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Abstract—Exploiting the residual redundancy in a source coder
output stream during the decoding process has been proven to be
a bandwidth-efficient way to combat noisy channel degradations.
This redundancy can be employed to either assist the channel
decoder for improved performance or design better source
decoders. In this work, a family of solutions for the asymptotically
optimum minimum mean-squared error (MMSE) reconstruction
of a source over memoryless noisy channels is presented when
the redundancy in the source encoder output stream is exploited
in the form of a -order Markov model ( 1) and a delay of

0 is allowed in the decoding process. It is demonstrated
that the proposed solutions provide a wealth of tradeoffs between
computational complexity and the memory requirements. A
simplified MMSE decoder which is optimized to minimize the
computational complexity is also presented. Considering the same
problem setup, several other maximum a posteriori probability
(MAP) symbol and sequence decoders are presented as well.
Numerical results are presented which demonstrate the efficiency
of the proposed algorithms.

Index Terms—Forward–backward recursion, joint source–
channel coding, maximum a posteriori probability (MAP) detec-
tion, Markov sources, minimum mean-squared error (MMSE)
estimation, residual redundancies, source decoding.

I. INTRODUCTION

AN important result of the Shannon’s celebrated paper [1] is
that the source and channel coding operations can be sepa-

rated without any loss of optimality. This has been the basic idea
of enormous research endeavors in separate treatment of source
and channel coders. However, in practise, due to strict design
constraints such as limited transmission bandwidth, high error
protection requirements along with restricted delay and limita-
tions on the complexity of the systems involved, the joint design
of source and channel coders has found increasing interest.

Researchers have taken several paths toward the joint design
of source and channel coders. A class of joint source channel
coders are designed by attempting to optimally allocate a fixed
bitrate between the source and channel coders to achieve the
maximum overall system performance. Examples of the works
in this class are present in [2]–[6]. The applications span across
the areas of speech, image, and video coding such as that of
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Modestino et al. on image coding using the discrete cosine
transform with convolutional channel coding [2], the work
of Moore and Gibson on differential pulse-code modulation
(DPCM) speech coding with self-orthogonal convolutional
coding [3] and the work of Bystrom and Modestino on com-
bined source channel coding for video transmission [4].

Other methods of joint source and channel coding include the
systems designed based on unequal error protection (UEP), op-
timized index assignment, channel optimized quantization, and
more recently exploiting the source residual redundancies. In
some applications, a combination of these techniques is em-
ployed for a greater protection over noisy channels.

Systems designed with unequal error protection provide
better error protection for the parts of the source coder output
stream which have a greater contribution in the objective
or subjective quality of the reconstructed source. One good
example of this technique is the North American IS-641 [7]
standard which accommodates three different classes of error
protection for different output bits of a code excited linear
predictive (CELP)-based speech coder. A related classical work
is the work of Sundberg [8] in which he analyzed the effect
of error in different bits on the reconstruction of a pulse-code
modulation (PCM) coded signal. Examples of more recent
applications of UEP is present in [9] and [10].

The index assignment technique provides more robustness to
channel errors by assigning the quantizer outputs to encoder in-
dices in a way that possible bit errors create a lower level of
distortion in the reconstructed data. One usual advantage of the
index assignment is that it does not degrade the performance
during the clean channel conditions. For a review of different
index assignment techniques refer to [11].

In channel optimized quantization, the quantization levels
are designed to optimize the performance of the system in the
presence of channel noise. Two classic works in this area are
those of Kurtenbach and Wintz [12] on scalar quantization over
noisy channels and Chang and Donaldson [13] on the design of
a DPCM system for transmission over a discrete memoryless
channel. Other works on channel optimized quantization
include the works of Kumazawa et al. [14] and Farvardin and
Vaishampayan [15] on vector quantization over noisy channels
as well as the works of Dunham and Gray [16] and Ayanoglu
and Gray [17] on joint source–channel trellis coding. Examples
of more recent works in this class are present in [18]–[20]. For
a more comprehensive review of the techniques for channel
optimized quantization, the interested reader is referred to [11],
[20], [21].

More recently in this venue, exploiting the residual redun-
dancy [22] in the output of the source coders for improved
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reconstruction over noisy channels has found increasing atten-
tion [22]–[44]. This redundancy is due to the suboptimal source
coding which is caused by, e.g., a constraint on complexity
or delay. Researchers have used the residual redundancy for
enhanced channel decoding, e.g., [24]–[28] or for effective
source decoding, e.g., [29]–[33]. The problem is formulated
in the form of a maximum a posteriori (MAP) detection or
a minimum mean squared error (MMSE) estimation. In [34],
instantaneous MAP and MMSE decoders as well as a MAP
sequence decoder were proposed that exploit the residual
redundancies using a first-order Markov model. Later, in [35],
a sequence-based MMSE decoder was suggested that benefits
from the redundancies of both the past and future samples.
Source decoding over channels with memory using the residual
redundancies has been considered in [37]–[39].

