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Abstract—In this paper, we propose a new linear multiuser re-
ceiver for synchronous code-division multiple-access (CDMA) sys-
tems, referred to as the orthogonal multiuser (OMU) receiver. Un-
like the linear minimum mean-squared error (MMSE) receiver,
the OMU receiver depends only on the signature vectors and does
not require knowledge of the received amplitudes or the channel
signal-to-noise ratio (SNR). Several equivalent representations of
the receiver are developed with different implications in terms of
implementation. In the first, the receiver consists of a decorrelator
demodulator followed by an optimal whitening transformation on
a space formed by the signatures. In the second, the receiver con-
sists of a bank of correlators with correlating vectors that are pro-
jections of a set of orthogonal vectors, and are closest in a least
squares sense to the decorrelator vectors and also closest in a least
squares sense to the signature vectors. In the third, the receiver
consists of a single-user matched filter (MF) followed by an optimal
whitening transformation on a space formed by the signatures.

We derive exact and approximate expressions for the probability
of bit error, as well as the asymptotic signal-to-interference+noise
ratio (SINR) in the large system limit. The analysis suggests that
over a wide range of channel parameters the OMU receiver can
outperform both the decorrelator and the single-user MF and per-
form similarly to the linear MMSE receiver, despite not knowing
the channel parameters.

Index Terms—Code-division multiple access (CDMA), least
squares, multiuser detection, normalized tight frame, orthogonal-
ization, subspace whitening, whitening.

I. INTRODUCTION

M ULTIUSER receivers for detection of code-division
multiple-access (CDMA) signals try to mitigate the

effect of multiple-access interference (MAI) and background
noise. These include the optimal multiuser receiver, the linear
minimum mean-squared error (MMSE) receiver, the decorre-
lator, and the matched filter (MF) receiver [1].

Both the optimal receiver and the linear MMSE receiver re-
quire knowledge of the channel parameters, namely, the noise
level and the received amplitudes of the users’ signals. There
are many scenarios, however, where these parameters may not
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be known or may be changing over time. On the other hand,
the MF and the decorrelator receivers are linear receivers that
only require knowledge of the signature vectors. The MF opti-
mally compensates for the white noise, but does not exploit the
structure of the MAI; the decorrelator optimally rejects the MAI
for linearly independent signature vectors, but does not consider
the white noise. A difficulty often encountered when using the
decorrelator is that the noise component in the receiver output
can have a large variance and a covariance structure with a very
high dynamic range.

Recently, a new linear multiuser receiver referred to as the
orthogonal multiuser (OMU) receiver was proposed as a com-
promise between the MF and the decorrelator [2], [3]. Like the
MF and the decorrelator, this receiver requires knowledge of the
signature vectors only and is, therefore, designed to operate in
environments in which the channel parameters are unknown or
time varying. The OMU receiver was developed in [2] under
the assumption of linearly independent signature vectors. In this
paper, we provide a much more thorough development of the
OMU receiver and extend the results to include linearly depen-
dent signature vectors. We also develop tools to analyze the per-
formance of the OMU receiver. The analysis, presented in Sec-
tion VI, strongly suggests that in certain cases this new receiver
outperforms the MF and the decorrelator and approaches the
performance of the linear MMSE receiver, even though the re-
ceived amplitudes of the users and the noise variance are un-
known.

Three equivalent representations of the new receiver are de-
veloped in Section III. In the first, developed in Section III-A,
the receiver consists of a decorrelator demodulator followed by
an optimal MMSE whitening transformation [4], [3] on a space
formed by the signature vectors. This whitening transformation
is designed to optimally decorrelate the outputs of the decorre-
lator prior to detection, and in that way compensate for the noise
enhancement of the decorrelator receiver. Specifically, it mini-
mizes the mean square error (MSE) between the vector output of
the decorrelator and the output of the whitening transformation,
so that distortion to the output vector is minimized under the
whitening constraint. In the second, developed in Section III-B,
the demodulator consists of a bank of correlators with corre-
lating vectors that are projections of a set of orthogonal vec-
tors, and are closest in a least squares sense to the decorrelator
vectors and also closest in a least squares sense to the signa-
ture vectors. In the third, developed in Section III-C, the re-
ceiver consists of an MF demodulator followed by an optimal
MMSE whitening transformation on a space formed by the sig-
nature vectors, which minimizes the MSE between the vector
output of the MF and the output of the whitening transformation.
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These three representations are mathematically equivalent, but
they provide further insight into the OMU receiver and may have
different implications in terms of implementation. The proper-
ties of the OMU receiver as well as efficient methods for its
implementation are summarized in Section IV.

The whitening approach proposed in this paper is different
from previous whitening approaches to multiuser detection
[5]–[8]. In the decorrelating decision-feedback detector of [5],
the components of the output vector of the feedforward filter
are indeed whitened, but not according to the criterion used by
the OMU demodulator. Rather, the whitening transformation
in [5] is chosen in anticipation of a nonlinear feedback loop.
A noise-whitening approach is also used in [6], where the
whitening has a different context. Unlike the decorrelating
decision-feedback detector and the OMU detector, where the
whitening is performed across users in the same symbol period,
the detector in [6] performs whitening of the power spectrum
of the received chip waveform followed by MF detection of the
desired user. Though this method results in poorer performance
than typical multiuser detectors, it can be applied to a broader
set of circumstances, e.g., interferers are not required to be
locked and despreaded, and the spreading codes of interferers
are not required to be known. The approaches in [7], [8] are
similar in concept to the approach in [6].

