
ar
X

iv
:c

s/
01

07
03

0v
3

 [
cs

.C
R

]
 2

4
D

ec
 2

00
2

1

Reconciliation of a
Quantum-Distributed Gaussian Key

Gilles Van Assche, Jean Cardinal and Nicolas J. Cerf

Abstract— Two parties, Alice and Bob, wish to distill a

binary secret key out of a list of correlated variables that

they share after running a quantum key distribution pro-

tocol based on continuous-spectrum quantum carriers. We

present a novel construction that allows the legitimate par-

ties to get equal bit strings out of correlated variables by

using a classical channel, with as few leaked information as

possible. This opens the way to securely correcting non-

binary key elements. In particular, the construction is re-

fined to the case of Gaussian variables as it applies directly

to recent continuous-variable protocols for quantum key dis-

tribution.

Keywords— Cryptography, secret-key agreement, privacy

amplification, quantum secret key distribution.

I. Introduction

With the advent of quantum key distribution (QKD),
sometimes also called quantum cryptography, it is possible
for two remote parties, Alice and Bob, to securely agree
on secret information that shall later be used as a key for
encrypting messages [1], [2], [3], [4]. Although most QKD
schemes make use of a discrete modulation of quantum
states, such as BB84 [1], some recent protocols [5], [6] use
a continuous modulation of quantum states, thus produc-
ing continuous random variables. In particular, in [7], a
QKD scheme based on the Gaussian modulation of quan-
tum coherent states is demonstrated, which generates cor-
related Gaussian variables at Alice’s and Bob’s sides. The
construction of a common secret key from discrete vari-
ables partly known to an adversary has been a long studied
problem [8], [9], [10], [11]. However, in order to bring the
intrinsically continuous QKD experiments up to getting a
usable secret key, such key construction techniques needed
to be adapted to Gaussian variables.

In QKD, the quantum channel that Alice and Bob use
to create a secret key is not deemed to be perfect. Noise
will necessarily make Alice’s and Bob’s values different.
Furthermore, the laws of quantum mechanics imply that
eavesdropping also causes extra discrepancies, making the
eavesdropper detectable. To overcome this, one can cor-
rect errors by using some reconciliation protocol, carried
out over a public authenticated channel [9], [10]. Yet, this

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version
may be superseded.

G. Van Assche is with the Ecole Polytechnique, CP 165,
Université Libre de Bruxelles, 1050 Brussels, Belgium (e-mail:
gvanassc@ulb.ac.be).

J. Cardinal is with the Faculté des Sciences, CP 212, Université Li-
bre de Bruxelles, 1050 Brussels, Belgium (e-mail: jcardin@ulb.ac.be).

N. Cerf is with the Ecole Polytechnique. He is also with the Infor-
mation and Computing Technologies Research Section, Jet Propul-
sion Laboratory, California Institute of Technology, Pasadena, CA
91109 (e-mail: ncerf@ulb.ac.be).

does not entirely solve the problem as an eavesdropper can
gain some information about the key while Alice and Bob
exchange their public reconciliation messages. Fortunately,
such gained information can then be wiped out, at the cost
of a reduction in the secret key length, using another pro-
tocol called privacy amplification [8], [11].

Current reconciliation and privacy amplification proto-
cols are aimed at correcting and distilling strings of bits.
However, the recently developed continuous-variable QKD
schemes cannot be complemented efficiently with such dis-
crete protocols. This paper proposes an extention of these
protocols in the case of non-binary – and in particular
Gaussian – key elements.

II. Quantum Distribution of a Gaussian Key

In QKD, Alice and Bob use a quantum channel in order
to share secret random data (a secret key) that can then be
used for exchanging encrypted information. Since its incep-
tion, QKD has traditionally been developed with discrete
quantum carriers, especially quantum bits (implemented
e.g., as the polarization state of single photons). Yet, it has
been shown recently that the use of continuous quantum
carriers is advantageous in some situations, namely because
high secret key bit rates can be attained [6]. The post-
processing of the raw data produced by such continuous-
variable protocols therefore deserves further investigation.

As we shall see, the security of QKD fundamentally re-
lies on the fact that the measurement of incompatible vari-
ables inevitably affects the state of a quantum system. In
a scheme such as BB84, Alice sends random key elements
(e.g., key bits) to Bob using either one of two conjugate sets
of quantum information carriers. Alice randomly chooses
one of the two sets of carriers, encodes a random key ele-
ment using this set, and sends it to Bob. On his side, Bob
measures the received quantum state assuming either set
was used at random. The two sets of quantum informa-
tion carriers are designed in such a way that measuring the
wrong set yields random uncorrelated results (i.e., the two
sets are conjugate). Therefore, Bob will measure correctly
only half of the key elements Alice sent him, not know-
ing which ones are wrong. After the process, Alice reveals
which set of carriers she chose for each key element, and
Bob is then able to discard all the wrong measurements,
the remaining data making the key.

An eavesdropper (Eve) can of course intercept the quan-
tum carriers and try to measure them. However, like Bob,
Eve does not know in advance which set of carriers Alice
chose for each key element. A measurement will yield ir-
relevant results about half of the time, and thereby disturb

http://arxiv.org/abs/cs/0107030v3

2

the state of the carrier. Not knowing if she has a correct
value, Eve can decide to retransmit or not a quantum car-
rier with the key element she obtained. Discarding a key
element is useless for Eve since this sample will not be used
by Alice and Bob to make the key. However, if she does
retransmit the state (even though it is wrong half of the
time), Alice and Bob will detect her presence by an un-
usually high error rate between their key elements. QKD
works because Bob has the advantage, over Eve, of being
able to talk to Alice over a classical authenticated channel
in order to select a common key and discard Eve’s partial
knowledge on it.

