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Abelian Codes Over Galois Rings Closed Under Certain  such codes. In[24], a permutation decoding algorithm was proposed for

Permutations decoding binary Abelian codes using Grébner bases. It was shown in
[24] that the number of errors that can be corrected varies with the sub-
Kiran. T and B. Sundar Rajasenior Member, IEEE group of the automorphism group of the code used in permutation de-

coding. The larger this group,the better the error-correcting capability.
This motiv har rize Abelian I nder certain
Abstract—We study n-length Abelian codes over Galois rings with char- s tof[. atesvvs tohq a atﬁef ethel;'ad Cofdes c Ofetq u ?je Cgt;[ad
acteristic p*, where n and p are relatively prime, having the additional permu a |0n§. € achieve this 1or two kinds of permutations describe
structure of being closed under the following two permutations: i) per- in the following.

mutation effected by multiplying the coordinates with a unit in the ap- Letmg, m1, ..., m,—1 be nonzero positive integers and let
propriate mixed-radix representation of the coordinate positions and ii)

shifting the coordinates byt positions. A code ist-quasi-cyclic ¢-QC) if r—1

t is an integer such that cyclic shift of a codeword byt positions gives an- n = H my.

other codeword. We call the Abelian codes closed under the first permu- A0

tation as unit-invariant Abelian codes and those closed under the second

as quasi-cyclic Abelian (QCA) codes. Using a generalized discrete Fourier : _ I ; ) ; ;
transform (GDFT) defined over an appropriate extension of the Galois ring, Leti € .I" ={0. L.... " 1}. Usingm.\'s as mixed radixes, any
we show that unit-invariant Abelian and QCA codes can be easily charac- numberi € I, can be uniquely expressed as

terized in the transform domain. For t = 1, QCA codes coincide with )

those that are cyclic as well as Abelian. The number of such codes for a i=1do+i1mo+---+ir—1(momyi--me_2) (1)
specified size and length is obtained and we also show that the dual of an

unit-invariant ¢-QCA code is also an unit-invariantt-QCA code. Unit-in-  \yhere0 < ix < my. The mixed-radix representation ofs denoted
variant Abelian (hence unit-invariant cyclic) and ¢-QCA codes over Galois b -

field F,; and over the integer residue rings are obtainable as special cases. y

Index Terms—Abelian codes, dual codes, Galois rings, generalized dis-
crete Fourier transform (GDFT), mixed-radix number system, quasi-cyclic
codes.

i =[i1=lirets ino. ..., do]. 2)

The mixed-radix addition and subtraction, denotedibyand <, re-
spectively, are defined by
. INTRODUCTION

. . L . 1 Dj=[ar_1, Gr_2, ..., a0, ax = (ix+ jr) mod my, V.
The family of Abelian codes over finite field$’,, and integer j =l ‘ 0] A=t A

rings modulom, Z,.,, have been extensively studied [1]-[8]. Abeliarf"
codes include the class of cyclic codes (hence, Bose—Chaudhuri-Hot= j = [ar—1, ¢r—2, ..., a0, ax = (ix — jx) mod my, V.
quenghem (BCH), Reed—Solomon (RS) codes) as a special case and
in some cases [1], [2], it has been shown that Abelian codes havd-€t G be an Abelian group of order
better error-correcting capabilities compared to that of cyclic codes of -
the same length. N = H ma

For a primep, Galois rings are residue class polynomial rings fyirs
Zpa|2]/P(x), where Zya[z] is the ring of polynomials ovetZ,.
and ¢(x) is a basic irreducible polynomial of degréeover Z,[x] which is a direct product of cyclic subgroups of ordem;, i =
and, hence, oveZ,. [z] [9]. This Galois ring denoted by Gg“, 1), 0, 1, ..., r — 1. Ann-length code is Abelian o' if, for every code-
throughout this correspondence, coincides with the finite figld word (co, ¢1, ..., cn—1) In the code,(coqj, Cia;s ---» Clna1)s))
whena = 1 and the integer residue class rigdgg. when! = 1. also belongs to the code for all valuesjot 0, 1, ..., n — 1.
Linear codes ove¥,. have been studied by several authors [10]-[13]. In this correspondence we study Abelian codes that are also closed
Renewed interest in codes over rings was due to Hammbais[14], under the two permutations given in the following definition.
who found that certain optimal nonlinear binary codes are binary . .. .. .
images of certain linear codes ov8gr under the Gray map. Recently, _Deflnmon 1
various aspects of coding and cryptography are dealt in the gen’ ra'P Leth = b1, br—z, ..., bo] € I such thagC(l(bA’ ma) =1

. . . e : ?orallA:O. 1,....,r—1.LetlU;: I, — I,, defined by

setting of Galois rings instead of finite fields [15]-[20]. In view of ’ ’

this, in this correspondence, the Abelian codes we discuss are or(ﬁr_ [ir_1, i io]
Galois rings GRp*, 1). I, _ L
Recently, permutation groups of cyclic codes over Galois rings have = [(br—1ir—1)m, _1s (br—2ir—2)m, 55 <+ s (b0i0)m |

been investigated in [15]. Different decoding algorithms for codes over . . .
GalOiS ringS and Abelian COdeS haVe been Studied [21]_[24] |n [Zﬂhere(w).m denOt(?Sv mOdUlOﬂ'I,. We Ca" thI_S permutatlon -thgllltb.
rmutation. (Notice that every mixed-radix component &f a unit

a decoding algorithm for Alternant codes over Galois rings has beBh

proposed. In certain cases, Abelian codes belong to the class of Al{By{h€ integer ring modulo the respective mixed radix.) Abelian codes

nant codes and, hence, the above algorithm could be used for deco&aﬁﬁed undet, are calledU,-invariant and the collection of such
Abglian codes for various unitswill be called unit-invariant Abelian
codes.
Manuscript received March 28, 2002; revised January 25, 2003. Thisji) For somet € I,,, let(),: I,, — I,., which takes — i+t modulon.
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Fig. 1. U,-invariant QCA codes.

The class of QC codes [25], [26] is important due to the followingodes over Galois rings in the DFT domain defined over suitable Ga-
reasons: i) they contain asymptotically good codes [26], ii) they providigs ring extensions. Thus, we characterizeinvariant QCA codes as
a link between block codes and convolutional codes [27], and iii) theyell. By inspecting the DFT domain description of an Abelian code, we
recently have been shown to have a close relationship with the taile able to give all the values of andb for which the code is.-QCA
biting representations of general block codes [28]. andUy-invariant QCA. QCA codes have the advantage that they need

The classes of codes studied in this correspondence are bestaesmaller Galois ring extension compare@t6 non-Abeliarcodes for
plained with Fig. 1. The class of length= m,_im,_>---mime DFT domain characterization for some cases [31]. Efficient DFT do-
Abelian codes is depicted by the ellipse in the figure. In the class wfain encoding and decoding techniques exist for codes over fields [32].
n-length QC codes eveny,-QC code is closed under, -cyclic shifts Since algebraic decoding generally takes place in the extension ring, a
alsoforalls < A <r —1,whereny = ma_imx_o---mimg. Note smaller extension ring may lead to simpler or more efficient decoding.
that every length: = m,_1m._2---mymo Abelian code is neces- Throughout the correspondence, the length of the eddeelatively
sarily ann,-QC code for some < r — 1 wheren, = 1 by conven- prime to the characteristj¢' of the Galois ring over which the code is
tion. Hence, the ellipse has not gone outside the concentric circles. Hedined.
circle (shown in bold) representslength unit-invariant linear codes The content is organized as follows. In Section II, we give a brief
(not necessarily Abelian). The horizontally hatched regions represémtoduction to codes over Galois rings and the concept of dimension
ns-QCA codes for some value efand the double-hatched regions repef a code over a Galois ring. A generalized DFT is used to charac-
resentUnit,-invariantn,-QCA codes. Observe that an Abelian codeerize Abelian codes in this section. This is a generalization of [6],
is eitherns-QCA or Unit,-invariantn ;-QCA. where Abelian codes over rings,, were characterized in DFT do-

The main result of this correspondence consists of i) characterizimgin. In Section Ill, we characteriZé,-invariant Abelian codes and
QCA and unit-invariant QCA codes over Galois rings, ii) finding thén Section IV we present the characterization of QCA codes over Ga-
value s for every Abelian code, and iii) if the code nit-invariant lois rings. In Section V, we discuss dua}-invariant and QCA codes
also, then the valué. and enumerate such invariant codes of a specified size.