In Section V, we show that the OMU demodulator max-
imizes both the total signal-to-interference ratio (SIR) and
the total signal-to-noise ratio (SNR) at the output subject to
the whitening constraint when the signature vectors have a
certain symmetry property called geometric uniformity [9],
[10] which holds, for example, for pseudonoise (PN) sequences
corresponding to maximal-length shift-register sequences [1],
[11]. The OMU demodulator also approximately maximizes
both the total output SIR and the total output SNR for nearly
orthogonal signature vectors. This provides some additional
justification for this receiver.

In Section VI, we evaluate the performance of the OMU
receiver. We first derive exact and approximate expressions
for the probability of error. We then analyze the asymptotic
performance of the receiver in the large system limit when
random Gaussian signatures and accurate power control are
used. Specifically, we show that the output signal-to-interfer-
ence noise ratio (SINR) of the output of the OMU receiver
converges to a deterministic limit. Our method of proof can
be easily modified to characterize the performance of other
multiuser detectors in the large system limit as well [12].
Using these results, we compare the asymptotic performance
of the OMU receiver to that of the decorrelator, MF, and linear
MMSE receivers [13], [14], [12]. The analysis demonstrates
that in the large system limit, the OMU receiver often performs
better than both the MF and the decorrelator receivers, which
motivates the use of the OMU receiver in scenarios in which
the channel parameters are unknown.

II. PROBLEM FORMULATION

Before proceeding to a detailed development of the OMU re-
ceiver, in this section we summarize some notation and provide
a formulation and overview of our problem.

Fig. 1. General linear receiver comprised of a bank of correlators with
correlating vectorsqqq followed by a bank of detectors.

We denote vectors in ( arbitrary) by boldface lower-
case letters, e.g.,, where the th component of is denoted
by . Matrices in are denoted by boldface uppercase
letters, e.g., . The range space and null space of the matrix
are denoted by and , respectively. denotes the

identity matrix, denotes the Hermitian conjugate of
the corresponding matrix, denotes theMoore–Penrose pseu-
doinverse[15], and denotes an optimal vector or matrix. The

th element and the th column of a matrix are denoted by
and , respectively. denotes the orthogonal projec-

tion operator onto the subspace, and denotes the orthog-
onal complement of . The sign of is denoted by , and
is equal to for and for . A prime attached to
a random variable or vector denotes the variable or vector with
the conditional mean given the transmitted data subtracted, e.g.,

, where is the vector of transmitted data.
Consider an -user white Gaussian synchronous CDMA

system where each user transmits information by modulating a
signature sequence. The discrete-time model for the received
signal is given by

(1)

where is the matrix of signa-
tures with being the signature vector of theth user,

is the matrix of received amplitudes
with being the amplitude of the th user’s signal,

is the data vector with being the
th user’s transmitted symbol, andis a noise vector whose

elements are independent . We assume that all data
vectors are equally likely with covariance . For concreteness,
we also assume that .

Based on the observed signal, we design a linear receiver
to detect the information transmitted by each user, which can be
implemented using a bank of correlators, as depicted in Fig. 1.
We restrict our attention to receivers that do not require knowl-
edge of the received amplitudes or the noise level . The
received signal is cross-correlated with vectors
so that , where the vectors are to be determined
and are functions of the signature vectors only. Theth user’s
bit is then detected as . Since the noiseless vector

lies in the subspace spanned by the signature vectors,
we also assume that the correlating vectorslie in .

If we choose the vectors in Fig. 1, then the resulting
demodulator is equivalent to the single-user MF demodulator
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Fig. 2. Alternative representation of Fig. 1 in terms of a linear transformation of the decorrelator outputs. An additional representation can be obtained by replacing
the decorrelator vectorsvvv by the signature vectorssss , and by changing the linear transformationBBB accordingly.

[1]. Choosing the vectors , where are the columns
of , leads to the decorrelator receiver,
introduced by Lupas and Verdú [16]. When the signature vec-
tors are linearly independent, the decorrelator optimally rejects
the MAI. For linearly dependent signature vectors, which is the
case, for example, when the number of usersis larger than the
signature length , the decorrelator no longer rejects the MAI.
In either case, the inverse operation of the decorrelator may en-
hance the white noise, resulting in degraded performance. In-
deed, the noise component at the output of the decorrelator often
has a large variance and a covariance structure with a very high
dynamic range.

To develop the OMU receiver, we note that a bank of corre-
lators as depicted in Fig. 1 with vectors is equivalent
to a demodulator with correlating vectors that span, followed
by an appropriate linear transformation on the demodulator out-
puts. In particular, the receiver of Fig. 1 is equivalent to the re-
ceiver of Fig. 2, where are the decorrelator vectors and the
transformation is constructed from the decorrelator vectors

and the correlating vectors of Fig. 1. Specifically, with
denoting the matrix of columns , the vector output of

Fig. 1 is equal to , and the vector output of Fig. 2 is equal
to . Since the vectors lie in , ,
where we used the fact that from the properties of the pseudoin-
verse, . We may, therefore, express the output of
Fig. 1 as

with In the absence of noise, the decorrelator
leads to optimal decisions. Thus, in this case choosing
in the receiver of Fig. 2 will result in an optimal receiver for
detecting the transmitted symbols. However, in the presence of
noise, the decorrelator does not generally lead to optimal deci-
sions. We may therefore wish to further process the outputs of
the decorrelator prior to detection.

