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Asymptotic Improvement of the Gilbert-Varshamov
Bound on the Size of Binary Codes

TAO JIANG and ALEXANDER VARDY

Abstract—Given positive integersn and d, let A2(n, d) denote the max-
imum size of a binary code of lengthn and minimum distanced. The well-
known Gilbert-Varshamov bound asserts thatA2(n, d) > 2n/V (n, d−1),
whereV (n, d) =

∑d
i=0

(

n

i

)

is the volume of a Hamming sphere of radiusd.
We show that, in fact, there exists a positive constantc such that

A2(n, d) > c
2n

V (n, d−1)
log2V (n, d−1)

wheneverd/n 6 0.499. The result follows by recasting the Gilbert-Var-
shamov bound into a graph-theoretic framework and using thefact that
the corresponding graph is locally sparse. Generalizations and extensions
of this result are briefly discussed.

Keywords— Ajtai-Koml ós-Szemeŕedi bound, asymptotic constructions,
binary codes, constant-weight codes, Gilbert-Varshamov bound, locally
sparse graphs, nonlinear codes,q-ary codes.

I. I NTRODUCTION

Let Aq(n, d) denote the maximum number of codewords in
a code of lengthn and minimum distanced over an alphabet
with q letters. The Gilbert-Varshamov bound, which asserts that

Aq(n, d) >
qn

∑d−1
i=0

(

n
i

)

(q− 1)i
(1)

is one of the most well-known and fundamental results in cod-
ing theory. In this paper, we focus on binary codes (although
an extension of our results to codes over an arbitrary alphabet is
discussed in Section V). Thus we let

V (n, d)
def
=

d
∑

i=0

(

n

i

)

denote the volume of a Hamming sphere of radiusd in F
n
2 ,

and consider the binary version of (1), namely

A2(n, d) > fGV(n, d)
def
=

2n

V (n, d−1)
(2)

This inequality was first proved by Gilbert [18] in 1952. It was
subsequently improved upon by Varshamov [42]. However, fol-
lowing the established terminology, we will refer to (1) and(2)
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as the Gilbert-Varshamov bound. This bound is used extensively
in the coding theory literature [31], [37], and has been general-
ized to numerous contexts [9], [29], [20], [32], [38].

Improving upon the Gilbert-Varshamov bound asymptotically
is a notoriously difficult task [37], [39]. The breakthroughwork
of Tsfasman-Vlǎduţ-Zink [40] led to an asymptotic improve-
ment of (1), but only for alphabets of sizeq > 49 (see also the
recent papers [16], [45]). Forq < 46, no asymptotic improve-
ments upon (1) are currently known [48]. In fact, a well-known
conjecture (cf. Goppa [19]) asserts that the binary version(2) of
the Gilbert-Varshamov bound is asymptotically exact.

Nevertheless, for smalln andd, the size of best known bi-
nary codes [37, Chapter 5] often exceedsfGV(n, d) by a large
factor. Thus it is natural to ask whether the bound (2) can be
strengthened. Indeed, various improvements upon the binary
Gilbert-Varshamov bound were presented (in chronologicalor-
der) by Varshamov [42], Hashim [21], Elia [15], Tolhuizen [38],
Barg-Guritman-Simonis [5], and Fabris [17]. We review these
improvements in detail in the next section. One of our main
results herein is the following theorem, which strengthensthe
Gilbert-Varshamov bound using a technique quite differentfrom
those of [5], [15], [17], [21], [38], and [42].

Theorem 1. For x∈R, let ⌈x⌉+ denote the smallest nonnega-
tive integerm with m > x. Given positive integersn and d,
with d 6 n, let e(n, d) denote the following quantity

e(n, d)
def
=

1

6

d
∑

w=1

(

n

w

)







d
∑

i=1

min{w,i}
∑

j=⌈w+i−d
2 ⌉+

(

w

j

)(

n−w

i− j

)

− 1







Then

A2(n, d) >
2n

V (n, d−1)
·
log2V (n, d−1) − log2

√

e(n, d−1)

10
(3)

What distinguishes Theorem 1 from prior improvements of
the Gilbert-Varshamov bound is the asymptotic behavior of (3).
All the previously known explicit lower bounds onA2(n, d) that
we are aware of, including those of [5], [15], [17], [21], [38],
and [42], have the following property: if we write the bound as
A2(n, d) > f(n, d), then

f(n, d) = O
(

fGV(n, d)
)

(4)

In fact, as we shall see in the next section, for some of these
boundsf(n, d) = fGV(n, d)

(

1 + o(1)
)

, whereo(1) tends to
zero exponentially fast withn. In contrast, the asymptotic be-
havior of (3) is given by the following theorem.

http://arxiv.org/abs/math/0404325v1
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Theorem 2.Letn andd be positive integers, withd/n 6 0.499.
Then there exists a positive constantc such that

A2(n, d) > c
2n

V (n, d−1)
log2V (n, d−1) (5)

Remark. The constant in Theorem 2, the way it is stated above,
may depend on the ratiod/n. However, if we only wish to claim
that (5) is true for all sufficiently largen, thenc becomes an
absolute constant, independent of bothn andd. For more on
this, see (38). Also note that while the bound in (5) holds for
anyn andd with d/n 6 0.499, it is useful only when the ratio
d/n is constant. If we allowd/n → 0 asn → ∞, then better
bounds onA2(n, d) are known [6], [31], [39].

So, how does Theorem 2 relate to the conjecture that the Gil-
bert-Varshamov bound is asymptotically exact forq = 2? This
depends on the interpretation. If one views the conjecture as
dealing with the asymptotics ofA2(n, d) itself, namely the size
of the best binary codes, then it corresponds to the assertion that
for all positiveδ < 0.5, we have

lim
n→∞

A2(n, δn)

fGV(n, δn)
= const (6)

where the constant might be a function ofδ. Theorem 2 clearly
shows that this is false: the limitlimn→∞ A2(n, δn)/fGV(n, δn)
does not exist for anyδ. Indeed, the theorem implies that

log2 A2(n, d) > log2 fGV(n, d) + log(n) + const+ o(1)
(7)

On the other hand, it is more common to interpret the conjec-
ture as dealing with the asymptotics of the best possible rate of
a binary code, namely the functionR(n, d) = log2 A2(n, d)/n.
In this case, the conjecture could still be true, since the term
log(n)/n will vanish forn → ∞.

