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On Sparse Representations in Arbitrary Redundant Bases

Jean-Jacques Fuchs, Member, IEEE

Abstract—The purpose of this contribution is to generalize some recent
results on sparse representations of signals in redundant bases. The ques-
tion that is considered is the following: given a matrix of dimension
( ) with and a vector = , find a sufficient condition
for to have a unique sparsest representation as a linear combination of
columns of .

Answers to this question are known when is the concatenation of two
unitarymatrices and either an extensive combinatorial search is performed
or a linear program is solved. We consider arbitrary matrices and give
a sufficient condition for the unique sparsest solution to be the unique so-
lution to both a linear program or a parametrized quadratic program. The
proof is elementary and the possibility of using a quadratic program opens
perspectives to the case where = + with a vector of noise or
modeling errors.

Index Terms—Basis pursuit, global matched filter, linear program,
quadratic program, redundant dictionaries, sparse representations.

I. INTRODUCTION

Let us consider a set ofmn-dimensional vectors aj withm > n and
let us denoteA the (n;m)matrix having these vectors as columns. Any
linear combination b of thesem vectors can then be written as b = Ax

with x an m-dimensional vector of weights.
If x has just a few nonzero components it may well be the unique

and sparsest representation and to recover it from the knowledge of b
one could then seek the sparsest among all the solutions to Ax = b.
The aim of this contribution is to give conditions under which this is
feasible in reasonable time.

Finding the solution having the smallest possible number of nonzero
components, i.e., solving the following optimization problem:

minx kxk0 subject to Ax = b (P0)

where kxk0 denotes the number of nonzero components in x, is a dif-
ficult problem that can only be solved using a combinatorial approach,
i.e., testing systematically all the potential combinations of columns.
This approach is thus unfeasible and it is usual to consider instead the
following much simpler optimization problem:

minx kxk1 subject to Ax = b (LP)

where kxk1 = jxij denotes the `1 norm of x. The problem (LP) is
easily transformed into a linear program whose solution is straightfor-
ward to obtain.

The case where A is the concatenation of two square orthogonal
matrices U1 and U2: A = [U1 U2], was investigated by Donoho and
Huo [1] and Elad and Bruckstein [2]. It was shown that if a solution x
satisfies

kxk0 <
1

M
; withM = sup

1�i6=j�m

a
T
i aj (1)
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then it is the unique sparsest solution and that under the stronger con-
dition

kxk0 <
1

2
1 +

1

M
; withM as above (2)

the unique sparsest solution is also the unique minimum point of (LP).
Stronger results are established in [2] for this kind of A matrices.
In the following, we prove that if condition (2) is satisfied by a solu-

tion xo of Ax = b, with A a matrix built upon an arbitrary number of
vectors with unit Euclidean norm, then it is the unique minimum point
of both a parametrized quadratic program (QP) in a sense to be defined
later (Theorems 2 and 3), and the linear program (LP) (Theorems 3 and
4). But this implies that xo is also the the unique sparsest solution of
Ax = b since if a sparser representation existed, it would satisfy (2),
the same reasoning would hold and one would arrive at a contradic-
tion since both (QP) and (LP) are convex programs that have a unique
optimum attained at a single point under (2). A similar result has in-
dependently been obtained in [3] for (LP) using a completely different
approach.
To establish this result, we merely apply more general but nonex-

plicit results presented in [4], [5] to this very specific problem where
the emphasis is on sparsity. The proof we present goes through if the
vectors aj are not normalized but its last part (see Section V) would be
more intricate.

II. THE CRITERION

Instead of (LP), let us consider the following optimization problem:

minx
1

2
kAx� bk22 + hkxk1; h > 0 (QP)

where kxk22 = x2i denotes the `2 norm of x. This is a convex
unconstrained nonsmooth optimization problem that can be converted
into a (QP) [6]. Introducing the new variables x+i = max(xi; 0),x�i =
max(�xi; 0) and constraining them to be greater than or equal to zero,
one can then replace xi by x+i � x�i and jxij by x+i + x�i to arrive at
a standard (QP).
The unique global minimum of this convex optimization problem