We may also choose the correlating vectors of Fig. 2 to be
equal to the signature vectors, so that the receiver of Fig. 1 can be
implemented as an MF demodulator followed by a linear trans-
formation on the MF outputs. This representation
may be of interest since, in many practical receivers, the MF de-
modulator serves as a front-end whose objective is to obtain a
vector representation of the continuous-time received signal. If
we choose to linearly process these outputs prior to detection,

then the overall demodulator may be expressed as an MF fol-
lowed by a linear transformation of the MF outputs.

III. T HE OMU DEMODULATOR

A. Decorrelator Representation of the OMU Demodulator

As motivated in Section II, we would like to choose the trans-
formation in Fig. 2 to improve the performance of the decor-
relator. It was noted in [13] and [16] that the decorrelator does
not generally lead to optimal decisions, since, in general, the
noise components in the outputs of the decorrelator
demodulator are correlated. Specifically, from the properties of
the pseudoinverse [15], we have that , where

is the orthogonal projection onto the orthogonal com-
plement of the null space of , so that the vector output

of the decorrelator is equal to

(2)

The covariance of the noise component in is equal to the
covariance of , and is given by

(3)

From (3) it follows that if the vectors are not orthogonal, then
the outputs of the decorrelator are correlated. Intuitively it seems
plausible that eliminating this common (linear) information may
potentially improve the performance of the detector. Further-
more, the pseudoinverse operation in (3) may result in a noise
component with a large variance and a spectral shape with a high
dynamic range. To improve the performance of the decorrelator
receiver it is, therefore, desirable to shape the covariance of the
decorrelator outputs prior to detection, and in that way com-
pensate for its noise enhancement properties. Therefore, when
the signatures are not orthogonal, we propose to decorrelate the
noise components in the outputs of the decorrelator prior to de-
tection, so that we control the dynamic range and spectral shape
of the covariance of the receiver output. We emphasize that this
task does not require estimating the variance of the noise or the
received amplitudes of the users’ vectors.

Data whitening arises in a variety of signal processing and
communication contexts in which it may be useful to decorre-
late a data sequence either prior to subsequent processing, or to



ELDAR AND CHAN: AN OPTIMAL WHITENING APPROACH TO LINEAR MULTIUSER DETECTION 2159

control the spectral shape after processing. Examples in which
data whitening has been used to advantage include enhancing di-
rection-of-arrival algorithms by prewhitening [17], [18]. Rather
than choosing the whitening transformation arbitrarily, in the
following we suggest choosing an optimal whitening transfor-
mation that whitens the decorrelator output and at the same
time minimizes the distortion to the unwhitened vector. In Sec-
tion VI, we analyze the performance of the resulting receiver
and show that in many cases this approach does in fact lead
to improved performance over the decorrelator and the MF re-
ceivers, which provides justification for our method.

When the signature vectors are linearly independent, we
may decorrelate the outputs of the decorrelator by choosing
in Fig. 2 such that is whitened.1 Specifically, in this case, the
covariance matrix of the noise component in

is invertible and, therefore, there is a whitening transformation
such that the covariance matrix of the noise component of

is given by . Indeed, any transformation
satisfying

(4)

is a valid whitening transformation. We then base our detection
on , so that the th user’s bit is detected as .

There are many ways to choose a whitening transformation
satisfying (4), for example using the eigendecomposition

or Cholesky factorization of [19]. Since the detection is
based on the outputof the whitening transformation, we pro-
pose choosing the whitening transformation that results in
an output that is as close as possible in an MSE sense to the
output of the decorrelator so that we minimize the distortion
to . Thus, among all possible whitening transformationswe
seek the one that minimizes the total MSE given by

(5)

where and are the th components of
and , respectively.

If the signature vectors are linearly dependent, then the
noise components in the outputs are linearly dependent, i.e.,
they satisfy a deterministic linear relation. Thus, the vector noise
output of the decorrelator lies in a subspace with
probability one (w.p. ),2 which is the range space of and is
also, from (3), the range space of . Since the elements of
are linearly dependent, the elements of the noise component in

, i.e., the elements of , are also linearly dependent and,
therefore, cannot be statistically uncorrelated. In other words,
the covariance matrix of the noise compo-
nent in is not invertible and, therefore, there is no whitening
transformation satisfying (4). Therefore, in this case, we
cannot whiten in the conventional sense. Instead, we propose

1In this paper, when we refer to the whitening of a random vectoraaa, we explic-
itly mean whitening the noise component inaaa. Equivalently, this corresponds to
whiteningaaa�E(aaajbbb). Similarly, when we say that a random vectorxxx is white
we explicitly mean that the noise component inxxx is white, i.e. the covariance
matrix of the noise component inxxx, xxx � E(xxxjbbb), is given byCCC = c III for
somec 6= 0.

2When we say that a random vector lies in a subspace we mean w.p.1.

whitening on the subspace in which it lies, which is referred
to assubspace whitening[4], [3]. The noise component in the
output of the subspace transformationis said to be white on

if its covariance matrix is given by

(6)

where the first columns of form an orthonormal basis for
and is the dimension of , and is the matrix

(7)

The condition (6) implies that the representation of the noise
component of in terms of any orthonormal basis foris white
in the conventional sense. As in the linearly independent case,
we seek a subspace whitening transformationsatisfying

(8)

such that (5) is minimized. A more elaborate discussion on sub-
space whitening can be found in [4]. In the remainder of the
paper, we use the term whitening to denote both whitening and
subspace whitening.

The solution to the general MMSE whitening problem has
been obtained in [4], and is incorporated in the following the-
orem.