The continuous-variable QKD protocols described in [5],
[6] take advantage of a pair of canonically conjugate con-
tinuous variables such as the two quadratures X1 and X2

of the amplitude of a mode of the electromagnetic field,
which behave just like position x and momentum p [12].
The uncertainty relation ∆X1 ∆X2 ≥ 1/4 then states that
it is impossible to measure with full accuracy both quadra-
tures of a single mode, X1 and X2. This can be exploited
by associating the two sets of quantum information car-
riers with X1 and X2, respectively. For example, in the
protocol [5], these two sets of carriers essentially behave
like 2D Gaussian distributions in the (X1, X2) plane. In
set 1, the carriers are shaped as N(x, σ1) × N(0, 1/4σ1),
with σ1 < 1/4 corresponding to the squeezing of X1 [12].
Here, x is the key element Alice wishes to send, and is it-
self distributed as a Gaussian: x ∼ N(0, Σ1). In set 2, the
carriers are similar but X1 and X2 are interchanged, that
is, N(0, 1/4σ2)×N(x, σ2), with σ2 < 1/4. The raw key in-
formation is thus encoded sometimes in X1 and sometimes
in X2, and the protocol resembles a continuous version of
BB84. In contrast, in [6], two Gaussian raw key elements
x1 and x2 are simultaneously encoded in a coherent state
shaped as N(x1, 1/2) × N(x2, 1/2) in the (X1, X2) plane.
Bob can however only measure one of them, not both, so
that only one Gaussian value x = x1 or 2 is really trans-
mitted. Eve, not knowing which one Bob will measure,
necessarily disturbs x1 when attempting to infer x2 and
vice-versa, and she in general disturbs both to some extent
whatever the trade-off between acquired knowledge and in-
duced disturbance she chooses.

In all these continuous-variable protocols, the vacuum
noise fluctuations of the transmitted states are such that
Bob’s measurement will not give him the exact value x cho-
sen by Alice, even in absence of eavesdropping and with a
perfect measurement apparatus. The noise is Gaussian and
additive, allowing us to model the transmission as a Gaus-
sian channel. The amplitude of the noise can be estimated
by Alice and Bob when they compare a subset of their ex-
changed values. Any noise level beyond the intrinsic fluctu-
ations must be attributed to Eve, giving an estimate on the
amount of information I(X ; E) that she was able to infer
in the worst case [5], [6], [7]. This information, along with
the information Eve gains by monitoring the reconciliation
protocol, must then be eliminated via privacy amplifica-
tion.

Finally, note that Alice must strictly respect x ∼

N(0, Σ1 or 2) or (x1, x2) ∼ N(x1, 1/2) × N(x2, 1/2). She
may not choose a codebook x(k) from some discrete al-
phabet to R that displays the same variance. The result-
ing distribution would not be Gaussian, and Eve would be
able to take advantage of this situation. For example in [5],
measuring the correct or the wrong set must yield statisti-
cally indistinguishable results. If not the case, Eve would
be able to infer whether she measured the correct set of
carriers and adapt her strategy to this knowledge.

III. Problem Description

A. Problem Statement

The two parties each have access to a distinct random
variable, namely X for Alice and X ′ for Bob, with non-
zero mutual information I(X ; X ′) > 0. This models the
quantum modulation and measurement of a QKD scheme,
but other sources of common randomness could as well be
used. When running the same QKD protocol several times,
the instances of X (resp. X ′) are denoted X1 . . . Xl (resp.
X ′

1 . . . X ′
l) for the time slots 1 . . . l, and are assumed inde-

pendent for different time slots. The outcomes are denoted
with the corresponding lower-case letters. An eavesdrop-
per Eve also has access to a random variable E, resulting
from tapping the quantum channel. These are also consid-
ered independent for different time slots, hence assuming
individual attacks [4].

The goal of the legitimate parties is to distill a secret key,
i.e., to end up with a shared binary string that is unknown
to Eve. We assume as a convention that Alice’s outcomes
of X will determine the shared key K(X). It is of course
not a problem if the roles are reversed, as required in [7].
The function K(X) is chosen to be discrete, even if X is
continuous in nature, and this aspect is discussed below.

In principle, secret key distillation does not require sep-
arate reconciliation and privacy amplification procedures,
but it is much easier to use such a two-step approach.

First, reconciliation consists in exchanging reconciliation
messages over the public authenticated classical channel,
collectively denoted C, so that Bob can recover K(X1...l)
from C and X1...l. By compressing K(X1...l), Alice and
Bob can obtain about lH(K(X)) common random bits.

Then, privacy amplification can be achieved by universal
hashing [13], [11]. Starting from K(X1...l), the decrease
in key length is roughly equal to lI(K(X); E) + |C|, as
shown in [11], [14], [15], where |C| is the number of bits
exchanged and where I(K(X); E) is determined from the
disturbance measured during the QKD procedure. Privacy
amplification therefore does not need special adaptations
in our case, as the existing protocols can readily be used.

Maximizing the net secret key rate H(K(X)) −
I(K(X); E) − l−1|C| involves to take all possible eaves-
dropping strategies into account during the optimization,
which is very difficult in general. Instead, we notice that
I(K(X); E) ≤ I(X ; E), the latter being independent of the
reconciliation procedure. Hence, we wish to devise a pro-
cedure that produces a large number of fully secret equal
bits, hence to maximize H(K(X)) − l−1|C|.

3

B. Discrete vs Continuous Variables

It is shown in [5], [6], [7] that working with continuous
quantum states as carriers of information naturally leads to
expressing information in a continuous form. It is therefore
natural to devise an all-continuous cryptographic process-
ing. Nevertheless, we found more advantageous to distill a
discrete secret key than a continuous one, and these aspects
are now discussed.

First, a continuous secret key would need to be used
along with a continuous version of the one-time pad, which
is possible [16], but would most certainly suffer from incom-
patibilities or inefficiencies with regard to current technolo-
gies and applications. Furthermore, it is much more conve-
nient to rely on the equality of Alice’s and Bob’s values in
the discrete case, rather than dealing with bounded errors
on real numbers. The resulting secret key is thus chosen to
be discrete.

