error between the vectors
If the vectorss,,, are linearly independent, theh, = I, and {y,,1<m<M} and {g,,,1<m< M}

from (11) it follows that the vector$g,,, 1 < m < M} are
orthonormal. If the vectors,, are linearly dependent, then thelhen
vectorsg,, are clearly not orthonormal. Rather, they formaa- 1) the vectors
malized tight fram¢20]—[22] for 4.

A setof vectorqz,,, € W, 1 < m < M} form a normalized
tight frame for a subspade if foranyy € W

{9, 1<Sm <M}

minimize eps({vm}, {9,,}) over all vectors{g,,} that
y form a normalized tight frame fé¢, where{wv,, } are the
Z |25, y1? = y*y. (12) decorrelator vectors;

2) the vectors

The condition (12) is equivalent to {9, L <m < M}

minimize ers({s..}, {g9,.}) over all vectors{g,,} that
form a normalized tight frame fax.

where Z is the matrix of columng,,. Alternatively, a set of From Theorem 2, it follows that seeking a whitening trans-
vectors forms a normalized tight frame fov if and only if  formation to minimize the MSE defined by (5) is equivalent to
the vectors can be expressed as the orthogonal projections @lgking a set of vectogs,, that form a normalized tight frame
W of a set of orthonormal vectors in a larger space containifg 7/, and are closest to the decorrelator vectgrsaand the sig-
W [22]. Clearly, if V'(Z)* = I, then (13) implies that the pature vectors,, in the least squares sense. In particular, when
vectorsz,, are orthonormal. the signature vectors are linearly independent, we may interpret
Comparing (11) with (13) we conclude that a decorrelator dgre OMU demodulator as a bank of correlators matched to a
modulator followed by a whitening transformation is equivaleriet of orthonormal vectors that are closest in the least squares
to a bank of correlators with vectors that form a normalized tiggknse to the decorrelator vectors and to the signature vectors, as
frame forl{. In the case in which the signature vectors are lifjystrated in Fig. 3. When the signature vectors are linearly de-
early independent, the normalized tight frame reduces to a gehdent, the OMU demodulator can be interpreted as a bank of
of orthonormal vectors. correlators matched to a set of vectors that are the projections
Since the MMSE whitening transformation is optimal imbntoz/ of a set of orthonormal vectors that are closest in the least
some sense, we expect the OMU vectors it defines to also ha¥giares sense to the decorrelator vectors and to the signature
some form of optimality. The following theorem, proved injectors. This problem has been solved in the context of quantum
the Appendix, asserts that the OMU vectors form the closgfdtection [10], general inner product shaping [23], and optimal

orthonormal vectors in the linearly independent case, and figme design [22]; the solution in [10], [23], [22] is equal to the
closest normalized tight frame vectors in the linearly dependedhu vectors given by (10).

case, in a least squares sense to both the decorrelator vectors
v,,, and the signature vectoss,. C. MF Representation of the OMU Demodulator

Z°Z = Py(z) (13)

Theorem 2:Let {s,,, 1 < m < M} denote a set of/ Let us now consider an MF demodulator followed by an
signature vectors and 1€§,,,, 1 < m < M} denote the OMU MMSE whitening transformatior" that minimizes the
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MSE between the vector outpatof the MF demodulator and are unitary matrices ani is a diagonalV- x M matrix. Then
the outputz of the whitening transformation, analogous to (5we may expres& as

Since the covariance of the noise compfoneni is given by . ~

§*8, from Theorem 1 it follows thaW~ = ((§*S)'/2)t. G=UlIxR (18)
Therefore, the vector outpatof an MF demodulator followed

by an MMSE whitening transformation is given by wherel is theN' x M matrix given by

w mf . Iy 0
r=W a=((88)"?)'8"r. (15) I = [ 0 0] - (19)
Alte'rnativelly, usingAthe. decorrelatpr as a front end, the outputgjnce the OMU vectors can be expressed in terms of the polar
of Fig. 2 with B = W given by (9) is decomposition and the SVD &, they may be computed very

. - efficiently exploiting the many known efficient algorithms for
z=Wa=WV'r computing either the polar decomposition or the SVD (see, e.g.,
=(5"8)"*(5*8)'8"r = ((§*8)"/?)'S*r.  (16) [15], [25], [24]).

Comparing (15) with (16) we conclude that the two outputs aye Summary of the OMU Representation

equal. Note also that (15) and (16) are consistent with (10). We summarize our results regarding the OMU demodulator

in the following theorem.

. - Theorem 3 (OMU Demodulator)Let {s,,, 1 < m < M}
To implement the OMU demodulator efficiently, we may usg . . .