The rest of this paper is organized as follows. In the next
section, we review the previously known improvements of the
Gilbert-Varshamov bound, with the aim of establishing (4).
In Section III, we recast the problem of estimatingA2(n, d) into
a graph-theoretic framework, and expressA2(n, d) as the inde-
pendence number of a certain graph (Lemma 3). We then re-
cover the Gilbert-Varshamov bound as a straightforward con-
sequence of a simple bound on the independence number of
a graph (Proposition 4). The key idea in the proof of Theorems
1 and 2 is surprisingly simple: the bound on the independence
number used in Proposition 4 can be improved upon, providing
the graph at hand is locally sparse (Theorem7). In Section IV,
we show that this is, indeed, the case. Specifically, we derive
a simple closed-form expression for the number of edges in the
relevant graph (Proposition9), and then prove that this graph
is sparse for all sufficiently largen wheneverd/n 6 0.4994
(Proposition 12). This completes the proof of Theorems 1 and2.
In Section V, we briefly discuss various extensions and general-
izations of our results. In particular, we show that just like the
bounds of Gilbert [18] and Varshamov [42], our bound can be
proved “constructively.” That is, there is an (exponential-time)
algorithm [22] that actually constructs codes satisfying (5). We
also generalize Theorem1 to arbitrary alphabets (Theorem14)

and to constant-weight codes. Finally, we point out a numberof
intriguing open problems related to the results of this paper.

II. COMPARISON WITH PRIOR WORK

In this section, we briefly review previously known (to us) im-
provements of the Gilbert-Varshamov bound (2), roughly in
chronological order, and establish the claim of (4).

The first improvement on (2) is due to Varshamov himself.
Varshamov showed in [42] thatA2(n, d) > fV(n, d), where1

fV(n, d)
def
=

2n−1

2⌊log2V (n−1,d−2)⌋
(8)

and, moreover, there exist linear codes that attain this bound. We
now show that the ratiofV(n, d)/fGV(n, d) is upper bounded
by a constant. Indeed, we have

fV(n, d)

fGV(n, d)
6

V (n, d−1)

V (n−1, d−2)
= 1 +

V (n−1, d−1)

V (n−1, d−2)

where the equality above follows from the fact thatV (n, d−1) =
V (n−1, d−1) + V (n−1, d−2). ExpressingV (n, d) as the sum
∑d

i=0

(

n
i

)

, we further obtain

V (n−1, d−1)

V (n−1, d−2)
= 1 +

(

n−1
d−1

)

V (n−1, d−2)
(9)

= 1 +
1

∑d−2
i=0

(d−1)! (n−d)!
i! (n−i−1)!

(10)

6 1 +
n− (d−1)

d− 1
(11)

where the inequality in (11) follows by retaining a single term
in the sum of (10), namely the term corresponding toi = d−2.
ThusfV(n, d)/fGV(n, d) 6 (δ + 1)/δ, whereδ = (d−1)/n.

Another improvement of (2) was proposed by Hashim in 1978.
Hashim [21, eq. (7)] proved the following. Lett = ⌈(d−1)/2⌉
and letA(w;n, k, d) denote the minimum number of codewords
of weightw in an(n, k, d) binary linear code. Then [21] shows
thatA2(n, d) > 2k, wherek is the largest integer satisfying

V (n−1, d′) −

d′+ t
∑

w=d

t
∑

i=w−d′

(

w

i

)

A(w;n, k, d) < 2n−k (12)

whered′ = d−2. Unfortunately, the bound (12) is non-explicit.
Hashim [21] writes that “this improved bound requires the de-
termination of the lowest possible value ofA(w;n, k, d), where
w = d, d+1, . . . , d−2+t, in terms of the code parametersn, k,
andd.” While various estimates ofA(w;n, k, d) are known [4],
[23], [25], [26], we are not aware of any results that can be used
in conjunction with (12) to produce an explicit lower bound on
A2(n, d), at least not without a substantial research effort.

In 1983, Elia [15] has extended the Varshamov bound (8) in
a different way. Specifically, it is shown in [15, Corollary 2] that
A2(n, d) > fE(n, d), where

1Usually,fV(n, d) is defined as2k, wherek is the largest integer satisfying
2k < 2n/V (n−1, d−2). The explicit form (8) is equivalent to this definition.
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fE(n, d)
def
=

2n−2

max
{

2⌊log2V (n−3,d−2)⌋, 2⌊log2V (n−2,d−3)⌋
}

It is not difficult to see that, again, the ratiofE(n, d)/fGV(n, d)
is upper bounded by a constant. Indeed, writing2⌊log2V (n,d)⌋ as
V (n, d)/2{log2V (n,d)}, where{x} denotes the fractional part of
x ∈ R, we have

fE(n, d) 6
2n−22{log2V (n−3,d−2)}

V (n−3, d−2)
6

2n−1

V (n−3, d−2)

This, in turn, leads to the following bound

fE(n, d)

fGV(n, d)
6

V (n, d−1)

2V (n−3, d−2)
6

8V (n−3, d−1)

2V (n−3, d−2)
(13)

We know from (11) thatV (n−3, d−1)/V (n−3, d−2) 6 1/δ,
whereδ = (d−1)/n. In conjunction with (13), this implies that
fE(n, d)/fGV(n, d) 6 4/δ.

Tolhuizen [38] established yet another slight improvementof
(2) using Turán’s theorem [41, Chapter 4]. Specifically, Tol-
huizen [38, p. 1605] shows thatA2(n, d) > fT(n, d)+1, where
fT(n, d) is the largest integer satisfying

2n

fT(n, d)
+

r(fT(n, d)− r)

2nfT(n, d)
> V (n, d−1) (14)

with r being the remainder when2n is divided byfT(n, d). If
we ignore the second term on the left-hand side of (14), then this
is precisely the Gilbert-Varshamov bound (2). Otherwise, it is
easy to see that

fT(n, d) 6
2n

V (n, d−1)− 2−(n+2)

6
2n

V (n, d−1)
·

2n+2

2n+2 − 1
= fGV(n, d)

(

1 + o(1)
)

The latest improvement on (2) is due to Fabris [17]. In fact,
Fabris [17] proves two new bounds onA2(n, d). The first bound
is given byA2(n, d) > fF1(n, d), where

fF1(n, d)
def
=

2n − I(n, d−1)

V (n, d−1)− I(n, d−1)
(15)

andI(n, d−w) is the volume of the intersection between two
Hamming spheres of radiusd−w, whose centers are distanced
apart. The second bound isA2(n, d) > fF2(n, d), where

fF2(n, d)
def
=

2n

V (n, d−1)

(

V (n, d−1) + I(n, d−2)

V (n, d−2)

)

(16)

ObviouslyI(n, d−2) 6 V (n, d−2). Thus it follows straight-
forwardly from (16), (11) thatfF2(n, d)/fGV(n, d) 6 (δ+1)/δ.
It is not difficult to see (cf. Lemma 8) that

I(n, d− w) =

d−w
∑

i=w

i
∑

j=⌈w+i
2 ⌉

(

w

j

)(

n−w

i− j

)

In Section IV herein, we will show (in a different context) that
limn→∞ I(n, d−1)/V (n, d−1) = 0. In conjunction with (15),
this immediately implies thatfF1(n, d) = fGV(n, d)

(

1 + o(1)
)

.