Second, the reconciliation messages can either be contin-
uous or discrete. Unless the public authenticated classical
channel has infinite capacity, exchanged reconciliation mes-
sages are either discrete or noisy continuous values. The
latter case introduces additional uncertainties into the pro-
tocol, which quite goes against our purposes. Furthermore,
a noisy continuous reconciliation message would less effi-
ciently benefit from the authentication feature of the recon-
ciliation channel. Hence, discrete reconciliation messages
are preferred.

Third, the choice of a discrete final key also induces
discrete effects in the protocols, which makes natural the
choice of a continuous-to-discrete conversion during rec-
onciliation. Call x the original Gaussian value that Al-
ice sent, x′ the Gaussian value as received by Bob, and k
the resulting discrete key element. The process of recon-
ciliation and privacy amplification can be summarized as
functions k = fA(x, c) and k = fB(x′, c), where c indi-
cate the exchanged messages. As both k and c are to be
taken in some finite set, these two functions define each a
finite family of subsets of values that give the same result:
Skc = {x : fA(x, c) = k} and S′

kc = {x′ : fB(x′, c) = k}.
The identification of the subset in which x (or x′) lies is the
only data of interest – and can be expressed using discrete
variables – whereas the value within that subset does not
affect the result and can merely be considered as noise.

Finally, the discrete conversion does not put a funda-
mental limit on the resulting efficiency. It is possible (see
Sec. IV) to bring |C| as close as desired to lH(K(X)|X ′),
giving almost I(K(X); X ′) secret bits per raw key element.
Also, one can define K(X) as a fine-grained quantizer so
that I(K(X); X ′) can be made arbitrarily close to I(X ; X ′)
[17]. On the other hand, no continuous protocol can expect
Alice and Bob to share more secret information than what
they initially share I(X ; X ′).

For all the reasons stated above, our reconciliation pro-
tocol mainly consists of exchanging discrete information
between the two communicating parties so that they can
deduce the same discrete representation from the real val-
ues they initially share.

IV. Sliced Error Correction

Sliced error correction (SEC) is a generic reconciliation
protocol that corrects strings of non-binary elements. It
gives, with high probability, two communicating parties,
Alice and Bob, equal binary digits from a list of correlated
values. Just like other error correction protocols, it makes
use of a public authenticated channel. The underlying idea
is to convert Alice’s and Bob’s values into strings of bits,
apply a bitwise correction protocol (BCP) as a primitive
and take advantage of all available information to minimize
the number of exchanged reconciliation messages.

The key feature of this generic protocol is that it enables
Alice and Bob to correct errors that are not modeled using
a binary symmetric channel (BSC), although using a BCP
that is optimized for a BSC.

To remain general, Alice and Bob can process multi-
dimensional key values and group them into d-dimensional
vectors. In the sequel, X and X ′ denote d-dimensional vari-
ables, taking values in what is defined as the raw key space,
i.e., R

d for Gaussian variables. When explicitly needed by
the discussion, the dimension of the variables is noted with
a ·(d) superscript.

To define the protocol, we must first define the slice func-
tions. A slice S(x) is a function from Alice’s raw key space
to GF (2). A vector of slices S1...m(x) = (S1(x), . . . , Sm(x))
is chosen so as to map Alice’s raw key elements to a dis-
crete alphabet of size at most 2m. A vector of slices will
convert Alice’s raw key elements into binary digits, that is,
K(X) = S1...m(x).

Each of the slice estimators S̃1(x
′), S̃2(x

′, S1(x))
. . . S̃m(x′, S1(x), . . . , Sm−1(x)) defines a mapping from
Bob’s raw key space and from Alice’s slices of lower in-
dexes to GF (2). These will be used by Bob to guess Si(X)
the best he can given his knowledge of X ′ and of the slice
bits previously corrected.

The construction of the slices Si(X) and their estima-
tors depends on the nature and distribution of the raw key
elements. These aspects are covered in a following section,
where we apply the SEC to our Gaussian key elements.

Let us now describe our generic protocol, which assume
that Alice and Bob defined and agreed on the functions Si

and S̃i.
• From her l key elements x1 . . . xl, Alice prepares m
strings of bits using the defined slices (S1(x1), . . . , S1(xl)),
. . . , (Sm(x1), . . . , Sm(xl)). She starts with the first one:
(S1(x1), . . . , S1(xl)).
• Bob constructs a string of bits from x′

1 . . . x′
l using his

slice estimator S̃1: (S̃1(x
′
1), . . . , S̃1(x

′
l)).

• Alice and Bob make use of a chosen BCP so that Bob
aligns his bit string on Alice’s.
• For each subsequent slice i, 2 ≤ i ≤ m, Alice takes
her string (Si(x1), . . . , Si(xl)), while Bob constructs a new
string using his slice estimator S̃i applied to his values
x′

1 . . . x′
l and taking into account the correct bit values of

the previous slices S1(x1), . . . , S2(x1), . . . , Si−1(xl). Again,
Bob aligns his bit string to Alice’s using the chosen BCP.
• For Alice, the resulting bitstring is simply the concate-
nation of the m l-bit strings: S1...m(x1...l). For Bob, the

4

shared bitstring is the same as Alice’s, obtained from the
previous steps.

The goal of SEC is to correct errors by disclosing as
few information as possible on the key shared by Alice and
Bob. However, one does not expect a protocol running with
strings of finite length and using finite computing resources
to achieve the Shannon bound I(X ; X ′) exactly. Yet, it is
easy to show that SEC is indeed asymptotically efficient,
that is, it reaches the Shannon bound in terms of leaked
information when the number of dimensions d (i.e., the
input alphabet size) goes to infinity.