Theorem 1 (MMSE Whitening [4]):Let be a
zero-mean random vector with covariance matrix
with , where is a unitary matrix and

is a diagonal matrix with the first elements positive and
the remaining diagonal elements equal to. Let denote the
range space of spanned by the first columns of . Let

be any whitening transformation that minimizes the total
MSE between the input and the output with covariance

, where is given by (7) and .
Then

1) if , then is unique and is given by

2) if , then

a) is not unique,
b) is an optimal

whitening transformation.
Furthermore, let where is an orthogonal pro-
jection onto and is any optimal whitening transformation.
Then

1) is unique, and is given by

2) w.p. .

In Fig. 2, the noise component in the inputto the whitening
transformation has zero mean and covariance .
From Theorem 1, an optimal whitening transformation is

(9)

Note that in Fig. 2, is restricted to the range spaceof ,
since is also the range of and . Consequently,
the output is not affected by the action of on , so that



2160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

any MMSE whitening transformation will result in the same
output .

B. Correlation Demodulator Representation of the OMU
Demodulator

As we have seen in Section II, any demodulator of the form of
Fig. 2 is equivalent to a correlation demodulator of the form of
Fig. 1 with correlating vectors that are the columns of

. Since the OMU demodulator consists of a decorrelator
followed by the MMSE whitening transformation given by
(9), it is equivalent to a bank of correlators with vectors

, where and

(10)

We now try to gain some insight into the vectors, which we
refer to as the OMU vectors.

From (10) and (8) we have that

(11)

If the vectors are linearly independent, then and
from (11) it follows that the vectors are
orthonormal. If the vectors are linearly dependent, then the
vectors are clearly not orthonormal. Rather, they form anor-
malized tight frame[20]–[22] for .

A set of vectors form a normalized
tight frame for a subspace if for any

(12)

The condition (12) is equivalent to

(13)

where is the matrix of columns . Alternatively, a set of
vectors forms a normalized tight frame for if and only if
the vectors can be expressed as the orthogonal projections onto

of a set of orthonormal vectors in a larger space containing
[22]. Clearly, if , then (13) implies that the

vectors are orthonormal.
Comparing (11) with (13) we conclude that a decorrelator de-

modulator followed by a whitening transformation is equivalent
to a bank of correlators with vectors that form a normalized tight
frame for . In the case in which the signature vectors are lin-
early independent, the normalized tight frame reduces to a set
of orthonormal vectors.

Since the MMSE whitening transformation is optimal in
some sense, we expect the OMU vectors it defines to also have
some form of optimality. The following theorem, proved in
the Appendix, asserts that the OMU vectors form the closest
orthonormal vectors in the linearly independent case, and the
closest normalized tight frame vectors in the linearly dependent
case, in a least squares sense to both the decorrelator vectors

and the signature vectors .

Theorem 2: Let denote a set of
signature vectors and let denote the OMU

Fig. 3. Two-dimensional example of the OMU vectors. Since the vectorsvvv

andvvv are linearly independent, the OMU vectorsĝgg andĝgg are chosen to be
orthonormal and to minimize heee ; eee i = hvvv � ggg ; vvv � ggg i.

vectors that are the correlating vectors of the OMU demodulator.
Let

(14)

denote the least squares error between the vectors

and

Then

1) the vectors

minimize over all vectors that
form a normalized tight frame for , where are the
decorrelator vectors;

2) the vectors

minimize over all vectors that
form a normalized tight frame for .

From Theorem 2, it follows that seeking a whitening trans-
formation to minimize the MSE defined by (5) is equivalent to
seeking a set of vectors that form a normalized tight frame
for , and are closest to the decorrelator vectorsand the sig-
nature vectors in the least squares sense. In particular, when
the signature vectors are linearly independent, we may interpret
the OMU demodulator as a bank of correlators matched to a
set of orthonormal vectors that are closest in the least squares
sense to the decorrelator vectors and to the signature vectors, as
illustrated in Fig. 3. When the signature vectors are linearly de-
pendent, the OMU demodulator can be interpreted as a bank of
correlators matched to a set of vectors that are the projections
onto of a set of orthonormal vectors that are closest in the least
squares sense to the decorrelator vectors and to the signature
vectors. This problem has been solved in the context of quantum
detection [10], general inner product shaping [23], and optimal
frame design [22]; the solution in [10], [23], [22] is equal to the
OMU vectors given by (10).

C. MF Representation of the OMU Demodulator

Let us now consider an MF demodulator followed by an

MMSE whitening transformation that minimizes the
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MSE between the vector outputof the MF demodulator and
the output of the whitening transformation, analogous to (5).
Since the covariance of the noise component inis given by

, from Theorem 1 it follows that .
Therefore, the vector outputof an MF demodulator followed
by an MMSE whitening transformation is given by

(15)

Alternatively, using the decorrelator as a front end, the output
of Fig. 2 with given by (9) is

(16)

Comparing (15) with (16) we conclude that the two outputs are
equal. Note also that (15) and (16) are consistent with (10).

IV. COMPUTATIONAL ASPECTS

To implement the OMU demodulator efficiently, we may use
the form of Fig. 1 where the vectors , and are the
OMU vectors. The OMU vectors may be computed efficiently
by expressing either in terms of the polar decomposition [19]
or the singular value decomposition (SVD) of.

First, we show that is the orthogonal projection onto the
space spanned by the vectors of the partial isometry in a
polar decomposition of [23].

Let denote an arbitrary matrix with3 .
Then, has apolar decomposition[24], [19]

(17)

where is an partial isometry that satisfies ,
and . The Hermitian factor is always unique;
the partial isometry is unique if and only if has full column
rank. When has full column rank, the columns of the partial
isometry are the orthonormal vectors that are closest in a least
squares sense to the columns of[24], [23]. If does not have
full rank, then there are many possible choices for. However,
for any such choice, the columns of , where is
an orthogonal projection onto , form a normalized tight
frame for that is closest in a least squares sense to the
columns of .

