
UC Riverside
UC Riverside Previously Published Works

Title
Recursive decoding and its performance for low-rate Reed-Muller codes

Permalink
https://escholarship.org/uc/item/20p5z97c

Journal
IEEE Transactions on Information Theory, 50(5)

ISSN
0018-9448

Author
Dumer, Ilya

Publication Date
2004-05-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20p5z97c
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 811

Recursive Decoding and Its Performance for
Low-Rate Reed–Muller Codes

Ilya Dumer, Member, IEEE

Abstract—Recursive decoding techniques are considered for
Reed–Muller (RM) codes of growing length and fixed order .
An algorithm is designed that has complexity of order log
and corrects most error patterns of weight up to (1 2)
given that exceeds 1 2 . This improves the asymptotic bounds
known for decoding RM codes with nonexponential complexity.

To evaluate decoding capability, we develop a probabilistic tech-
nique that disintegrates decoding into a sequence of recursive steps.
Although dependent, subsequent outputs can be tightly evaluated
under the assumption that all preceding decodings are correct. In
turn, this allows us to employ second-order analysis and find the
error weights for which the decoding error probability vanishes on
the entire sequence of decoding steps as the code length grows.

Index Terms—Decoding threshold, Plotkin construction, recur-
sive decoding, Reed–Muller (RM) codes.

I. INTRODUCTION

I N this paper, our goal is to design new decoding algorithms
that can enhance techniques known to date for Reed–Muller

(RM) codes. In general, RM codes can be designed from the set
of all -variate Boolean polynomials of degree or less.

Here each polynomial is defined on the -dimen-
sional space . For any , we consider the sequence of binary
values obtained as argument runs through . These se-
quences—codewords —form an RM code, which is below
denoted and has length , dimension , and distance as
follows:

The decoding algorithms discussed in this paper (including the
new algorithms) can be applied to any RM code. However, we
will mostly focus on their asymptotic performance obtained for
long RM codes of fixed order . To define their error-correcting
performance, we use the following definition. Given an infinite
sequence of codes , we say that a decoding algorithm

has a sequence and a sequence
if for

• correctly decodes all but a vanishing fraction of error
patterns of weight or less;

Manuscript received March 18, 2002; revised November 16, 2003. This work
was supported by the National Science Foundation under Grant CCR-0097125.
The material in this paper paper was presented in part at the 37th Allerton
Conference on Communication, Control, and Computing, Monticello, IL,
September 1999.

The author is with the College of Engineering, University of California,
Riverside, CA 92521 USA (e-mail: dumer@ee.ucr.edu).

Communicated by S. Litsyn, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2004.826632

• fails to decode a nonvanishing fraction of error patterns
of weight or less.1

Nonexponential decoding algorithms known for RM codes
can be loosely separated into three groups. First,

was developed in the seminal paper [1]. The algo-
rithm requires complexity of order or less. For RM codes
of fixed order , it was proven in [6] that majority decoding
achieves maximum possible threshold (here and
subsequently we omit the index) with a residual

(1)

where is a constant that does not depend on and .
The second type of decoding algorithms makes use of the

symmetry group of RM codes. One very efficient algorithm is
presented in [7]. For long RM codes , this algorithm re-
duces the residual term from (1) to its square ,
where . On the other hand, the complexity order of
of majority decoding is also increased in the algorithm [7] to al-
most its square . The corresponding thresholds for higher
orders are yet unknown.

Another result of [7] concerns maximum-likelihood (ML) de-
coding. It is shown that ML decoding of RM codes of fixed-
order yields a substantially lower residual

(2)

where . However, even the best known algorithm of ML
decoding designed by the multilevel trellis structure in [8] has
yet complexity that is exponential in .

Finally, various techniques were introduced in
[2]–[4], and [10]. All these algorithms use different recalcula-
tion rules but rely on the same code design based on the Plotkin
construction . The construction allows to decompose
RM codes onto shorter codes, by taking subblocks

and from codes and . The results from [2],
[4], and [10] show that this recursive structure enables both
encoding and bounded distance decoding with the lowest
complexity order of known for RM codes of
an arbitrary order .

In the same vein, below we also employ Plotkin construc-
tion. The basic recursive procedure will split RM code of
length into two RM codes of length . Decoding is then
relegated further to the shorter codes of length and so on,
until we reach basic codes of order or . At these
points, we use ML decoding or the variants derived therefrom.
By contrast, in all intermediate steps, we shall only recalculate

1Note that multiple sequences with � ! 0 can satisfy the same definition.

0018-9448/04$20.00 © 2004 IEEE

812 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

the newly defined symbols. Here our goal is to find efficient
recalculation rules that can provably improve the performance
of RM codes. Our results presented in Theorems 1 and 2 show
that recursive techniques indeed outperform other polynomial
algorithms known for RM codes. These results also show how
decoding complexity can be traded for a higher threshold.

Theorem 1: Long RM codes of fixed order can be
decoded with linear complexity and decoding threshold

Theorem 2: Long RM codes of fixed order can be
decoded with quasi-linear complexity and decoding
threshold

Rephrasing Theorems 1 and 2, we obtain the following.

Corollary 3: Long RM codes of fixed order can be
decoded with vanishing output error probability and linear com-
plexity (or quasi-linear complexity) on a bi-
nary channel with crossover error probability (cor-
respondingly,) as .