possibly attained on a convex set can thus be obtained using standard
algorithms available from any scientific program library. This criterion
and similar ones have been considered for a while now [5], [8], [9].
To assess the role played by h in the criterion (QP), it is useful to

present the following dual of (QP) (DQP):

minx kAxk
2 subject to kAT (Ax� b)k1 � h (DQP)

where kxk = maxi jxij [10]. The constraint of the dual says that at
a feasible point, the residuals or reconstruction errors defined as r =
b � Ax are such that their correlations with the columns of A never
exceed h. The parameter h allows to tune the maximal magnitude of
these correlations. If the `2 norm of the columns of A is equal to one,
this criterion allows thus for reconstruction errors that are of order h.
One can make the following remarks about the optimum x� of (QP)

or (DQP) as h varies from 0 to +1: they are either obvious or can be
deduced from the results presented in Sections III and VI.

� For h = 0, one is left with minx kb � Axk22, and, provided A
is full rank, the value of the minimum is zero and it is attained for all
points in a convex set (a linear manifold).

� For h = 0+, i.e., for h positive and arbitrarily close to zero, the so-
lution is attained at the point(s) in the previous set having least `1-norm.
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� For h � kAT bk1, the optimum is attained at x� = 0, see (DQP).

As will be shown later for h = 0+, (QP) has the same solution(s)
as (LP). As h increases, the optimum of (QP) drifts away from the op-
timum of (LP), kAx � bk22, which was equal to zero, increases, and
kxk1 decreases. More generally, the interval ]0+; kAT bk1[ can be di-
vided into subintervals characterized by the fact that within each such
subinterval, the number of nonzero components of the optimum of (QP)
is constant. As h increases within one of the subintervals, the nonzero
components of the optimummostly decrease in absolute value until one
of them becomes zero and h hits the boundary of the subinterval. For
h � kAT bk1, all the nonzero components have disappeared and the
optimum remains at zero.

III. OPTIMALITY CONDITIONS FOR (QP)

In this section, we specify the necessary and sufficient conditions
(NSC) satisfied at a minimum point of (QP) together with a sufficient
condition for the minimum point to be unique.

The optimality conditions for (QP) can be obtained in a quite tradi-
tional way by first transforming the problem into a quadratic program
as indicated above and writing the first-order necessary (Kuhn–Tucker)
conditions that are also sufficient since the problem is convex.We adopt
a more direct path. Since the criterion is nonsmooth at zero because of
the presence of kxk1, we introduce the subdifferential of kxk1, a set of
vector called the subgradients, denoted @kxk1

@kxk1 = ujuTx = kxk1; kuk1 � 1

= fujui = sign(xi); if xi 6= 0 andjuij � 1 otherwiseg

where sign(xi) = 1 when xi > 0 and sign(xi) = �1 when xi < 0.
An NSC for x� to be a global minimum of (QP) is that the vector zero
is a subgradient of the criterion at x� [7]

9u 2 @kxk1 such that A
T (Ax� � b) + hu = 0: (NSC)

To write this (NSC) in a more usable way, we distinguish between the
nonzero components and the zero components of x�. We denote �x�

the reduced dimensional vector built upon the nonzero components of
x�. Similarly, �A denotes the associated columns in A. One then has,
e.g., Ax� = �A�x�. For the rows in (NSC) associated with the nonzero
entries �x�, the subgradient is unique and equal to the gradient, for the
other rows the subgradient takes any value in [�1; 1]. The necessary
and sufficient conditions become

�AT (b� �A�x�) =h sign(�x�) (NSC1)

aTj (b� �A�x�) �h; for aj =2 �A: (NSC2)

One can further establish that if �A is full rank and if the inequalities in
(NSC2) are strictly satisfied, then x� is the unique or strict minimum
point of (QP). The following theorem thus holds.

Theorem 1: Sufficient conditions for x� to be a strict minimum
point of (QP) are

1) �AT (b� �A�x�) = h sign(�x�) (3)

2) aTj (b� �A�x�) < h; for aj =2 �A (4)

3) �A full rank

where �x� denotes the reduced dimensional vector built upon the
nonzero components of x� and �A is such that Ax� = �A�x�.

