
On the Hardness of Finding Optimal Multiple Preset
Dictionaries

Citation
Mitzenmacher, Michael. 2000. On the Hardness of Finding Optimal Multiple Preset Dictionaries.
Harvard Computer Science Group Technical Report TR-07-00.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24019790

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24019790
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20the%20Hardness%20of%20Finding%20Optimal%20Multiple%20Preset%20Dictionaries&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=3f040887785943034d3580bc76743758&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

On the Hardness of Finding Optimal Multiple

Preset Dictionaries

Michael Mitzenmacher

�

Harvard University

Abstract

Preset dictionaries for Hu�man codes are used e�ectively in fax

transmission and JPEG encoding. A natural extension is to allow mul-

tiple preset dictionaries instead of just one. We show, however, that

�nding optimal multiple preset dictionaries for Hu�man and LZ77-

based compression schemes is NP-hard.

1 Introduction

Preset dictionaries are often used to improve compression. For example,

with standard two-pass Hu�man coding, one generally sends a table describ-

ing the encoding, or a dictionary, that allows the decoder to determine the

appropriate code words for each alphabet symbol. Instead, if similar trans-

missions occur on a repeated basis, a preset dictionary can be set in advance

to avoid the cost of computing and transmitting an explicit dictionary each

time. Avoiding memory and computation costs for dictionary computation

may be useful even if it yields slighltly worse compression. Preset dictionar-

ies may also yield improved compression results when the cost of sending an

explicit dictionary would be more than the gain the explicit dictionary would

yield over the preset dictionary. This situation may occur when documents

are short and a suitably e�ective preset dictionary can be found. Preset

dictionaries arise in for example fax transmission and JPEG encoding [4].

�

Harvard University, Division of Engineering and Applied Sciences, 33 Oxford St.,

Cambridge, MA 02138. Supported in part by an Alfred P. Sloan Research Fellowship,

NSF CAREER grant CCR-9983832, and an equipment grant from Compaq Computer

Corporation. E-mail: michaelm@eecs.harvard.edu.

A natural extension to this idea is to allow multiple preset dictionaries.

Flag bits at the beginning of a �le can be used to denote which (if any)

preset dictionary to use. Allowing multiple dictionaries intuitively should

improve compression by providing more exibility. Such an idea is quite

natural; indeed, the ZLIB library, designed for LZ77-based compression, al-

lows for multiple preset dictionaries [1]. The tradeo� is that more space is

required to store the preset dictionaries, and more computation is required

to test which dictionary should be used for compression. Note that this ad-

ditional computation is required only at the compression end, and is easily

parallelized.

In this paper, we relate the problem of �nding optimal multiple preset

dictionaries to the model of segmentation problems introduced in [3]. This

connection between a simple compression problem and a natural economics

problem may be interesting in its own right. In the spirit of these results, we

refer to problems related to �nding multiple preset dictionaries as compres-

sion segmentation problems. Using this connection, we show that natural

compression segmentation problems for Hu�man trees and LZ77-based com-

pression are NP-hard.

2 The catalog segmentation problem

The problem of �nding optimal families of preset dictionaries is related to the

segmentation problems de�ned by Kleinberg, Papadimitriou, and Raghavan.

The canonical segmentation problem is the catalog segmentation problem,

which we �rst describe informally. A seller can send a catalog to all customers

in its database. Only r items can be advertised in a catalog. Given previous

history, the seller can exactly tell which people will buy which items. The

goal is to maximize the number of sales. If the seller could create just one

catalog, the optimal solution would be to include the r most popular items.

Suppose instead the seller can create k di�erent catalogs and send exactly

one to each customer. How should the seller determine the k catalogs that

will maximize the number of sales?

Following [3], we formally de�ne the catalog segmentation problem as

follows. Consider the customers as sets of items S

1

; S

2

; : : : ; S

n

over a ground

set U . Catalogs X

1

; X

2

; : : : ; X

k

are also sets of items. The goal is to choose

the X

i

such that jX

i

j � r for all i and

n

X

j=1

max

1�i�k

(jX

i

\ S

j

j)

is maximized.