A famous theorem by Slepian and Wolf [18] shows the
achievability rate regions for encoding correlated sources.
In the context of SEC, this means that, with d sufficiently
large, there exist slice functions such that disclosing the

first r = ⌊dH(K(X(1))|X ′(1)) + 1⌋ slices S1...r(X
(d)) is

enough for Bob to recover the m − r remaining ones and
reconstruct S1...m(X(d)) with arbitrarily low probability of
error. An alternate proof is proposed in Appendix A.

It is necessary here to quantize X ′, as Slepian and Wolf’s
theorem assumes discrete variables. As shown in [17], X ′

can be approximated as accurately as necessary by a dis-
crete variable X̂ ′, with H(K(X)|X̂ ′) → H(K(X)|X ′).

V. Analysis of Sliced Error Correction

Let us now analyze the amount of information leaked on
the public channel during SEC. Clearly, this will depend
on the primitive BCP chosen. This aspect will be detailed
in a following section.

If not using SEC, one can in theory use encoding of cor-
related information [18] to achieve, when l → ∞,

l−1|C| = I0 , H(S1...m(X)|X ′). (1)

When using slices, however, the BCP blindly processes the
bits calculated by Alice Si(X) on one side and the bits
calculated by Bob S̃i(X

′, S1...i−1(X)) on the other. The l
bits produced by the slices are of course independent from
time slot to time slot. Assuming a perfect BCP,

l−1|C| = Is ,

m
∑

i=1

H(Si(X)|S̃i(X
′, S1...i−1(X))) ≥ I0. (2)

The inequality follows from the fact that H(S1...m(X)|X ′) =
∑

i H(Si(X)|X ′, S1...i−1(X)) and that the term in the sum

cannot decrease if replaced by H(Si(X)|S̃i(X
′, S1...i−1(X))).

The primitive BCP can be optimized to work on a binary
symmetric channel (BSC-BCP), thus blindly assuming that
the bits produced by the slices and the slice estimators are
balanced. Assuming a perfect BSC-BCP,

l−1|C| = Ie ,

m
∑

i=1

h(ei) ≥ Is, (3)

with h(e) = −e log e−(1−e) log(1−e) and ei = Pr[Si(X) 6=
S̃i(X

′, S1...i−1(X))]. The inequality follows from Fano’s in-
equality [17] applied to a binary alphabet. In practice, a
BSC-BCP is expected to disclose a number of bits that

is approximately proportional to h(e), i.e., (1 + ξ)h(e) for
some overhead constant ξ. An explicit construction of slice
estimators applying the expression of Ie in Eq. (3) is ex-
amined next.

A. Maximum Likelihood Slice Estimators

The error probability in slice i can then be expressed as
the probability that Bob’s slice estimator yields a result
different from Alice’s slice:

ei = P 01
SiS̃i

+ P 10
SiS̃i

, with (4)

P
βj...βib

Sj ...SiS̃i
=

∫

D
βj...βib

Sj...SiS̃i

p(x, x′)dxdx′, and (5)

Dβj ...βib

Sj ...SiS̃i
= {(x, x′) : Sj(x) = βj ∧ · · · ∧ Si(x) = βi

∧ S̃i(x
′, S1...i−1(x)) = b}.

(6)

Maximizing the global efficiency of the slice estimators is
not a simple task because the efficiency of a slice estimator
S̃i recursively depends on all previous estimators S̃j<i. For
this reason, our goal here is simply to minimize each ei, of
which h(ei) is an increasing function for 0 ≤ ei < 1

2 , by

acting only on S̃i. This results in an explicit expression for
S̃i(x

′, S1(x), . . . , Si−1(x)), see Eq. (12).
An individual probability P ab

SiS̃i
can be expanded as a

sum of smaller probabilities over all possible values βj<i of
the previous slices, namely

P ab
SiS̃i

=
∑

β1...i−1

P
β1β2...βi−1ab

S1S2...Si−1SiS̃i
. (7)

Each of these terms can be further expanded as

P β1...ab

S1...SiS̃i
=

∫

B
β1...βi−1b

S1...Si−1S̃i

P β1...a
S1...Si

(x′)dx′, with (8)

P
β1...βi−1a
S1...Si−1Si

(x′) =

∫

A
β1...βi−1a

S1...Si−1Si

p(x, x′)dx, (9)

Aβi...βj

Si...Sj
= {x : Si(x) = βi ∧ · · · ∧ Sj(x) = βj}, and (10)

Bβ1...βi−1b

S1...Si−1S̃i
= {x′ : S̃i(x

′, βi...i−1) = b}. (11)

From this, it is easy to show that a slice estimator S̃i

minimizes ei if it has the form

S̃i(x
′, β1...i−1) =

{

0 if P β1...0
S1...Si

(x′) > P β1...1
S1...Si

(x′),
1 otherwise,

(12)
except for cases where the probabilities are equal or over
some zero-measure set. To minimize ei = P 01

SiS̃i
+ P 10

SiS̃i
,

one can thus take advantage of the independence of smaller
terms in (7) and minimize them individually. From Eq. (8),

the terms P β1...aa

S1...SiS̃i
, for a correct guess, and P β1...aā

S1...SiS̃i
, for

a wrong guess, result from the integration of the same

function over two different sets, namely Bβ1...βi−1a

S1...Si−1S̃i
and

Bβ1...βi−1ā

S1...Si−1S̃i
. Therefore, the domain of correct guesses

should simply cover all subsets in which the integrand is

5

larger, and leave the smaller parts to the domain of wrong
guesses. Eq. (12) is simply the maximum likelihood prin-
ciple, expressed for slice estimators.