If the conditions of Theorem 1 are satisfied, (3) leads to

�x� = �A+b � h �AT �A
�1

sign(�x�) (5)

with �A+ = �AT �A
�1 �AT , the pseudoinverse of �A. The last term in

the right-hand side of (5) is a bias term induced by the regularization
term in (QP) which can be removed a posteriori if desired.
Relation (5) is an implicit equation since �x� appears on both sides. It

is valid for a fixed h. However, provided there are no zero components
in �A+b, there exists an hm > 0 such that for h 2]0; hm[ taking
sign(�x�) = sign( �A+b) in the right-side of (5) leads to an �x� that
satisfies (3). For h sufficiently small, the choice of �A somehow fully
characterizes �x�.

IV. SEPARABILITY CONDITION

We are now ready to develop a sufficient condition under which a
solution of Ax = b can be recovered from the unique minimum point
of (QP). Let us denote xo the solution one wants to recover, let �xo be
the p-dimensional vector built upon the nonzero component in xo, and
�Ao the (n; p)-dimensional matrix built with the associated columns of
A so that Axo = �Ao�xo = b. We assume �Ao to be full rank.
For a nonzero h, the optimum of (QP) is attained at a point, we de-

note x�, that achieves a compromise between the two parts of the cri-
terion kAx � bk22 and kxk1. One thus has Ax� 6= b and x� is never
exactly equal to a solution of Ax = b. We will therefore consider that
(QP) allows to recover xo if its optimum x� and xo have their nonzero
components at the same locations and with the same signs.

Theorem 2: The solution xo of Ax = b with �Ao and �xo as defined
above and �Ao a full rank matrix, can be recovered from the unique
optimum point of (QP) if

1) aTj do < 1; 8 aj =2 �Ao with do = �A+T
o sign(�xo) (6)

2) h 2]0; hm[the domain in which

signf�xo � h �AT
o
�Ao

�1

sign(�xo)g = sign(�xo) (7)

with �A+ = �AT �A
�1 �AT , the pseudoinverse of �A.

Proof: We associate with �xo a vector �x� that, together with �Ao,
satisfies the sufficient conditions of Theorem 1. Since �xo = �A+

o b, the
parameter h in (7) is such that

sign �A+

o b = sign �A+

o b� h �AT
o
�Ao

�1

sign �A+

o b

and the vector �x� defined as

�x� = �A+

o b� h �AT
o
�Ao

�1

sign(�x�); with sign(�x�) = sign(�xo)

then satisfies (3) with �A replaced by �Ao. But for this vector �x� one has

aTj (b� �Ao�x
�) = h aTj �A+T

o sign(�xo) = h aTj do

and it follows that (6) is equivalent to (4). This completes the proof
since the vector �x� defined above, together with �Ao, satisfies all the
conditions of Theorem 1 and allows to recover xo.

While the size hm of the allowed domain for h depends upon the
magnitudes of the components of �xo, condition (6) is independent of
these magnitudes. Condition (6) defines two parallel separating hyper-
planes H�, associated with a single vector do; H� = fajaT do =
�1g which must be such that the columns that are present in the de-
composition lie in these hyperplanes: aTj d0 = �1, 8 aj 2 �Ao (see
the definition of the vector do), while the other columns (not in �Ao)
must lie strictly in between (see (6)).
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This is why in [4], [5] we called (6) the separability condition.

V. SPARSITY CONDITION

In this section, we specialize the separability condition (6) to the
specific problem considered in [1], [2] and assume the columns aj of
A to have unit Euclidean norm.We transform the separability condition
(6) into the more usable but probably more conservative condition (2).
We prove the following.

Theorem 3: If the columns in A are normalized to one in `2 norm,
then (2)) (6), i.e.,

kxok0 < 1

2
1 +

1

M
) aTj �Ao

�Ao
T �Ao

�1

sign( �xo) < 1;

8 aj =2 �Ao: (8)

Proof: For simplicity we set p = kxok0. Remember that

M = sup
1�i6=j�m

aTi aj :

The diagonal part of �Ao
T �Ao is equal to the identity matrix I since we

assume aTj aj = 1, 8 j. We write �Ao
T �Ao = I �H , where H is built

with the nondiagonal elements of � �Ao
T �Ao.