Theorem 1 [3] The catalog segmentation problem is NP-hard (even for k =

2).

Even though the catalog segmentation problem is NP-hard, it can be

solved in polynomial time for any �xed r and k, since there are only

�

jU j

r

�

possible catalogs.

Although in [3] the authors say that the catalog segmentation problem

(and several natural variants) are NP-hard, complete proofs are not given.

For completeness we o�er our own simple proof of Theorem 1, suggested to us

by Steve Lumetta, below. We then reduce the catalog segmentation problem

to the problems of �nding optimal multiple preset dictionaries for Hu�man

coding and Lempel-Ziv coding, thereby showing that these problems are NP-

hard. For convenience for the remainder of the paper we focus on the case

where k = 2, although our results are easily generalized to other values of k.

Theorem 2 The catalog segmentation problem is NP-hard for k = 2.

Proof: We reduce from the well-known NP-hard problem Graph Bisection

[2]: given a graph G = (V;E) with an even number of vertices, split V into

two disjoint sets V

1

and V

2

with jV

1

j = jV

2

j = jV j=2 such that the number

of edges adjacent to both V

1

and V

2

is minimized. We turn an instance of

simple graph bisection into a catalog segmentation problem as follows. For

each vertex, create a corresponding item. If d is the maximum degree of the

graph, create for each item d+ 1 customers who want to purchase only that

item. For each edge, create a customer that wants to purchase only those two

items corresponding to the vertices adjacent to that edge. Now suppose we

can have r = jV j=2 items in each catalog. It it easy to see that the optimal

pair of catalogs must contain all jV j items. Otherwise, some item appears in

both catalogs, but since the maximum degree of the graph is d replacing one

copy of the repeated item by some item that does not appear improves the

number of items sold. Because the optimal pair of catalogs contains all jV j

items, we may conclude that it also provides a bisection that minimizes the

number of edges crossing from V

1

to V

2

. This completes the reduction. 2

3 Hu�man coding

We now de�ne the Hu�man code segmentation problem. We are given a col-

lection of documents D

1

; D

2

; : : : ; D

n

over an alphabet �. Finding an optimal

sequence of Hu�man code word lengths over � to compress these documents

is trivial; it simply requires summing the character frequencies over all of

the documents and using the standard Hu�man tree algorithm. Suppose,

however, we were allowed to construct k di�erent Hu�man codes, and use

the best one to compress each document. The Hu�man code segmentation

problem is to minimize the total compressed size given the D

i

and k � 2.

To see how the Hu�man code segmentation problemmight naturally arise,

suppose we plan to design multiple preset Hu�man codes for a large, arbitrary

collection of documents, such as all Web pages. We might then sample n

representative pages as a test set in order to develop our Hu�man codes,

which will be used over the larger class of documents. The Hu�man code

segmentation problem designs the k best codes for this test set.

Theorem 3 The Hu�man code segmentation problem is NP-hard.

Proof: We reduce from catalog segmentation for the case k = 2. Recall for

the catalog segmentation problem we have a ground set U with jU j = m and

n subsets S

1

; : : : ; S

n

of U . We wish to �nd two subsets X and Y of U with

size r such that

n

X

j=1

max(jX \ S

j

j; jY \ S

j

j)

is maximized. We will design a related Hu�man code segmentation problem

so that each element in the ground set corresponds to a character of �, and

each character has depth d or d+1 for some d in the pair of optimal Hu�man

trees. The sets X and Y will correspond to the characters of depth d derived

from elements of U in each Hu�man tree.

More speci�cally, let d be the smallest integer such that 2

d+1

� m + r.

Our alphabet � will consist of 2

d+1

� r characters. The �rst m characters,

u

1

; u

2

; : : : ; u

m

represent characters that correspond to elements of U . We

also introduce additional characters v

1

; v

2

; : : : ; v

h

, where h = 2

d+1

� r �m,

so that there are 2

d+1

� r total characters.