We show that it is easy to obtain these results using the discrete
Fourier transform (DFT) approach. DFT domain characterization of
cyclic, Abelian, and QC codes over finite fields and rings have
been previously discussed in the literature [6], [7], [29], [30]. In this Let GR(p”, I) be the Galois ringZ,«[z]/¢(x), whereg(z) is a
correspondence, we characterize QCA coded anithvariant Abelian  basic irreducible polynomial of degréa 7, [x]. We refer the readers

Il. CODESOVER GALOIS RING
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to [6], [35] where most of the properties of Galois rings relevant to uhe GDFT ofi, denoted byl = (Ao, ..., An—1) € GR(p%, Im)",
are listed. A GRp“, I)-linear code of length is an GR(p", 1)-sub- is given by
module of GRp“, 1)".

. . n—1 r—1
The following result can be found in [20], [33], [15]. 4= <H a’;“) ai, jel, 3)
Proposition 1 [20], [33]: A GR(p*, I)-linear codeC is permuta- i=0  \A=0
tion-equivalent to a code with generator matrix of the form wherei = [iy_1,ir_s,.orrio] @Ndj = [jr1s jrozs ey ol
I 4 4 4 are mixed-radix representations of and j with mixed radixes
ko 40,1 40,2 410, a mo, M1, .., Mmy—1 and «o, az, ..., a,—1 are elements of
0 pli, pA5» PAL 4 GR(p®, Im)* of ordersmg, m, ..., m,_1, respectively.
For aringR, the group ringRG is the set of formal sums given by
0 0 - pt'IL . &
p ka1 P L RG = {Z Cre1dre]: cre] € R p
k=0

whereA; ; are matrices over GR*, 1) and the columns in the above
generator matrix are grouped into blocks of skzg k1, ..., k._,. Addition in RG is the component-wise addition and multiplication in
The size ofC is p'™, where R@ can be defined in two ways [6]: i) as convolution in which c&s&
is a “convolution algebra” or ii) as point-wise multiplication in which
a—1 caseR( is a “point-wise product algebra.”
T = Z ki(a — 1) The GDFT defined above is a generalization of the GDFT for codes
=0 overZ,« = GR(p", 1) discussed in [6]. Naturally, all the properties of
GDFT in [6] (convolution property, conjugate symmetry property, and
C is said to be of typeko. k1. ..., ka—1),andko, k1. ..., ka1 @l  he algebra-isomorphism property) hold for the GDFT in Definition 2.
called the dimensions af. In particular, the conjugate symmetry property is as follows.
Let 0o be the Frobenius automorphism of GR, Im) and let
A. DFT Over Galois Rings o = ab. Now, GR(p®, 1) is fixed under the automorphismanda;,

In this subsection, we define the generalized discrete Fourier trahss 0: 1, .-, 7 — 1 in the definition of GDFT satisfy (a:) = af. If
form (GDFT) over Galois rings and discuss its properties, used subse- 1 A N )€ GR(p". Im)"
quently to characterize Abelian codes over Galois rings. (Apors Apays -oes Apen)) € GR(", Im)

Throughout the correspondencéwill denote an Abelian group of is the GDET vector of
ordern which is a direct product of cyclic subgroups, denoted by
Ci—1, Cr_a, ..., Coy of orders, respectivelyp, —i, m,—a, ..., mq. (afols apiqs -+ afn—11) € GR(p*, )"
Clearly,n = my—1my—o---mimo. f gim, 1)y Gom,_o)s + s Y0mo)
are the generators of the corresponding cyclic subgroups, then anytleén the following relation amongd;, j € I,, holds:

ementy € G can be written as
a(Ar1) = Aqrj) 4

= girmt g2 Lo ) . . .
9= Im_)90mp2) " I(mg) whereg[j1 = [(gir—1)m, 1> (@Fr—2)m, s -5 (@J0)mq |-

for somei,—1, 4,2, ..., io Where0 <iy <my fork = 0,1,..., B. GDFT Characterization of Abelian Codes Over GR, 1)

r — 1. This element is denoted by. or gry, Where'm = Definition 3: The set{[i]. ¢[i], ¢*[i]. ..., ¢"*"V[i]} C I.

Ll;ﬂi;ug 7’7;*"1 o “ﬂ 1S thyiomg(:dt-kr]zdl)r; irxes;esrzgitfgsn ?;s gIrnoupWheremf q“¢[i] is called thecyclotomic cosetontaining[i], de-
T T ' noted by[i], ande; is called the exponent df]. Clearly,I,, is a dis-

operation ofG can thus be specified using mixed-radix indexing as . . . .
o L. I . < 7joint union of cyclotomic cosets. Ldt C I,, be the set containing one
gig; = giw;, Wherei, j € I,, andi & j andi < j are the mixed-radix

. : . element from each of the cyclotomic cosets. We call thel'ses the
addition and subtraction, respectively. ledbe the exponent aff and . .
. cyclotomic representative set. (For concreteness, we use the smallest
p be a prime such thafcd(e, p) = 1 and henceforth, let . . .
element of a cyclotomic coset as a representative.) Notice that cyclo-
tomic cosets are independent«of

A—1
ny = H m;, forall A = 17 2, e, T — 1 Examp|e 1:
=0 i) Forn =7 x 3 x 3 andg = 2 the cyclotomic cosets are shown in
. . . Table | and
no = 1 by convention. We consider linear codes of length=

m,_y ---mymo over the Galois ring GRp”, {) and usey for p' for [ — {701, [11. [3]. 41, [51, [9]. [107, [12].

notational simplicity. (Note that whema = 1, GR(p®, I) becomes (131, [141, [27], 28], [30], [31], [32]}

F,. which is generally denoted b¥,.) Let m be the smallest integer o HRRN ’ ’ ’ '

such thate | (p™ - 1). The polynomialz* — 1 factors linearly i) Taple li(a) shows the cyclotomic cosets for= 5 x 2 x 2 and

in the group of units of the Galois ring G@“, l_m) denoted by ¢ = 9 and Table li(b) displays the correspondihg

GR(p”, Im)". Hence, elements of orde, exists in GRp”, Im) iii) For n =3x 3x 3 andq =4, there are 27 cyclotomic cosets each

fori =0, 1,...,r —1.The GDFT is defined as follows. consisting of one element i =0, 1, ..., 26 which is same a&.
Definition 2 (GDFT): Let _ The const_raint due to the conjugate symmetry property given by (4)

implies that i) the set of transform components

ged(n, p)=1 and @= (ao, ..., an—1) € GR(p", D)". A ={Ap. Agriys Az s Ajei-npa}
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TABLE |
CycLOTOMIC COSETS FOR? = 7 X 3 X 3 AND ¢ = 2