Finally, the recent work of Barg, Guritman and Simonis [5]
contains various extensions and generalizations of the Var-
shamov bound (8) as well as related prior work by Hashim [21],
Elia [15], and Edel [14]. However, just as the Hashim bound,
most of the results of [5] are non-explicit — they provide meth-
ods for constructing codes, but a substantial research effort
would be required to convert them into an explicit lower bound
on A2(n, d). On the other hand, [5] does contain the follow-
ing generalization of Elia’s bound: for allb = 0, 1, . . . , d−1, if
2b−1V (n−b, d−b−1) < 2n−kand there exists an(n−b,k−1,d)
code, thenA2(n, d) > 2k. If we use the Varshamov bound (8)
to guarantee the existence of the(n−b, k−1, d) code, then this
reduces toA2(n, d) > fBGS(n, d), where

fBGS(n, d)
def
=

2n

2b max
{

2⌊log2V (n−b−1,d−2)⌋, 2⌊log2V (n−b,d−b−1)⌋
}

with b serving as an optimization parameter (note that forb = 1,
we recover the Varshamov bound (8), while forb = 2 this is pre-
cisely the Elia bound). Proceeding as in (11) and (13) while tak-
ing into account thatV (n, d−1) 6 2b+1V (n−b−1, d−1), it is
easy to see thatfBGS(n, d)/fGV(n, d) 6 4/δ.

III. G ILBERT-VARSHAMOV BOUND

AND LOCALLY SPARSEGRAPHS

We first recall some elementary terminology from graph theory.
A graphG consists of a set ofverticesV (G) and a setE(G) of
pairs of vertices, whose elements are callededges. We hence-
forth assume that bothV (G) andE(G) are finite sets. We use
n(G) ande(G) to denote, respectively, the number of vertices
and the number of edges inG. Two verticesu, v∈ V (G) aread-
jacentor neighborsin G iff {u, v}∈E(G). The set of all neigh-
bors of a vertexv is denotedN(v) and called theneighborhood
of v. Thedegreeof a vertexv ∈V (G), denoteddeg(v), is de-
fined asdeg(v) = |N(v)|. A graphG is said to be∆-regular if
deg(v) = ∆ for all v ∈V (G). A setK ⊆ V (G) is aclique if
every vertex inK is adjacent to all other vertices inK. A clique
consisting of3 vertices is atriangle. A setI ⊆ V (G) such that
no two vertices inI are adjacent is anindependent set. A proper
c-coloring of G is a partition ofV (G) into c independent sets.
The maximum number of vertices in an independent set is called
the independence numberof G, and denotedα(G).

Then-dimensional hypercubeHn is defined as a graph whose
vertex setV (Hn) is the set of all binary vectors of lengthn, with
u, v∈ V (Hn) being adjacent iffd(u, v) = 1, whered(·, ·) is the
Hamming distance. Note that the graph distance inHn is equal
to the Hamming distance. Given a minimum distanced, we de-
fine theGilbert graphasHn to the power(d− 1).

Definition. Let n andd 6 n be positive integers. The corresp-
onding Gilbert graphGG is defined as follows:V (GG) = Fn

2

and{u, v}∈E(GG) if and only if 1 6 d(u, v) 6 d− 1.

Clearly, a binary code of lengthn and minimum distanced
is an independent set in the Gilbert graphGG. Conversely, any
independent set inGG is a binary code of lengthn and minimum
distance at leastd. This proves the following.
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Lemma 3.
A2(n, d) = α(GG) (17)

Lemma 3 makes it possible to recover the Gilbert-Varshamov
bound (2) as a straightforward corollary to a simple bound on
the independence number of a graph. Since numerous distinct
proofs of the GV bound (e.g. using Turán’s theorem [5], [38])
abound in the literature, it is somewhat surprising that thesimple
proof below seems to have not been previously published.

Proposition 4.
α(GG) >

2n

V (n, d−1)
(18)

Proof. By definition, the Gilbert graphGG is∆-regular with
∆ = V (n, d−1)−1. LetI be amaximalindependent set inGG,
and letE ⊂ E(GG) be the set of edges with one endpoint inI
and the other inV (GG) − I. SinceI is an independet set, we
have|E| = ∆|I|. SinceI is maximal, every vertex ofV (GG)−I
is adjacent to at least one vertex ofI, and so|E| > n(GG)−|I|.
Thereforeα(GG) > |I| > n(GG)/(∆+1) = 2n/V (n, d−1).

Remark. The trivial boundα(GG) > n(GG)/(∆+1) proved in
Proposition 4 is well known in graph theory. This bound can be
strengthened somewhat using Brooks’ theorem [8], [41, p. 20]:
sinceGG is obviously neither a complete graph nor an odd cycle,
it must be∆-colorable. The largest color class in a proper∆-co-
loring of GG has to contain at leastn(GG)/∆ vertices.

Note that the proof of (18) requires very little information
aboutGG. Thus we can easily improve upon (18) using the fact
that the neighborhoodN(v) of every vertexv in GG is fairly
sparse. First, we need a couple of well-known results about lo-
cally sparse graphs. We say thatG is a graph with maximum
degree at most∆ if deg(v) 6 ∆ for all v ∈V (G).

Lemma 5. LetG be a graph with maximum degree at most∆,
and suppose that there are no triangles inG. Then

α(G) >
n(G)

8∆
log2 ∆ (19)

Lemma 5 was first proved by Ajtai, Komlós, and Szemeré-
di [1] (but see [3, p. 272] for a much shorter proof of the same
result). Subsequently, the bound in (19) has been extended from
graphs without triangles to graphs with relatively few triangles.
In particular, a proof of the following lemma can be found, for
example, in Bollobás [7, Lemma 15, p. 296].