. o X enote a set al/ signature vectors that spaadimensional
the form of Fig. 1 where the vectogs, = g,,,, andg,,, are the subspace/ C CM wherek < M. Let{a 1< m < M
OMU vectors. The OMU vectors may be computed eﬁicientlﬁ P = ' - {9, 1 <m < M}

IV. COMPUTATIONAL ASPECTS

by expressing’? either in terms of the polar decomposition [19 enote the OMU vectors that are the correlating vectors of the
or the singular value decomposition (SVD)$f MU demodulator. Le§ andG denote the matrices of columns
First, we show tha@ is the orthogonal projection onto the®m andg,,, respectively, and le§ have an SVDS = UXR".
T ; Then
space/{ spanned by the vectoss, of the partial isometry in a
polar decomposition aof [23]. &= S((S*8)/2 — UT~R*
Let A denote an arbitrarZw x M matrix witlt N > M. =5((578)77)" =Ulx

Then, A has gpolar decompositioif24], [19] wherel  is given by (19), and is equal to the orthogonal pro-

jection ontal/ of the partial isometry in a polar decomposition

A=HP (475t 8. In addition,
whereH is anN x M partial isometry that satisfieg8*H = Iy, 1) the OMU demodulator can be realized by a decorrelator
andP = (A*A)Y/2. The Hermitian facto is always unique; demodulator followed by an MMSE whitening transfor-
the partial isometn is unique if and only ifA has full column mationW = (8"5)'/?;

rank. When4 has full column rank, the columns of the partial 2) the OMU demodulator can be realized by an MF demod-
isometryH are the orthonormal vectors that are closestinaleast ~ ulator followed by an MMSE whitening transformation

~ mf

squares sense to the columnsAgR24], [23]. If A does not have W = ((8*S)/*)T;

full rank, then there are many possible choicesHoHowever, 3) the vectors{g,,} minimize the least squares error

for any such choice, the columns Bk 4)H, wherePr 4 is ers({vm}, {9,.}) given by (14), i.e., they form the

an orthogonal projection ontR(A), form a normalized tight closest normalized tight frame to the decorrelator vectors

frame forR(A) that is closest in a least squares sense to the  {v,, };

columns ofA. 4) the vectors{g,,} minimize the least squares error
When the signatures,, are linearly independent, it follows eLs({8m}, {gm}), i.€., they form the closest normalized

from Theorem 3 that the OMU vectors are the orthonormal vec-  tight frame to the signature vectofs,,, }.

tors that are closestin a least squares to the signature vegtors

and when the signature vectors are linearly dependent, the OMU V. FURTHER OPTIMALITY PROPERITES OF THEOMU

vectors are the normalized tight frame vectors that are closest in DEMODULATOR

a least squares to the signature vectqrsFrom the properties

of the polar decomposition, we conclude that in the linearly in;

dependent case the OMU vectors are the columns of the pal

isometry in the polar decomposition 8f In the linearly depen-

dent case, the OMU vectors are the columns of the projecti

ontol/ of any partial isometry in a polar decomposition$f
Alternatively, we can also expreésin terms of the SVD of

S. Let the SVD ofS be given byS = UXR"*, whereU andR

To derive the OMU demodulator, we proposed whitening
rh]haq output of the decorrelator demodulator and then choosing
e whitening transformation to minimize the MSE between
the noise components in the input and output of the whitening

on X ; . . .
ransformation. In this section, we show that this choice of
whitening transformation has the additional property that
among all possible whitening transformations, it minimizes
the total MAI and maximizes the total SNR in the output of
3If M > N, then we can define the polar decompositionAgr. the transformation for signature vectors that have a strong
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symmetry property. Furthermore, for nearly orthogonal sig~rom (24) we conclude that

nature vectors [26], the MMSE whitening transformation

approximately minimizes the total MAI and approximately A . M )

maximizes the total SNR. a=tr(W'W) = Z Wkl
For simplicity of exposition, we assume throughout this sec- m, k=1

tion thatE(A2,)) = 1 for all m; the results extend in a straight-

forward way to the general case in which the powB(s12,)

are not equal.

is constant, independent of the choicd®f Expressing (21) as

M
L i _ 2 W |?
A. Minimum Total MAI Whitening Transformation SIRy = —m=1 (25)
M ’
We have seen that (in the linearly independent case) the a— 5 ([[Wlmm|?
decorrelator eliminates the MAI by inverting the multiuser m=1

channel, but in the process may enhance the white noise. We
proposed compensating for this possible noise enhancementttigllows that maximizing SIf subject to (22) is equivalent to
whitening the noise component in the output of the decorrelat®aXximizing

prior to detection. However, the whitening transformation o
introduces some MAI into the outputs,,. Indeed, the data r— Z W] 2
component in the output of the whitening transformation is mm
the vectorWW Ab, whosemth component is