Note that Theorem 1 increases decoding threshold of the re-
cursive techniques introduced in [2] and [4] from the order of

to while keeping linear decoding complexity. Theorem
2 improves both the complexity and residual of majority de-
coding of RM codes. When compared with the algorithm of [7],
this theorem reduces the quadratic complexity to a
quasi-linear complexity and also extends this algo-
rithm to an arbitrary order of RM codes.

The algorithms designed in what follows differ from the
earier algorithms of [2], [4], and [10] in both the intermediate
recalculations and the stopping rules. First, we employ new
intermediate recalculations, which yield the exact decoding
thresholds, as opposed to the bounded distance threshold
established in [4] and [10]. This leads us to Theorem 1. Second,
by analyzing the results of Theorem 1, we also change the
former stopping rules, all of which terminate decoding at the
repetition codes. Now we terminate decoding earlier, once we
achieve the biorthogonal codes. This change yields Theorem 2
and substantially improves decoding performance (this is dis-
cussed in Section VII). Finally, we employ a new probabilistic
analysis of recursive algorithms. In Section VII, we will see
that this analysis not only gives the actual thresholds but also
shows how the algorithms can be advanced further.

In Section II, we consider recursive structure of RM codes
in more detail. In Section III, we proceed with decoding tech-
niques and design two different recursive algorithms and

. These algorithms are analyzed in Sections IV–VI, which
are concluded with Theorems 1 and 2. In Section VII, we briefly
discuss extensions that include decoding lists, subcodes of RM
codes, and soft-decision channels. For the latter case, we will
relate the noise power to the quantity . Thus, the residual
will serve as a measure of the highest noise power that can be
withstood by a specific low-rate code.

Fig. 1. Decomposition of RM codes of length 8.

Fig. 2. Decomposition of information paths.

II. RECURSIVE ENCODING OF RM CODES

Consider any -variate Boolean polynomial and the
corresponding codeword with symbols . Below we as-
sume that positions are ordered lexicograph-
ically, with being the senior digit. Note that any polynomial

can be split as

(3)

where we use the new polynomials and . These
polynomials are defined over variables and have degrees
at most and , respectively. Correspondingly, one can con-
sider two codewords and that be-

long to the codes and . Then representation (3)

converts any codeword to the form . This
is the well-known .

By continuing this process on codes and ,

we obtain RM codes of length , and so on. Finally, we
arrive at the end nodes, which are repetition codes for any

and full spaces for any .
This is schematically shown in Fig. 1 for RM codes of length .

Now let be a block of information bits
that encode a vector . By decomposing this vector

into and , we also split into two information subblocks
and that encode vectors and , respectively. In the

following steps, information subblocks are split further, until we
arrive at the end nodes or . This is shown in Fig. 2.
Note that only one information bit is assigned to the left-end
(repetition) code , while the right-end code includes

bits. Below, these bits will be encoded using the unit gen-
erator matrix. Summarizing, we see that any codeword can be
encoded from the information strings assigned to the end nodes

or by repeatedly combining codewords and in the

-construction.
Given any algorithm , in the sequel we use the notation

for its complexity. Let denote the encoding described above
for the code . Taking a complexity estimate from [2] and
its enhancement from [4], we arrive at the following lemma.

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 813

Lemma 4: RM codes can be recursively encoded with
complexity

(4)

Proof: First, note that the end nodes and re-
quire no encoding and therefore satisfy the complexity bound
(4). Second, we verify that code satisfies (4) if the two
constituent codes do. Let the codewords and

have encoding complexity and that

satisfies (4). Then their combination requires com-
plexity

where extra additions were included to find the
right half . Now we substitute estimates (4) for quantities

and . If , then

The two other cases, namely, and , can be
treated similarly.

Now consider an information bit associated with a left
node , where . We will map onto a specific
“binary path”

of length leading from the origin to the end node .
To do so, we first define the senior bit

if
if .

Next, we take if encodes the left descendant sub-
code on the following step. Otherwise, . Similar proce-
dures are then repeated at the steps and give
some that arrives at the node . We then add
right-hand steps and obtain a full path of length that arrives
at the node . Using notation for the sequence of ones,
we write

Now consider any right-end node , where and
let be any right-end path that ends at this node. Then is as-
sociated with information bits. Therefore, we extend to the
full length by adding any binary suffix .
This allows us to consider separately all information bits and
use common notation .

When all left- and right-end paths are considered together, we
obtain all paths of length and binary weight or more.
This gives one-to-one mapping between information bits and
extended paths . Below all are ordered lexicographically, as

-digital binary numbers.

III. RECURSIVE DECODING

Now we turn to recursive decoding algorithms. We map any
binary symbol onto and assume that all code vectors
belong to . Obviously, the sum of two binary
symbols is being mapped onto the product of their images. Then
we consider any codeword

transmitted over a binary symmetric channel with crossover
probability . The received block consists
of two halves and , which are the corrupted images of
vectors and . We start with a basic algorithm that
will be later used in recursive decoding. In our decoding, vector

will be replaced by the vectors whose components take on
real values from the interval . Therefore, we take a
more general approach and assume that .

Step 1. We first try to find the codeword from .

In the absence of noise, we have the equality (which
gives the binary sum of vectors and in the former notation).
On a noisy channel, we first find the “channel estimate”

(5)

of . Next, we employ (any) decoding , which will be

specified later. The output is some vector and its

information block .
Step 2. We try to find the block given from

Step 1. Here we take two corrupted versions of vector , namely,
in the left half and in the right half. These two real vectors

are added and combined in their “midpoint”

(6)

Then we use some decoding , which is also specified later.
The output is some vector and its information block

. So, decoding is performed as follows.