Lemma 6. LetG be a graph with maximum degree at most∆
and suppose thatG contains no more thanT triangles. Then

α(G) >
n(G)

10∆

(

log2 ∆ − 1/
2
log2

(

T

n(G)

)

)

Observe that a graph has no triangles iff the neighborhood of
every vertex is an independent set. If the neighborhood of every
vertex is sparse, then the graph will have few triangles. This
simple observation is made precise in the following theorem.

Theorem 7.LetG be a graph with maximum degree at most∆,
and suppose that for allv ∈V (G), the subgraph ofG induced
by the neighborhood ofv has at mostt edges. Then

α(G) >
n(G)

10∆

(

log2 ∆ − 1/
2
log2

(

t

3

) )

Proof. The number of triangles containing a given vertex
v ∈V (G) is equal to the number of edges in the subgraph ofG
induced byN(v). Thus, for everyv ∈ V (G), there are at most
t triangles containingv. Summing the number of triangles con-
tainingv over allv ∈V (G), we count each triangle inG exactly
three times. Hence, the total number of triangles inG is at most
n(G) t/3. The theorem now follows from Lemma 6.

Thus if we can show thatGG is locally sparse (that is, it sat-
isfies the conditions of Theorem7 for a relatively small value
of t), then we can improve upon the Gilbert-Varshamov bound
of Proposition 4 by a factor of aboutlog2V (n, d−1)/10.

IV. H OW SPARSE IS THE SPHEREGRAPH?

In this section, we consider the Hamming sphere graphGS ,
which is the subgraph of the Gilbert graphGG induced by the
neighborhoodN(0) of the vertex0∈V (GG). Clearly, the sub-
graph induced in the Gilbert graph by the neighborhoodN(v)
of any other vertexv ∈ V (GG) is isomorphic toGS . Our goal
here is to determine how sparseGS is. Namely, we would like
to computee(GS), the number of edges inGS , and then deter-
mine the asymptotic relationship betweene(GS) and the num-
ber of vertices inGS . In view of Lemma 3 and Theorem7, this
would then provide a lower bound onA2(n, d) = α(GG).

For convenience, let us writed′ = d − 1. Recall that⌈x⌉+

denotes the smallest nonnegative integerm such thatm > x,
for all x∈R. Consider the following simple lemma.

Lemma 8. Let v ∈V (GS) be a vertex of weightw. Then the
degree ofv in GS is given by

deg(v) =

d′

∑

i=1

min{w,i}
∑

j=
⌈

w+i−d′

2

⌉+

(

w

j

)(

n−w

i− j

)

− 1

Proof. Let u∈V (GS) be a vertex ofGS distinct from v,
and suppose thatwt(u) = i for somei∈{1, 2, . . . , d′}. Then
d(u, v) = wt(u) +wt(v)− 2|χ(u)∩ χ(v)|, whereχ(·) denotes
the support of a vector inFn

2 . Write j = |χ(u) ∩ χ(v)|. Then
clearlyj 6 min{w, i}. Furthermore,u andv are adjacent inGS

if and only if d(u, v) = w + i− 2j 6 d′. It follows that

min{w,i}
∑

j=
⌈

w+i−d′

2

⌉+

(

w

j

)(

n−w

i− j

)

(20)

is the number of vertices of weighti that are adjacent tov, for all
i 6= w. For i = w, we need to subtract1 from the sum in (20),
because the sum countsv itself.

Proposition 9.

e(GS) =
1

2

d′

∑

w=1

(

n

w

)







d′

∑

i=1

min{w,i}
∑

j=⌈w+i−d
2 ⌉

+

(

w

j

)(

n−w

i− j

)

− 1







Proof. SinceGS has
(

n
w

)

vertices of weightw, this follows
immediately from Lemma 8.

Comparing the foregoing expression fore(GS) with the ex-
pression fore(n, d) in Theorem1, we see thate(n, d−1) is equal
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to e(GS)/3. Thus Proposition9 in conjunction with Theorem 7
establish (3). This completes the proof of Theorem 1.

Although Proposition9 gives an exact expression fore(GS),
the asymptotic form of this expression is not immediately clear.
Thus we now turn to asymptotic bounds one(GS). Observe that
|V (GS)| = V (n, d′)−1, so that a complete graph onV (GS) has
Ω
(

V (n, d′)2
)

edges. In contrast, we will show that under certain
conditions, there is anε > 0 such thate(GS) = o

(

V (n, d′)2−ε
)

.
To this end, the following lemma will be useful.

Lemma 10.Letu andv be vertices inV (GS) and suppose that
wt(v) 6 wt(u). Thendeg(v) > deg(u).

Proof. It would suffice to prove that for allw∈{2, 3, . . . , d′},
we havedeg(v) > deg(u) if wt(u) = w andwt(v) = w − 1.
Moreover, by Lemma 8 the degree of a vertexu in GS depends
on u only through its Hamming weightwt(u). Thus we can
assume without loss of generality that

χ(u) = {1, 2, . . . , w} and χ(v) = {2, 3, . . . , w}

Now considerN(u) andN(v), the neighborhoods ofu andv
in GS . It is easy to see that

N(u)−N(v) = { x∈V (GS) : d(u, x) = d′ andx1 = 1 }

N(v)−N(u) = { x∈V (GS) : d(v, x) = d′ andx1 = 0 }

wherex1 denotes the first bit of the vectorx = (x1, x2, . . . , xn)
in V (GS). Let us denote the setsN(u)−N(v) andN(v)−N(u)
byA andB, respectively. Letϕ : Fn

2 → Fn
2 be the mapping

ϕ(x) = x+ (100 · · ·0)

Note thatϕ(u) = v andϕ(v) = u. We claim thatϕ(A) ⊆ B.
Indeed, let us writeϕ(x) = y = (y1, y2, . . . , yn). Evidently, if
d(u, x) = d′ andx1 = 1, thend(v, y) = d′ andy1 = 0. More-
over, for allx∈Fn

2 with x1 = 1, the weight ofϕ(x) iswt(x)−1.
Thus ifx∈A, thenϕ(x)∈ V (GS) unlessx = (100 · · ·0). How-
ever(100 · · · 0) 6∈A, since the distance between(100 · · · 0) and
u is given byw− 1 6 d′ − 1 < d′. This proves thatϕ(A) ⊆ B.
Sinceϕ is a bijection onFn

2 , the fact thatϕ(A) ⊆ B implies that
|A| 6 |B|. Hence|N(v)| > |N(u)|, and the lemma follows.