(26)

m=1

" subject to (22).
s I Let C, have an eigendecompositi@), = RAR", whereA
kz_l (Wi Arbi = @, + 2, (20) is a diagonal matrix with diagonal elements > 0. Then, from
h (24), and using the properties of the SVD, we have that
wherez? = [W],m Ambr, is the signal component iny,,, and

W =o0Z*A" V2R (27)

M
tn= > WlhaAib . .
k=1 b for some unitary matrixZ*. Let z,, denote the columns of
Z, and lety, denote the columns & = ocA~'/>R*. Then
is the MAI component inz,,,. We may, therefore, chood&¢  [W],,.. = 2%y,,, and
to minimize the total MAI in the output, or equivalently, to

whereC,, is the covariance of the noise componentigiven

duces to

maximize the total SIR i given by M M
L= (Wlal* =Y |25y (28)
S E((5)) " =
=1
SIRr =737 Thus, the problem of maximizing (21) subject to (22) reduces
mz_l E((27,)?) to seeking a set of orthonormal vecteats that maximize (28).
v When the signature vectors are linearly dependent, we can
S 1 Whaml? show that the design problem of (21) and (23) reduces to seeking
= mle (21) aset of vectors,,, that form a normalized tight frame and max-
> Wi ? imize (28). | .
m=1 k=1, k£m This is a reasonable approach to choosing the whitening
transformationW and may even seem more intuitive then
subject to the whitening constraint minimizing the MSE given by (5). However, unlike the latter
WOW* = oI, (22) problem, this problem is hard to solve analytically. Nonethe-

less, we now show that we can formulate this problem within
the framework of quantum detection, and then rely on results
obtained in that context.

In a quantum detection problem, a system is prepared in one
of M known (pure) states that are described by veatgre an
abstract Hilbert spack, and the problem is to detect the state
by (3), andV = N (C,)*. prepared by performing a measurement on the system. The mea-

We first consider the case of linearly independent signatLﬁHrem_ent is described in te_:rms of a set of measurgment vectors
vectors. In this case, we can simplify the expression for,SIRI= Which are orthonormal if the states, are linearly indepen-

given by (21) as follows. SincH must be invertible, (22) re- dent, or which form a normalized tight frame if the states are
' linearly dependertt.Given a set of measurement vectaqrs,

or the subspace whitening constraint

WC ,W* =o2Py (23)

. 9 1 4In a quantum context, a normalized tight frame is referred to as a rank-one
W'W=0°C," . (24) positive operator-valued measure (POVM).
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and assuming equal prior probabilities on the different statesarly orthogonal, theW also approximately maximizes SiR
the probability of correct detection is given by [27] [26]. Iterative algorithms [29], [26], [23] can be used to maxi-
mize SIRr when the signature sets are arbitrary.

M
1 2
Foa = 3/ > (a8 (29)  B. Maximum Total SNR Whitening Transformation
m=1

From results in [30], [3] that also exploit the connection with
where(q,,,, 8.») denotes the inner product between the vectotse quantum detection problem, it can be shown that for GU
q,, ands,,. Comparing (28) with (29), we see that choosingignature vectors the whitening transformation in the OMU
the measurement vectors to maximize the probability of calemodulator also maximizes the total output SNR defined
rect detection subject to an orthogonality or normalized tighyy SNRy = Zﬁf:l SNR,,, where SNR, is the SNR at the
frame constraint is equivalent to choosing a whitening trans:th output of the whitening transformation and is defined
formation to maximize SIR subject to the corresponding conby SNR,, = E((z3,)?)/o?. Therefore, for PN sequences,
straint. We may, therefore, interpret the design problem of (28)e OMU demodulator maximizes the total output SNR and
as a quantum detection problem, and then apply results derivethimizes the MAI subject to the decorrelation constraint.
in that context. Furthermore, for nearly orthogonal signature vectors [26], the

Based on results derived in a quantum detection context [IMJMSE whitening transformation approximately maximizes
[28], it can be shown that when the signature vectors havete total output SNR.
strong symmetry property called geometric uniformity [9], the
vectorsz,, maximizing (28) are equal to the columns of the VI. PERFORMANCEANALYSIS
unitary matrixR" in the eigendecomposition 6f,. From (27), ) i . )
it then follows that the whitening transformation that maximizes In this se_cnon, we (_j!scuss_the thepreucal performance of the
SIRy is given byW — R(AI/Z)TR* _ U(C}l/z)f — W, where OM_U receiver. Specmcal_ly, in Sectlons_ VI-A and VI-B, we
W is the MMSE whitening transformation given by (9). derive exa_ct and apprOX|ma_te expressions for the probability
A set of vectors is geometrically uniform (GU) if given anyOf error using the OMU receiver. In Section VI-C, we analyze