Lo (M [ [m [ | e (e [z s |64 [en RSe[| E2)

[000] {[001] [[0107] |[011] [012] |[100] [[101] |[110] |[111] [[112] |[300] |[301] |[310] |[311] [[312]
[002] {[020] [[022] |[021] [[200] |[202] |[220] |[222] |[221] |[600] |[602] |[620] |[622] |[621]
[400] |[401] [[410] |[4117 [[412] [[500] |[501] |[510] |[511] |[512]
[102] |[120] [[122] |[121] [302] [[320] |[322] |[321]
[201] |[210] [[211] |[212] [601] [[610] [[611] |[612]
[402] [[420] [[422] [[421] [502] [[520] [[522] |[521]
TABLE I
CycLotomiC COSETS AND CONSTRAINED SETS FORn = 5 X 2 X 2 LENGTH

ABELIAN CODESOVER GR(3¢, 2)

[i] —| 01 | [11 [ [2] | [31 [ 41| 51|61 | 71|81 |91 |[10]]|[11]
rooo1foo1yfforo1ffor1yfr1oo1[f1o17ff1107|r1117j2007|r 2017|2107 2117
[4007[[4017|[4107|[4117|[3007|[3017|[3107|[311]

(a) Cyclotomic cosets for g =9

L —| (0] | 11|21 [ 31| (41 [ 51|61 |71 |81 ][9] |l107|[11]
rooo1roo17jorofror17jr1oo1[r1o17fr1107|r1117[f2007|r2017[2107|r 2117

(b) Cyclotomic coset representative set L for ¢ = 9

[11(b) (0T ()| 1T ()| 21 ()| 31 () 41 (][ 51 ()| 61 ()| 71 2
= [2117] ||[[0007][0011[[0107|[011]|[100]|[1011|[110][111]
[2007|72017|r2107|r211]

[11(b) (0T () [[ 1T ()| 2T ()| 31 ()| 41 ()| 51 ()| (61 ()| 7T () [[8T (1) [[ 9T (1) [[ 107 ()| [ 117 (1)
b = (4117 ||f0001[f0011]T0107[f011][T1007[[T01]|T1107[T111]{[2007[[201]] [2107 | [211]

(¢) Constrained sets [7] ) for different values of b

| HUPENEPRS[EIPEN [EIPAN CIPRSEIPEN EPRS PRSP I PRS U PRS ER PR
[5=2 [ [000] | [001] [ [010] | TO11] | [T00T | [1017 [ [1307 | [1117 | [2007 [ (2011 [ [2101 | [2111 ]

EIPEN PR PP EPR P EPEN PN P
s=1 T000] | T001] | [010] | JO11] | [100] | [101] | [200] | 1201]
1101 | f1117 | 12107 | r211]

PRSP EIPEN EIPENEIPE
s5=0 0007 | 10017 | T0107 | [1007 | 200
roi1] | r1o17 | r2o01]
[1107 | 2107
1117 | [211]

(d) Constrained sets [i]<s> for
different values of s

are related (in other words, transform components indexed by eleme@®&(p“, [) under the GDFT, is isomorphic to a direct sum of Galois
of the same cyclotomic coset are related) and, moreover, ii) every alegs given by
ment of Ar;7 belongs to the same Galois ring
GDFT(GR(p", )") = P GR(p", le:).
GR(p*, le;) C GR(p*, Im) i€L

An Abelian codeC over GR(p“, 1) is isomorphic to an ideal of the
nng @, GR(p", lei), whereC; = p" GR(p*, le;) for some fixed
value of;, 0 < n; < a, and transform components belonging to
different conjugacy classes take values independentlyd Bsnd A ;
take values independently, we me@n ; = C; x C;.

To be precise, we have the following GDFT domain characterization
of Abelian codes over GR“, 1).

for some fixeck; dividingm. The sevim will be called theconjugacy
classcontainingA ;. For a code&’ over GR(p”, I), letC; = {A; |
i € C} denote the set of distinct values taken by jtie transform
component of all the codewords ¢hand let

Ci;={(Ai Aj)|aect

Using the conjugate symmetry and convolution property of the ¢ An Abelian codeC over GR(p®, 1) is the set of inverse GDFT
GDFT as in [6], it can be shown that the image of :altuples over vectors of a GRp“, 1)-submodule of GDFTGR(p®, )*) C
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GR(p*, m)"™ in which transform components indexed by elex,-QC and also all the values 6ffor which the code i/, -invariant.
mentsoffi],i =0, 1, ..., n — 1, take all the values from some Toward this end, we define @onstraint in terms of a partition orL
ideal of GR(p®, le;) and transform components in disjoint cy-and Abelian codes satisfying this constraint as follows.

clotomic cosets take values independently. Equivalently Definition 5: A constraint D is a partition{D;, D>, ..., D, } of

« For any Abelian cod€ over GR(p“, ), transform components the set of cyclotomic coset representatives
of every codeword satisfy the conjugate symmetry property and _rs g .
foralli € {0, 1,...,n—1},C; = p"'GR(p", le;) for some L={ad. Tl oo T
ni € {0, 1, ..., a} with transform components in disjoint cy- An Abelian code over GRp*, 1) is said to satisfy the constraintD
clotomic cosets taking valuésdependently if [ia], [ig] € D, forsomej € {1, 2, ..., u} impliesni, = ni,,
) . _whereC;, = p"«GR(p", le;,) andC,, = p"'sGR(p", lei,). If
In the remainder of this correspondence, we refer to the ideglse(p . contains only one cyclotomic coset representative, we call
p"GR(p", le;) as they;-ideal of GR(p", le;). Also, for an Abelian - he corresponding cyclotomic cosdtee cyclotomic coseDtherwise,
code, sincelr;) can take values only from the ideals of Galois subring, i called aconstrained set of cyclotomic coset representatiaad

GR(p®, le;), we will say A, takes values from the;-ideal to mean ) the corresponding cyclotomic cosets®f are said to form a con-
thatC; = p"'GR(p“, le;), since it is obvious the ideal of which g4ined set.

ring is meant. Hence, an Abelian code is specified/characterized

by specifying i, ni,, .-, 1, corresponding to each element Example 3: Table li(c) and (d) and Table IV(a) and (b) show two
in L = {[i1]. [iz]. .... [{z/]}. In other words, an Abelian code kinds of constrained sets defined by Definition 6 and Definition 8 ahead
over GR(p“, ) can be characterized by a partitionbf as given in forthe cases =5 x 2 x 2 withg = 9andn = 3 x 3 x 3with¢ = 4.
Definition 4 that follows.

__ - " . . IIl. UNIT-INVARIANT ABELIAN CODE
Definition 4: Thedefining partition of an Abelian code is the par-

tition (To, T, ..., T,) of I,,, where In this section, we characteridé,-invariant Abelian codes in the
DFT domain. Leth € I,, such thath = [b,_1, br—2, ..., bo| and
N e I/ | a . . ” ’

Ty={ €L |C;=p"CRG" Iej)},  for0 <y <a ged(by, my) = 1forall A = 0,1, ... — 1. LetUy: Tn — I,
For an Abelian code, eve¥, is a union of some cyclotomic cosets orwhich sends
T, =0if C; # p"GR(p*, le;) foranyj € I,.