Algorithm

1. Calculate vector
Find and

2. Calculate vector
Find and

3. Output decoded components:

In a more general scheme , we repeat this recursion by
decomposing subblocks and further. On each interme-
diate step, we only recalculate the newly defined vectors
and using (5) when decoder moves left and (6) when it
goes right. Finally, vectors and are decoded, once we
reach the end nodes and . Given any end code of

length and any estimate , we employ the (soft decision)
(MD) decoding that outputs a

codeword closest to in the . Equivalently,

814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

maximizes the inner product . The algorithm is described
below.

Algorithm

1. If perform
using and

2. If perform MD decoding
for code

3. If perform MD decoding
for code

In the following algorithm , we refine algorithm
by terminating decoding at the biorthogonal codes .

Algorithm

1. If perform
using and

2. If perform MD decoding
for code

3. If perform MD decoding
for code

Thus, procedures and have a recursive structure that
calls itself until MD decoding is applied on the end nodes. Now
the complexity estimate follows.

Lemma 5: For any RM code algorithms and
have decoding complexity

(7)

(8)

Proof: First, note that for trivial codes and , MD
decoding can be executed in operations and satisfies the bound
(7) (here we assume that finding the sign of a real value requires
one operation). For biorthogonal codes, their MD decoding
can be executed in operations using the Green
machine or operations using fast Hadamard trans-
form (see [18] or [5, Sec. 14.4]). Obviously, this decoding sat-
isfies the upper bound (8).

Second, for both algorithms and , vector in (5) can
be calculated in operations while vector in (6) requires

operations. Therefore, our decoding complexity satisfies
the same recursion

Finally, we verify that (7) and (8) satisfy the above recursion,
similarly to the derivation of (4).

Discussion.
Both algorithms and admit bounded distance de-

coding. This fact can be derived by adjusting the arguments of
[4] for our recalculation rules (5) and (6). Algorithm is also
similar to decoding algorithms of [2] and [10]. However, our re-
calculation rules are different from those used in the above pa-

pers. For example, the algorithm of [10] performs the so-called
“min-sum” recalculation

(9)

instead of (5). This (simpler) recalculation (5) will allow us to
substantially expand the “provable” decoding domain versus the
bounded-distance domain established in [4] and [10]. We then
further extend this domain in Theorem 2, also using the new
stopping rule that replaces in with in .
However, it is still an open problem to find the decoding domain
using any other recalculation rule, say those from [2], [4], [10],
or [11].

Finally, note that the scaling factor in recalculation rule
(6) brings any component back to the interval used
before this recalculation. This scaling will also allow us to sim-
plify some proofs, in particular that of Lemma 10. However,
replacing (6) by the simpler rule

does not change any decoding results. Though being equivalent,
the new rule also reduces complexity estimates (7) and (8) to

(10)

(11)

These reductions in complexity notwithstanding, in the sequel
we still use the original recalculation rule (6) for the only reason
to simplify our proofs.

IV. ANALYSIS OF RECURSIVE ALGORITHMS

A. Intermediate Outputs

We begin with the algorithm and later will use a similar
analysis for the algorithm . Note that enters each end
node multiple times, by taking all paths leading to this node.
It turns out that the output bit-error rate (BER) significantly
varies on different nodes and even on different paths leading
to the same node. Therefore, our first problem is to fix a path
and estimate the output BER for the corresponding information
symbol . In particular, we will define the most error-prone
paths.

Consider any (sub)path of some length . Let be its prefix
of length , so that , where

(12)

First, note that algorithm repeatedly recalculates its
input , by taking either an estimate from (5) when a path

turns left or from (6) otherwise. The following lemma
shows that recursive decoding follows lexicographic order of
our paths .

Lemma 6: For two paths and , the bit is decoded after
if .
Proof: Given two paths and , let be the first (senior)

position where they disagree. If , then and .
Thus, after steps, moves left while moves right. Corre-
spondingly, proceeds first.

On any subpath of length , algorithm outputs some
vector of length . Next, we derive a recursive expres-

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 815

sion for using formulas (5) and (6). In any step , the algo-
rithm first splits into halves and . For ,

is given by recursion (5) and is rewritten later in the upper
line of (13).

If , then is obtained from (6). Here we also need
the vector decoded on the preceding subpath . The
corresponding output is written in the second line of (13)

if

if .
(13)

Finally, consider any left-end path that passes some
repetition code . Note that no preceding decodings are used
after reaches the repetition code . Here we define the end
result on the path as

(14)

by taking in the last steps of recursion (13). Note
that MD decoding also makes its decision on the entire sum of
symbols and outputs the symbol2

(15)

For any right-end code , the output is some vector of

length . Again, MD decoding takes every symbol on the
full path and converts it into the information bit , making
bit-by-bit decision (15). This is summarized as follows.

Lemma 7: For any end path , the algorithm decodes the
outputs into the information bits using the rule (15).

B. Conditional Error Probabilities

Next, we consider the decoding error probability for any
information bit . On an additive binary symmetric channel,

does not depend on the transmitted codeword and we
can assume that . According to our decoding rule (15), an
error event has probability

(Here we follow footnote 2 and assume that with
probability if .)