The rest of our asymptotic analysis involves the binary en-
tropy function defined by

H2(x)
def
= − x log2x − (1− x) log2(1− x)

for all 0 6 x 6 1. In particular, we will make frequent use of
the following lemma [31, pp. 308-310], which is a well-known
estimate for a sum of binomial coefficients.

Lemma 11.Letµ∈R, and suppose thatµn is an integer in the
range1 6 µn 6 0.5n. Then

2nH2(µ)

√

8nµ(1−µ)
6

µn
∑

k=0

(

n

k

)

6 2nH2(µ) (21)

Now, letλ be a real number in the range2/
3
6 λ < 1. To sim-

plify notation, we henceforth assume thatd′ < 0.5n and thatλd′

is an integer (this obviates the need for numerous⌈·⌉ and⌊·⌋

functions in what follows). We will derive a bound one(GS) by
considering separately vertices of weight< λd′ and vertices of
weight> λd′ in GS . Thus we write

e(GS) +
1

2

d′

∑

i=1

(

n

i

)

=
e1(λ, n, d) + e2(λ, n, d)

2
(22)

with

e1(λ, n, d)
def
=

∑

v∈V (GS )

wt(v)<λd′

(deg(v) + 1)

=

λd′−1
∑

w=1

(

n

w

) d′

∑

i=1

min{w,i}
∑

j=
⌈

w+i−d′

2

⌉+

(

w

j

)(

n−w

i−j

)

(23)

e2(λ, n, d)
def
=

∑

v∈V (GS )

wt(v)>λd′

(deg(v) + 1)

=

d′

∑

w=λd′

(

n

w

) d′

∑

i=1

min{w,i}
∑

j=
⌈

w+i−d′

2

⌉+

(

w

j

)(

n−w

i−j

)

(24)

where the explicit expressions fore1(λ, n, d) and e2(λ, n, d)
follow from Lemma 8 and Proposition9. Letv be a vertex in
V (GS) with wt(v) = 1. Note that⌈(1 + i− d′)/2⌉

+
= 0 for all

i 6 d′ − 1. Therefore, by Lemma 8, we have

deg(v) + 1 =
d′−1
∑

i=1

(

(

n−1

i

)

+

(

n−1

i−1

)

)

+

(

n−1

d′−1

)

6

d′

∑

i=1

(

n

i

)

6 2nH2(δ)

whereδ = d′/n and the last inequality follows from Lemma 11.
Combining the definition ofe1(λ, n, d) in (23) with Lemma 10
thus produces the following bound

e1(λ, n, d) 6 2nH2(δ)
λd′−1
∑

w=1

(

n

w

)

6 2n
(

H2(δ)+H2(λδ)
)

(25)

Now, letv be a vertex inV (GS) with wt(v) = λd′. Then, again
by Lemma 8, the degree ofv in GS is given by

deg(v) + 1 = h1(λ, n, d) + h2(λ, n, d)

with

h1(λ, n, d)
def
=

µd′

∑

i=1

i
∑

j=0

(

w

j

)(

n−w

i− j

)

(26)

h2(λ, n, d)
def
=

w−1
∑

i=µd′+1

i
∑

j=
⌈

i−µd′

2

⌉

(

w

j

)(

n−w

i− j

)

+

d′

∑

i=w

w
∑

j=
⌈

i−µd′

2

⌉

(

w

j

)(

n−w

i− j

)

(27)

where we have introduced the notationw = λd′ andµ = 1− λ.
To upper-boundh1(λ, n, d), observe that for alli andj in the
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double-sum of (26), we havej 6 i 6 µd′ 6 0.5w and therefore
(

w
j

)

6
(

w
i

)

. Thus

h1(λ, n, d) 6

µd′

∑

i=1

(

w

i

) i
∑

j=0

(

n−w

i− j

)

6

µd′

∑

i=0

(

w

i

) µd′

∑

j=0

(

n−w

j

)

6 2nλδH2(µ
λ ) + n(1−λδ)H2( µδ

1−λδ ) (28)

To upper-boundh2(λ, n, d) in (27), we will use the trivial es-
timate

(

w
j

)

6 2w = 2nλδ for all j (in the case of (27), this
estimate is actually not too far off). Thus

h2(λ, n, d) 6 2nλδ
w−1
∑

i=µd′+1

i
∑

j=
⌈

i−µd′

2

⌉

(

n−w

i− j

)

+ 2nλδ
d′

∑

i=w

w
∑

j=
⌈

i−µd′

2

⌉

(

n−w

i− j

)

(29)

Since the summation onj in the second double-sum of (29) is
up tow 6 i, we can proceed with the upper bound by uniting
the two double-sums as follows

h2(λ, n, d) 6 2nλδ
d′

∑

i=µd′+1

i
∑

j=
⌈

i−µd′

2

⌉

(

n−w

i− j

)

= 2nλδ
d′

∑

i=µd′+1

⌊

i+µd′

2

⌋

∑

j=0

(

n−w

j

)

(30)

where the equality in (30) follows by a straightforward change
of variables. Finally, observing that(i+ µd′)/2 6 d′ − λ

2d
′ for

all i 6 d′, we get

h2(λ, n, d) 6 2nλδ
d′

∑

i=µd′+1

⌊d′−λ
2 d′⌋

∑

j=0

(

n−w

j

)

6 nλδ 2
nλδ + n(1−λδ)H2

(

δ−λ
2

δ

1−λδ

)

(31)

Combining (28) and (31) with the definition ofe2(λ, n, d)
in (24) and once again invoking Lemma 10, we obtain the fol-
lowing bound

e2(λ, n, d) 6
(

deg(v) + 1
)

d′

∑

w=λd′

(

n

w

)

(32)

6

(

h1(λ, n, d) + h2(λ, n, d)
)

d′

∑

w=0

(

n

w

)

(33)

6 2
n

(

H2(δ)+λδH2( µ
λ )+(1−λδ)H2( µδ

1−λδ )

)

+ nλδ 2
n

(

H2(δ)+λδ+(1−λδ)H2( δ−λδ/2
1−λδ )

)

(34)

6 (nλδ+1) 2
n

(

H2(δ)+λδ+(1−λδ)H2( δ−λδ/2
1−λδ )

)

(35)

where (35) follows from the fact that for2/
3
<λ< 1 andδ 6 0.5,

the first exponent in (34) is strictly less than the second expo-
nent. We are now ready to prove the following proposition.