When the signatures are linearly independent, it follows
from Theorem 3 that the OMU vectors are the orthonormal vec-
tors that are closest in a least squares to the signature vectors,
and when the signature vectors are linearly dependent, the OMU
vectors are the normalized tight frame vectors that are closest in
a least squares to the signature vectors. From the properties
of the polar decomposition, we conclude that in the linearly in-
dependent case the OMU vectors are the columns of the partial
isometry in the polar decomposition of. In the linearly depen-
dent case, the OMU vectors are the columns of the projection
onto of any partial isometry in a polar decomposition of.

Alternatively, we can also expressin terms of the SVD of
. Let the SVD of be given by , where and

3If M > N , then we can define the polar decomposition forAAA .

are unitary matrices and is a diagonal matrix. Then
we may express as

(18)

where is the matrix given by

(19)

Since the OMU vectors can be expressed in terms of the polar
decomposition and the SVD of, they may be computed very
efficiently exploiting the many known efficient algorithms for
computing either the polar decomposition or the SVD (see, e.g.,
[15], [25], [24]).

A. Summary of the OMU Representation

We summarize our results regarding the OMU demodulator
in the following theorem.

Theorem 3 (OMU Demodulator):Let
denote a set of signature vectors that span a-dimensional
subspace , where . Let
denote the OMU vectors that are the correlating vectors of the
OMU demodulator. Let and denote the matrices of columns

and , respectively, and let have an SVD .
Then

where is given by (19), and is equal to the orthogonal pro-
jection onto of the partial isometry in a polar decomposition
of . In addition,

1) the OMU demodulator can be realized by a decorrelator
demodulator followed by an MMSE whitening transfor-
mation ;

2) the OMU demodulator can be realized by an MF demod-
ulator followed by an MMSE whitening transformation

;
3) the vectors minimize the least squares error

given by (14), i.e., they form the
closest normalized tight frame to the decorrelator vectors

;
4) the vectors minimize the least squares error

, i.e., they form the closest normalized
tight frame to the signature vectors .

V. FURTHER OPTIMALITY PROPERITES OF THEOMU
DEMODULATOR

To derive the OMU demodulator, we proposed whitening
the output of the decorrelator demodulator and then choosing
the whitening transformation to minimize the MSE between
the noise components in the input and output of the whitening
transformation. In this section, we show that this choice of
whitening transformation has the additional property that
among all possible whitening transformations, it minimizes
the total MAI and maximizes the total SNR in the output of
the transformation for signature vectors that have a strong
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symmetry property. Furthermore, for nearly orthogonal sig-
nature vectors [26], the MMSE whitening transformation
approximately minimizes the total MAI and approximately
maximizes the total SNR.

For simplicity of exposition, we assume throughout this sec-
tion that for all ; the results extend in a straight-
forward way to the general case in which the powers
are not equal.

A. Minimum Total MAI Whitening Transformation

We have seen that (in the linearly independent case) the
decorrelator eliminates the MAI by inverting the multiuser
channel, but in the process may enhance the white noise. We
proposed compensating for this possible noise enhancement by
whitening the noise component in the output of the decorrelator
prior to detection. However, the whitening transformation
introduces some MAI into the outputs . Indeed, the data
component in the output of the whitening transformation is
the vector , whose th component is

(20)

where is the signal component in , and

is the MAI component in . We may, therefore, choose
to minimize the total MAI in the output , or equivalently, to
maximize the total SIR in given by

SIR

(21)

subject to the whitening constraint

(22)

or the subspace whitening constraint

(23)

where is the covariance of the noise component ingiven
by (3), and .

We first consider the case of linearly independent signature
vectors. In this case, we can simplify the expression for SIR
given by (21) as follows. Since must be invertible, (22) re-
duces to

(24)

From (24) we conclude that

is constant, independent of the choice of. Expressing (21) as

SIR (25)

it follows that maximizing SIR subject to (22) is equivalent to
maximizing

(26)

subject to (22).
Let have an eigendecomposition , where

is a diagonal matrix with diagonal elements . Then, from
(24), and using the properties of the SVD, we have that

(27)

for some unitary matrix . Let denote the columns of
, and let denote the columns of . Then

, and

(28)

Thus, the problem of maximizing (21) subject to (22) reduces
to seeking a set of orthonormal vectors that maximize (28).

When the signature vectors are linearly dependent, we can
show that the design problem of (21) and (23) reduces to seeking
a set of vectors that form a normalized tight frame and max-
imize (28).

This is a reasonable approach to choosing the whitening
transformation and may even seem more intuitive then
minimizing the MSE given by (5). However, unlike the latter
problem, this problem is hard to solve analytically. Nonethe-
less, we now show that we can formulate this problem within
the framework of quantum detection, and then rely on results
obtained in that context.

In a quantum detection problem, a system is prepared in one
of known (pure) states that are described by vectorsin an
abstract Hilbert space , and the problem is to detect the state
prepared by performing a measurement on the system. The mea-
surement is described in terms of a set of measurement vectors

which are orthonormal if the states are linearly indepen-
dent, or which form a normalized tight frame if the states are
linearly dependent.4 Given a set of measurement vectors,

4In a quantum context, a normalized tight frame is referred to as a rank-one
positive operator-valued measure (POVM).
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and assuming equal prior probabilities on the different states,
the probability of correct detection is given by [27]

(29)

where denotes the inner product between the vectors
and . Comparing (28) with (29), we see that choosing

the measurement vectors to maximize the probability of cor-
rect detection subject to an orthogonality or normalized tight
frame constraint is equivalent to choosing a whitening trans-
formation to maximize SIR subject to the corresponding con-
straint. We may, therefore, interpret the design problem of (28)
as a quantum detection problem, and then apply results derived
in that context.