In [40], it was demonstrated that the use of residual redun-
dancies both at the source and channel decoder could lead to
improved performance. In the same direction, iterative source
and channel decoding schemes were presented in [41]–[43]. The
effectiveness of these techniques have lead the researchers to
new horizons. In [44], it is suggested that intentional leaving of
the redundancy of the source, through the use of simpler source
coders, could result in higher performance when this redun-
dancy is exploited effectively at the decoder. This higher perfor-
mance is either attributed to lower overall system complexity or
better tradeoffs of bandwidth between the source and channel
coding.

A. Contributions of the Manuscript

The recent literature clearly demonstrates the benefit of
exploiting the residual redundancies in reconstructing the
data received over noisy channels. However, it has primarily
limited itself to modeling the redundancy with a first-order
Markov model, which does not necessarily encapsulate all the
remaining redundancy.1 In this work, we present a family of
solutions for the asymptotically optimum MMSE reconstruc-
tion of a source over memoryless noisy channels when the
redundancy in the source encoder output stream is exploited in
the form of a -order Markov model and a delay of ,

, is allowed in the decoding process. We demonstrate that
the proposed solutions provide a wealth of tradeoffs between
computational complexity and the memory requirements. We
also present a simplified MMSE decoder which is optimized
to minimize the computational complexity. Considering the
same problem setup, we present several other MAP symbol
and sequence decoders as well. Finally, we study the effect
of different system parameters and characteristics on the
performance of the proposed decoders. In a typical application,
the parameters and will serve as design parameters. They
are appropriately selected to match the proposed decoders to
the specific settings of the problem under consideration.

This paper is particularly inspired by the work of Sayood and
Borkenhagen in [22], the article by Phamdo and Farvardin [34],
the article by Miller and Park [35], and the work of Skoglund in
[38]. Throughout the text, we will compare the presented devel-

1In the context of transmission of digital images over a noisy channel, [45]
and [46] consider Markov models that exploit the dependencies across two di-
mensions. See Section IV-B for more on [45].

Fig. 1. Overview of the system.

opments to these works and illuminate the connections. The or-
ganization of this paper is as follows. In Section II, an overview
of the system and the channel model used is described. In Sec-
tion III, the MMSE decoding problem statement and solutions
are presented. In Section IV, the MAP decoding problem state-
ment and solutions are presented. Section V includes the nu-
merical results and various comparisons which demonstrate the
effectiveness of the proposed schemes. We conclude this paper
in Section VI.

II. PRELIMINARIES

A. Notations

The notations used in this paper are as follows. Capital letters,
e.g., , represent random variables, while small letters, e.g., ,
represent a realization. We replace the probability by

in most instances when it does not lead to a confusion.
The vectors are shown bold faced, e.g., . The lower index
indicates the time instant, e.g., is the vector at time instant

. The upper index in parenthesis indicates components of a
vector or bit positions representing an integer value, e.g.,

where is the dimension of the vector . A
sequence of variables over time, e.g.,
is denoted by . For simplicity, we represent by . The

-dimensional Cartesian product of a set is represented by
that consists of -dimensional vectors whose components

are taken from .

B. System Overview

The block diagram of the system is shown in Fig. 1. The
source coder is a mapping from an -dimensional Euclidean
space into a finite index set of elements. It is com-
posed of two components: the quantizer and the index gen-
erator . The quantizer maps the input sample to
one of the reconstruction points or codewords in the codebook

. The index generator then maps this codeword to the
an index (symbol) in the index set . The bit rate of the quan-
tizer is given by bits per symbol (or
bits per dimension). We assume the source encoder is memory-
less, i.e., the mapping of to is independent from the past
and future values of the encoder input and output.

At the receiver, for each transmitted -bit index ,
a vector with components is received which provides
information about . The reconstructor (source decoder) maps

to an output sample . In this reconstruction, the source
decoder may use the previously received signals or some of the
future samples as well.

C. Channel Model

The channels considered in this work are described by a
probability density function (pdf) . We assume that
the channel is memoryless without intersymbol interference
in the sense that, for a sequence of transmitted symbols
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and the corresponding received signals
, the following equality is valid:

(1)
This results in the followings (see Appendix for proof):

(2)

(3)

An example is a binary phase-shift keying (BPSK) modula-
tion over a channel with additive white Gaussian noise (AWGN)
which produces soft outputs. In this work, we refer to such a
channel as the soft-output channel model. Also in Section V,
we present simulation results on the performance of the source
decoders over the binary-symmetric channel. In this case, the
channel output is discrete and represents a conditional
probability mass function. In the followings, for the develop-
ment of the proposed source decoders, we assume that the prob-
ability distribution of is given and the memoryless
channel assumption of (1) is valid.