Note that when using Eq. (12), the bit error rate ei can
be evaluated as

ei =
∑

β1...i−1

∫

min
(

P β1...0
S1...Si

(x′), P β1...1
S1...Si

(x′)
)

dx′. (13)

B. Bitwise Correction Protocols

To be able to use sliced error correction, it is necessary to
chose a suitable BCP. There are first two trivial protocols
that are worth noting. The first one consists in disclosing
the slice entirely, while the second does not disclose any-
thing. These are at least of theoretical interest with the
asymptotical optimality of SEC: It is sufficient for Alice

to transmit entirely the first r = ⌊dH(K(X(1))|X ′(1)) + 1⌋
slices and not transmit the remaining m − r ones.

A BCP can consist in sending syndromes of error-
correcting codes, see e.g., [19]. In binary QKD proto-
cols, however, an interactive reconciliation protocol is often
used, such as Cascade [9], [20], [21], [22] or Winnow [23].
In practice, interactivity offers overwhelmingly small prob-
ability of errors at the end of the protocol, which is valuable
for producing a usable secret key.

Let us briefly analyze the cost of Cascade, which con-
sists in exchanging parities of various subsets of bits [9].
Let A, B ∈ GF (2)l be respectively Alice’s and Bob’s bi-
nary string of size l constructed from some slice Si and its
estimator S̃i. After running Cascade, Alice (resp. Bob)
disclosed RA (resp. RB) for some matrix R of size n × l.
They thus communicated the parities calculated over iden-
tical subsets of bit positions. The matrix R and the number
n of disclosed parities are not known beforehand but are the
result of the interactive protocol and of the number and po-
sitions of the diverging parities encountered. The expected
value of n is n ≈ l(1 + ξ)h(e), where e = Pr[Aj 6= Bj] is
the bit error rate, and ξ is some small overhead factor.

If A and B are balanced and are connected by a BSC,
the parities RA give Eve n bits of information on A, but
RB does not give any extra information since it is merely
a noisy version of RA. Stated otherwise, A → RA → RB
is a Markov chain, hence only n ≈ l(1 + ξ)h(e) bits are
disclosed, which is not far away from the ideal lh(e).

However, in the more general case where Eve gathered in
E some information on A and B by tapping the quantum
channel, A|E → RA|E → RB|E does not necessarily form
a Markov chain. Instead, it must be upper bounded by the
number of bits disclosed by both parties as if they were
independent, |C| = 2n ≈ 2l(1 + ξ)h(e).

Such a penalty is an effect of interactivity, as both Alice
and Bob disclose some information. This can however be
reduced by noticing that RA and RB can also be equiva-
lently expressed by RA and R(A + B). The first term RA
gives information directly on Alice’s bits A = Si(X1...l) for
some slice number i, which are used as a part of the key.
The second term R(A + B) however contains mostly noise
and does not contribute much to Eve’s knowledge. This

must however be explicitly evaluated with all the details of
the QKD protocol in hands [7].

With SEC, it is not required to use the same protocol
for all slices. Non-interactive and interactive BCPs can be
combined. In the particular case of slices with large ei,
disclosing the entire slice may cost less than interactively
correcting it. Overall, the number of bits revealed is:

|C| =
∑

i

|Ci|, with |Ci| = min (l, fi(l, ei)) , (14)

and fi(l, ei) the expected number of bits disclosed by the
BCP assigned to slice i working on l bits with a bit error
rate equal to ei.

As d grows and it becomes sufficient to only disclose
the first r slices so as to leave an acceptable residual er-
ror, using a practical BCP comes closer to the bound
l−1|C| ≥ H(K(X)|X ′). This follows from the obvious fact
that l−1

∑r
i=1 |Ci| ≤ r, while the last slices can be ignored

fi = 0, i > r.

VI. Correction of Gaussian Key Elements

We must now deal with the reconciliation of information
from Gaussian variables X ∼ N(0, Σ) and X ′ = X + ǫ,
ǫ ∼ N(0, σ). Let us first show that this problem is dif-
ferent from known transmission schemes, namely quanti-
zation and coded modulation. We temporarily leave out
the slice estimation problem and assume that Bob wants
to have most information (in Shannon’s sense) about a dis-
crete value T (X), computed by Alice, given its noisy value
X ′.

In a vector quantization (VQ) system, a random input
vector X is transmitted over a noiseless discrete channel us-
ing the index of the closest code-vector in a given codebook.
The codebook design issue has been extensively studied in
the VQ literature [24]. The criterion to optimize in that
case is the average distortion between X and the set of re-
production vectors. In our problem, we do not have repro-
duction vectors since we are not interested in reproducing
the continuous code but rather extracting common infor-
mation.

In a coded modulation system, a binary key k is sent over
a continuous noisy channel using a vector X belonging to a
codebook in a Euclidean space. Trellis-coded modulation
and lattice-based coded modulation are instances of this
scheme. In this case, the information sent on the channel
is chosen by Alice in a codebook, which is not true in our
case.

A. Design

In this section, we present how we designed slices and
slice estimators for specifically correcting Gaussian raw
keys. We now assume d = 1, that is, Alice and Bob use
Gaussian key elements individually. The idea is to divide
the set of real numbers into intervals and to assign slice val-
ues to each of these intervals. The slice estimators are then
derived as most likelihood estimators as explained above.

For simplicity, the design of the slices was divided into
two smaller independent problems. First, we cut the set of

6

real numbers (Alice’s raw key space) into a chosen number
of intervals – call this process T (X). For the chosen number
of intervals, we try to maximize I(T (X); X ′). Second, we
assign m binary values to these intervals in such a way that
slices can be corrected with as few leaked information as
possible.

If the reconciliation is optimal, it produces H(T (X))
common bits and discloses I0 bits, thus from Eq. (1) giv-
ing a net result of H(T (X))−H(T (X)|X ′) = I(T (X); X ′)
bits. Note that S1...m(X) will be an invertible function of
T (X). However, optimizing I(T (X); X ′) does not depend
on the bit assignment, so this is not yet relevant.