[l-| = |_i7"*17 ir—z, PEPE Lo-l

Example 2: Let G = C5 x C5 x C3, whereCs is a cyclic group — [01[3] = [br—1ir—1, br—2ir—2, ..., boio].
of order3. Therefore;, = 27 ande = 3. We will consider codes IR PR R - hereb=" he i
over GR(2%, 2). Sincee | (2% — 1), there is no need for an extendeoLet [61 = [b,21, b0, ..o by ], whereby represents the in-

. . . i 7 (b) T, - i
Galois ring and hence there are no conjugacy constraints on the traffiSe 0fbx in I, and letd ™’ denote the’,-permuted version of,

. 3 i V= 1ie ifGi
form components. All the transform components independently take . denote the corresponding DFT vectorsIf= 1, i.e., if G is a

values from the ideals of Galois ring GE, 2), where the ideals are CYCli¢ group,U-invariant codes generalize the class of cyclic codes

{0}, 2GR(22, 2) and GR(22, 2). All the codesCy to Cs shown in over F, which are invariant under the permutatior- ¢i modulon

Table Il are Abelian codes where each elementbz € GR(2?, 2)  Studied in [26] and [29].

is denoted simply byb. In all the codes, the transform components not pefinition 6: For anyi € I,, andb as defined above, let

listed take the value zero. For each code the defining partition is also oY ,

shown. [ = {1 L 02 L Y ()
Including the two trivial codes GR*, 7)" and the all-zero

/A . _"2 T
codeword), there aréa + 1) Abelian codes over GR", 1), wheree] is the smallest integer such tHaf| ~“: [i] = [i]. Moreover,

of length n = my_1myr_2---mo. The cardinality of ideal Lirl?vgg[;t]egb;'}: {ﬁi’g(’je[fliid't'(; bglLl]}:the associated subset
p""GR(p®, le;) is ple=nidtei and, hence, iiC C GR(p*, D™ is ’ IOK
ann = m,_im,—2---mo-length Abelian code of dimensions . Te LI =Th =01

2 - , = = [k] for s k . (6
(ko ..., ka—1) (refer to Proposition 1) such that each conjugacy [l [71€ LI[jT = [k] for some k€ [7] ©

cllassﬁm takes values from thg;-ideal, then the size of the code isNote that with the definition above, evelydefines a partition otL.
p' " where

Theorem 1:For anyn and p such thatged(n, p) = 1, an
T= Z ei(a—=mn:) n = m,_1m,—2---mg-length Abelian code over GR“, [) is
el U,-invariant iff it satisfies the constrai®® = {Di, Do, ..., Du.},
and wherej € D; C L= D; = |—j—|(b).
ki= > e, forallj=0,1,...,a-1 Proof: From the GDFT expression

= n—1 r—1 n—1 r—1
The conjugacy class taking values frpfh GR (p®, Ie; ) contributes to AP = > <H a’j“) al? = > <H a"f“) a1
the dimensiork,,, . i=0 \A=0 i=0 \A=0

n—1 r—1
. (bTliy)g
C. Constraints orl =) <| [ o3 ™ M) ar]

The main result of this correspondence is to identify the constraints _ fzo A=0 _
: - =Ant e ey el = AT

on the values taken by transform components belonging to different r—1J7 =100 _gJr—2,-:,0 JO
conjugacy classes for the Abelian code to be i) unit-invariant for arthis implies that an Abelian code i&-invariant iff C;; =
b = [br—1, br—z, ..., bo] such thaged(by, my) = 1forall A = ¢, i .. Also, if ¢ is the smallest integer such thif] i [j] =
0.1,...,r—1landi)n,-QCforanys, 0 < s <7 — 1. [], an Abelian code i/, -invariant iff

Given the transform domain description of an Abelian code, this re-
sult enables us to give the smallest valuesdbr which the code is Crn =Cry-1j) =+ = AL Cry- 0
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TABLE 1l
n = 3 x 3 x 3 LENGTH ABELIAN CODESOVER GR(22, 2)
| Time domain vector | DFT |
CODE Cy,  Defining partition: Ty = 0; 7y = {0}; T» = {0} Ao

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 00
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20| 20
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02| 02
22 2222 22 22 22 22 22 22 22 22 22 22 2222 2222 22222222 222222222222| 22
CODE (; Defining partition: Ty = 0; Ty = {1};T» = m Ay
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 00
20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02| 20
02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22| 02
22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20| 22
CODE C,  Defining partition: Ty = 0; Ty = {2}; T» = {2} Ay
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 00
20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22| 20
02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20| 02
22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02| 22
CODE Cs  Defining partition: Ty = 0; T} = {3}; T> = {3} As
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 00
20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02| 20
02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22| 02
22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20| 22
CODE C;  Defining partition: Ty = 0; Ty = {1,2}; T> = {1,2} A1 Ay
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 0000
20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22| 00 20
02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20| 00 02
22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02 22 20 02| 00 22
20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02| 2000
00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20| 20 20
22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22| 2002
02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 | 2022
02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22| 0200
22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00| 0220
00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02| 0202
20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 | 0222
22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20 22 02 20| 2200
02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02 02 00 02| 2220
20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00| 2202
00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22 00 22 22| 2222

CODE (s Defining partition: 7o = 0; 71 = {3,6}; > = {3,6} Az Ag
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 0000
20 20 20 02 02 02 22 22 22 20 20 20 02 02 02 22 22 22 20 20 20 02 02 02 22 22 22| 0020
02 02 02 22 22 22 20 20 20 02 02 02 22 22 22 20 20 20 02 02 02 22 22 22 20 20 20| 0002
22 22 22 20 20 20 02 02 02 22 22 22 20 20 20 02 02 02 22 22 22 20 20 20 02 02 02| 00 22
20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02| 2000
00 00 00 20 20 20 20 20 20 00 00 00 20 20 20 20 20 20 00 00 00 20 20 20 20 20 20| 2020
22 22 22 00 00 00 22 22 22 22 22 22 00 00 00 22 22 22 22 22 22 00 00 00 22 22 22| 2002
02 02 02 02 02 02 00 00 00 02 02 02 02 02 02 00 00 00 02 02 02 02 02 02 00 00 00| 2022
02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22| 0200
22 22 22 22 22 22 00 00 00 22 22 22 22 22 22 00 00 00 22 22 22 22 22 22 00 00 00| 0220
00 00 00 02 02 02 02 02 02 00 00 00 02 02 02 02 02 02 00 00 00 02 02 02 02 02 02| 0202
20 20 20 00 00 00 20 20 20 20 20 20 00 00 00 20 20 20 20 20 20 00 00 00 20 20 20| 0222
22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20 22 22 22 02 02 02 20 20 20| 2200
02 02 02 00 00 00 02 02 02 02 02 02 00 00 00 02 02 02 02 02 02 00 00 00 02 02 02| 2220
20 20 20 20 20 20 00 00 00 20 20 20 20 20 20 00 00 00 20 20 20 20 20 20 00 00 00| 2202
00 00 00 22 22 22 22 22 22 00 00 00 22 22 22 22 22 22 00 00 00 22 22 22 22 22 22| 2222

Corollary 1: For anyn andp such thatecd(n, p) = 1,alln = b = [1,1,2], 2,1, 1], [2, 1, 2], [1, 2, 1], [1, 2, 2], [2, 2, 1],
mr—_1my—_2 - - - mo-length Abelian codes over GR“, 1) areUs-in- and[2, 2, 2].