III. MMSE DECODING: PROBLEM STATEMENT AND SOLUTIONS

Consider the case where there is a residual redundancy at the
source coder output stream. This redundancy is in the form of
a nonuniform distribution or a memory in the sequence of the
transmitted symbols. Our objective is to design an effective re-
constructor (source decoder), which exploits this redundancy
and produces the MMSE estimate of the source sample ,
given the received sequence .
To minimize the expected squared error of estimation

(4)

the reconstructed signal is given by

(5)

In (5), we have

(6)
and noting that condition on , is independent
of , we have

which forms the decoder codebook. Therefore, the optimal de-
coder at time requires a sum over elements of the de-
coder codebook. It is seen that in this case both computational
complexity and the memory requirement grow exponentially
with time, leading to an impractical scheme. Similar observa-
tions have been also made in [34], [35], [38].

In the next subsection, we develop an asymptotically
optimum MMSE decoder for the cases where the residual re-
dundancy is modeled by a -order Markov model and show that

it leads to a feasible decoder. Subsequently, in Section III-B,
we present a simplified MMSE decoder.

A. An Asymptotically Optimum MMSE Decoder

Assuming that the source has a memory that asymptoti-
cally decays with time, for sufficiently large values of ,
we have

(7)

This simplifies the optimum decoder to the following decoder:

(8)

which is asymptotically optimal for . We refer to the
decoder of (8) as the asymptotically optimum minimum mean-
squared error (AOMMSE) decoder. It describes the decoded
signal in the form of the weighted average of the codewords

. Note that provides a finer recon-
struction of the source symbols than the codewords
used at the transmitter side.

At each time instant, the decoder needs to calculate the in-
stantaneous values of the weights in (8) or the probabilities

. To calculate these probabilities, we assume that
due to the residual redundancy at the encoder output, the en-
coder output symbols form a -order, , Markov model.
In the following sections, we first present a solution to compute
these probabilities and then consider alternative solutions to op-
timize the computational complexity. These solutions are valid
for all values of (the case will be straightforward).

In [34] and [38], MMSE-based reconstruction schemes are
proposed that exploit the residual redundancy using a first-order
Markov model. Specifically, for , the de-
coding rule of (8) is simplified to the “instantaneous approxi-
mate MMSE decoder” of [34]. If , then the
AOMMSE decoding rule is equivalent to the ”Markov type 1”
decoder of [38] used for a memoryless channel.

1) A Basic Solution: To compute the a posteriori probabili-
ties required in the AOMMSE decoder we use a trellis structure.
The trellis structure models the symbols and their assumed

-order Markov property due to the residual redundancies. In
this trellis structure, the states at time correspond to the or-
dered set

(9)

Hence, there are states in each time step (stage) .
Each branch leaving the state at time step corresponds to
one particular symbol . Therefore, there are
branches leaving each state. Each branch is identified by the
pair of the two states that the branch
connects together. Having defined the trellis structure as such,
there will be one a priori probability
corresponding to each branch which characterizes the -order
Markov property of the source. The states now form a first-
order Markov sequence. Using this property and the memory-
less assumption of the channel (see (1)–(3)), in line with the
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Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [47], the proba-
bility of a particular state given the observed sequence

is given by the following forward recursive equation:

(10)

where the summation is over a subset of states in time step
, that are connected to the state . Throughout the paper,

we use the notation as a factor normalizing the sum of prob-
abilities to one.

In the same direction, the probabilities of states given the ob-
served sequence , are calculated by the following
equation:

(11)

where

Equation (11) is referred to as the forward–backward equation
in which the first term is the forward equation given in (10) and
the second term is referred to as the backward equation and can
be calculated recursively as follows:

(12)

where the recursion starts from

(13)
and continues backward in each time step. The details of the
derivation of these equations are available in [48]. The presented
trellis structure and either of the forward and backward equa-
tions are used in the following sections for calculation of dif-
ferent symbol or sequence probabilities. We note that in each
time step, the forward recursion of (10) proceeds one step for-
ward through the trellis while the backward term is recomputed
over the entire backward window as indicated in (12) and (13).2

Now, using the presented trellis structure and the forward
equation (10), the probabilities required for the asymptotically

2It is noteworthy that the forward–backward algorithm [47] has been used in
different forms and applications such as channel decoding and the decoding in
hidden Markov models. In another work [38], similar developments are related
to the prediction and filtering within the context of Kalman filtering. There are
recent efforts to develop general mathematical frameworks that contain these
separately known algorithms [49]. Our focus here is to investigate the details of
the calculation of the specific a posteriori probabilities required, so as to find
more efficient solutions.

optimum MMSE decoding of (8) are calculated recursively by
(14) at the bottom of the page ( , see Appendix for
proof),

At each time instant the probabilities
corresponding to each state are stored

to be used in (14) at the next time instant. In addition to the
computations required to do this task, the complexity of the
AOMMSE decoder is comprised of the cost to perform the
multiplications and normalization in (14), as well as the
weighted average of the reconstruction rule in (8). Clearly,
these computations are not trivial and, therefore, efficient
alternative solutions are of particular interest. In the followings,
we present efficient alternative exact solutions based on
construction of an extended trellis structure of the source.