The process T (X) of dividing the real numbers into
t intervals is defined by t − 1 variables τ1 . . . τt−1. The
interval a with 1 ≤ a ≤ t is then defined by the set
{x : τa−1 ≤ x < τa} where τ0 = −∞ and τt = +∞.
The function I(T (X); X ′) was numerically maximized un-
der the symmetry constrains τa = τt−a to reduce the num-
ber of variables to process.

The results are displayed in Fig. 1 below. I(T (X); X ′)
is bounded from above by log t and goes to 1

2 log(1 + SNR)
as t → ∞.

Let us detail the expressions we evaluated. The random
variable X is Gaussian with variance Σ2. X ′ is the result
of adding a random noise ǫ of variance σ2 to X . Hence,
the random variables X and X ′ follow the joint density
function

fX,X′(x, x′) =
1

2πΣσ
e−x2/2Σ2

e−(x−x′)2/2σ2

.

Since I(T (X); X ′) = H(T (X)) + H(X ′) − H(T (X), X ′),
we need to evaluate the following terms.

H(T (X)) = −
∑

a

Pa log Pa, with

Pa =
1

2

(

erf

(

τa√
2Σ

)

− erf

(

τa−1√
2Σ

))

,

H(X ′) =
1

2
log 2πe(Σ2 + σ2), and

H(T (X), X ′) = −
∑

a

∫ +∞

−∞

dx′fa(x
′) log fa(x

′), with

fa(x′) =

∫ τa

τa−1

dxfX,X′(x, x′).

From the above procedure, we get intervals that are
bounded by the thresholds τa. The next step is to con-
struct m slices that return binary values for each of these
intervals. Let us restrict ourselves to the case where t is
a power of two, namely t = 2m. We investigated several
assignment methods, and it turned out that the best bit as-
signment method consists of assigning the least significant
bit of the binary representation of a−1 (0 ≤ a−1 ≤ 2m−1)
to the first slice S1(x) when τa−1 ≤ x < τa. Then, each
bit of a− 1 is subsequently assigned up to the most signif-
icant bit, which is assigned to the last slice Sm(x). More
explicitly,

Si(x) =

{

0 if τ2in ≤ x < τ2in+2i−1 ,
1 otherwise.

(15)

This ensures that the first slices containing noisy values
help Bob narrow down his guess as quickly as possible.

B. Numerical Results

Let us now give some numerical examples in the case of a
BCP optimized for a BSC, as this is the most frequent case
in practice. To make the discussion independent of the cho-
sen BCP, we evaluated H(S1...m(X)) and Ie =

∑

i h(ei) for
several (m, Σ/σ) pairs, thus assuming a perfect BSC-BCP.
(Note that, in practice, one can make use of the properties
of the practical BCP chosen so as to optimize the practical
net secret key rate [7].)

Assume that the Gaussian channel has a signal-to-noise
ratio of 3. According to Shannon’s formula, a maximum of
1 bit can thus be transmitted over such a channel. Various
values of m are plotted in Fig. 3. First, consider the case
m = 1, that is only one bit is extracted and corrected per
Gaussian value. From our construction in Eq. (15), the
slice reduces to the sign of x: S1(x) = 1 when x ≥ 0 and
S1(x) = 0 otherwise. Accordingly, Bob’s most likelihood
estimator (12) is equivalent to Alice’s slice, S̃1(x

′) = S1(x
′).

In this case, the probability that Alice’s and Bob’s values
differ in sign is e1 ≈ 0.167 and hence Ie = h(e1) ≈ 0.65
bits. The net amount of information is thus approximately
1 − 0.65 = 0.35 bit per raw key element.

Let us now investigate the case of m = 4 slices, still with
a signal-to-noise ratio of 3. The division of the raw key
space into intervals that maximizes I(T (X); X ′) is given
in Fig. 2. Note that the generated intervals blend evenly
distributed intervals and equal-width intervals. Evenly dis-
tributed intervals maximize entropy, whereas equal-width
intervals best deal with additive Gaussian noise.

Alice’s slices follow Eq. (15), and Bob’s slice estimators
are defined as usual using Eq. (12). The correction of the
first two slices (i.e., the least two significant bits of the
interval number) have an error rate that make them almost
uncorrelated, namely e1 ≈ 0.496 and e2 ≈ 0.468. Then
comes e3 ≈ 0.25 and e4 ≈ 0.02. Note that slice 4 gives the
sign of x, just like the only slice when m = 1 above. The
error rate is different here because correcting slice 4 in this
case benefits from the correction of the first three slices.
Indeed, for m = 4, the net amount of information is about
3.78 − 2.95 = 0.83 bit per raw key element.

We also investigated other signal-to-noise ratios. When
Σ2/σ2 = 15, Alice and Bob can share up to 2 bits per
raw key element. With m = 5, this gives a net amount of
information of about 1.81 bits per raw key element.

As one can notice, the first few error rates (e.g., e1 and
e2) are high and then the next ones fall dramatically. The
first slices are used to narrow down the search among the
most likely possibilities Bob can infer, and then the last
slices compose the shared secret information. Also, slices
with high error rates play the role of sketching a hypo-
thetical codebook to which Alice’s value belongs. After
revealing the first few slices, Bob knows that her value lies
in a certain number of narrow intervals with wide spaces
between them. If Alice had the possibility of choosing a
codebook, she would pick up a value from a discrete list of

7

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 1.5 2 2.5 3 3.5 4 4.5 5

I(
T

(X
);

X
’)

log t

SNR=3
SNR=7

SNR=15
SNR=31

Fig. 1

Optimized I(T (X); X′) as a function of log t for various

signal-to-noise ratios, with t the number of intervals

τ8 0 τ12 = −τ4 1.081
τ9 = −τ7 0.254 τ13 = −τ3 1.411
τ10 = −τ6 0.514 τ14 = −τ2 1.808
τ11 = −τ5 0.768 τ15 = −τ1 2.347

Fig. 2

Symmetric interval boundaries that maximize I(T (X); X′),

with Σ = 1 and σ = 1/
√

3

0

1

2

3

4

5

6

0 1 2 3 4 5 6

B
its

Number of Slices

H(S(X))
I_e

H(S(X))-I_e

Fig. 3

H(S1...m(X)), Ie and their difference as a function of the

number of slices m when Σ2/σ2 = 3

values – a situation similar to the one just mentioned ex-
cept for the interval width. Using more slices m > 4 would
simply make these codebook-like intervals narrower.