Note, however, that the recursive output depends on the
outputs obtained on all preceding paths . To simplify
our calculations, we wish to consider the above event

on the condition that all preceding decodings are correct.
This implies that any path gives an information bit
and a codeword as follows:

This assumption also allows us to simplify our recalculations
(5), (6), and (13) by removing all vectors

(16)
if

if .
(17)

2Below we assume that sign(0) takes values +1 and �1 with probability
1=2.

Therefore, our first goal is to find how much unconditional prob-
abilities change given that the preceding decodings are
correct. First, let

(18)

be the leftmost path that begins with zeros followed by
ones. For any path , let and denote the events

(19)

which include all error vectors that are correctly decoded on the
paths or , respectively. We define the complete
ensemble of all error vectors by . In the sequel, we replace
each probability by the probability

(20)

on the condition that all previous decodings are correct. The fol-
lowing upper bound (21) conservatively assumes that an infor-
mation symbol is always incorrect whenever a failure oc-
curs in any step . Similarly, the upper bound in (22) uses
the formula of total probability and adds up probabilities
over all paths . By contrast, the lower bound takes into account
that the block is always incorrect given the decoding failure on
the first step .

Lemma 8: For any path , its BER satisfies the
inequality

(21)

Block error probability satisfies inequalities

(22)

Proof: The probability can be estimated as

Similarly, the total probability is bounded as

C. Asymptotic Setting

Given any path , we now assume that the decoder gives cor-
rect solutions on all previous paths . Our next
goal is to estimate the decoding error probability

(23)

where is a random variable (rv), which satisfies simplified
recalculations (17). Here we begin with the original probability
distribution

if
if

(24)

816 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

where are independent and identically distributed (i.i.d.)
rvs that form the received vector .

Remark: Note that the above problem is somewhat similar
to that of “probability density evolution ” researched in iterative
algorithms. Namely, in both algorithms the original rv under-
goes two different transformations, similar to (17). However, in
our setting, these transformations can also be mixed in an arbi-
trary (irregular) order that only depends on a particular path ,
in general, and on its current symbol , in particular.

To simplify this problem, in the following we estimate
using only the first two moments of variables and their de-
scendants. This will be done as follows.

1) First, note that the blocks and used in (16) always
include different channel bits. Consequently, their descendants

and used in (17) are also obtained from different
channel bits. These bits are combined in the same operations.
Therefore, all symbols of the vector are i.i.d. rvs.
This allows us to use the common notation for any rv
obtained on the subpath .

2) Let denote the expectation of any rv .
Below we study the normalized rvs

(25)

all of which have expectation . Our goal is to estimate their
variances

(26)

Then decoding error probability always satisfies Chebyshev’s
inequality

(27)

3) To prove Theorem 1, we first consider those left-end paths
that pass through the nodes with growing .

For any such path, we show that the corresponding rv sat-
isfies the central limit theorem as . This will allow us
to replace Chebyshev’s inequality (27) by (a stronger) Gaussian
approximation. We will also see that the variance rapidly
declines as decoding progresses over the new paths . For this
reason, we shall still use Chebyshev’s inequality (27) on the re-
maining paths with , which will only slightly increase
the block error probability defined in (22).

D. Recalculation of the Variances

Our next goal is to recalculate the variances defined in
(26). Let the channel residual be fixed. According
to (24), the original channel outputs have the means ,
in which case rv have the variance

Lemma 9: For any path , the variance satis-
fies the recursions

if (28)

if (29)

Proof: First, we need to find the means of rv
to proceed with new variables . Here we simply replace

all three rvs used in (17) by their expectations. Then for any
, the means satisfy the recursion

if
if .

(30)

Here we also use the fact that vectors and are inde-
pendent and have symbols with the same expectation . Now
we see that the normalized rvs satisfy the recursion

if
if (31)

similarly to (17). By taking we immediately obtain (28)
and (29).

Discussion.
Note that the means only depend on the Hamming

weight of a binary subpath . Indeed, a subpath has
zero symbols . According to (30), the original

expectation of rv is squared times and is left
unchanged times. Therefore,

(32)

By contrast, equalities (28) and (29) show that variance de-
pends on positions of all ones in vector . Thus, direct (nonre-
current) calculations of become more involved. In Lemma
12, we will see that even the simplest paths give rather bulky
expressions (37) for . For this reason, we use a different
approach. Namely, in Section IV-E we find the paths that max-
imize .

E. The Weakest Paths

Preliminary discussion. Consider a channel with crossover
error probability and residual . Initially, rvs
have the variance and always satisfy inequality

, by definition (26). According to (28), is
always squared when a path is appended by . Thus,

moving from a code to its left descendant is
equivalent to the replacement of the original residual by its
square . In other words, any left-hand movement makes the
descendant channel noisier. For small (very-high-
quality channel), squaring is almost insignificant. How-
ever, it becomes more substantial as grows.

By contrast, is always cut in half when . In gen-
eral, any right-hand movement makes the descendant channel
less noisy. For example, we obtain on (bad) chan-
nels with small residual . Then performing the right step, the
recursion replaces this residual with the quantity almost equal
to . Therefore, our first conclusion is that variance in-
creases if is replaced by .

Neighboring paths. Our next step is to consider two “equally
balanced” movements. Namely, in (33), we consider two sub-
paths and of length that have the same prefix of length

but diverge in the last two positions as follows:

.
(33)

We say that and are left and right , correspond-
ingly.