2) Solutions Based on the Extended Trellis Structure: The
general problem of calculating the weights required in (8) can be
viewed as finding the probability of a sequence of states (sym-
bols) within the structure of the source trellis given the entire
history of the received signals or equivalently

where is the length of the sequence of states. The alterna-
tive solutions are provided based on different constructions of an
extended trellis structure for the source coder output symbols.
The states in this structure are referred to as the super states and
are defined as

(15)

where is referred to as the (state set) extension
factor and is the number of symbols by which the states (see (9))
have been extended to form the super states. Similar to the orig-
inal trellis, there are branches leaving a (super) state in the
extended trellis, where each branch corresponds to one symbol

. Therefore, each stage of the extended trellis
still corresponds to one time step.

Based on the proposed extended trellis, a family of solutions
to calculate the required a posteriori probabilities are given as
follows (see Appendix for proof):

(16)

where

(17)

(14)
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and are probabilities of
super states which are stored in each time step. This term is
updated by

(18)

in which and the terms within the summation
are available during the process of calculating (16). The direct
implementation of (16) leads to a computational complexity3

of

(19)

in which the first term is the cost due to the required multiplica-
tion of the terms and the required normalization and the second
term includes the cost due to updating and normalizing the prob-
ability of the super states according to (18). The memory re-
quirement includes the fixed amount of static memory (ROM)
required to store transition probabilities, as well as the
dynamic memory (RAM) required for the operation of the al-
gorithm, which is based on the number of super
states. This indicates that the family of solutions of (16) pro-
vide a wealth of tradeoffs of computational complexity and the
memory requirement. The increase of reduces the computa-
tional complexity at the cost of an increase in memory require-
ment. It is important to note that any increase of

beyond would lead to a solution which is suboptimal
both in terms of computational complexity and the memory re-
quirement.

More tradeoffs of computational complexity and memory are
possible considering the fact that the structure of the extended
trellis is still based on the redundancy of the source as indicated
in (17). For example using (17), the multiplying terms of (16)
can be calculated once for the states and stored as
an matrix to be appropriately multiplied by the
probability of super states. This reduces the corresponding com-
putations in (19) from to .

B. A Simplified MMSE Decoder

An approximation of interest to the AOMMSE decoder is to
consider a decoder that uses a codebook identical to that of the
encoder. We refer to this decoder as the MMSE decoder. Sim-
plifying (5), the MMSE decoder is given by

(20)

which describes the MMSE estimate in terms of the weighted
average of the encoder (Linde, Buzo, and Gray (LBG) [50])
codewords. The weights are the probability of having trans-
mitted the corresponding symbol given the received sequence

. It is noteworthy that in the trivial case where there is no

3In this work, the computational complexity is measured in terms of
the number of floating-point operations. Each addition, multiplication, or
comparison is considered as one floating-point operation (flop).

memory between the symbols (corresponding to ), (20)
collapses to the basic MMSE reconstruction rule

(21)

in which the probability

includes the residual redundancy in the form of the nonuniform
symbol a priori probabilities.

In the followings, we present efficient solutions to calculate
the required probabilities in (20) based on a -order Markov
redundancy model. It is noteworthy that, for , the simpli-
fied MMSE decoder of (20) is reduced to the “sequence-based
MMSE decoder” of [35], and if also , then the decoder is
essentially the “instantaneous approximate MMSE decoder” of
[34].

1) A Basic Solution: The a posteriori probability of a sym-
bol given the received sequence is calculated as fol-
lows. Assuming that the encoded sequence contains a residual
redundancy in the form of a -order, , Markov model, we
use the probabilities of states in the original trellis structure as
described in Section III-A1. In particular, when no delay is al-
lowed in the decoding process , we have

(22)

Expressions (10) and (22) together with the reconstruction
rule of (20) provide the instaneous (no delay allowed, i.e.,

) MMSE decoding of the source samples given the history
of the received channel outputs.

We observe that the required symbol a posteriori probabilities
can be alternatively calculated using the a posteriori probabili-
ties of any of the states as long as includes , i.e.,

. As presented later, this is of particular interest
when a delay of is allowed in the decoding process. In
such cases, this flexibility can be used to optimize the solution
in terms of the complexity. We have

(23)

where the probabilities of states as described
in Section III-A1, are given by the following forward–backward
equation:

(24)

in which the forward and the backward terms are given in (10)
and (12). In (24), if the number of computations required for the
forward and backward recursions ((10) and (12)) per time step
is denoted by and , respectively, we have

(25)
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(26)

where is the number of backward recursions required
per time step. The overall complexity of computing (23) is then
given by4

(27)

Noting that only depends on in (27), to minimize the
overall computational burden, we solve the following for the
optimum value of :

Minimize

subject to (28)

Case 1. : In the cases where the delay is smaller than
the assumed residual redundancy order, we are able
to choose and eliminate the backward term.
The probabilities in (20) are then given as follows:

(29)

Case 2. : Alternatively, when the delay is larger than
the assumed redundancy order, the is mini-
mized when , i.e., backward
recursions are required. The probabilities in (20) are
now given by

(30)

together with (10)–(13). The value sets
up the solution of (30) based on the probabilities
of states , in which
is located in the last position. Hence, it reduces the
number of backward recursions while keeping the
complexity due to the forward recursion unchanged.
This motivates us that should we set up a solution
based on the a posteriori probabilities of a sequence
larger than a state, we could reduce the number of the
backward recursions and its complexity even further.
In the following subsection, we present such solu-
tions and examine if this leads to a smaller overall
complexity as compared to the solution of (30).