Based on results derived in a quantum detection context [10],
[28], it can be shown that when the signature vectors have a
strong symmetry property called geometric uniformity [9], the
vectors maximizing (28) are equal to the columns of the
unitary matrix in the eigendecomposition of . From (27),
it then follows that the whitening transformation that maximizes
SIR is given by , where

is the MMSE whitening transformation given by (9).
A set of vectors is geometrically uniform (GU) if given any

two vectors and in the set, there is an isometry (a norm-
preserving linear transformation) that transforms into

while leaving the rest of the set invariant [9], so that
permutes the set. Thus, for every, for some .
Intuitively, a vector set is GU if it “looks the same” from any of
the vectors in the set. It can be shown [23] that a set of vectors
with real Gram matrix is GU if and only if the Gram matrix
of inner products of the vectors in the set has the property that
the second and subsequent rows are permutations of the first
row. For example, if the Gram matrix is a circulant matrix,5 then
the corresponding signature set is GU. In particular, if the inner
product between any two distinct vectors in the set is equal to a
constant , and the norm of all the vectors is the same, then the
corresponding Gram matrix is circulant and the vector set is GU.
In this case, assuming normalized vectors, the rows of the Gram
matrix are permutations of the sequence .

A common choice for signature vectors in a direct-sequence
CDMA system are PN sequences corresponding to maximal-
length shift-register sequences [1], [11]. These sequences have
the property that the inner product between any two distinct se-
quences is equal to a constant. Thus, for this choice of signature
vectors, the OMU demodulator maximizes SIRsubject to the
constraint that the outputs of the demodulator are uncorrelated
on the space in which they lie.

Further results regarding the whitening or subspace whitening
transformation maximizing SIRthat follow from results per-
taining to quantum detection are that if the signature vectors are

5A circulant matrix is a matrix where every row (or column) is obtained by
a right circular shift (by one position) of the previous row (or column). An ex-
ample is

a a a

a a a

a a a

:

nearly orthogonal, then also approximately maximizes SIR
[26]. Iterative algorithms [29], [26], [23] can be used to maxi-
mize SIR when the signature sets are arbitrary.

B. Maximum Total SNR Whitening Transformation

From results in [30], [3] that also exploit the connection with
the quantum detection problem, it can be shown that for GU
signature vectors the whitening transformation in the OMU
demodulator also maximizes the total output SNR defined
by SNR SNR , where SNR is the SNR at the

th output of the whitening transformation and is defined
by SNR . Therefore, for PN sequences,
the OMU demodulator maximizes the total output SNR and
minimizes the MAI subject to the decorrelation constraint.
Furthermore, for nearly orthogonal signature vectors [26], the
MMSE whitening transformation approximately maximizes
the total output SNR.

VI. PERFORMANCEANALYSIS

In this section, we discuss the theoretical performance of the
OMU receiver. Specifically, in Sections VI-A and VI-B, we
derive exact and approximate expressions for the probability
of error using the OMU receiver. In Section VI-C, we analyze
the large-system performance of the receiver assuming random
Gaussian signature vectors and accurate power control. Our
analysis indicates that in many cases the OMU receiver can
lead to a substantial improvement in performance over the
decorrelator and the MF receivers, which motivates the use of
this receiver.

A. Exact Probability of Error

The detector input of the OMU receiver defined via (10) is

(30)

Each component of the detector input vector can be decomposed
into

(31)

where the terms

(32)

(33)

(34)

represent the desired signal, the MAI, and the noise, respec-
tively. Conditioned on , the decision statistic is Gaussian
with mean and variance

(35)
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Fig. 4. Probability of bit error with three users and cross correlation� = 0:8. The amplitudeA of the desired user is two times greater than the amplitudeA
of the second user and four times greater than the amplitudeA of the third user.

Taking into consideration all possibilities of, the resulting
probability of error for the th user is

(36)

where

(37)

Fig. 4 evaluates (36) in the case of three users with cross cor-
relation , where the first user, the desired user, has two
interferers such that and . The

corresponding curves for the single-user MF, decorrelator, and
linear MMSE receiver are plotted for comparison. The OMU
receiver performs similarly to the linear MMSE receiver at all
SNR, and better than the decorrelator and the single-user MF.

Next, we examine the scenario in which the desired user has
four interferers such that for . In
Fig. 5, where the cross correlation of the signatures is shown in
(38) at the bottom of the page, the OMU receiver performs sig-
nificantly better than the decorrelator and the MF. Moreover, the
OMU receiver performs slightly better than the linear MMSE
receiver at high SNR (although the linear MMSE receiver min-
imizes the MSE, it does not necessarily minimize the proba-
bility of error, especially when the MAI is not approximately
Gaussian). In Fig. 6, where the signatures are dependent and the
cross correlation is given by the rank-deficient matrix, shown in
(39) at the bottom of the page, the OMU receiver again outper-
forms the decorrelator and the MF.

(38)

(39)
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Fig. 5. Probability of bit error with five equal-energy users and linearly independent signatures with cross correlation given by (38).

Fig. 6. Probability of bit error with five equal-energy users and linearly dependent signatures with cross correlation given by (39).