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 817

Lemma 10: Any two neighbors and satisfy inequality

(34)

Proof: Let . Then we use recursive equations
(28) and (29), which give

Therefore, (34) holds.

The weakest paths. Now we see that any path that includes
two adjacent symbols increases its after permutation

. In this case, we say that this path becomes
. From now on, let be the complete set of extended

paths . Also, let be the subset of all left-end paths that
enter the node and be the subset of the right-end paths.
Given any subset , we now say that is the weakest
path in if

Then we have the following.

Lemma 11: The weakest path on the full set of all paths
is the leftmost path (18). More generally, for any ,
the weakest path on the subset is its leftmost path

(35)

Proof: First, note that on all left-end paths , the variances
are calculated after steps, at the same node . By

contrast, all right-end paths end at different nodes ; there-

fore, their variances are found after steps. To use
Lemma 10, we consider an extended right-end path
obtained by adding zeros. Then we have inequality

, since the variance increases after zeros are added. De-
spite this fact, below we prove that from (18) and from
(35) still represent the weakest paths, even after this extension.

Indeed, now all paths have the same length and the same
weight , so we can apply Lemma 10. Recall that each path

ends with the same suffix . In this case, is the
leftmost path on . By Lemma 10, maximizes the variance

over all . Finally, note that is the leftmost path
on the total set since all zeros form its prefix . Thus, is
the weakest path.

V. THRESHOLD OF ALGORITHM

Now we find the variances and for the weakest
paths and .

Lemma 12: For crossover error probability , the
weakest paths and give the variances

(36)

(37)

Proof: Consider the weakest path from (18). The re-
cursion (28) begins with the original quantity .
After completing left steps , the result is

(38)

Then we proceed with right steps, each of which cuts
in half according to (29). Thus, we obtain equality (36).

Formula (37) follows from representation (35) in a similar
(though slightly longer) way.

Lemma 12 allows us to use Chebyshev’s inequality

(39)

for any path . However, this bound is rather loose and insuffi-
cient to prove Theorem 1. Therefore, we improve this estimate,
separating all paths into two different sets. Namely, let be
the subset of all left-end paths that enter the node with

.
We will use the fact that any path satisfies the central

limit theorem as grows. However, we still use Chebyshev’s
inequality on the complementary subset . In doing so, we
take equal to the from Theorem 1

(40)

Theorem 13: For RM codes with and fixed order
used on a binary channel with crossover error probability

, algorithm gives on a path the asymptotic BER

(41)

with asymptotic equality on the weakest path .
Proof: According to (14), any left-end path gives the

rv , which is the sum of i.i.d. limited rv . For
, this number grows as or faster as . In this

case, the normalized rv satisfies the central limit theorem
and its probability density function (pdf) tends to the Gaussian
distribution .

According to Lemmas 11 and 12, the weakest path gives
the maximum variance . In particular, for equality
(36) gives

(42)

Using Gaussian distribution to approximate ,
we take standard deviations and obtain (see also Re-
mark 1 following the proof)

(43)

Here we also use the asymptotic

valid for large . This yields asymptotic equality for in
(41). For any other path , is approximated by the
normal rv with a smaller variance . Therefore, we
use inequality in (41)

(44)

Finally, consider any path with . In this case, we
directly estimate the asymptotics of . Namely, we use the
substitution in (37), which gives a useful estimate

if
if

(45)

818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

Thus, we see that for all , variances have the
same asymptotics and decline exponentially in , as opposed
to the weakest estimate (42). Then we have

which also satisfies (41) as .

Discussion.
1) Considering approximation (43) for a general path , we

arrive at the estimate

(46)

According to [9, Theorem XVI.7.1], this approximation is valid
if the number of standard deviations is small relative
to the number of rvs in the sum

(47)

In particular, we can use (43) for the path , since (42) gives

2) Note that for , the variance in (45) declines
exponentially as moves away from . On the other hand,
we can satisfy the asymptotic condition (47) for any path

, if in (47) is replaced with a parameter3

as . We then use the inequality

valid for any instead of the weaker inequality (44). Thus,
the bounds on probabilities rapidly decline as moves
away from , and the total block error rate also satis-
fies the same asymptotic bound (41).

3) Note that the same minimum residual can also be used
for majority decoding. Indeed, both the majority and the recur-
sive algorithms are identical on the weakest path . Namely,
both algorithms first estimate the product of channel symbols
and then combine different estimates in (14). However, a
substantial difference between the two algorithms is that recur-
sive decoding uses the previous estimates to process any other
path . Because of this, the algorithm outperforms majority de-
coding in both the complexity and BER for any .

4) Theorem 13 almost entirely carries over to any .
Namely, we use the normal pdf for any .
Here any variance declines as grows. Therefore, we can
always employ inequality (44) by taking the maximum possible
variance obtained in (42). On the other hand, asymptotic
equality (43) becomes invalid as grows.

In this case, tighter bounds (say, the Chernoff bound) must
be used on . However, in this case, we also need to extend the
second-order analysis of Lemma 10 to exponential moments.
Such an approach can also give the asymptotic error probability

for any . However, finding the bounds on is an
important issue still open to date.

5) It can be readily proven that, for sufficiently large
, the variance becomes independent of ,

similar to the estimates obtained in the second line of (45). More

3Here we take any positive polynomial () of a fixed degree as
m ! 1.

generally, more and more paths yield almost equal contributions
to the block error rate as grows. This is due to the fact that the
neighboring paths exhibit similar performance on sufficiently
good channels.