In figure 4, we show these error rates for m = 4 when the
noise level varies. From the role of sketching a codebook,
slices gradually gain the role of really extracting informa-
tion as their error rates decrease with the noise level.

VII. Conclusions

Current reconciliation procedures are aimed at correct-
ing strings of bits. A new construction for reconciliation
was proposed, which can be implemented for extracting
common information out of any shared variables, either
discrete or continuous. This construction is then applied
to the special case of Gaussian key elements, in order to
complement Gaussian-modulated quantum key distribu-
tion schemes [5], [6], [7]. This might also be applied to
other quantum key distribution schemes [25], [26], [27], [28]
that deal with continuous variables as well. We showed the-
oretical results on the optimality of our construction when
applied to asymptotically large bloc sizes. Practical results
about reconciliation of Gaussian key elements show that
such a construction does not leak much more information
than the theoretical bound.

References

[1] C. H. Bennett and G. Brassard, “Public-key distribution and
coin tossing,” in Proceedings of the IEEE International Confer-
ence on Computers, Systems, and Signal Processing, Bangalore,
India, New York, 1984, pp. 175–179, IEEE.

[2] C. H. Bennett, “Quantum cryptography using any two non-
orthogonal states,” Phys. Rev. Lett., vol. 68, pp. 3121, 1992.

[3] C. H. Bennett, G. Brassard, and A. K. Ekert, “Quantum cryp-
tography,” Scientific American, vol. 267, pp. 50–57, October
1992.

[4] N.Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum
cryptography,” Rev. Mod. Phys., vol. 74, pp. 145, 2002.

[5] N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution
of Gaussian keys using squeezed states,” Phys. Rev. A, vol. 63,
pp. 052311, May 2001.

[6] F. Grosshans and P. Grangier, “Continuous variable quantum
cryptography using coherent states,” Phys. Rev. Lett., vol. 88,
pp. 057902, February 2002.

[7] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf,
and P. Grangier, “Quantum key distribution using gaussian-
modulated coherent states,” Nature, 2003, Accepted for publi-
cation.

[8] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy am-
plification by public discussion,” SIAM Journal on Computing,
vol. 17, no. 2, pp. 210–229, 1988.

[9] G. Brassard and L. Salvail, “Secret-key reconciliation by public
discussion,” in Advances in Cryptology – Eurocrypt’93, T. Helle-
seth, Ed., New York, 1993, Lecture Notes in Computer Science,
pp. 411–423, Springer-Verlag.

[10] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. Inform. Theory, vol. 39,
no. 3, pp. 733–742, May 1993.

[11] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer,
“Generalized privacy amplification,” IEEE Trans. Inform. The-
ory, vol. 41, no. 6, pp. 1915–1923, November 1995.

[12] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge
University Press, Cambridge, 1997.

[13] J. L. Carter and M. N. Wegman, “Universal classes of hash
functions,” J. of Comp. and Syst. Sci., vol. 18, pp. 143–154,
1979.

[14] C. Cachin, Entropy measures and unconditional security in
cryptography, Ph. D. thesis, ETH Zürich, 1997.

[15] U. Maurer and S. Wolf, “Information-theoretic key agreement:
From weak to strong secrecy for free,” in Advances in Cryptol-

8

ogy – Eurocrypt 2000, B. Preneel, Ed. 2000, Lecture Notes in
Computer Science, pp. 351–368, Springer-Verlag.

[16] C. E. Shannon, “Analogue of the Vernam system for continuous
time series,” Memorandum MM 43-110-44, Bell Laboratories,
May 1943.

[17] T. M. Cover and J. A. Thomas, Elements of Information The-
ory, Wiley & Sons, New York, 1991.

[18] D. Slepian and J. K. Wolf, “Noiseless coding of correlated infor-
mation sources,” IEEE Trans. Inform. Theory, vol. 19, no. 4,
pp. 471–480, July 1973.

[19] S. S. Pradhan and K. Ramchandran, “Distributed source coding
using syndromes (DISCUS): Design and construction,” in Proc.
IEEE Data Compression Conf., March 1999, pp. 158–167.

[20] K. Chen, “Reconciliation by public discussion: Throughput and
residue error rate,” unpublished, 2001.

[21] T. Sugimoto and K. Yamazaki, “A study on secret key recon-
ciliation protocol Cascade,” IEICE Trans. Fundamentals, vol.
E83-A, no. 10, pp. 1987–1991, October 2000.

[22] K. Yamazaki and T. Sugimoto, “On secret key reconciliation
protocol,” in Int. Symp. on Inf. Th. and Its App., 2000.

[23] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel,
and C. G. Peterson, “Fast, efficient error reconciliation for quan-
tum cryptography,” arXiv e-print quant-ph/0203096, 2002.

[24] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans.
Inform. Theory, vol. 44, 1998.

[25] M. D. Reid, “Quantum cryptography with a predetermined
key, using continuous-variable Einstein-Podolsky-Rosen correla-
tions,” Phys. Rev. A, vol. 62, pp. 062308, 2000.

[26] T. C. Ralph, “Continuous variable quantum cryptography,”
Phys. Rev. A, vol. 61, pp. 010303, 2000.

[27] M. Hillery, “Quantum cryptography with squeezed states,”
Phys. Rev. A, vol. 61, pp. 022309, 2000.

[28] Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum cryp-
tography with bright entangled beams,” in IQEC’2000 Confer-
ence Digest, QMB6, September 2000, p. 8.