2) Alternative Solutions: In this subsection, we reconsider
the problem of finding the a posteriori probability of a symbol

, given the observed sequence for the cases where
. Motivated by the results and discussions presented in Sec-

tion III-B1, Case 2, we seek possibly more efficient solutions to
calculate the required a posteriori symbol probability using the
probability of a sequence larger than one state, i.e.,

4Note that the computational complexity of the forward equation includes the
cost of normalization as well (2M ). This is a common approach in this work
in which the forward probabilities of trellis states which are stored to be used in
the next time instant are always normalized. However, in practise, we perform
the required normalization of (24) after we summed the multiplied forward and
backward terms according to (23). This only costs 2M operations as opposed
to the original 2M according to (24).

we have

(31)

where is given by the following for-
ward–backward equation:

(32)

The first term in (32) is the a posteriori probability of a se-
quence of symbols or states , given the entire
history of the received information from the channel. To calcu-
late such a probability, in Section III-A2, we presented a set of
solutions based on different constructions of an extended trellis
structure for the source coder output with
states in each stage. The second term in (32) is a backward re-
cursive term which is given by (12). The number of backward
recursions is equal to , which as expected re-
duces with the increase of and is always smaller than that of
the solution in Section III-B1, Case 2. However, an increase of

results in a more complex forward term.
Using the results of Sections III-A1 and III-A2, the overall

complexity of the solution in (31) is given by

(33)

which includes the number of computations required to cal-
culate the forward and backward terms, updating the forward
probabilities of super states according to (18) and multiplica-
tions and normalization required in (32). The memory require-
ment includes the fixed amount of static memory required to
store transition probabilities and the dynamic memory
required is .

This set of solutions can be optimized over the choices of
(sequence length) and (the state set extension
factor for the forward term). Interestingly, using the results of
Section III-A2, it can be shown that optimizes the solu-
tion in terms of the computational complexity disregarding the
values of and for all . It is noteworthy that since

requires hence, minimizes the memory re-
quirement as well. Therefore, the optimum solution (for )
in terms of the complexity, provided by the family of solutions
of (31) is based on the original source trellis and is given by

(34)
where from (32) we have

(35)

in which, using (16), the forward term is given by

(36)
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and the backward term is calculated using (12) and (13). The
probabilities of states in the forward term are then updated by
the following:

(37)

From (33), the overall complexity of this solution is given by

(38)

Now, it remains to compare the above solution (based on ,
) with that presented in Section III-B1, Case 2. Exam-

ining (38) and (27) indicates that the current solution maintains
a lower complexity. Although both solutions are based on the
same original source trellis, their distinction stems from using
different forward recursive (and updating) equations ((36) and
(37) versus (10)). This, in turn, leads to the reduction of the
backward term by an additional step as seen comparing (35) and
(24) for .

IV. MAP DECODING: PROBLEM STATEMENT AND SOLUTIONS

A. MAP Symbol Decoder

An instantaneous symbol MAP decoder exploiting the
residual redundancies in the form of a first-order Markov
model was presented in [34]. Later, in [35], a decoder that
accommodates a certain delay in the decoding process was
proposed for the same problem setup. Here, we present an
optimal symbol MAP decoder when the residual redundancies
are captured with a -order Markov model and a delay of is
allowed in the decoding process.

The symbol MAP decoder receives the sequence and
determines the most probable transmitted symbol. Next, it out-
puts the corresponding codeword. We have

(39)

The required a posteriori probability of the symbol in (39)
can be efficiently calculated as described in Section III-B. The
performance of this decoder is studied in Section V where it is
referred to as the MAP decoder.

The presented MAP decoder uses a codebook identical to that
of the encoder. Alternatively, we can use the decoder codebook
corresponding to the asymptotically optimum MMSE decoding
algorithm with the MAP decoder. In this case, a sequence is
decoded such that

(40)

using (14) or (16). Next, the source decoder reproduces

at the output. We refer to this technique as the AOMAP decoder
and present its performance in Section V.

B. MAP Sequence Decoder

A sequence MAP decoder exploiting the residual redundan-
cies in the form of a first-order Markov model was presented in
[22] for source decoding over noisy channels. Later, in [34], a
similar but optimal decoder was proposed. Here we consider and
analyze an optimal sequence MAP decoder when the residual
redundancies are captured with a -order Markov model. A sim-
ilar decoder was derived in [45].