Proposition 12. Let ε andλ be positive real numbers strictly
less than1, with λ > 2/

3
. Thene(GS) = o

(

V (n, d′)2−ε
)

, pro-
vidingδ = d′/n satisfies the following two conditions:

(1−ε)H2(δ) > H2(λδ) (36)

(1−ε)H2(δ) > λδ + (1−λδ)H2

(

δ − λδ/2

1− λδ

)

(37)

Proof. We estimatee(GS) by combining (22) with the upper
bounds in (25) and (35) one1(λ, n, d) ande2(λ, n, d). It follows
that the ratioe(GS)/V (n, d′)2−ε is upper-bounded by

e(GS)

V (n, d′)2−ε
6

2n
(

H2(λδ) − (1−ε)H2(δ)
)

(

8nδ(1−δ)
)

ε
2−1

+
(nλδ + 1) 2

n
(

λδ + (1−λδ)H2( δ−λδ/2
1−λδ ) − (1−ε)H2(δ)

)

(

8nδ(1−δ)
)

ε
2−1

where we used Lemma 11 to boundV (n, d′). It is clear that
if δ satisfies (36) – (37), then the right-hand side of the above
expression tends to zero (exponentially fast) asn → ∞.

Motivated by Proposition 12, we now introduce the functions
fε,λ(δ) andgε,λ(δ) with domainδ ∈ [0, 0.5], parametrized byε
andλ and defined as follows

fε,λ(δ)
def
= (1−ε)H2(δ) − H2(λδ)

gε,λ(δ)
def
= (1−ε)H2(δ) − λδ − (1−λδ)H2

(

δ − λδ/2

1− λδ

)

The two functionsfε,λ(δ) andgε,λ(δ) are plotted in Figure 1 and
Figure 2, respectively, forε = 0.000001 andλ = 0.999. Fig-
ure 3 shows a close-up view of these two functions (for the same
ε andλ) in the rangeδ ∈ [0.499, 0.5]. It can be seen from Fig-
ures 1, 2, and 3 that conditions (36) and (37) of Proposition 12
are satisfied wheneverd′/n 6 0.4994.

We are now ready to complete the proof of Theorem 2. By
Lemma 3,A2(n, d) = α(GG), whereGG is the Gilbert graph
defined in Section III. The Gilbert graph is a∆-regular graph on
|V (GG)| = 2n vertices with constant degree∆ = V (n, d′)− 1.
The subgraph ofGG induced by the neighborhood of any vertex
in V (GG) is isomorphic to the sphere graphGS and has exactly
e(GS) edges. Therefore, by Theorem7, for allε > 0, we have

A2(n, d) >
2n

V (n, d′)
·
log2V (n, d′)− 1/

2
log2 e(GS)

10

=
2n

V (n, d′)

(

ε log2V (n, d′)

20

+
log2V (n, d′)2−ε − log2e(GS)

20

)

By Proposition12, the ratioe(GS)/V (n, d′)2−ε tends to zero for
ε = 0.000001, wheneverd′/n < d/n 6 0.4994 (cf. Figure 3).
Therefore, the second fraction in parentheses becomes positive
for all sufficiently largen, and Theorem2 follows.
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Figure 1. Plot of the functionfε,λ(δ) for ε = 0.000001 andλ = 0.999
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Figure 2. Plot of the functiongε,λ(δ) for ε = 0.000001 andλ = 0.999
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Figure 3. Close-up view of the functionsfε,λ(δ) andgε,λ(δ) in the
neighborhood ofδ = 0.5 for ε = 0.000001 andλ = 0.999

Remark. We note that the degree of a vertexv in GS is related
to the so-calledintersection numberspwi,k of the Hamming as-
sociation schemeH(n, 2) — see [13] and [31, Chapter 21] for
a detailed description ofH(n, 2). Specifically, given any two
vectorsu, v∈Fn

2 with d(u, v) = w, the intersection numberpwi,k
is defined as the number of vectorsx∈Fn

2 such thatd(x, u) = i
andd(x, v) = k. Thus the sum (20) can be written as

pwi,0 + pwi,1 + · · ·+ pwi,d′

An explicit expression forpwi,k is given in [31, p. 656]. However,
the proof of Lemma 8 above, which does not use the intersection
numbers, appears to be simpler and shorter.

Remark. To get the best threshold ond/n such that (5) holds,
one should optimize the value ofλ for a givenε in Proposi-
tion 12 (alternatively, one could try to directly find the maximum
term in the triple-sum of Proposition 9). We have made no spe-
cial effort to optimize this threshold beyond0.499. However, we
believe that with an appropriate choice ofε, λ in Proposition 12
(or with other methods), one can get as close as desired to the
ultimate thresholdd/n 6 0.5. It is, therefore, surprising that for
δ = 0.5, the number of edges inGS is very close toV (n, d′)2.

Proposition 13. If d′/n = 0.5, thene(GS) > 0.25V (n, d′)2.

Proof. Let v ∈V (GS) be a vertex of weightd′ = n/2, and
let 1 denote the all-one vector(11 · · · 1) in Fn

2 . Then1 + v is
another vertex of weightd′ in V (GS). Given any other vertex
u∈V (GS), we haved(u, v) + d(u,1+v) = n = 2d′, so thatu
is adjacent to at least one ofv or 1+ v. Thus every vertex inGS

is adjacent to at least half of the vertices of weightd′ (excluding,
possibly, itself). This implies that

∑

v∈V (GS )

wt(v)=d′

(deg(v) + 1) >
1

2

d′

∑

w=1

(

n

w

)(

n

d′

)

(38)

By Lemma 8, all the vertices of weightd′ have the same degree
in GS . Thherefore, it follows from (38) that foreveryv ∈V (GS)
with wt(v) = d′, we have

deg(v) + 1 >
1

2

d′

∑

w=1

(

n

w

)

(39)

Now, by Lemma 10, the degree of all other vertices inGS is
greater or equal to the degree of a vertex of weightd′. This
essentially establishes the proposition. It remains to worry about
the fact that the sum on the right-hand side of (39) does not
include the term

(

n
0

)

and about the extra1 on the left-hand side
of (39). We omit these tedious details.

Thus it appears that the sphere graphGS transitions abruptly
from being sparse to being nearly complete atd′/n = 0.5. We
do not have an intuitive “explanation” for this phenomenon,but
note that it is reminiscent of threshold phenomena for codesand
graphs observed in [47] and in [33], respectively.