B. SINR and Approximating the Probability of Error

From (32)–(34), the terms , , and are mutually in-
dependent and zero-mean, and have variances

(40)

(41)

(42)

The SINR at the detector for theth user is therefore shown in
(43) at the bottom of the page.

In the case of accurate power control, i.e., , we can
simplify (43) to

(44)

(43)
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Fig. 7. The exact and Gaussian-approximated probability of bit error for the OMU detector, with 10 equal-energy users and identical cross correlations� = 0:2.

where

(45)

is the received SNR. An alternate form for (44), which will be
more convenient for the analysis in Section VI-C, is

(46)

Assuming is Gaussian, the probability of error can
be approximated as

(47)

At low SNR, the Gaussian approximation is acceptable because
Gaussian noise is the dominant impairment. However, at high
SNR, the discrete distribution of the MAI is poorly approxi-
mated by a Gaussian distribution, especially at the tails of the
distribution where the bit-error rate is determined. Thus, we do
not expect (47) to be particularly accurate at high SNR.

In Fig. 7, we compare the accuracy of the Gaussian approxi-
mation in (47) to the exact bit-error rate expression in (36), with
10 equal-energy users and identical cross correlations .
As expected, the approximation is useful at low SNR, but be-
comes less so at high SNR.

C. Asymptotic Large System Performance

The following theorem characterizes the performance of the
OMU receiver in the large system limit when random Gaussian
signatures and accurate power control are used. The method we
use in its proof can be easily modified to characterize the perfor-
mance of other multiuser detectors in the large system limit as
well. For example, the method can be used to derive the asymp-
totic SINR for the MF detector, and it has been recently used to
derive the asymptotic SINR for the decorrelator [12].

Theorem 4: Let the elements of the signature matrix
be independent , and let the matrix of amplitudes

be expressible as . Then, in the limit as with
held constant, the SINR for each user at the OMU

demodulator output satisfies6

(48)

when the signature vectors are linearly independent, and

(49)

when the signature vectors are linearly dependent, where [32]

(50)

(51)

are the complete elliptic integrals of the first and second kinds,
respectively, and

(52)

(53)

Proof: We begin by presenting the following lemma [12]
on Wishart matrices,7 which have the form with the ele-

6We use the notation�! to denote convergence in the mean-squared(L )
sense [31].

7A similar lemma exists for matricesSSS SSS where theN -dimensional
columns ofSSS are independent and drawn uniformly from the surface of the
unit N -sphere.
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ments of being independent . The lemma and its
proof rely on the concepts of isotropically distributed vectors
and matrices, which are reviewed in [12, Appendix A].

Lemma 1: Let the elements of an matrix be in-
dependent . Then, the eigenvector matrix of is
isotropically distributed unitary and independent of the eigen-
values.

To prove Theorem 4, we need to determine the limits of
, , and as with

held constant.
Let be the SVD of , where is an

unitary matrix, is an unitary matrix, and is a diag-
onal matrix with diagonal elements . Then, the
quantity can be written as

(54)

where is the th column of . Now, and are the
eigenvector matrix and the eigenvalue matrix, respectively, in
the eigendecomposition of the Wishart matrix . Thus, using
Lemma 1, we conclude that is an isotropically distributed
unitary matrix independent of . Since is a column of an
isotropically distributed unitary matrix, is an isotropically
distributed unit vector [33]. Consequently, has the same dis-
tribution as , where is an -dimensional vector of
independent random variables. Thus,
has the same distribution as

(55)

with the ’s denoting the eigenvalues of and the ’s de-
noting the components of. To evaluate the limit of (55) when

, we rely on the following pair of lemmas.

Lemma 2 [34]: If the ratio of the number of users to the sig-
nature length is, or converges to, a constant

(56)

then the percentage of the eigenvalues of that lie below
converges to the cumulative distribution function of the prob-

ability density function

(57)

Here, and are defined according to (52) and (53), and the
operator is defined according to

(58)

Lemma 3 [12]: Let denote a set of independent and
identically distributed (i.i.d.) random variables independent of

with , where denote the
eigenvalues of a Wishart matrix under the conditions of Lemma
2. Furthermore, let be a function such that and

for , and such that

when evaluated according to the probability
density function of (57). Then, as

(59)

where is evaluated according to .

Applying Lemma 3 and the strong law of large numbers to
the numerator and denominator of (55), respectively, and noting
that in this case so that satisfies the conditions
of Lemma 3, we have

(60)

as , where is evaluated according to the prob-
ability density function of (57). Thus,

(61)

where the last equality is from [32], and where , , ,
and are defined by (50), (51), (52), and (53), respectively.

Similarly, from (6), can be written as

(62)

which has the same distribution as

(63)

where

.
(64)

Applying Lemma 3 and the strong law of large numbers to the
numerator and denominator of (63), respectively, we have

(65)

as , where is evaluated according to the proba-
bility density function of (57). Thus,

.
(66)
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Fig. 8. Probability of bit error in the large-system limit, with equal-power users, random signatures, and� = 0:95.

Finally,

(67)

by the strong law of large numbers, with the ’s denoting the
components of .

It is well known that if and , then
and [31]. The following lemma

which involves the convergence of is now required to com-
plete the proof of Theorem 4.

Lemma 4 [12]: Let , where is a sequence of
random variables such that for all , and .
Then

(68)

Substituting (61), (66), and (67) into (46), and using the fact
that with Lemma 4 completes the proof of The-
orem 4.

Since the MAI is asymptotically Gaussian in the infinite-user
limit, we expect (47) to be an accurate approximation to the
bit-error rate at all SNR, where is given by Theorem 4. We
will use this approximation to compute the bit-error rate for the
remainder of this section.