two vectorssy, ands,, in the set, there is an isometry (a normIhe large-system performance of the receiver assuming random

preserving linear transformatioff),,, that transformss;, into Gauss!an signature vectors and accurate power con_trol. Our
s,,, while leaving the rest of the set invariant [9], so tHt,, analysis indicates that in many cases the OMU receiver can

permutes the set. Thus, for eveéryT'.,,8x = 8., for somem. lead tolat subs;atnht|alM|Ir:nprov_ement 'r?. r;]erfo:_matncethover thef
Intuitively, a vector set is GU if it “looks the same” from any ofdecorre ator.and the FECEIVELS, WIICH MOTvates (e LSe 0

the vectors in the set. It can be shown [23] that a set of vectcgp S feceiver.
with real Gram matrix is GU if and only if the Gram matrix
of inner products of the vectors in the set has the property tHat
the second and subsequent rows are permutations of the firsthe detector input of the OMU receiver defined via (10) is
row. For example, if the Gram matrix is a circulant mafrihen

the corresponding signature setis GU. In particular, if the inneg — ((g* §)1/2)1 §*r = (§*8)'/2Ab+((S*S)/2)TS*n. (30)
product between any two distinct vectors in the set is equal to a

constani, and the norm of all the vectors is the same, then t .

. L : ach component of the detector input vector can be decomposed
corresponding Gram matrix is circulant and the vector set is GInto
In this case, assuming normalized vectors, the rows of the Gram
matrix are permutations of the sequeréep, p, ..., p}.

Exact Probability of Error

S I N

A common choice for signature vectors in a direct-sequence T = T+ T+ T (31)
CDMA system are PN sequences corresponding to maxim\c;;lvlﬁere the terms
length shift-register sequences [1], [11]. These sequences have
the property that the inner product between any two distinct se- s ran1/2
quences is equal to a constant. Thus, for this choice of signature T =[(878) " lom Ambm (32)
vectors, the OMU demodulator maximizes $IBubject to the zh= > [(8°8) | Arbr (33)
constraint that the outputs of the demodulator are uncorrelated k#m
on the space in which they lie. aN = [((S*S)I/Q)T];S*n (34)

Further results regarding the whitening or subspace whitening
transformation maximizing SIRthat follow from results per-

taining to quantum detection are that if the signature vectors gﬁgresent the desired signal, the MAI, and the noise, respec-

tively. Conditioned orb, the decision statistie,,, is Gaussian

5A circulant matrix is a matrix where every row (or column) is obtained byvith meanx,i + J:,In and variance
a right circular shift (by one position) of the previous row (or column). An ex-

e v o var(z) = 0[((8"8)/2) ]2, 87 S[((8° ) /),
B = [(8°8) ) [(5°8)
ax a; ao :UQ[PV]mm' (35)
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Probability of Bit Error

“Decorrelator

10
SNR/bit (dB)

20

Fig. 4. Probability of bit error with three users and cross correlatien 0.8. The amplitude4, of the desired user is two times greater than the amplitide
of the second user and four times greater than the amplifisdef the third user.

Taking into consideration all possibilities &f the resulting corresponding curves for the single-user MF, decorrelator, and
linear MMSE receiver are plotted for comparison. The OMU
receiver performs similarly to the linear MMSE receiver at all
SNR, and better than the decorrelator and the single-user MF.

probability of error for thenth user is

= Y >

e €{—1,1} eki{;l,-I}

Pm(a)

>

[(5°8)"*mm Ar

o/ [Pv]mm

o/ [Pyv]mm

k#m

where

Qv) = % /OO e /2 gt

interferers such thatl, /4, =

ey €e{—1,1}

. Z [(S*S)l/z]mkAk .

Next, we examine the scenario in which the desired user has

four interferers such thad,,,/4; = 1 form = 2, 3,4, 5.1In

(36)

Fig. 5, where the cross correlation of the signatures is shown in
(38) at the bottom of the page, the OMU receiver performs sig-

nificantly better than the decorrelator and the MF. Moreover, the
OMU receiver performs slightly better than the linear MMSE

receiver at high SNR (although the linear MMSE receiver min-
imizes the MSE, it does not necessarily minimize the proba-

(37)

bility of error, especially when the MAI is not approximately

Gaussian). In Fig. 6, where the signatures are dependent and the
Fig. 4 evaluates (36) in the case of three users with cross coress correlation is given by the rank-deficient matrix, shown in
relationp = 0.8, where the first user, the desired user, has tw@9) at the bottom of the page, the OMU receiver again outper-

0.5 and A3/A4; = 0.25. The forms the decorrelator and the MF.