For each set S

j

we construct a corresponding document D

j

. Let z be

a su�ciently large constant (such as 8). The document D

j

will contain z

occurrences of each character u

q

such that item q is contained in S

j

, and

z � 1 occurrences of every other character.

With this construction, we may assume without loss of generality that

all of the characters v

1

; v

2

; : : : ; v

h

should have depth at least as large as any

character u

i

in both of the Hu�man trees in the solution, because their

frequency is at least as large in every document. Similarly, if the depths of

all characters in both trees are not within one of each other, the total cost

can be improved by attening the o�ending tree. That is, if some node has

depth a and two other nodes have depth (at least) a+2, we may improve the

tree by replacing it with one where all three nodes have depth a + 1. This

reduces the compression cost by at least 2(z � 1)n� zn > 0.

Hence there must be exactly r characters from U with depth d in each

of the two trees of the solution, and all other characters have depth d + 1.

We show that the sets of r characters with depth d in the two trees yield the

sets X and Y for the catalog segmentation problem, by replacing characters

with the corresponding elements. The cost of compressing D

j

using optimal

pair of Hu�man trees is the sum of the following terms: (z � 1)(d+ 1)h for

characters v

1

; v

2

; : : : ; v

h

; zd(max(jX \ S

j

j; jY \ S

j

j) for characters in S

j

of

depth d in the better tree; and z(d+1)(m�max(jX \S

j

j; jY \S

j

j) for other

characters u

i

. Hence the total compression cost over the n documents is

n(z � 1)(d+ 1)h+ nz(d+ 1)m� z

n

X

j=1

max(jX \ S

j

j; jY \ S

j

j):

Minimizing the compression is therefore equivalent to maximizing the result

of the catalog segmentation problem.

Also, the corresponding decision version, which asks if there is a pair

of trees that compresses the documents down to t total bits, is clearly NP-

complete. 2

We note an obvious approximation result is that using one Hu�man tree

is at most dlog

2

ke bits per character worse than using k Hu�man trees, since

we could clearly combine the k separate trees into a single super-tree. In

other words, given the optimal Hu�man trees for a given k, we could design

a compression scheme where the �rst dlog

2

ke bits would specify which of

the k trees to use, and then use the appropriate codeword from that tree;

the optimal single Hu�man tree performs better than this solution. Proving

better approximation results remains open question.

4 Preset dictionaries for Deate

The ZLIB format was primarily designed for use with the DEFLATE pro-

cedure, an LZ77-based algorithm [1]. Since the LZ77 format is standard

and described fully in most basic compression texts (e.g., [4]), we rely on an

informal description here. As a document is sequentially compressed (or de-

compressed), there is a window into the previous stream of characters. The

current sequence of characters can be compressed by providing a pointer

into the window of the previous character stream and a length denoting

how many characters starting from that pointer are the same as the current

stream. The decompressor can use these pointers to e�ciently reconstruct

the original text. In this setting, a preset dictionary consists of a sequence

of characters that the compressor and decompressor use as an implicit pre�x

to the stream to be compressed. As an example, we might expect most Web

pages to include the character string \http://www". Including this string in

a preset dictionary may therefore improve compression. We note that �nd-

ing even a single optimal preset dictionary for a given set of documents is

non-trivial, and we do not currently know a solution. There are unusual sub-

tleties, including how the position of the character sequence in the dictionary

a�ects the amount of compression and possible overlaps of words. A natural

approach for English text, however, is to �nd the most frequently used words

and use them as the basis for a dictionary.

The LZ77 segmentation problem is to determine given k � 2 and a set of

documents D

1

; D

2

; : : : ; D

n

over an alphabet � the k best preset dictionaries

of size at most s, where the cost of compressingD

i

is taken to be the minimum

number of bits over the choice of the k dictionaries. When k � 2, the problem

is NP-hard.

Theorem 4 The LZ77 segmentation problem is NP-hard.

Proof:

We again reduce from the catalog segmentation problem for k = 2. The

main problem is to avoid complications introduced by string position and

strings sharing characters (overlapping), so the corresponding compression

problem matches the segmentation problem.