In Fig. 8, the bit-error rate in the infinite-user limit for the
OMU receiver is compared to the single-user MF, the decorre-
lator, and the linear MMSE receiver, for . For the SNR
range shown, the OMU receiver performs better than the decor-
relator and the MF. At low SNR, the performance of the OMU
receiver is close to that of the linear MMSE receiver. In Fig. 9,
we plot the probability of bit error8 in the infinite-user limit as a

8The asymptotic large system performance of the decorrelator for the case
� > 1 is derived in [12].

function of , with an SNR of 8 dB. For roughly greater than
but less than , the OMU receiver performs significantly

better than both the decorrelator and the MF.

VII. CONCLUSION

In this paper, we developed a new multiuser receiver for
CDMA channels, referred to as the OMU receiver, which
relies on knowledge of only the signature vectors to mitigate
the effect of both MAI and additive noise. First, we showed
that the receiver can be interpreted as a decorrelator receiver
followed by an MMSE whitening transformation that optimally
whitens the output of the decorrelator prior to detection, so that
it compensates for the noise enhancement of the decorrelator
receiver without reintroducing too much MAI. In fact, we
showed that for most practical cases of signature vectors, this
receiver minimizes the MAI among all receivers that result
in uncorrelated outputs. Second, we expressed this receiver
as a correlation demodulator whose correlating vectors are
orthonormal in the case of linearly independent signature
vectors or form a normalized tight frame for the space spanned
by the signature vectors in the case of linearly dependent
signatures, and, furthermore, are closest in a least squares sense
to the signatures and to the decorrelator vectors. Third, we
demonstrated that the OMU receiver is also equivalent to an
MF receiver followed by an MMSE whitening transformation.
This new receiver can be implemented efficiently using any of
the well-known algorithms for computing the SVD or the polar
decomposition.

Finally, we developed tools to analyze the large-system
performance of this receiver. Our analysis demonstrates that
without knowledge of channel parameters, the OMU receiver
in many cases results in improved performance over both the
decorrelator and the MF receivers, particularly over practical
ranges of SNR.
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Fig. 9. Probability of bit error as a function of� in the large-system limit, with equal-power users, random signatures, and SNR of 8 dB.

APPENDIX

In this appendix we prove Theorem 2.
Let denote the th output of the demodulator of Fig. 2,

where is an arbitrary whitening transformation. We
may express as the th output of a bank of correlators with
vectors that are columns of , where the vectors
form a normalized tight frame for . Let denote the

th output of the decorrelator demodulator. Then ,
, and

(69)

From (69), we conclude that minimizing the MSE defined
by (5) is equivalent to minimizing the least squares error

.
We now show that the OMU vectors also form the closest

normalized tight frame to the signature vectors. In other
words, the vectors that minimize and

are equal, subject to the constraint

(70)

where is the matrix of columns and is
a -dimensional space. To this end we rely on the following
lemmas.

Lemma 5: Let be a set of vectors
where the first vectors are orthogonal, i.e.,

with , and the remaining vectors are equal to, i.e.,
for Then, the normalized tight frame that

minimizes is for ,
and for .

Proof: First we show that minimizing
subject to (70) is equivalent to maximizing
subject to this constraint, where denotes the real part of
the corresponding variable.

Expanding we have

(71)

(72)

Since the vectors form a normalized tight
frame for a -dimensional space , for
some orthonormal set of vectors that span
an -dimensional subspace containing . Let
and denote the matrices of columns and , respectively.
Then, and

(73)

Since the columns of are orthonormal and span , we can
express as

(74)

Substituting (74) into (73) we have

(75)

where we used the fact that since , and
is equal to the dimension of. Combining (75) with (72)

we conclude that minimizing is equivalent to
maximizing .
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Next, using the Chauchy–Schwarz inequality

(76)

where we used the fact that , since is an orthog-
onal projection of a normalized vector. We have equality in (76)
if and only if , for some ,
and , . In addition, to satisfy (70), we
must have that is a rank- orthogonal projection oper-
ator, where is the matrix of columns . Thus, ,

, and , .

As a result of Lemma 5, it follows that if we have two sets of
orthogonal vectors, where each vector from one set is propor-
tional to a vector in the other set, then the closest normalized
tight frame to each one of these sets of vectors is the same.

Lemma 6: Let the columns of be the normalized tight
frame vectors that minimize , and let
denote the columns of , where is an arbitrary unitary
matrix. Then the normalized tight frame vectors that mini-
mize are the columns of .

Proof: For any normalized tight frame that are the
columns of , we have

(77)

where are the columns of . Furthermore, the vec-
tors also form a normalized tight frame. Indeed, since the
vectors form a normalized tight frame, . But,

and, consequently, the vectors also form a normalized tight
frame.

From Lemmas 5 and 6 it follows that if we can find a unitary
matrix such that the first columns of are orthog-
onal and the remaining columns are all, the first columns

of are orthogonal and the remaining columns are
all , and is proportional to , then the normalized tight
frame minimizing and the normalized tight
frame minimizing are the same.

We now show that such a unitary matrix exists. Let
be the SVD of , where and are unitary matrices

and is a diagonal matrix with diagonal elements
, , and otherwise. Then

where is a diagonal matrix with diagonal elements
and otherwise. Now, let

and . Then the first columns of are
orthogonal, and the remaining columns are all. Similarly,
the first columns of are orthogonal, and the re-
maining columns are all . Furthermore, for

. Thus, the normalized tight frame minimizing
is the same as the normalized tight frame

minimizing .
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