Since all the nonzero components in the square matrix H of order
p are smaller thanM , its spectral radius �(H) satisfies �(H) � (p�
1)M byGershgorin theorem [11]. From (2) it thus follows that �(H) <
1 and one can apply Neumann’s lemma [11] to get

�Ao
T �Ao

�1

= (I �H)�1 = I +
k>0

Hk:

For a matrix B, we denote jBj the matrix with entries jbi;j j and write
B < C if bi;j < ci;j , 8 i, j, one then has

�Ao
T �Ao

�1

= I +
k>0

Hk � I +
k>0

jHkj

� I +
k>0

jHjk � I +
k>0

(ME)k

=(I �ME)�1

whereE is a square matrix whose entries are equal to one except those
on the diagonal which are equal to zero. One thus hasE = 1�III , where
1 denotes here and below a matrix of ones with adequate dimensions.
It is then easy to check that

I �ME = (1 +M)I �M1) (I �ME)�1 = �I + �1;

with � =
1

1 +M
and � =

M

(1 +M)(1 +M �Mp)
:

Combining this result with, e.g., aTj �Ao � M1
T leads to the fol-

lowing inequalities:

aTj �Ao
�Ao
T �Ao

�1

sign( �xo) � aTj �Ao
�Ao
T �Ao

�1

� jsign( �xo)j
�M1

T �Ao
T �Ao

�1

1

�M (�p+ �p2)

� Mp

1 +M �Mp
< 1

where the very last step follows from (2).

Combining Theorems 2 and 3, we have established the following.

Corollary: If a solution xo of Ax = b satisfies (2), then (QP) has a
unique solution point from which xo can be recovered, provided h in
(QP) has been taken small enough.

Indeed, taking h = 0+ guarantees that x� = xo as is the case for
the (LP) criterion.

Remark: Specializing the preceding proof to the case where A is
the concatenation of two unitary matrices yields the condition kxk0 <
(
p
2� 0:5)=M , obtained in [2], that is slightly weaker than (2). In this

case, �Ao
T �Ao has a block diagonal form and aTj �Ao has some zero

entries leading quite easily to this tighter bound.

VI. SPECIAL CASE OF THE LINEAR PROGRAM

We claimed in Section II that the optimum of (QP) converges to the
optimum of (LP) when h in (QP) decreases to zero. For simplicity, we
assume both optima to be strict and we rewrite (5) as

�x�(h) = �A+b � h �AT �A
�1

sign(�x�(h))

where we emphasize the dependence of �x� on h. We assume that h 2
]0; hm[, the nonempty domain in which sign(�x�(h)) = sign( �A+b).
In this domain, (QP) is equivalent to

min
x
kxk1 subject to kAx� bk22 � B(h)

with B(h) = kAx�(h)� bk22 = 0(h2). But the optimum point of this
new problem converges to the optimum of (LP) as h # 0 since B(h) #
0. This establishes the claimed equivalence and actually establishes that
condition (2) is also sufficient for (LP) to retrieve the unique sparsest
solution.
A direct analysis of this result can indeed be achieved quite easily

along the lines used for the (QP) criterion. Let us do so for completeness
in this section using the notations introduced earlier.

Theorem 4: The solution xo of Ax = b, with b = Axo = �Ao�xo
and �Ao a full rank matrix, is the unique optimum point of (LP) if

aTj d0 < 1 8 aj =2 �A0 for some d0 such that �AT
0 d0 = sign(�xo):

(9)

Proof: Let us recall the (LP) criterion

minx kxk1 subject to Ax = b: (LP)

A slight difficulty arises from the fact that the expected solution xo of
(LP) is degenerate, i.e., has less than n nonzero components. In order
to characterize the optimality of the solution, it is then convenient to
introduce the dual linear program [6]

maxd d
T b subject to kdTAk1 � 1 (DLP)

which, as a linear program, is not in standard form either.
For a vector xo satisfying Axo = �Ao�xo = b to be an optimum of

(LP), one needs to be able to associate with it a solution, say do, of
(DLP) that is feasible and has an identical cost

dTo A
1
� 1 and kxok1 = dTo b:

Rewriting the primal cost xTo sign(xo) = �xTo sign(�xo) and the dual
cost dTo b = dTo Axo = dTo �Ao�xo shows that they are equal for all �xo if
dTo �A0 = sign(�xTo ). For do to be a feasible point of (DLP) it remains
then to check

aTj do � 1; 8 aj =2 �Ao: (10)

For xo to be the unique solution of (LP) one has to ask in addition
that the dual problem be nondegenerate in the sense that all constraints
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associatedwith zero Lagrangemultipliers be strictly satisfied. Since the
Lagrange multipliers of (DLP) are the components of xo, this means
that the inequalities in (10) have to be strict, transforming (10) into (9).

From Theorems 3 and 4, we have the following.

Corollary: If (2) holds then xo is the unique solution of (LP).

Condition (9) is weaker than (6) that needs to hold for (QP), since the
vector do is now less constrained. It belongs to an (n-p)-dimensional
linear manifold defined in (9) while the vector do defined in (6) for the
(QP) criterion is a specific vector of this manifold, the one of least `2
norm. It is indeed possible to construct toy examples where (LP) allows
to recover a solution (not satisfying the sufficient condition (6)) while
(QP) does not.

VII. CONCLUSION

Given any (n;m) matrix A with m > n and a solution xo of the
set of under-determined linear equations Ax = b, we have given suf-
ficient conditions (6) under which it is possible to recover xo from the
optimum of a quadratic program [5] and slightly weaker sufficient con-
ditions (9) under which this is possible using a linear program.

If the columns in A are further taken to have unit Euclidean norm
and one is primarily interested in sparse solutions then we have shown
that both (6) and (9) are satisfied if

kxok0 <
1

2
1 +

1

M
; with M = sup

1�i6=j�m

a
T
i aj (2)

where kxk0 is the number of nonzero components in x. This also es-
tablishes that this condition guarantees that xo is the unique sparsest
solution to Ax = b. This result on sparse solutions extends those pre-
viously published which considered (n; 2n) matrices A obtained by
concatenating two unitary matrices and is similar to the result obtained
in [3] using a completely different approach.

The result holds both for the linear program (LP) seeking the min-
imal `1 norm solution to Ax = b and for the following quadratic pro-
gram parametrized by an hyper-parameter h:

minx
1

2
kAx� bk22 + hkxk1; h > 0: (QP)

For the criterion (QP), under an additional condition on h that is al-
ways satisfied for h = 0+, its unique optimum x� and the sought-for
solution xo have their nonzero components at the same locations and
with identical signs. Since this criterion allows for nonzero residuals
r = Ax� � b 6= 0, with magnitudes of the order of h, x� is never a
solution of Ax = b and is the best one can expect.

Allowing for nonzero residuals is of practical importance since it
allows for the presence of noise or errors due to mismodeling. It is also
the main reason for considering (QP) rather then (LP). In the presence
of noise, the true model is

b = Axo + e

with e a vector of white Gaussian noise, for instance. Asking for an
exact reconstruction of b as a linear combination of columns of A will
yield a nonsparse estimate x� of xo. One possibility is then to threshold
the components of this estimate in order to recover xo by removing the
small components induced by the presence of the noise. But a more
sensible approach is probably to take into account from the beginning

the presence of the noise and to solve (QP) with h of the order of the
standard deviation of the noise [9], [10] to get a sparse x� that does not
require pruning.
Another similar situation arises when the true model of the observed

vector b is

b =

p

i=1

�ia(�i)

with a(�) a known family of vectors parametrized by a scalar � and �i
the scalar weights. In order to apply the previous setting to this estima-
tion problem, one way to proceed is to uniformly discretize the values
of � over its compact domain to get them columns aj = a(�)j�=t of
the A matrix. Since the �i will generically not belong to the sampling
points set ftjg, there is again no sparse representation of b as a linear
combination of the columns ofA. In the simplest case of a single com-
ponent b = a(�1), the components of x� can be shown to be samples
from an interpolating function [13].
Tentative analyses of these more complex scenarios, where both

noise and mismodeling errors are present, can be found in [12], [13]
for (QP) or the following modified (LP) criterion:

min
x

kxk1 subject to kAx� bk1 � �:
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