Given a catalog segmentation problem, we construct an LZ77 segmenta-

tion problem whose alphabet � has size (z + 1)jU j for a value of z to be

determined. For each u

i

in the ground set jU j we associate z + 1 distinct

characters from � so that the characters associated with each u

i

are disjoint.

Let us consider a speci�c u

i

with associated characters w

0

; w

1

; : : : ; w

z

. We

associate a string with u

i

of length 3z of the form (w

0

)

z

w

1

w

2

: : : w

z

(w

0

)

z

.

That is, with u

i

we associate a string consisting of z occurrences of a bound-

ary character w

0

, followed by the base string of z other characters associated

with u

i

, followed again by z occurrences of the boundary character w

0

. For

each set S

j

of the catalog segmentation problem, there is an associated doc-

ument D

j

constructed by concatenating all the strings associated with the

elements of S

j

. We seek dictionaries with size rz. Note that as each string

corresponding to a u

i

consists of distinct letters we avoid the problem of

overlapping strings discussed above for the case of one dictionary.

It is not too hard to see that the the optimal preset dictionaries consist

of concatenated strings of length z, with each such string corresponding to

the middle third of a string corresponding to some u

i

. Note �rst that no

boundary character should be included in the preset dictionaries, as strings

of consecutive boundary characters are easy to compress. (Indeed, the string

of z successive boundary characters requires only O(log j�j+ log z) bits; the

�rst terms represents the cost of denoting the �rst appearance of the char-

acter, the second represents the cost of describing the length of the subse-

quent match.) Also, a preset dictionary should not contain substrings of base

strings of size strictly less than z. Any such dictionary could be improved by

replacing a subblock containing two or more base strings with a single base

string, choosing the base string of the most frequent u

i

with characters in

the subblock for the documents using that preset dictionary.

Also, the value of z can be chosen su�ciently large (but still polynomial in

the input size) so that the ordering of the strings in the preset dictionaries and

the documents D

j

has a lower order e�ect. Hence we can e�ectively ignore

ordering, and focus instead on how many length z strings each document

matches with each dictionary. This is because a failure to match a length z

string corresponding to some u

i

will cost O(z log j�j) bits to write out the

uncompressed characters, whereas a successful match will require O(log rz)

bits for the relevant pointers describing the location of the match and the

length of the match. The number of matches is therefore the dominant term

in the compressed size.

Hence, with these conditions, the compression gain for each document

is proportional (up to lower order terms) to the number of strings in the

document that are matched in the dictionary. The optimal solution to the

LZ77 segmentation problem therefore naturally yields a corresponding opti-

mal solution to the catalog segmentation problem. Each dictionary maps to a

catalog by mapping length z strings of the same character in the dictionaries

to items in the catalogs. 2

5 Conclusions

Preset dictionaries have proven useful for various compression schemes, in-

cluding JPEG and fax transmission. Using multiple preset dictionaries o�ers

the potential for improved compression, and hence one might hope that op-

timal multiple preset dictionaries could easily be found. We have instead

shown that the problem is NP-hard by showing a reduction to a simple and

useful NP-hard problem, catalog segmentation.

In practice, approximations would clearly be suitable. Heuristic tech-

niques for the catalog segmentation problem as discussed in [3] could easily

be applied. Provable approximations remain an interesting open problem.

References

[1] P. Deutsch, J-L. Gailly. ZLIB Compressed Data Format Speci�cation

Version 3.3. Network Working Group RFC 1950, 1996.

[2] M. Gary, D. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete

graph problems. Theoretical Computer Science, 1(3):237-267, 1976.

[3] J. Kleinberg, C. Papadimitriou, P. Raghavan. Segmentation problems:

A micro-economic view of data mining. In Proc. 30th ACM Symposium

on Theory of Computing, pages 473-482, 1998.

[4] I. Witten, A. Mo�at, T. Bell. Managing Gigabytes: 2nd Edition.

Morgan Kaufmann, San Francisco, 1999.