The sequence MAP decoder receives the sequence and
determines the most probable transmitted sequence

(41)

Using the same trellis structure as described in the previous
section and considering the memoryless property of the
channel as well as the Markov model for the source redun-
dancy, it is straightforward to see that (41) is equivalent to
(42) at the bottom of the page (see [48] for a proof), where

. The sequence MAP decoder in (42) can
be implemented using the well-known Viterbi algorithm. We
use the same trellis structure as defined in Section III-A1
and the metric corresponding to branch is given
by . The optimum sequence MAP
decoder, according to (42), requires the entire sequence
in order to decode the corresponding sequence and, hence,
imposes a large delay. However, to limit the delay to a certain
value, at each time instant, we identify the state with the
maximum metric and decode the symbol at delay on the sur-
viving path reaching that state accordingly. Subsequently, the
corresponding codeword is reproduced at the source decoder
output. We refer to this decoder as the sequence MAP (SMAP)
decoder and will examine its performance in Section V.

Given that the values received from the channel
are available, the computational complexity of the SMAP algo-
rithm per time step is given by

(43)

which includes the computations required for updating the state
metrics and selecting the one with the largest value.

The decoder codebook in the presented SMAP decoder is
the same as the encoder codebook. Alternatively, we can use
the decoder codebook corresponding to the asymptotically op-
timum MMSE decoding algorithm with the SMAP decoder. In
this case, a sequence is decoded which in turn outputs one of
the decoder codewords . We refer to this
technique as the AOSMAP decoder and present its performance
in Section V.

V. NUMERICAL RESULTS

To analyze the performance of the proposed MMSE decoders,
we use a synthesized source similar to [22]. In addition to the
fifth-order Gauss–Markov source from [22], two other tenth-

(42)
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TABLE I
FILTER COEFFICIENTS OF THE SYNTHESIZED SOURCES

TABLE II
REDUNDANCY OF THE SOURCE, R(M;
) (IN BITS), AT DIFFERENT

REDUNDANCY MODEL ORDERS 
 , (M = 8;N = 1)

TABLE III
NORMALIZED AUTOCORRELATION OF THE SOURCE SAMPLES AT

DIFFERENT DELAYS

order Gauss–Markov sources are used whose coefficients have
been picked from a speech linear preduction coding (LPC) data-
base. Each 10 LPC coefficient set represents the short-time spec-
tral information of speech within 20 ms. The source samples are
given by

(44)

where is a Gaussian independent and identically distributed
(i.i.d.) random variable, is the order of the synthesizing filter,
and the corresponding coefficients are given in Table I. The
source sample vector is quan-
tized with an point -dimensional vector quantizer (VQ)
producing the symbol . At different redundancy model orders

, the value in bits defined as

(45)

where provides an indication of the
redundancy to be exploited and hence, the gains to be achieved.
Table II presents the amount of for the selected
synthesized sources at different values of when the source
is quantized by a 3-bit LBG scalar quantizer. As given in
Table II, for source A, the redundancy due to the nonuniform
distribution ) is 0.25 bit. The redundancy exploited
by means of a first-, second-, and third-order Markov model
is 1.16, 1.48, and 1.67 bits, respectively. In Table III, the
normalized autocorrelation of the source samples at different
delays are also presented. In the followings, we investigate the
performance of the decoders presented in the previous sections.

Six source decoders are considered: i) AOMMSE decoder,
ii) simplified MMSE (MMSE) decoder which uses identical
encoder and decoder codebooks, iii) MAP symbol decoder
(MAP), iv) AOMAP decoder which selects the codeword with
the maximum a posteriori probability from the codebook corre-
sponding to the AOMMSE decoder, v) the SMAP decoder, vi)
and the AOSMAP decoder which is the SMAP decoder which
uses the decoder codebook of the AOMMSE decoder. We
begin with the performance comparison of the instantaneous
decoders over a binary-symmetric channel and we
proceed to analyze the effect of delay, performance with a
channel (decoder) with soft outputs, the effect of redundancy
type, and the effect of quantizer bit rate.

A. Basic Comparison of the Decoders

In this subsection, we present a performance comparison of
the instantaneous decoders . Fig. 2 demonstrates the
performance of the instantaneous AOMMSE decoder for
(dotted lines) and the MMSE decoder (solid lines), for trans-
mission of source A over a binary-symmetric channel when dif-
ferent levels of residual redundancy is exploited at the receiver

. As mentioned before, for (and )
both schemes collapse to the basic MMSE decoder of (21). The
performance of the basic MMSE decoder ( ) with equal
symbol probability assumption (EPA) in which case no a priori
information is used in the decoding process

is provided as a baseline for comparison.
For the AOMMSE decoder, Fig. 2 shows that using a redun-

dancy model of order or provides a gain as high as
2.5 or 4 dB, respectively, compared to the case where the redun-
dancy is modeled with a first-order Markov model. Using the
simplified MMSE decoder, similar gains are achievable, how-
ever, at lower bit-error rates, the performance is upper-bounded
by that provided at the encoder output. As mentioned before, in
such cases the AOMMSE decoding provides a finer reconstruc-
tion of the source samples. This is due to using a larger decoder
codebook which exploits the dependencies between the source
coder output symbols, which was also observed in [35], [38].
The performance of the corresponding AOMAP and MAP de-
coders are presented in Fig. 3. In Fig. 4, the performance of a
selected set of instantaneous AOMMSE, MMSE, AOMAP, and
MAP decoders are redrawn for comparison. It is observed that
the MMSE decoders constantly outperform the MAP decoders
with gains as high as 1.4 dB.