We also note that ford/n > 0.5, the problem of determin-
ing A2(n, d) is essentially settled. Provided enough Hadamard
matrices exist,A2(2d, d) = 4d andA2(n, d) = 2 ⌊d/(2d− n)⌋
for all evend with 2d>n. This is the well-known result of
Levenshtein [28], who constructed codes achieving the Plotkin
bound [31, pp. 41–43] from Hadamard matrices.

V. GENERALIZATIONS AND OPEN PROBLEMS

The well-known proofs by Gilbert [18] and Varshamov [42] of
the bounds in (2) and (8), respectively, are “constructive”in that
they provide simple (but exponential-time) algorithms to con-
struct codes whose parameters meet or exceed the corresponding
bounds. Moreover, Gilbert’s “constructive” argument [18]has
been extended to quite general contexts [20], [38], [46] using the
so-called altruistic algorithm (which is also exponential-time).

We would like to point out that the bound of Theorem 2 is
“constructive” in the same sense as [20], [38], [42], and [46].
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Hofmeister and Lefmann [22] provide an algorithm which,
given any∆-regular graphG with at mostn(G)∆2−ε triangles,
finds an independent set of size at leastΩ(n(G) log2(∆)/∆)
in G. By the results of Section IV, the Gilbert graphGG con-
tains at mostO(n(GG)∆

2−ε) triangles wheneverd/n 6 0.499.
Thus, when applied to the Gilbert graphGG, the Hofmeister-
Lefmann algorithm [22] will produce codes satisfying (5). The
Hofmeister-Lefmann algorithm runs in time that is polynomial
in the size ofGG but, of course, exponential in the code lengthn.

Up to now, for the sake of brevity, we have focused exclu-
sively on binary codes. Nevertheless, it should be clear that
Theorems 1 and 2 can be generalized to arbitrary alphabets of
sizeq, whereq need not even be a prime power. Here, we give
a generalization toq-ary alphabets of Theorem1.

Theorem 14.Letq,n, andd be positive integers withd 6 n and
q > 2. Define the volume of aq-ary Hamming sphere of radiusd
asVq(n, d) =

∑d
i=0

(

n
i

)

(q−1)i, and let

eq(n, d)
def
=

1

6

d
∑

w=1

d
∑

i=1

a
∑

j=1

a−j
∑

k=b

n! (q−2)k(q−1)w+i−c

j!k! (w−c)! (i−c)! (n+c−w−i)!

−
Vq(n, d)

6

wherea
def
= min{w, i}, c

def
= j+k, andb is the smallest nonnega-

tive integer that is greater or equal to(w+i)−j−min{d+j, n}.
Then

Aq(n, d) >
qn

Vq(n, d−1)
·
log2Vq(n, d−1) − log2

√

eq(n, d−1)

10
(40)

Proof. Let A be an alphabet withq letters. We define the
q-ary Gilbert graphGq,G as before, namelyV (Gq,G) = An and
{u, v}∈E(Gq,G) if and only if 1 6 d(u, v) 6 d′. ThenGq,G

is ∆-regular with∆ = Vq(n, d
′) − 1, and Theorem7 applies.

It remains to count the number of edges in the graphs induced
in Gq,G by the neighborhoods of its vertices. Without loss of
generality, we can call any one of the letters ofA “zero,” and
consider the graphGq,S which is induced in theq-ary Gilbert
graph by the neighborhoodN(0) of the vertex0∈An.

Letu = (u1, u2, . . . , un) andv = (v1, v2, . . . , vn) be two ver-
tices ofGq,S with wt(v) = w andwt(u) = i (observe that Ham-
ming weight is well-defined, once we have identified a0∈A).
Let

j
def
=

∣

∣{l : ul = vl, vl 6= 0, ul 6= 0}
∣

∣

k
def
=

∣

∣{l : ul 6= vl, vl 6= 0, ul 6= 0}
∣

∣

It is obvious thatj 6 min{w, i}. Further, ifj is already fixed,
then clearlyk 6 min{w, i} − j. Moreover,w − k − j is the
number of positionsl such thatvl 6= 0 andul = 0. This number
cannot be greater thann − wt(u) = n − i, which implies that
k > (w+i)− j − n. Finally, it is easy to see that

d(u, v) = w + i− 2j − k

so that the verticesu andv are adjacent inGq,S if and only if
k > (w+i)−j−(d′+j). Putting all this together, we can enume-
rate the total number of vertices of weighti 6= w that are adja-

cent inGq,S to a fixed vertexv ∈V (Gq,S) of weightwt(v) = w
as follows

a
∑

j=0

a−j
∑

k=b

(

w

j

)(

w−j

k

)

(q−2)k
(

n−w

i − c

)

(q−1)i−c (41)

wherea, b, andc are as defined in the theorem. Fori = w, we
again need to subtract1 from the sum in (41) since the sum then
countsv itself. Enumerating over all possible values ofi, we
find that the degree ofv in Gq,S is given by

d′

∑

i=1

a
∑

j=0

a−j
∑

k=b

(

w

j

)(

w−j

k

)(

n−w

i− c

)

(q−2)k(q−1)i−c − 1

(42)
The total number of vertices of weightw in Gq,S is

(

n
w

)

(q−1)w.
Combining this with (42) produces an expression fore(Gq,S),
and it is easy to see thateq(n, d−1) = e(Gq,S)/3.

Remark. We could have used the intersection numberspwi,j of
the Hamming association schemeH(n, q) in the proof of The-
orem 14. Specifically, the sum in (41) can again be written as
pwi,0 + pwi,1 + · · ·+ pwi,d′ . Therefore

e(Gq,S) =
1

2

d′

∑

w=1

d′

∑

i=1

d′

∑

j=1

(

n

w

)

pwi,j (q−1)w

with the convention thatpwi,j = 0 whenw > i+j. A formula for
the intersection numbers of theq-ary Hamming schemeH(n, q)
may be found in [5, eq. (2)]. While the resulting expression for
eq(n, d) is shorter than its counterpart in Theorem 14, we prefer
the latter since it is more explicit.

In the original version of this paper, we have left the asymp-
totic investigation of the bound in Theorem 14 as an open prob-
lem, and conjectured that it should lead to

Aq(n, d) > c
qn

Vq(n, d−1)
log2Vq(n, d−1) (43)

for some positive constantc. This conjecture has been proved in
the recent work of Vu and Wu [43]. Specifically, Vu and Wu [43]
show that ifd/n < (q−1)/q, then (43) holds for a constantc
that depends on the ratiod/n. They also give an explicit, though
rather elaborate, expression forc in terms ofd/n.