variant forb = [¢=', ¢~*, ..., ¢7']. L . . . )
ariant fo [a7 s a™ o a ] As an application of this result in the permutation decoding of

Example 4: Table IV(a) lists forn = 3 x 3 x 3-length Abelian Abelian codes, we use one of the examples used in [24].
codes over GR22, 2), constrained sets for all possible values of The first code considered in [24] was the = 7 x 7, 18, 12]
b except[1, 1, 1]. For the same parameters, Table Il lists codesode over GR2', 1) = F». The setL for these parameters is
words of several codes. The codés and C. are U,-invariant for as follows: {[0, 0], [0, 1], [0, 3], [1, O], [1, 17, [1, 2], [1, 3],
b = [2,1,1], 1, 2,17, and [2, 2, 1]; Cs is Us-invariant for [1, 4], [1, 5], [1, 6], [3, 01, [3, 17, [3, 27, [3, 3], [3. 4], [3, 51,
b = 1,1, 2], (2,1, 1], and[2, 1, 2]; andC4 is Us-invariant for [3, 61}. Further, it was mentioned in [24] that the zeros of this code
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TABLE IV
CrcLotoMIC COSETS ANDCONSTRAINED SETS FORn = 3 X 3 X 3 LENGTHABELIAN CODESOVER GR(2¢, 2)

b = T1127 107 ()[[11 (1)|[3T(1)[[ 41 (1)|[ 61 (1) 7T ()91 ()| 10T ()| 12T ()| 13T (1)[[ 151 (1) | 16T (5| 181 ()| 19T (5[ 211 () [[ 221 (5[ 241 (5)[[ 251 (5)
[0001[70017[70107[[0111[T0207[[0217[[1007| T101T | [1107 | (1117|1207 | (1217 | [2007 | [201] | (2107 | (2117 | 2207 | [221]
[002] [o12] [022] [102] [112] [122] [202] [212] [222]

b = 11217 1075|111 (5)| 2T ()| 3T (1) [[ 41 (6)[[ 3T (1) |[ 61 ()| 10T (5)[[ 11T (5)[[ 12T (5)[[ 13T () [[ 14T ()| 157 ()| 197 ()] 201 (5[ 211 (5)[[ 221 (5)[[ 231 (1)
[0001[T001][[002](T010][[011]|T012][[1001| T1OL] | [102] | TL10] | [11L] |[tL2] | 2007 | [201] | [202] | [2101 |T211] | 212]
[0201|r0217|r022] [1207 | r1217 | ri22] [2201 | 2211 | 12221

b = 1227|107 ()|[17 ()| 31 (5)[[41 (1)[[ 51 (1)|[ 61(1)[[ 107 ()| 11T (5[ 131 ()| 141 ()| 15T () [[ 191 ()| 20T (1) ([ 221 () [[ 231 ()
[000]|T001][[0101[TotL[fo121|TT007| [101] | 7110 | [111]|[LL2] | 2007 | r201] | [2107 | [21L] |T212]
[0021|70201|[0227|r021] [102] | 11207 | r1221|ri21 [202] | 12207 | 2221 | r2211

b = 12117 107 (5[ 1T (5)|[21 ()| 3T (1) [[ 41 (5| 3T (5)[[61 ()] 7T (8|81 ()19 (1) 10T () [ 11T ()| 121 ()| 131 ()| 141 (1)|[ 151 (5)[[ 161 (5)|[ 171 (1)
[000]|T001][[002][T0107[[011]{T012][[0201|T021][[022]|T1007| [101] | 1027 | [1107 | [LLL] | [112] | [L20] | [12L] | [122]
[2007| [2017 | r2027 | r2107 | r2117 | r2127 | r2207 | r2217 | r2221

b = 12127 107 (5[ 118|371 ()| 4T () [[51 ()| 71 ()| 8T (1| 10T ()| 117 () [[ 127 (1| 13T (1)|[ 141 ()| 151 (1)|[ 161 (1) |[ 171 (3)
[0001[70017][0107][0111][0207[[0217[[T007[ [T01] | [102] | [1107 | [111]|[i12] |r1207 | [121] | 122]
[002] [o12] [0221|72001| 12027 | 12017 | 12107 | r2121| 12117 | r2201 | r2221 | r2211

b = 12217 107 (5|17 (1)[[21()|[3T ()] 4T (1) {[51 ()| 9T (6)[[ 107 () [[ 117 (1) |[ 12T (1| 131 ()| 141 ()| 15T (1)[[ 161 ()[[ 171 (3)
[00071[[0017[[002][[0101[[011][[012][[100]| [10L] | [102] | [L10] | [L1L1]|[LL2] |[1207 |[121] |[122]
[0207|[0217|[0227|[2007| [2017 | [202] | [2207 | (2217 | [2227 | [2107 | [2117 | [212]

b = 2227107 )| 11 (1)[[31 (1) |41 (1) |57 ()| 9T (1)[[ 107 ()| 11T (5[ 121 (1) [[ 131 (1) |[ 141 (1) [[ 151 (1)|[ 161 (1) [[ 171 (3)
[0007[r0017[r0101[fo11][f012][[T007[ T101T | [102] | [1107 | [111] | ri12] |r120] | [121] | r122]
[0021|r0207|r0221|r0217|r2007| [2027 | 12017 | 12207 | r2227 | 12217 | r2107 | 12127 | r2117

(a) Constrained sets [4] () for several values of b

N NP P PPN PR PN B PR PN PN B P O PN PR PR RPN EPAN PN |
0007 | Too17 | fo02] | roto] | roti] | ro12] [ ro2o] [ fo21] [ fo22] [ fto0] | [to1] | r102] | (2007 | [201] | [202]
ri1o1 | rii1] | rii2) | rziol | r211] | r212)
r1201 | ri21] | ri22) | 22071 | r2217 | 222

s=0 | [01cos[MTess|2Tess|Bless|l6lcss|[9c o5 [M18T
rooo] | roo1] | roo21 | o101 | o201 | 1007 | [200]
roi1] | ro21] | rio1] | rzo1l
roi2] | ro227 | rio2] | rz02]
riio] | rz1o]
rii] | rzin
ri2) | rzi2]
ra1] | rzen
r22) | rz22)

(b) Constrained sets for ns—QCA codes

arel, = Ti :/\{(@L [(),/EL [1/,\()1, [1/,\11, (3/,\31, (()/,\3], divisor of n, with a proper ordering of the factors of we can always
[3, 01, [3, 5], [5, 31, 1, 4], [4, 1]}. It can be checked that both havet = m_m/_, - - my for some integes such that

— [)71)
the setsTy andTo, = I, \ Ti are such thafi—|( € T, (resp., n=mL_ mh_s---miml_ - myg.