Now Theorem 1 directly follows from Theorem 13.

Proof of Theorem 1: Consider a channel with crossover
probability for . The output block error
probability of the algorithm has the order at most ,
where is the number of information symbols. This number
has polynomial order of . On the other hand, formula (41)
shows that declines faster than for any . As a
result, .

Next, we note that the error patterns of weight or less occur
with a probability

Since , the above argument shows that the decoder fails
to decode only a vanishing fraction of error patterns of weight

or less.
Next, we need to prove that fails to correct a nonvanishing

fraction of errors of weight or less. In proving this, consider
a higher crossover probability , where

For this , our estimates (36) and (43) show that and
. Also, according to (22), . On the other

hand, the central limit theorem shows that the errors of weight
or more still occur with a vanishing probability

Thus, we see that necessarily fails on the weights or
less, since the weights over still give a vanishing contribu-
tion to the nonvanishing error rate .

VI. THRESHOLD OF ALGORITHM

Before proceeding with a proof of Theorem 2, we summarize
three important points that will be used below to evaluate the
threshold of the algorithm .

1) The received rv , all intermediate recalculations (13),
and end decodings on the right-end paths are identical
in both algorithms and .

By contrast, any left-end path first arrives at
some biorthogonal code of length and is
then followed by the suffix . Also, let denote the th
codeword of where . Here we also
assume that the first two codewords form the repetition
code

For each , define its support as the subset of positions
that have symbols . Here codewords with
have support of the same size , whereas

. Also, below denotes any information symbol
associated with a path .

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 819

2) Let the all-one codeword be transmitted and be
received. Consider the vector obtained on some
left-end path that ends at the node . By definition
of MD decoding, is incorrectly decoded into any

with probability

where

(48)

In our probabilistic setting, each event is com-
pletely defined by the symbols , which are i.i.d. rvs.

3) Recall that Lemma 8 is “algorithm-independent” and
therefore is left intact in . Namely, we again consider
the events and from (19). Similarly to (20),
we assume that all preceding decodings are correct and
replace the unconditional error probability with its
conditional counterpart

This probability satisfies the bounds

(49)

Here we take the probability of incorrect decoding into
any single codeword as a lower bound (in fact, below
we choose), and the union bound as its upper coun-
terpart.

Now we take parameters

Theorem 14: For RM codes with and fixed order
used on a binary channel with crossover error probability

, algorithm gives for any path a vanishing BER

(50)

Proof: Consider any left-end path that ends at the node
. For any vector and any subset of positions,

define the sum

Here form i.i.d. rvs. Thus, the sum has the same
pdf for any . In turn, this allows us to remove index from

and use common notation . Then we rewrite
bounds (49) as

Equivalently, we use the normalized rv with
expectation and rewrite the latter bounds as

(51)

Similarly to the proof of Theorem 13, note that the sum also
satisfies the central limit theorem for any and has pdf
that tends to as . Thus, we see that

depends only on the variance obtained on the sum of
i.i.d. rv. This variance can be found using calculations identical
to those performed in Lemmas 10 to 12. In particular, for any ,
we can invoke the proof of Lemma 11, which shows that
achieves its maximum on the leftmost path

Similarly to (36), we then find

(52)

Direct substitution in (52) gives

Now we almost repeat the proof of Theorem 13. For the first
path , we employ Gaussian approximation

as . For maximum , the latter inequality
and (51) give the upper bound

(53)

Also,

(54)

For any other path with , we can use the same esti-
mates in (51) due to the inequalities and .

Finally, consider any path with . In this case, we
use Chebyshev’s inequality instead of Gaussian approximation.
Again, for any node we can consider its leftmost path

Similarly to our previous calculations in (36) and (37), it can be
verified that

Then for small , substitution gives the equality

(55)

Thus, we obtain Chebyshev’s inequality in the form

(56)

and complete the proof, since bound (50) combines both esti-
mates (53) and (56).

Proof of Theorem 2: We repeat the proof of Theorem 1
almost entirely. Consider a channel with crossover probability

as . The output block error probability of
the algorithm satisfies the estimate , where
the number of different paths is bounded by . Formula
(50) shows that all decline exponentially in . As a result,
we obtain an asymptotic estimate . On the other hand, the
error patterns of weight or less occur with a total probability
that tends to . So decoder fails to decode only a vanishing
fraction of these error patterns.

Now we take a smaller residual

820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

and consider a channel with crossover probability .
Then direct substitution of in (52) gives . Then
formula (54) shows that the decoding block error rate is

Note also that errors of weight or more occur with vanishing
probability. Thus, fails on errors of weight or less.

Discussion.
The proofs of Theorems 1 and 2 also reveal the main

shortcoming of our probabilistic technique, which employs
rather loose estimates for probabilities . Indeed, the first
two moments of the rvs give tight approximation only
for Gaussian rv. By contrast, error probabilities slowly
decline as , whenever Chebyshev’s inequality (56)
is applied for small parameters . As a result, we can
obtain a vanishing block error rate only if

This is the case of RM codes of fixed order .
In contrast, the number of information symbols is linear in
for RM codes of fixed rate . This fact does not allow

us to extend Theorems 1 and 2 to nonvanishing code rates. More
sophisticated arguments—that include the moments of
an arbitrary order —can be developed in this case. The end
result of this study is that recursive decoding of RM codes
of fixed rate achieves the error-correcting threshold

This increases times the threshold of bounded distance de-
coding. However, the overall analysis becomes more involved
and is beyond the scope of this paper.