Our general approach can be extended to many other situa-
tions where generalizations of the Gilbert-Varshamov bound are
currently used. We give just one concrete example.

Let A(n, 2d, w) denote the the maximum number of code-
words in a binary code of lengthn, constant weightw, and
minimum Hamming distance2d. Levenshtein [29] has general-
ized the Gilbert bound (2) to constant-weight codes. It is shown
in [29] that

A(n, 2d, w) >

|F2(n,w)|

V (n, d−1, w)
=

(

n

w

)

d−1
∑

i=0

(

w

i

)(

n−w

i

)

(44)
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whereF2(n,w) is the set of binary vectors of lengthn and
weightw andV (n, d, w) is the volume of a sphere of radiusd
in the Johnson metric. Using the same approach as in Theorems
1 and 14, we can improve upon the bound in (44) as follows.

Theorem 15.Letn, d, andw be three positive integers such that
d 6 w 6 n/2. For positive integersi, j, k, all less than or equal
to w, definepki,j as follows

pki,j
def
=

b
∑

l=a

(

n−w−k

l

)(

k

i−l

)(

k

j−l

)(

w − k

i+j−k−l

)

(45)

for all k 6 i+ j, where

a
def
= max{0, i− k, j − k, i+ j − w}

b
def
= min{i, j, i+ j − k, n− w − k}

Setpki,j = 0 for k > i+ j, and define the following quantity

e(n, d, w)
def
=

1

6

d
∑

i=1

d
∑

j=1

d
∑

k=1

(

w

k

)(

n−w

k

)

pki,j (46)

Then

A(n, 2d, w) >
|F2(n,w)|

V (n, d−1, w)

·
log2V (n, d−1, w) − log2

√

e(n, d−1, w)

10

Proof. The underlying “Gilbert graph”G can be defined as
follows: V (G) = F2(n,w) and {u, v}∈E(G) if and only if
2 6 d(u, v) 6 2d′. Now fix a vertexz ∈V (G) and consider the
graphGS that is induced inG by the neighborhoodN(z). Clear-
ly, all such graphs are isomorphic. The numberspki,j in (45) are
precisely the intersection numbers of the Johnson association
scheme [31, p. 665]. It follows that ifv is a vertex ofGS such
thatd(z, v) = 2k, then the degree ofv in GS is given by

deg(v) =

d′

∑

i=1

d′

∑

j=1

pki,j

Hencee(GS) = 3e(n, d−1, w), wheree(n, d, w) is the quantity
defined in (46). The desired bound onA(n, 2d, w) now follows,
as before, from Theorem7.

We leave the asymptotic analysis of Theorem 15 as an open
problem for future research.

In the original version of this paper, we have also suggested
the following problem: generalize the results of Theorem1 and
Theorem 2 to lattices and sphere-packings, where the counter-
part of the Gilbert-Varshamov bound is the Minkowski-Hlawka
theorem [12], [30]. This problem was recently solved in [27].
Specifically, Krivelevich, Litsyn, and Vardy [27] show thatus-
ing graph-theoretic methods similar to those of Section III, the
classical Minkowski bound [34] on the density of sphere pack-
ings inRn can be also improved by a factor that is linear inn.

Other interesting problems for future work would be the ex-
tension of Theorems 1 and 2 to spherical codes [44], to covering

codes [11, Section 12.1], to codes correcting arbitrary error pat-
terns [30], to runlength-limited codes [24], and to more general
constrained systems [32]. The general approach introducedin
this paper should work whenever an underlying “Gilbert graph”
can be defined, and happens to be locally sparse.

Our results herein have applications outside of coding theory
as well. For example, the following problem arises in the study
of scalability of optical networks [36]. LetHn be then-dimen-
sional hypercube, defined in Section III. What is the minimum
numberχd(n) of colors needed to color the vertices ofHn so
that vertices at distance6 d from each other have different col-
ors? Ngo, Du, and Graham [35] have recently established the
following bound

χd(n) 6 2⌊log2V (n−1,d−1)⌋+1

=
2

2{log2V (n−1,d−1)}
V (n−1, d−1) (47)

In fact, this follows immediately from the Varshamov bound (8),
since given anylinear binary codeC, assigning different col-
ors to the cosets ofC in Fn

2 produces a valid coloring. While
Theorems 1 and 2 improve upon (8), unfortunately, we do not
know whether there existlinear codes that attain (3) and/or (5).
Nevertheless, we can still improve upon (47), as follows: if
d/n 6 0.499, then there exists a positive constantc such that

χd(n) 6 c
V (n, d)

log2V (n, d)
(48)

This uses a result of Alon, Krivelevich, and Sudakov [2], who
show that locally sparse graphs with maximum degree∆ can be
colored usingO(∆/ log∆) colors. Specifically, letG be a graph
with maximum degree∆ such that the number of edges in the
subgraphs induced inG by the neighborhood of any vertex is
at most∆2/f . Then it is proved in [2, Theorem 1.1] that the
chromatic numberχ(G) of G satisfiesχ(G) 6 c1 ∆/ log2f for
some positive constantc1. Since the Gilbert graphGG, defined
in Section III, isHn to the power(d− 1), it should be clear that
χd−1(n) = χ(GG). The Gilbert graphGG has maximum degree
∆ = V (n, d−1) − 1. Moreover, we have shown in the previ-
ous section that this graph is locally sparse: ifGS is the graph
induced inGG by the neighborhood of any vertexv ∈V (GG),
thene(GS) 6 c2 ∆

2/V (n, d−1)ε for ε = 0.000001 and some
positive constantc2, providedd/n 6 0.499. Combining this
with [2, Theorem 1.1] establishes (48).

Finally, we would like to point out some questions concerning
Theorems 1 and 2 that remain open. Our proof of these theorems
gives no hint of linearity. Nevertheless, we ask: are there linear
codes whose parameters satisfy (5)? It is conceivable that asuit-
able modification of the Varshamov [42] argument for construct-
ing a parity-check matrix could produce such codes. It is well
known that a random (linear) code meets the Gilbert-Varshamov
bound with probability approaching1 asn → ∞. Thus we ask:
do random codes also meet the improved version of this bound
in Theorem2? Progress on this question was recently reported
by Cohen [10]. Of course, the most interesting question of all is
whether the termlogn in (7) can be further improved to a linear
term. In other words, it it true that the Gilbert-Varshamov bound
on the rate of binary codes is asymptotically exact?
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