1.0000 —0.0650 0.0451 0.3560 0.0629
—0.0650 1.0000 0.0589 —0.4206 0.0125
S*S = 0.0451 0.0589 1.0000 0.5864 —0.0866 (38)
0.3560 —0.4206 0.5864 1.0000 0.5522
0.0629 0.0125 —0.0866 0.5522 1.0000
1.0000 —0.1380 0.2402 —-0.1894 —0.4176
—0.1380 1.0000 —0.5466 —0.1082 0.8671
S*S = 0.2402 —0.5466 1.0000 0.8021 —0.2133 (39)
—0.1894 —0.1082 0.8021 1.0000 0.3531
—0.4176 0.8671 —0.2133 0.3531 1.0000
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Fig. 5. Probability of bit error with five equal-energy users and linearly independent signatures with cross correlation given by (38).

Probability of Bit Error

|
o0

0 5 10 15 20 25
SNR/bit (dB)

Fig. 6. Probability of bit error with five equal-energy users and linearly dependent signatures with cross correlation given by (39).

B. SINR and Approximating the Probability of Error var(zY) = 02 [Py]mm.- (42)
From (32)—(34), the terms., ! , andz? are mutually in- The SINR at the detector for theth user is therefore shown in

dependent and zero-mean, and have variances (43) at the bottom of the page.

S . /22 ) In the case of accurate power control, i4.+~= AI,;, we can
var(z,) =[(878) " |5mAn, (40)  simplify (43) to
var(z,,) =[(5*8)"/?];, A%[(878)"/*]m — [(878) 5 Ab (878)1/2]2

m = - nR_ 44
@) " (Bl + (S S - (S5, Y

_ (5°8)"/212,,, 42, 4
T A Puln + [(878) /2, A((878)1 /2], — [(87) /212, A2 “

mm=*-"m
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Probability of Bit Error
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Fig. 7. The exact and Gaussian-approximated probability of bit error for the OMU detector, with 10 equal-energy users and identical crogssgosrelatio

where A be expressible adI ;. Then, in the limit as\/ — oo with
1 A2 e M/N held constant, the SINR for each user at the OMU
T (45)  demodulator output satisfies
m.s. ]-
is the received SNR. An alternate form for (44), which will beym, — >—1 (48)
more convenient for the analysis in Section VI-C, is -2 [t ¢ 1_9"7:2/;’)2:17)" Kz /ne)]
Tm = [(3*13)1/2]2 — 1. (46) when the signature vectors are linearly independent, and
L 120 s v s, 1 .
Assumingz? + 22 is Gaussian, the probability of error can ™" L™ [Gn4n2) EG/ 1= ) =2m K (/T=m1 [2)]”
be approximated as N 9m2B2(¢/B+1)
49
Pol@) % Q(y/m). @ o
At low SNR, the Gaussian approximation is acceptable becalsec " the signature vectors are linearly dependent, where [32]
Gaussian noise is the dominant impairment. However, at high K(k) = /2 dt
SNR, the discrete distribution of the MAI is poorly approxi- ) 1— k2sin2t

mated by a Gaussian distribution, especially at the tails of the 1 de
distribution where the bit-error rate is determined. Thus, we do = / (50)
o V(1-2?)

not expect (47) to be particularly accurate at high SNR. (1 - k?z?)
! . . /2
In_ F|g. 7, we compare the_ accuracy of the Ga_uss_lan approxi- Bk) = / | 12l d
mation in (47) to the exact bit-error rate expression in (36), with 0

10 equal-energy users and identical cross correlajoad).2. o 1 — k222

As expected, the approximation is useful at low SNR, but be- —_— (51)
. 1—=x
comes less so at high SNR. 0 ] .
are the complete elliptic integrals of the first and second kinds,

C. Asymptotic Large System Performance respectively, and

The following theorem characterizes the performance of the o’ = (1 B \/[7)2 (52)
OMU receiver in the large system limit when random Gaussian

ignatures and accurate power control are used. The method we 2

signa p : Ty = (1 n \/B) . (53)

use in its proof can be easily modified to characterize the perfor-

mance of other multiuser detectors in the large system limit as Proof: We begin by presenting the following lemma [12]
well. For example, the method can be used to derive the asyr@p-Wishart matrice3,which have the forn§™S with the ele-
totic SINR for the MF detector, and it has been recently used Qe use the notatiof=5

; . A to denote convergence in the mean-squddet)
derive the asymptotic SINR for the decorrelator [12]. sense [31].

. . . A similar lemma exists for matrice$*S where the N-dimensional
Theorem 4: Let the elements of th x M signature matrix i mns of§ are independent and drawn uniformly from the surface of the

S be independer@®/\ (0, 1/N), and let the matrix of amplitudes unit N-sphere.
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ments ofS being independer@N (0, ¢%). The lemma and its E(g*(\1)) < oo when evaluated according to the probability
proof rely on the concepts of isotropically distributed vectordensity functionfs(z) of (57). Then, as/ — oo
and matrices, which are reviewed in [12, Appendix A].