VII. FURTHER ENHANCEMENTS AND OPEN PROBLEMS

Now consider an infinite sequence of optimal binary codes of
a low code rate used on a channel with high crossover error
probability . According to the Shannon coding
theorem, ML decoding of such a sequence gives a vanishing
block error probability if

where is the inverse (binary) entropy function. Note that
for

Correspondingly, a vanishing block error probability is obtained
for any residual

(57)

Next, recall that RM codes of fixed order have a code
rate

For this rate, ML decoding of optimal codes gives

(58)

Thus, we see that optimal codes give approximately the same
residual order (58) as the former order (2) derived in [7] for
RM codes . In other words, RM codes of low-rate can

achieve nearly optimum performance for ML decoding. By con-
trast, low-complexity algorithm has a substantially higher
residual that has the order of . This performance gap
shows that further advances are needed for the algorithm .
The main problem here is whether possible improvements can
be coupled with low complexity order of .

The performance gap becomes even more noticeable when
a binary symmetric channel is considered as a “hard-decision”
image of an additive white Gaussian noise (AWGN) channel.
Indeed, let the input symbols be transmitted over a channel
with the AWGN . For code sequences of rate ,
we wish to obtain a vanishing block error probability when

. In this case, the transmitted symbols are interchanged
with very high crossover probability , which gives the
residual

(59)

Thus,

serves (up to a small factor of) as a measure of noise power
. In particular, ML decoding operates at the above residual

from (58) and can withstand noise power of order up to
.

By contrast, algorithm can successfully operate only
when noise power has the lower order of .
Similarly, algorithm is efficient when is further reduced
to the order of . Therefore, for long RM codes, algo-
rithm can increase times the noise power that
can be sustained using the algorithm or majority decoding.
However, performance of also degrades for longer blocks
when compared to optimum decoding, though this effect is
slower in than in other low-complexity algorithms known
for RM codes.

For moderate lengths, this relative degradation is less pro-
nounced, and algorithm achieves better performance. In
particular, some simulation results are presented in Figs. 3–5 for
RM codes , , and , respectively. On the horizontal
axis, we plot both input parameters—the signal-to-noise ratio

of an AWGN channel and the crossover error proba-
bility of the corresponding binary channel. The output
code word-error rates (WER) of algorithms and repre-
sent the first two (rightmost) curves. Decoding is performed on
a binary channel, without using any soft-decision information.

These simulation results show that gains about 1 dB over
on the code and about 0.5 dB on the code even

for high WER. A subsequent improvement can be obtained if
we consider soft-decision decoding, which recursively recalcu-
lates the posterior probabilities of the new variables obtained
in both Steps 1 and 2. These modifications of algorithms
and —called below and —are designed along these
lines in [11]. The simulation results for the algorithm are
also presented in Figs. 3–5, where these results are given by the
third curve.

This extra gain can be further increased if a few most plau-
sible code candidates are recursively retrieved and updated in
all intermediate steps. We note that the list decoding algorithms

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 821

Fig. 3. RM code, n = 128, k = 29. Code WER for hard-decision algorithms 	 and � , and soft-decision algorithms ~� and ~	 (L) (list of size
L = 16).

Fig. 4. RM code, n = 256, k = 37. Code WER for hard-decision algorithms 	 and � , and soft-decision algorithms ~� and ~	 (L) (list of size
L = 64).

have been of substantial interest not only in the area of error
control but also in the learning theory. For long biorthogonal
codes , the pioneering randomized algorithm is presented
in [16]. For and any constants , , this al-
gorithm outputs a complete list of codewords located within the
distance from any received vector, while taking only
a polynomial time to complete this task with high

probability . Substantial further advances are ob-
tained for some low-rate -ary RM codes in [17] and the papers
cited therein.

For binary RM codes of any order , we mention three dif-
ferent soft-decision list decoding techniques, all of which re-
duce the output WER at the expense of higher complexity. The
algorithm of [12] and [13] re-evaluates the most probable in-

822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

Fig. 5. RM code, n = 256, k = 93. Code WER for hard-decision algorithms 	 and � , and soft-decision algorithms ~� and ~	 (L) (list of size
L = 64).

formation subblocks on a single run. For each path , the de-
coder—called below —updates the list of most prob-
able information subblocks obtained on the previous paths

. This algorithm has overall complexity of order . The
technique of [14] proceeds recursively at any intermediate node,
by choosing codewords closest to the input vector processed
at this node. These lists are updated in multiple recursive runs.
Finally, the third novel technique [15] executes sequential de-
coding using the main stack, but also utilizes the complemen-
tary stack in this process. The idea here is to lower-bound the
minimum distance between the received vector and the closest
codewords that will be obtained in the future steps.

Computer simulations show that the algorithm of [13]
achieves the best complexity–performance tradeoff known to
date for RM codes of moderate lengths to . In Figs. 3–5,
this algorithm is represented by the fourth curve, which
shows a gain of about 2 dB over . Here we take
in Fig. 3 and in Figs. 4 and 5. Finally, complexity
estimates (given by the overall number of floating-point
operations) are presented for all three codes in Table I.

Recall also that different information bits—even those re-
trieved in consecutive steps—become much better protected as
recursion progresses. This allows one to improve code perfor-
mance by considering a subcode of the original code, obtained
after a few least protected information bits are removed. The
corresponding simulation results can be found in [12] and [13].