Ty) for anyi € T (resp.,Tp) and for the following values of

617 = [2, 2], [3, 3], [1, 2], [2, 17. From our results, this code

is Uy-invariant for [b] = [4, 4], [5, 5], [1, 4], and [4, 1]. In

[24], only the permutation subgroup correspondindid = [4, 4]

was used whereas the permutation subgroup corresponding
e J . e ;

0] = [o_, 51, [1. 4]? [4, 11 under \.N.h'Ch the code IS mva_rlant Wasgharacterize all CA and 4-QCA codes (cyclic and 4-QC codes Abelian

not considered. Using these additional permutations, it could be . S / R

NG = Cy x C4). Forn = 36 = m X mg, wherem = mg = 6,

possible to correct more errors, or it is possible that one of thv.s\%,% can characterize all CA and 6-QCA codes (cyclic and 6-QC codes

permutations is more important than the others in the sense that usinda . onCe x C. ). In some cases, it might turn out that a given code
lesser number of permutation subgroups (and, hence, lesser iterati%nls Abelian/sonG/G—. Co % Cs as wéll asCs x Cts (trivial examples
- 9 /4 /6 ‘6

the decoding algorithm might be able to correct most of the errors. are all-zero vector, repetition code and GR, 7)") in which case we

can characterize whether this code-QC fort = 1, 4, and6.
IV. QCA CODES IN THEGDFT DOMAIN Throughout this section, for a vectdr € GR(p®, )", @9 will
denote the-cyclic shifted version ofi and the corresponding GDFT
vector will be denoted byl ().

Hence, the GDFT characterization of-#CA can be done where
is any divisor ofn, but it is important to notice that, in this case, the
mixed-radix addition® (and, hence, Abelian codes) will be defined
W{'th respect to the mixed radixes._,, m!._,, ..., mg. Forinstance,
if G isof ordern = 36 = m1 x mg, wherem; =9, mg = 4, we can

In this section, for a given length = m,_iym,_2---mq, we
study the GDFT domain characterization of-QCA codes for all
s=0,1,2,..., r—1and for a fixed ordering of the factors,_1, Theorem 2: All n = m,_1m,_2---mg-length Abelian codes are
mr_2, ..., mg. TO characterize the-QCA code wheret is any n,_;-QCA codes.
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Proof: LetC bean: = m,_1m,_2 - - - mg-length Abelian code.

Foranyd = "~ a.g; € C, the codeword

n—1 n—1
= (T,
9(m,._1) E aig; = E Ais[m,._,1—1,0,...,019i = g1
=0 =0

also belongs t@'. d

In the next few theorems we will use the following notations.
Definition 7: For everyj € I,, such that

|-]-| = |—0 Os ---707j}l#0wj“—l7~~~7j0—]

(i.e.,j,. is the first nonzero mixed-radix component) and h > s >
0, let the set/": s')(j) be defined as in (7) at the bottom of the page.

If h = s + 1, we denote the set in (7) as(s)(j) for notational
simplicity which is the set of alfi] € I.. with only thesth component
running overl,,, , .

Definition 8: Let L {li11, [é2]s -.., [4z)1}. For any s
(0 <s<r—1),and[i{] € L suchthat > n,+; and
[1=10,...,0,i,#0, 44 1,....00],
the subsefi] ;) of L is defined as the set

{j € L| an element om e JU (k) for somek € ﬁ} (8)

Since for any paifi.|, [i«] € L, [ic](s and[iq] .y either coincide
or disjoint, {[#](sy|[i] € L} constitute a partition aL. This partition
of L will be called thes-partition of L.

Example 5: Table II(d) lists all thes-partitions for all values of
for the caser = 5 x 2 x 2 with ¢ = 9 and Table IV(b) displays the
same for the case = 3 x 3 x 3 with ¢ = 4.

The following two properties of Galois rings are used in the proof of

Lemma 1.
1) The degree of any elemefite GR(p®, I) is the smallest pos-
itive integert such thate$(3) = 3. It follows that if 3 €
GR(p”, t) but not in any subring GRy*, t1), wheret; < t,

thent is the degree of. This helps to identify the elements of a

subring GRp®, t) in the Galois ring GRp*, ).
2) For any3 € GR(p“, 1), andt, a divisor ofi, such thaf = td,
the relative trace map; /¢ is defined as

Ty(8) = B+ ob(8) + 08" (B) + -+ oS V().
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Proof: If the degree ofv*s ist, by definitiont is the smallest in-
teger such that}(a’+) = a2*+ = a*:. Sincea, is anm.th root of
unity, this impliest is the smallest integer such that = (p'ks)m., .

In the summatiory >, . ;¢ o¥s Ay, k, is thesth component in the
mixed-radix representation éf SinceA, € GR(p“, lex), ey the ex-
ponent of the cyclotomic cosgk] is the smallest integer such that

kx = (p"*kx)m, forall X = 0,1, ..., r — 1. This impliest di-
videsle,, and from property 1) above,*s € GR(p?, le,) and hence
a¥s A, € p"GR(p®, leg) forall k € J*)(5). We now partition the
set{4, | k € J®(j)} into subsets such that all transform compo-
nents belonging to the same subset are from the same conjugacy class.
Let H be the number of such subsets avfg, 0 < : < H the cardi-

nality of each subset. We choose one transform component

K97 = [Jrmts Jrm2s oees Jotts jo]
from theith subset and write

Z afe 4, € p"GR(p*, le)
keI () ()

k&ﬂ

s Je—1y o vny

as

=1 M;—1

exp (i) . “
ol ks Agexren €EP'GR(p", le)

7

Il
=)

A

o

whereé is the size of the cyclotomic coset containihgyith sth com-
ponentk, = 0. If d; = IéM; for all ¢

Mizlo M;—1 o

a“ Mk _ tex [ kD
E al Aq“(k(ﬂ] = E g (aS A[,\,(i)]>
A=0 A=0

()
=Ta, /e <“§S A[k(i)}) ‘
From the properties of relative trace
) ,

Ty, i (af‘ AU-,u)]) € p"™GR(p", 1¢), forall k
and hence

ik )

Z Tdi/lg('a’fs A[,\,(i)]) € GR(])G, l€)

1=0
iff ¢ | e. This summation belongs tpideal of GR(p®, le) iff 5, > v
because transform components belonging to different conjugacy

classes and, hence, the individual trace functidig,(. for eachi)
take values independently. d

Properties analogous to those for the trace function over flnlteThe following Lemma which denotes the mixed-radix representation

fields [34] can be proved fdf;,; as well.

Lemma 1:If gecd(n, p) 1 and C is an
n mr_1mr—z---mg-length  Abelian code over
GR(p®, 1) such that C, p"*GR(p®, lex) for each
k= [frety ooy eees ke ooy do] € JO(), then

> altA, €p’GR(p". le),  forevery A € GDFT(C)
keI ()

= if

iff g > ~ forall k € J©)(j) andey e for the specific value

of i + n, is used in the main theorem (Theorem 3).

Lemma 2: For every[i] = [ir—1, ir—2, ..., 40| @andns, s =
1,2, ..., r — 1, the mixed-radix representation pf+ n.] is given
in (9) at the bottom of the page, where

s _ L
@ _
0.

fors+1<k<r-—1.
The following theorem presents the main result of this correspon-

ifix=—1modm,,foralls <A<k

otherwise

k= 1{jretyeuey Jott1, 0, Jomty vy Jo]- dence that establishes the constraint set for aQCA code.
J(h’s)(j) =10, ..., 0, Jus Jpmts cees Jhs Thoty The2y «vns Ty Jorls ooy Jo | Hor €ELy; A=h =1, h =2, ..., s}. @)
[i 4 0] = [Grmt 48 i ys Gz 870 i o vees ot 65 omsrs (o 4 Dnss Gacts <oy do0] 9)
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Theorem 3: For anyn andp such thaiged(n, p) = 1, a length-
-mgo Abelian code over GRp”, 1) is n,-QCA,
Du}1

N = Mp_1Mp_2""*
0 < s < r —2,iffit satisfies the constrain® = {D,, D, ...,
where

{7},

[31¢sys

In other words, an Abelian codeis -QCA iff forall j € L
i) the spectral componerjtis free if0 < j < ngyq — 1;

ifj§715+1—1

jJED,CL=>D;, = )
otherwise.
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The preceding equation impligss free for all0 < j < ns11 —1, thus
proving condition i). To prove condition ii) fat, 11 < j < n—1,we
continue with (10).