M
1 m.s.
Lemma 1: Let the elements of aV x M matrix S be in- i > 9(\j)e; =3 E(g(\)E(ey) (59)
dependen€N (0, o2). Then, the eigenvector matrix &fS is i=1

isotropically distributed unitary and independent of the eigethere £(g(),)) is evaluated according s (z).

values. i
Applying Lemma 3 and the strong law of large numbers to

To prove Theorem 4, we n*eed to determine the limits @he numerator and denominator of (55), respectively, and noting
[(8"8)]smm» [Pylmm, and[8"S]mm as M — oo With 3 that in this casg(z) = \/z so thaty(z) satisfies the conditions

held constant. of Lemma 3, we have
Let S = UXR" be the SVD ofS, whereU is anN x N ECDE(a )
unitary matrix,R is anM x M unitary matrix, ancE is a diag- (87 8) V2] =5 TN — (/A1) (60)
onal N x M matrix with diagonal elements; > 0. Then, the E)
quantity [(S*S)/?],,m can be written as asM — oo, whereE(y/A;) is evaluated according to the prob-

[(S’*S’)l/z]mm _ [RAI/ZR*]mm _ y:nAl/gym (54) ability density functionfg(z) of (57). Thus,

wherey,, is themth column of R*. Now, R andA are the £ (v )\1) = / Va fo(x) dz
eigenvector matrix and the eigenvalue matrix, respectively, in 70

the eigendecomposition of the Wishart mai$ixS. Thus, using _ /w Nz { [1— 51 *e(x)
Lemma 1, we conclude thd®" is an isotropically distributed 0
unitary matrix independent of. Sincey,, is a column of an VE - —a*
isotropically distributed unitary matrixy,,, is an isotropically + } d
distributed unit vector [33]. Consequently, has the same dis- 27z
tribution asz/v/z*z, wherez is an M-dimensional vector of Sz —m)(ne — )
independen€ A/ (0, 1) random variables. Thu§,$*S)'/2],... - / 216/ dz
has the same distribution as \/"7;—2
% SRl = ar [(771 +m2)E (v - 771/772)
«A1/2 Zs \VNjl7g
2 fzx; = (55) —omK (\/1 - nl/ngﬂ 61)

21 2512 /M where the last equality is from [32], and whekd-), E(-), 1,

= andr) are defined by (50), (51), (52), and (53), respectively.
with the \;’s denoting the eigenvalues 8f S and thez;’s de- Similarly, from (6),[Py]mm can be written as
noting the components ef To evaluate the limit of (55) when . .
M — oo, we rely on the following pair of lemmas. [Polmm = [RIR | = Y Ty, (62)

Lemma 2 [34]: If the ratio of the number of users to the sig-WhiCh has the same distribution as

nature length is, or converges to, a constant M

M PAL '21 ol /M

. _ =

Jim =5 € (0, 20) (56) P (63)
Mo N _ > |zl2/M

then the percentage of thié eigenvalues of* S that lie below j=1

2 converges to the cumulative distribution function of the prolwhere

ability density function { 1 A £ 0 o

s — 1+ — 2]+ Hj =

21 x
) i f Applying Lemma 3 and the strong law of large numbers to the
Here,7, andy, are defined according to (52) and (53), and thg,merator and denominator of (63), respectively, we have
operator]-]T is defined according to ' '
m.s E(Nl)E(|Zl|2)

[ul* 2 max{0, u}. (58) o (ST NG

Lemma 3 [12]: Let {c;} denote a set of independent an(gSM s tnerel i) 15 Svelnes according to the proba-
: cj ility density function of (57). Thus,

identically distributed (i.i.d.) random variables independent OIJ y Y fo(z) of (57)

{\;} with E((c1 — E(c1))?) < oo, where{);} denote the [Py]mm == E(p1) = Jim P(A #0)

eigenvalues of a Wishart matrix under the conditions of Lemma {TOO B<1

2. Furthermore, leg(-) be a function such that(0) < oo and =,
L B>1.
87

g(z) < o forz € [(1 - B)?% (1 +/B)?, and such that (66)



2168 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

10

........................ S|ng|e_US U
b e TN

Probability of Bit Error
o

MMSE —

2 J ;
0 5 10 15
SNR/bit (dB)

10

Fig. 8. Probability of bit error in the large-system limit, with equal-power users, random signatures ~afdd5.