Fig. 5 compares the performance of the MAP symbol
decoder with that of the SMAP decoder for transmission of
source A over a binary-symmetric channel. It is observed
that the SMAP algorithm, although suboptimal in the sense
of minimizing the symbol probability of error, performs very
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Fig. 2. Performance of the instantaneous (� = 0) AOMMSE (for � = 
) and MMSE decoders for transmission of the Gauss–Markov source A (M = 8,
N = 1) over a binary-symmetric channel when different levels of residual redundancy are exploited at the decoder. Note that for 
 = 0 and 
 = 0 EPA the curves
of AOMMSE and MMSE decoding have overlapped.

Fig. 3. Performance of the instantaneous (� = 0) AOMAP (for � = 
) and MAP decoders for transmission of the Gauss–Markov source A (M = 8, N = 1)
over a binary-symmetric channel when different levels of residual redundancy is exploited at the decoder. Note that for 
 = 0 and 
 = 0 EPA the curves of
AOMAP and MAP decoding have overlapped.

closely to the MAP algorithm in the mean-square error (MSE)
sense. For any given delay of and redundancy order , similar
observations are made in other cases, when comparing the
AOMAP and the AOSMAP decoders (with the same ) or the
MAP and the SMAP decoders. Consequently, we will only
discuss the performance of the MAP and AOMAP algorithms

in the following sections. As seen in Section IV, the SMAP
and the MAP algorithms can be implemented with comparable
complexity. A more precise complexity comparison depends on
the design parameters such as and and the actual decoder
implementation. The AOSMAP decoder maintains a lower
level of complexity as compared to the AOMAP decoder.
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Fig. 4. Performance of the instantaneous (� = 0) MAP, AOMAP, MMSE, and AOMMSE decoders for transmission of the Gauss–Markov source A (M = 8,
N = 1) over a binary-symmetric channel when the redundancy order 
 = 2 and � = 
 .

Fig. 5. Performance of the SMAP and MAP decoders for transmission of the Gauss–Markov source A (M = 8, N = 1) over a binary-symmetric channel when
different levels of residual redundancy is exploited at the decoder, � = 1; 3.

B. Effect of Delay
To demonstrate the effect of delay, Fig. 6 depicts the perfor-

mance of the MMSE decoder for reconstruction of the source
A over a binary-symmetric channel at different delays

for the two scenarios of redundancy order and
. The curve corresponding to the basic MMSE decoder

of (21) provides a baseline for comparison. Also, the
performance of the MAP decoder in similar scenarios are pro-
vided in Fig. 7. It is observed that for the case of transmission of
source A over a noisy channel, a delay of allows the de-
coder to capture almost all of the redundancy in the future sam-
ples. The gains achieved in this case are higher than 3.5, 3, and
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Fig. 6. Performance of the MMSE decoder for transmission of the Gauss–Markov source A (M = 8, N = 1) over a binary-symmetric channel when different
delays are allowed (� = 0; 1; 2; 3) and the residual redundancy is exploited with a 
 = 1; 3 order Markov model.

Fig. 7. Performance of the MAP decoder for transmission of the Gauss–Markov source A (M = 8, N = 1) over a binary-symmetric channel when different
delays are allowed (� = 0; 1; 2; 3) and the residual redundancy is exploited with a 
 = 1; 3 order Markov model.

2.5 dB for , , and , respectively, when com-
pared with the corresponding instantaneous decoding schemes.

C. Performance Using a Soft-Output Channel (Decoder)

Recently, channel decoding techniques using the soft channel
information has found increasing attention in different appli-
cations for their improved performance. In techniques such
as turbo decoding, iterative decoding, or soft-output Viterbi

algorithm, soft outputs are readily available at the output of
the channel decoder as well. Employing the soft outputs for
improved source decoding have been shown to be fruitful,
e.g., [51]. The source decoders proposed in this work are
able to exploit the soft-output information and the source a
priori information for effective source decoding. Alternatively,
with appropriate considerations the proposed MAP (SMAP)
decoders can be used for effective channel decoding using the
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Fig. 8. Performance of the MMSE decoder for transmission of the Gauss–Markov source A (M = 8, N = 1) over the soft-output channel and the
binary-symmetric channel when different levels of source redundancy are exploited at the decoder, � = 0.

soft channel information and assisted with the source a priori
information.