Appendix

I. Proof of Asymptotic Optimality

Lemma 1: Let Z = (Z1 . . . ZN) a list of N random bit
strings of arbitrary length, independently and uniformly
distributed. The probability that a given string from the
list, say Zj , can be uniquely identified in Z by specifying
only the first r bits is (1 − 2−r)N−1.

Proof: The probability of Zj being uniquely identi-
fiable from its first r bits is the probability that no string
among the N −1 other ones in the list starts with the same
pattern. Hence, this probability is (1 − 2−r)N−1.

Lemma 2: [17] Let X and X ′ be discrete random vari-

ables distributed as p(x, x′) and A
(d)
ǫ (X, X ′) be the set

of jointly typical sequences (X(d), X ′(d)
) of length d. Let

x′(d) be some fixed sequence in the set A
(d)
ǫ (X ′) of typ-

ical sequences in the marginal distribution of X ′. Define

A
(d)
ǫ (X |x′(d)

) = {x(d) : (x(d), x′(d)
) ∈ A

(d)
ǫ (X, X ′)}. Then,

|A(d)
ǫ (X |x′(d)

)| ≤ 2d(H(X(1)|X′(1))+2ǫ).
Lemma 3: Suppose that Alice sends a discrete random

sequence X(d) of length d and Bob receives a correlated

sequence X ′(d)
, which are jointly typical (x(d), x′(d)

) ∈
A

(d)
ǫ (X, X ′). Let m = ⌈dH(X(1)) + ǫ⌉. Let the m

slices S1...m(X(d)) be chosen randomly using a uniform
distribution independently for all input values. Let r =

⌈dH(X(1)|X ′(1))+2ǫ−log ǫ+1⌉. Then ∀ǫ > 0 ∃D such that

∀d > D, Bob can recover X(d) given X ′(d)
and S1...r(X

(d))
with a probability of identification failure Pi < ǫ.

Proof: Alice and Bob agree on a random S1...m(X(d)).

Assume that they draw sequences x(d) and x′(d) that fulfill

the typicality conditions above. For the value received,

Bob prepares a list of guesses: {x(d) ∈ A
(d)
ǫ (X |x′(d)

)}.
From Lemma 2, this list contains no more than N ≤
2dH(X(1)|X′(1))+2ǫ elements. Alice reveals r slice values,

with r ≥ dH(X(1)|X ′(1)) + 2ǫ − log ǫ + 1. From Lemma 1,
the probability that Bob is unable to correctly iden-
tify the correct string is bounded as Pi ≤ 1 − (1 −
2−dH(X(1)|X′(1))−2ǫ+log ǫ−1)2

dH(X(1) |X′(1))+2ǫ−1. This quan-
tity goes to 1−e−ǫ/2 when d → ∞, and 1−e−ǫ/2 < ǫ/2 for
ǫ > 0. Therefore, ∃D such that Pi < ǫ for all d > D.

Lemma 4: Sliced error correction on the discrete vari-
ables X and X ′, together with an all-or-nothing BCP, leaks
an amount of information that is asymptotically close to
H(X |X ′) per raw key element as d → ∞, with a probabil-
ity of failure that can be made as small as desired.

Proof: Using random coding arguments, lemma 3
states that for each d sufficiently large, there exists slices

S
(d)
1...m of which the first ones are to be entirely disclosed,

giving |C| ≤ l(d)(dH(X(1)|X ′(1))+2ǫ− log ǫ+2. The num-
ber l(d) of key elements of dimension d is l(d) = l(1)/d
with l(1) the number of raw key elements. Hence |C| ≤
l(1)(H(X(1)|X ′(1)) + d−1(2ǫ − log ǫ + 2)). Regarding the
probability of failure, there are two sources of possible
failure: the failure of identification Pi and the fact that

(x(d), x′(d)
) /∈ A

(d)
ǫ (X, X ′). From Lemma 3 and from the

AEP, both probabilities are upper bounded by ǫ. There-
fore, the total failure probability behaves as O(ǫ) when
ǫ → 0.

Theorem 1: Sliced error correction on the random vari-
ables X and X ′, together with an all-or-nothing BCP, can
make H(K(X)) − l−1|C| as close as desired to I(X ; X ′).

Proof: If X is discrete, let K(X) = X , otherwise

set K(X) = X̂, with X̂ a quantized approximation of X .

Similarly, let X̂ ′ = X ′ when X ′ is discrete or approximate
it with a discrete variable X̂ ′ otherwise. For any ǫ̂ > 0,
there exits X̂, X̂ ′ such that I(X̂ ; X̂ ′) ≥ I(X ; X ′) − ǫ̂ [17].

By applying Lemma 4 on X̂ and X̂ ′, we have |C| ≤
l(H(X̂|X̂ ′) + ǫ′) for any ǫ′ > 0. Therefore,

H(K(X)) − l−1|C| ≥ H(X̂) − H(X̂ |X̂ ′) − ǫ′

≥ I(X̂ ; X̂ ′) − ǫ′

≥ I(X ; X ′) − ǫ′ − ǫ̂.

(16)

Corollary 1: If we use a practical BCP instead of dis-
closing the slice bits whenever this would leak less than l
bits, the conclusion of Th. 1 still applies.

Proof: Assume that we can predict how many bits
the practical BCP discloses, for instance given an estimate
of the bit error rate. Disclosing a slice entirely, as done
in Lemma 3, reveals l bits. Whenever the practical BCP
is expected to disclose less than l bits (e.g., when the bit
error rate is low), we can use it instead of disclosing the
entire key without increasing |C|.

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 1 1.5 2 2.5 3 3.5

P
ro

ba
bi

lit
y

of
 e

rr
or

I(X;X’)

e_1
e_2
e_3
e_4

Fig. 4

Error rates e1,2,3,4 as a function of the channel capacity

I(X; X′)