Finally, function of 3, with an SNR of 8 dB. Fop roughly greater than
0.6 but less thari.4, the OMU receiver performs significantly

~
* m.s, h h th I he MF.
[S* 8] = 8 8 = Z 8?m ms, (67) better than both the decorrelator and the
j=1
by the strong law of large numbers, with thg,’s denoting the VII. CONCLUSION

components o8, .

It is well known that ifz, =5z andy, —5 7, thenz,, +
Yn =57 + 7 andz,y, =3 7y [31]. The following lemma
which involves the convergence bfz,, is now required to com-
plete the proof of Theorem 4.

In this paper, we developed a new multiuser receiver for
CDMA channels, referred to as the OMU receiver, which
relies on knowledge of only the signature vectors to mitigate
the effect of both MAI and additive noise. First, we showed
that the receiver can be interpreted as a decorrelator receiver

Lemma 4 [12]: Let z,, 3 7, where{z,,} is a sequence of followed by an MMSE whitening transformation that optimally
random variables such thgt/z,,| < B for all n, andz # 0. whitens the output of the decorrelator prior to detection, so that
Then it compensates for the noise enhancement of the decorrelator

receiver without reintroducing too much MAI. In fact, we
. (68) showed that for most practical cases of signature vectors, this
receiver minimizes the MAI among all receivers that result

Substituting (61), (66), and (67) into (46), and using the falf uncorrelatgd outputs. Second, we express'ed this receiver
as a correlation demodulator whose correlating vectors are

that~,, < 1/¢ with Lemma 4 completes the proof of The- ) . . .
orerr?4 < 1K P P O orthonormal in the case of linearly independent signature

vectors or form a normalized tight frame for the space spanned

Since the MAl is asymptotically Gaussian in the infinite-usdsy the signature vectors in the case of linearly dependent
limit, we expect (47) to be an accurate approximation to thgignatures, and, furthermore, are closest in a least squares sense
bit-error rate at all SNR, wherg,, is given by Theorem 4. We to the signatures and to the decorrelator vectors. Third, we
will use this approximation to compute the bit-error rate for théemonstrated that the OMU receiver is also equivalent to an
remainder of this section. MF receiver followed by an MMSE whitening transformation.

In Fig. 8, the bit-error rate in the infinite-user limit for theThis new receiver can be implemented efficiently using any of
OMU receiver is compared to the single-user MF, the decorrge well-known algorithms for computing the SVD or the polar
lator, and the linear MMSE receiver, f6r= 0.95. For the SNR decomposition.
range shown, the OMU receiver performs better than the decorFinally, we developed tools to analyze the large-system
relator and the MF. At low SNR, the performance of the OMperformance of this receiver. Our analysis demonstrates that
receiver is close to that of the linear MMSE receiver. In Fig. Qyithout knowledge of channel parameters, the OMU receiver
we plot the probability of bit errdrin the infinite-user limitas a in many cases results in improved performance over both the

8The asymptotic large system performance of the decorrelator for the cegs%correlator and the MF receivers, partICU|arly over practlcal

B > 1is derived in [12]. ranges of SNR.

m.s.
—

8 —

1
Tn
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Fig. 9. Probability of bit error as a function gfin the large-system limit, with equal-power users, random signatures, and SNR of 8 dB.

APPENDIX Proof: First we show that minimizingLSS{ymL {9..})
subject to (70) is equivalent to maximizirﬁf;::l R{g:Y..}

In this appendix we prove Theorem 2. ! ) .
Let z,,, denote thenth output of the demodulator of Fig. 2 subject to this constraint, whef®{-} denotes the real part of
‘the corresponding variable.

where B = W is an arbitrary whitening transformation. We i h
may express,,, as themth output of a bank of correlators with Expandingers ({9}, {9, }) we have
vectorsg,,, that are columns o = VW™, where the vectorg,,

=

78

form a normalized tight frame fa¥. Leta,, =v;,r denote the . (((y 1 (g 1) = W, —9,,) W, — g, (71)
mth output of the decorrelator demodulator. Thén= v’ n, Pt
xl, =g5mn, and M
M =) (1+9n9, —2%{y,9.}). (72)
m=1

M
> B (@ =2)") = 3 B(0n—g,,) nn" (v —g,.))
m=t " Since the vectorgg,,, 1 < m < M} form a normalized tight
2 * frame for aK -dimensional spac C CV, g, = Pyh,, for
= m— m—0n). (69 = m
o n;(v )" (Vm—gm)- (69) some orthonormal set of vectofa,,,, 1 < m < M} that span
- n M-dimensional subspacd’ C C¥ containingl/. Let G