To indicate the possible performance improvement due to
using the soft output of the channel (decoder), Fig. 8 compares
the performance of the instantaneous MMSE decoder for recon-
struction of source A transmitted over the soft-output channel
and the binary-symmetric channel. Alternatively, Fig. 9 depict
the same performance results when MAP decoding is used. The
performance results for the case, where a delay of is
allowed in the decoding process is available in [48]. It is ob-
served that if channel (decoder) soft outputs are available, gains
as high as 2–3 dB can be achieved. As the decoding schemes be-
come stronger, i.e., and are increased, the maximum gains
achieved move more toward the low channel signal-to-noise ra-
tios (SNRs) or higher probabilities of error.

D. Effect of Redundancy

In this subsection, we study the effect of the type of source
redundancy in the achievable gains using the proposed tech-
niques. As well, we examine the effectiveness of the measures
of redundancy as discussed before. We consider the instanta-
neous MMSE reconstruction of the sources A, B, and C over
the soft-output channel as given in Figs. 8, 10, and 11, respec-
tively. From these figures, it is observed that the amount of re-
dundancy , as defined in (45) and provided in Table II,
correlates well with the achieved gains. On the other hand, the
source autocorrelation as given in Table III does not seem to be
a suitable indicator of the possible gains. This is in line with the
observations in [22].

E. Effect of Quantizer Bitrate

Fig. 12 depicts the performance of the instantaneous MMSE
decoder for transmission of source A quantized with an

point quantizer over the soft-output channel
model. Since the higher rate quantizers are more sensitive to
the channel errors, the effectiveness of the proposed decoder
is more significant in such cases. Specifically, the gains at low
error rates are noticeable.

VI. CONCLUSION

A family of solutions for the asymptotically optimum MMSE
reconstruction of a source over a memoryless noisy channel is
presented when the redundancy in the source encoder output
stream is exploited in the form of a -order Markov model

and a delay of is allowed in the decoding
process. Considering the same problem setup, we also present a
simplified MMSE decoder as well as several other MAP symbol
and sequence decoders. In each case, we investigate the alterna-
tive solutions and optimize them for the smallest computational
complexity.

The numerical results and analysis demonstrate the effective-
ness of the stronger models (higher Markov order ) to cap-
ture the residual redundancy. The MMSE-based decoders out-
perform their equivalent MAP-based decoders. As expected, the
asymptotically optimum MMSE (AOMMSE) decoder provides
the best performance among the presented decoders. The sim-
plified MMSE decoder has a smaller decoder codebook and a
lower complexity, which is comparable to that of the SMAP de-
coder. The sequence MAP decoder and the symbol MAP de-
coder maintain the same level of performance. The AOSMAP
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Fig. 9. Performance of the MAP decoder for transmission of the Gauss–Markov source A (M = 8,N = 1) over the soft-output channel and the binary-symmetric
channel when different levels of source redundancy is exploited at the decoder, � = 0. Note that the curves corresponding to binary-symmetric channel with 
 = 0,

 = 0 EPA, and soft-output channel with 
 = 0 EPA have overlapped.

Fig. 10. Performance of the instantaneous MMSE decoder for transmission of the Gauss–Markov source B (M = 8,N = 1) over the soft-output channel when
different levels of source redundancy are exploited.
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Fig. 11. Performance of the instantaneous MMSE decoder for transmission of the Gauss–Markov source C (M = 8,N = 1) over the soft-output channel when
different levels of source redundancy are exploited.

Fig. 12. Performance of the instantaneous MMSE decoder for transmission of the Gauss–Markov source A (quantized with rates r = 2, 3, and 4 bits, N = 1)
over the soft-output channel when different levels of source redundancy are exploited, M = 2 , N = 1.
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decoder provides a lower complexity alternative to the
AOMMSE decoder at the price of a certain loss in performance.

The possible future research in this direction includes the de-
sign of Channel Optimized Vector Quantizers based on the pro-
posed decoders and more efficient approximate algorithms to
the presented MMSE decoders.

APPENDIX

A. Proofs for Section II-C

Equation (2) is derived using the memoryless channel as-
sumption of (1), as follows:

(46)

(47)

Equation (1) is used in transition from (46) to (47).
Equation (3) is derived as follows:

(48)

Due to the causality of the communication channel and its inde-
pendent with the input signal, we have

and using (1), (48) is now simplified to

(49)

B. Proofs for Section III-A2)

Equation (16) provides the probability of a sequence of sym-
bols within the structure of the trellis, given the entire history of
the received signals. The derivation of this equation is presented
in the following. Note that and for this col-

lapses to the case with the original source trellis presented in
(14) (see the equation at the top of the page). Using the mem-
oryless property of the channel and the Markovian property of
the source, this is simplified to

(50)

where in (50), . The overall com-
putational complexity of the (50) is given by

(51)

Now, we show that for a fixed value of , increasing
the value of , or the state set extension factor,
reduces this complexity. The case of requires and
is trivial. For a given , we have

which proves the point.
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