If [4] =1T10,...,
verse GDFT

0,J0 #0, ju—1, ..., jo|, substituting the in-

|
—

n
—ixkx 4

1
n

HM

> e

in (10) we can reduce itto (11) (13) as shown at the bottom of the page.

if) and spectral components belonging#d.., form a constrained | (12), smce&H =0,if 5»“ =00rifisg: # —1mod m,yr, we

setifngg: <j<n-1.
Proof: Letd = (ao, a1, ...,

n—1 r—1
[5W)
= E H aM ) ai_n,

=0

an—1) € C. We have

e
Al

n—1 r—1 s—1
PO .
— E : < | | 7%( At )> af(LS'H) | | aliva;. (10)
2=0 A=s+1 v=0

Clearly, ifj € Lsuchthah < j < ng41 —1,jr—1 = jro =--- =
Jjs+1 = 0, and (10) becomes

n—1 r—1
(ns) _ [SVN _ s
4 =l g H ay a; = ol Aj.
A=0

1=0

can further split the first part of the right-hand side of (12) and obtain
(13).

Observe thaf{ is independent of, and K is independent of both
Js andjsyi.

Proof for the “Only If” Part: LetC be ann,-QCA code. Notice
that in deriving (13), we have not assumed any fixed valuesfdn
this part of the proof, we will prove condition ii) by induction enTo
elaborate, we will first prove that condition ii) is true fer= » — 2.
Using the fact that every;-QC code isn,+-QC also, we will be
through if we assume that the condition is true fo# 1 and show
that it is true fors.

To prove condition ii) fors = » — 2, letj € L such thatr,—y <
j < n—1,and letC; = p"GR(p®, lej). We need to prove that

n—1 n—1
A‘(]_ns) Z <
k=0

2=0

4 ‘A(JX_AA)"F&( ) is(Js—ks)+g
H ay qslis ks s
A=s+
n

1:[ V(]llkl/)> Ay

1
1 n—1 (=) n—1 G — k) +80)
_ - m Ju AN —RA NN is(Js—ks)t+is y
= Z Z vy H oy sy Ay, (11)
kEJ(;z.s)(]') =0 A=s+1
1 n—1 p—1
_ Js +1] +1 ix(Ux—k) |
Lo O i (T )
keJ(9)(5) (75)0 A=s
s =0
n—1 p—1
1 N ko ks ixGia—ka)+687; 8075,
Py IS e (T o) w2
" ke () (ﬁo; A=s42
{is+2:1
s ] 1 Is k
Agn ) =al® A+ oo (lb_:—ll -1) Z al Ag
> ke 1(s) ()
1 ks
D S Z g aqjjl Ax
MsMs41
keg(s+2:5)(5)
n—1 n—1 L (s) - (s).
ko in—ka) 48, 505,
SEED RS SR (51 (S R I
Cked(m 8y  i=0s A=s+2
5212:1
=alA; + K+ K, (13)
where
. 1 ; .
K=——(ft =1 3 ol
? keJ(s)(j)
and
1 n—1 . pn—1 G & )+é(s), 5( s) . 1
- ks Fst1 ax(Ua—ka FBY » Ju ks ksy1
K, =<= s st « A Ap b — —— o A
n Z 5 et H A MsMsp1 Z s+1
= s)(j) i=0; A=s+42 kEJ(s+2.s)(j)
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all other spectral components in the §¢},,_») take values from the Since C is »,-QCA, both AS"S) and A; take values from
n-ideal of their corresponding Galois subrings. Itis enoughto prove thisi: GR(p?, le;). Similarly, both A and A; take values
for the spectral components jﬁ"‘z)(j) since the other componentsfrom p"i1 GR(p*®, le;r). This implies

in [j1¢—2y will get connected through conjugacy constraints. Toward A + K, € p"1GR(p®, le;)

this end, we consider another transform comporésuch thatj’ € T

JU2(j) andC;r = p" GR(p", le,/). All we need to show is that, and
if Abelian codeC is n,—2-QC theny = 7’. K'+ K, ep™ GR(p“*.lejr)
Fors = r —2, starting from (11) and following similar manipulationand, thereforek’ — K’ € p"i1 GR(p", le) wheree = lem(e;, e;).
as in (12) and (13) we get This implies
A(jnrfz) _ airjzzAj + K (14) Z (stAk S p”GR(pa, l(’l) (17)
h ' ked(s)(5)
where wheren >7;, ande; |e. Forallk € J*)(j), if Cx=p"*GR(p", lex),
) 1 iy - from Lemma 13, > 5 > n,, . Butall transform componenkse J*/ ()
K= M2 a5 =) Z a5 Ak o have their representatives|ifi] ., and hence each. is equal to some

ke (r=2)(5) n;, and, thereforey;, >n;, forallie {2, 3, ..., d}.
In our argument so far, we assumed that = [j.]. But the entire

; wpr . A(e2) g2y o A.
From the preceding equalitit = A; a7 Aj. SinceA; takes argument holds good fd] = [ji],i € {2, 3, ... d}. Hence,, >

values from the idegh”GR(p", le;), we haveKk” € p"GR(p", le;)

) f et S n;, foralli € {2, 3, ..., d}, whichimpliesy;, =n;, =+ =1n;,.
and S'ncesz(“T*I 1) is a unit, this implies Proof for the “If" Part: Let the Abelian codeC satisfy
Z e = PIGR(p", Ie;). (15) the constraint given in the statement of the theorem. Cet =

p"GR(p“, le;). Because the code satisfies condition ii), all trans-
form components: € J( ) () take values from their respective
The transform componerit € .J("~2(j), and from Lemma 1, (15) #;-ideal (i.e..Cx = p"i GR(p", lex)). We need to show thaiE-"“‘)

keJ(r=2)(5)

impliesn’ > 1. \ also takes values fropi’ GR(p“, le;).
Notice thatj € J"=2) (") = J"=2)(;) and, hence, in the counter-  For this, we continue from (11). Sinck, takes values from the ideal
part of (15) forAET**Q), K is a constant, i.e., p"GR(p®, ley) C p"iGR(p*, Im), the element
o y ol BT () . v
A‘(jv/ufz) _ aitzzAj/ + K. {Z aiﬂ Ju H OL,/\A(JA ka)+8,7 4 ag;(].;flcs)Jsz A
o . i=0 A=s+1
By a similar argument that we used to obtain (15) in (11), belongs tg™ GR(p®, Im) for all k € J*)(j), and hence
Z (},’:52,4,6 € p”/GR(p", lejr) AE-”S) also takes values from"s GR(p®, Im). But sincep!si [j] =
ke T(r=2)(j) q“[j1 = [il
which impliesy > n’. Hencen = n’. J(';j (A(_ns)) — Al
Having proved condition ii) fos = » — 2, we now assume that this ! !