From (6.39)’ we conclude t.h"?‘t _m_inimizing the MSE define ndH denote the matrices of columggs, andh,,,, respectively.
by (5) is equivalent to minimizing the least squares ernghen g — Py H and

ers({vm}s {gm})-

We now show that the OMU vectors also form the closest M
normalized tight frame to the signature vectars. In other Z 959, =tr(G'G) = tr(H* Py H). (73)
words, the vectorg,, that minimizeers({v..}, {g,,}) and m=1

ers({sm}, {9,,}) are equal, subject to the constraint Since the columns ol are orthonormal and spafv, we can

G'G =Py (70) expressPyy, as
where G is the matrix of columng,, andV = N(G)* is x
. ) . Hdm . Py =HH". 74
a K-dimensional space. To this end we rely on the following w (74)
lemmas. Substituting (74) into (73) we have
Lemma 5: Let {y,, € CN, 1 <m < M} be a set of vectors I
where the firstK” vectors are orthogonal, i.e. Z *
! ! gmgm = tI‘(PWpM) = tI‘(Pz,{) =K (75)
yzym:cfnfskmv 1 S k7 m S K m=1

with ¢,, > 0, and the remaining vectors are equalOtoi.e., where we used the fact th&, P, = F, sinceld C W, and
y,, =0 for K+1 <m < M.Then, the normalized tight frame thattr( ) is equal to the dimension &f. Combining (75) with (72)
minimizesers({¥,m }, {9m}) IS 9m = Ym/cm for 1 <m < K, we conclude that minimizingrs({y,,. }, {9..}) is equivalentto
andg,, =0 for K+1<m < M. maximizing>"M_, R{y*.g,.}.
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Next, using the Chauchy—Schwarz inequality

M K
> R{ghyat = > R{ghy.)
m=1 m=1

<

K
> 1G5yl
m=1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

whereX is a diagonalV x M matrix with diagonal elements
1/om, 1 <m < K and0 otherwise. Now, le¥ = VR=UZ
andS = SR = UX. Then the firstX columns®,, of V are
orthogonal, and the remaining columns are @llSimilarly,
the first K columnss,, of S are orthogonal, and the re-
maining columns are all. Furthermore®,, = 8,,/02, for

1 < m < K. Thus, the normalized tight frame minimizing
eLs({vm}, {9.,}) is the same as the normalized tight frame

IN

x
> W) (Gh90)"?
1

m

> Why)'?

m=1

Il

< (76)

minimizing ers({8m}, {9, })-
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where we used the fact the},g,, < 1, sinceg,, is an orthog- Lopez for many fruitful discussions.

onal projection of a normalized vector. We have equality in (76)
if and only ifg,, = ¥,,dm, 1 < m < K for somed,, > 0,
andg*.g,, = 1,1 < k < K. In addition, to satisfy (70), we
must have thaG* G is a rank& orthogonal projection oper-
ator, where? is the matrix of columng,,,. Thusg,,, = ¥,,./¢m.,
1<m<K,andg,, =0, K+1<m< M. O

As aresult of Lemma 5, it follows that if we have two sets of
orthogonal vectors, where each vector from one set is propor4!
tional to a vector in the other set, then the closest normalized
tight frame to each one of these sets of vectors is the same. [5]

(1
(2]
(3]

Lemma 6: Let the columns ofG' be the normalized tight
frame vectorg,,, that minimizess({v..}, {9,.}), and letv,,
denote the columns & = VU, wherel is an arbitrary unitary
matrix. Then the normalized tight frame vectgrs that mini-
mizeers({v}, {9,,}) are the columns o = GU.

Proof: For any normalized tight framg,,, that are the
columns ofG, we have

eLs({vm}, {gm}) =tx((V - G)*(V - G))
=tr(U*(V - G)"(V — Q)U)
=tr((V — GU)*(V - GU))
= ers({Bn}. (3) o

whereg,,, are the columns of = GU. Furthermore, the vec-
torsg,, also form a normalized tight frame. Indeed, since the[lz]
vectorsg,,, form a normalized tight fram&GG™ = Pr (q). But,

(6]

(71
(8]

9]
(20]

(77)

GG = QUU*G* = GG* [13]

and, consequently, the vectgfs also form a normalized tight

frame. O [14]

From Lemmas 5 and 6 it follows that if we can find a unitary [15]
matrix such that the firsk” columnsw,,, of V.= VU are orthog-
onal and the remaining columns are @ltthe first K columns  [16]
3,, of § = SU are orthogonal and the remaining columns are
all 0, andw,, is proportional tas,,, then the normalized tight [17]
frame minimizingers({vm}, {9.,}) and the normalized tight
frame minimizinge s ({sm}, {g,,}) are the same.

We now show that such a unitary matrix exists. 1$t=
UXR" be the SVD ofS, whereU andR are unitary matrices
and X is a diagonalN x M matrix with diagonal elements
om > 0,1 <m < K, and0 otherwise. Then

V=8(88"=USR

(18]

[19]

(20]
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