Summarizing this discussion, we outline a few important
open problems. Recall that the above algorithms and
use two simple recalculation rules

(60)

Therefore the first important issue is to define whether any
asymptotic gain can be obtained:

TABLE I
COMPLEXITY ESTIMATES FOR HARD-DECISION ALGORITHMS 	 AND �

AND SOFT-DECISION VERSIONS ~� AND ~	 (L)

— by changing the recalculation rules (60);
— by using intermediate lists of small size ;
— by removing a few weakest information paths (bits).

The second important problem is to obtain tight bounds on the
decoding error probability in addition to the decoding threshold
derived above. This is an open problem even for the simplest
recalculations (60) utilized in this paper, let alone other rules,
such as (9) or those outlined in [11].

From practical perspective, recursive algorithms show sub-
stantial promise at the moderate lengths up to , on which
they efficiently operate at signal-to-noise ratios below 3 dB. It is
also interesting to extend these algorithms for low-rate subcodes
of RM codes, such as the duals of the Bose–Chaudhuri–Hoc-
quenghem (BCH) codes and other sequences with good auto-
correlation.

In summary, the main result of the paper is a new probabilistic
technique that allows one to derive exact asymptotic thresh-
olds of recursive algorithms. First, we disintegrate the decoding
process into a sequence of recursive steps. Second, these de-
pendent steps are estimated by independent events, which occur
when all preceding decodings are correct. Finally, we develop a

DUMER: RECURSIVE DECODING AND ITS PERFORMANCE FOR LOW-RATE REED–MULLER CODES 823

second-order analysis that defines a few weakest paths over the
whole sequence of consecutive steps.

ACKNOWLEDGMENT

The author wishes to thank K. Shabunov for helpful discus-
sions and assistance in computer simulation.

REFERENCES

[1] I. S. Reed, “A class of multiple error correcting codes and the decoding
scheme,” IEEE Trans. Inform. Theory, vol. IT-4, pp. 38–49, Sept. 1954.

[2] S. N. Litsyn, “On decoding complexity of low-rate Reed-Muller codes”
(in Russian), in Proc. 9th All-Union Conf. Coding Theory and Informa-
tion Transmission, Odessa, U.S.S.R., 1988, pp. 202–204.

[3] F. Hemmati, “Closest coset decoding of uju+vj codes,” IEEE J. Select.
Areas Commun., vol. 7, pp. 982–988, Aug. 1989.

[4] G. A. Kabatyanskii, “On decoding of Reed-Muller codes in semicontin-
uous channels,” in Proc. 2nd Int. Workshop Algebraic and Combinato-
rial Coding Theory, Leningrad, U.S.S.R., 1990, pp. 87–91.

[5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1981.

[6] R. E. Krichevskiy, “On the number of Reed-Muller code correctable er-
rors,” Dokl. Sov. Acad. Sci., vol. 191, pp. 541–547, 1970.

[7] V. Sidel’nikov and A. Pershakov, “Decoding of Reed-Muller codes with
a large number of errors,” Probl. Inform. Transm., vol. 28, no. 3, pp.
80–94, 1992.

[8] G. D. Forney, “Coset codes-Part II: Binary lattices and related codes,”
IEEE Trans. Inform. Theory, vol. 34, pp. 1152–1187, Sept. 1988.

[9] W. Feller, An Introduction to Probability Theory and its Applica-
tions. New York: Wiley, 1971, vol. 2.

[10] G. Schnabl and M. Bossert, “Soft-decision decoding of Reed-Muller
codes as generalized multiple concatenated codes,” IEEE Trans. Inform.
Theory, vol. 41, pp. 304–308, Jan. 1995.

[11] I. Dumer, “Recursive decoding of Reed-Muller codes,” in Proc. 37th
Allerton Conf. Communication, Control, and Computing, Monticello,
IL, 1999, pp. 61–69.

[12] I. Dumer and K. Shabunov, “Recursive constructions and their max-
imum likelihood decoding,” in Proc. 38th Allerton Conf. Communica-
tion, Control, and Computing, Monticello, IL, 2000, pp. 71–80.

[13] , “Recursive list decoding of Reed-Muller codes,” in Information,
Coding and Mathematics, M. Blaum, P. Farrell, and H. C. A van Tilborg,
Eds. Boston, MA: Kluwer, 2002, pp. 279–298.

[14] R. Lucas, M. Bossert, and A. Dammann, “Improved soft-decision
decoding of Reed-Muller codes as generalized multiple concatenated
codes,” in Proc. ITG Conf. Source and Channel Coding, Aahen,
Germany, 1998, pp. 137–141.

[15] N. Stolte and U. Sorger, “Soft-decision stack decoding of binary Reed-
Muller codes with look-ahead technique,” in Proc. 7th Int. Workshop
Algebraic and Combinatorial Coding Theory, Bansko, Bulgaria, 2000,
pp. 293–298.

[16] O. Goldreich and L. A. Levin, “A hard-core predicate for all one way
functions,” in Proc. 21 Annu. ACM Symp. Theory of Computation,
Seattle, WA, 1989, pp. 25–32.

[17] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polynomials with
queries: The highly noisy case,” SIAM J. Discr. Math., vol. 13, no. 4, pp.
535–570, Nov. 2000.

[18] R. R. Green, “A serial orthogonal decoder,” JPL Space Programs Sum-
mary, vol. 37–39-IV, pp. 247–253, 1966.