condition is true for some + 1, i.e., we assume thatthe §61(.+1) a5 shown at the bottom of the page, and hemS:”é) is an element of

isa gonstrained set fpr ap'ye L. WQ draw attention tq the fact_that,panR(pa,7 le;) C p"iGR(p", Im). 0
for [j1=10,...,0, ju, ju_1,..., jol, the set7* 2 (4) is a union
of setsJ(* *+1)(.) as shown in (16) at the bottom of the page. Example 6: Table IV(b) lists the constrained sets for the codes
From our definition of thes-partition of L in Definition 8, the set shownin Table IIl. Notice that, in Table Ill, all codes excé€ptandCs
[1¢s) will be a union of severafli],+1, for somei € L. Let are CA codes whereds andCs; are 3-QCA codes.
[Tesy = {071 oty U T2l sy U U TGl (osry 3 Definition 9: An Abelian code which is bothrQC as well ad/;-in-

. . . variant is called af/,-invariant?-QCA code.
Following our hypothesis, let all transform componentd jn|(.41)

take values from their respectivg, -ideal for alli € {1, 2, ..., d}. Corollary 2: For anyn and p such thatged(n,p) = 1, a

Our aim is to prove thaj;,’s are all equal forall € {1, 2, ..., d}.  lengths = m,_1m._2---mo Abelian code over GRy*, 1) with
Without loss of generality, we will first assume that j, € [j](,, defining partition(To, T, ..., Ta) is Us-invariantn.-QCA iff for

and letC; = p"i GR(p", Ie;). Now we consider any’ € JED ()., anyj € L

If j* ¢ L,arepresentative ¢fi'] isin L; in fact, it belongs td ;] (s+1) 1) [j1w) C T, for somen; and

and henc&';s is also ay;, -ideal. LetC; = p"1 GR(p“, le;s). From 2) [j sy C T, for somen if j > neqq.

(23) Proof: Follows from Theorems 1 and 3. d

Given anyn = m,_1m,—z - - - mg-length Abelian code, this result

Ans) _ ds g4
A mar A+ K+ K helps us to systematically identify the smallest value fafr which the

Agil‘) =a’s A+ K' + K. code isn;-QC and all values aof for which the code i€/, -invariant.
J Gy = U TS0, 00,0, fun en Gotts Tan Joetn oean Jol) (16)
Ts€dmy

n—1 p—1 .
lej ( 4 1 574 iGA=(@ToN+80x \ i Ga—(a k)i
oy’ (45 )) == E { E gt ( H ay MITENIN ) s le=(a T ha))Fi A e; [K]

ke g(us s)(3) Li=0 A=s+1
:Ag_"s) since {¢“I[k] | k € ,](“’S)U)} _ J(H:S)(j)_
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V. ENUMERATION OF CODES AND DuAL CODES * If [4](s) is a constrained set defined in Definition 6, then the set
{i* |i € [j1)} is also a valid constrained set fb -invariant
codes and it is actually equal g 1) .

e Forj < nsp1 — 1, i.e., if j is free thenj* is also free and for
n.p1 < j < n,if [ is aconstrained set defined in Definition
8, then the sefi ™ | i € [j](,} is also a valid constrained set
for n..-QCA codes and is equal {g~1,).

In this section, we follow a general approach to enumerate all
Abelian codes of a specified size satisfying a given constrAint
Hence, we will be enumerating both,-QCA codes as well as
Uy-invariant codes. We then show that using the transform domain
characterization, it is easy to identify the dual of anQCA (resp.,

Uy -invariant Abelian) code which is alsa -QCA (resp.Us,-invariant

Abelian). Example 7:
I) In Table IV(a), forb = |_1 1, 2—|, |—1J_-|(b) = |_1-|(b)1 |—4J_-|(b) =
A. Enumeration of Abelian Codes Satisfying Constraint [T

ii) Forb = [2, 2, 2], [i* 1) = [l forallj € L.

Letan = m,._im,_2---mg-length Abelian code satisfy con- .: T 1 . 1 _
straintD = {Di, Da, ..., D.}. Including the two trivial codes anl(ljl)fg]r:flg I\[Q(E% fori le [4 (;S_Sﬁ - E]ﬁg][g T = T181¢)
(all-zero vector and GRy*, 1)™), there argla + 1)* Abelian codes ’ 19 e (=) =) o
over GR(p®, 1) satisfying the constrair®. With this, and the characterization of dual Abelian codes, it
In the constrain® = {Dy, Ds, ..., D.}, let|D,| = d;. There- is clear that if C is an Abelian code satisfying the constraint
fore, D = {D1, D2, ..., Du} suchthalD, = [jlw) C 1T, for Uy-invari-
ance Dr = [j1y C T, for n,-QC), the dual code is also an Abelian
v code satisfying the same constraint with, = [j*]s C Ti-,
1L = 21 di- (resp.. Dy = [j](sy C T,-,) for somek’ € {1, 2, ..., u}.
Example 8: For the parameters discussed in Example 2, the code
Further, it D; = {ji, j2, ..., ja; }, leteji, ejo. ... eja; be the  corresponding ta; = 2GR(2%, 2) for all j € I, is a self-dual
corresponding sizes of the cyclotomic cospts], [j2], ..., [ja;]. code. This self-dual Abelian code corresponds to the defining parti-
respectively. For anmn = m,_im,—2---mo-length Abelian tion (T, T\, T>) whereTy, = To = () andTy, = IL,. It is inter-
code of dimensionsko, ..., ko—1 satisfying the constraint esting to note that this Abelian code is cyclic as wellasinvariant
D = {D.,Ds, ..., D.}, the constrained seD; contributes for all b. In fact, this code should satisfy any general constrBint:
ej1 + ej2 + -+ + eja; to the dimensiork,,;, when all the elements {D,, D, ..., D.} (more than the two mentioned in this correspon-

belonging to the constrained sBi take values fromy;-ideal of their dence) sincdy = I,, = D.
corresponding Galois subring.

Theorem 4: For anyn andp such thatcd(n, p) = 1, the number VI. DISCUSSION
of Abelian codes over GR*, 1) of lengthn = m,_1m,_2---mo In this correspondence, we have characterized Abelian codes over
and sizep'7 satisfying the constrai®® = {D1, Do, ..., Du},isthe  Galois rings using a generalized DFT defined over a suitable extension
number of ways in whichr can be expressed as of the Galois ring. We have then characterized Abelian codes which
are alsow,-QC andU,-invariant. QCA codes have the advantage over
dy dy QC-only codes in the sense that, in certain cases they need a smaller
T = {(a — ) Z eu} +---+ {(ar =) Z eut} extension field for DFT characterization. It would be interesting to see
i=1 i=1 if this additional structure in the code could be exploited to develop

good or more efficient decoding algorithms. We have enumerated all

where0 < n; <aforallj=1,2,..., u. the QCA codes anfi,-invariant Abelian codes of a given length and
we have shown that the dual of a QCA code @f,ainvariant Abelian
B. Dual Codes code is also a QCA code orlj -invariant Abelian code, respectively.

In [36], a Gray isometry (from GRp“, 1)" to F}') for codes over
Galois rings was defined and using this map, a nonlinaér3'#, 15)
code, the best known code for these parameters, was constructed as the
image of aZ,-lift of the ternary Golay code. Itis interesting to see if the

n—1 - . . .
Gray image of codes over GR®, !) discussed in this correspondence
L _ )= 2% 7. e — el
= {y € GR(p". )" Z viyi =0, VI € C}' give any good codes over the base fild

=0

If C is a GR(p“, I)-linear code, its dual’" is defined using the
normal inner product
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