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On Coverings of Ellipsoids in Euclidean Spaces
Ilya Dumer, Senior Member, IEEE, Mark S. Pinsker, and Viacheslav V. Prelov

Abstract—The thinnest coverings of ellipsoids are studied in the
Euclidean spaces of an arbitrary dimension . Given any ellipsoid,
the main goal is to find its -entropy, which is the logarithm of
the minimum number of the balls of radius needed to cover this
ellipsoid. A tight asymptotic bound on the -entropy is obtained
for all but the most oblong ellipsoids, which have very high eccen-
tricity. This bound depends only on the volume of the sub-ellipsoid
spanned over all the axes of the original ellipsoid, whose length (di-
ameter) exceeds 2 .

The results can be applied to vector quantization performed
when data streams from different sources are bundled together in
one block.

Index Terms—Covering, ellipsoid, entropy, Euclidean space,
unit ball.

I. INTRODUCTION

A. Spherical -Coverings of Ellipsoids

L ET be a subset of an -dimensional Euclidean space
and

be the ball of radius centered at some point . Consider
any subset and the union of the balls

centered at points . We say that is an -
covering1 of if

The -entropy [1] of a set is the logarithm of the size
of its minimal covering

Manuscript received May 16, 2003; revised May 5, 2004. The work of
I. Dumer was supported by the National Science Foundation under Grant
CCR-0097125. The work of M. S. Pinsker and V. V. Prelov was supported
in part by the National Science Foundation under Grant CCR-0097125, by
INTAS under Grant 00-738, and by the Russian Foundation for Basic Research,
Projects 03-01-00592 and 03-01-00098.

I. Dumer is with the College of Engineering, University of California, River-
side, CA 92521 USA (e-mail: dumer@ee.ucr.edu).

M. S. Pinsker, deceased, was with the Institute for Problems of Information
Transmission, Russian Academy of Sciences, Moscow 127994, Russia.

V. V. Prelov is with the Institute for Problems of Information Transmission,
Russian Academy of Sciences, Moscow 127994, Russia.

Communicated by S. Litsyn, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2004.834759

1Here we mostly follow coding terminology. In information theory, it is cus-
tomary to say thatM(A) is an "-net.

where minimum is taken over all -coverings and
is a natural logarithm.

In what follows, we study the -entropy of an arbitrary
ellipsoid

(1)

where is a vector with positive symbols.
Each symbol gives half the length of the -axis in . Without
loss of generality, we assume that symbols form a nonde-
creasing sequence so that

Our main goal is to find the asymptotic -entropy as
. More generally, we will base our study on a single

requirement that for all the sets of parameters ,
, and . Precise statements of our results are given in Section II

and the corresponding proofs are relegated to Section III.

B. Preliminaries

Optimal -coverings have been long studied for an Euclidean
ball . Various bounds on its minimum covering
size are obtained in papers [2] and [3]. By linear transformation
of , one can always replace any -covering of using the
unit balls to cover a ball . For this reason, we will mostly
consider the unit balls and remove the index from the notation

. One particularly important result is obtained by Rogers
[2] who proved that for , the thinnest covering with unit
balls has size

if
if

(2)

where is an absolute constant.
Note that any set of infinite volume also pro-

duces infinite coverings . Therefore, for coverings of the
whole space , it is customary [4] to first consider a se-
quence of balls of growing radius . Given a sequence of
coverings , the lower density for this sequence
is defined as the asymptotic infimum of the mean number of
balls covering a point in

The main problem is to define the minimum density
obtained in over all coverings .

Here, we refer to monograph [4], which gives a detailed
account of the lower and upper bounds on along with an
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extensive bibliography on this subject. Detailed surveys are
also presented in [5] and [6].

Coverings of other sets—different from the balls and
spaces —have also been studied for general convex bodies
in Banach spaces (see [7], [8], and references therein). For the
Hamming spaces, various coverings associated with codes are
studied in the monograph [9], while coverings of the Hamming
ellipsoids are considered in [10]–[12]. Later, in Sections II and
III, we address a similar problem in the Euclidean spaces. We
also compare our results with those obtained in [8] for convex
bodies.

C. General Ellipsoidal -Covering

Given a vector with positive symbols,
consider the ellipsoid

centered at . Given any (other) ellipsoid , we say that
a subset forms its ellipsoidal covering if
belongs to the union

of ellipsoids with centers running through .
Note, however, that this setting is readily converted into the
former spherical covering by linear transformation
for all points . It is clear that in this case be-
comes the unit ball , while ellipsoid is transformed
into the ellipsoid with the new set of axial coefficients

. Thus, for generic ellipsoids , we have
three equivalent problems:

1) covering with unit balls;
2) -covering, with balls of radius ;
3) -covering, with ellipsoids .

Due to this equivalence, we will mostly address the first problem
and study the unit entropy of an ellipsoid

which is the logarithm of the minimum

number of unit balls needed to cover

D. Possible Applications

It is well known [4] that sphere coverings often arise in
multidimensional (vector) quantizers. In particular, suppose
that -dimensional data points have limited maximum
energy and therefore fall into the ball with some proba-
bility distribution . A typical quantizer/compressor is then
supposed to establish a thin covering of the ball while
limiting the mean (squared) rounding error . Zador’s
theorem [4] shows that this error can be reduced per dimension
by using quantization in higher dimensions . Thus, combining
the data in longer blocks improves the quality of an overall
quantization.

To simplify the problem, it is also customary to consider the
uniform distribution of original data points in the ball .

In this case, given the maximum rounding error caused by a
quantizer, we need to find the thinnest -covering of the ball

. Thus, optimal quantization becomes closely related to the
problem of a minimum sphere covering.

Suppose now that quantization is performed after a few dif-
ferent streams of data are mixed together in a block of length .
The above spherical framework is kept intact if the combined
system still operates with a limited total energy. However, dif-
ferent sources can incur different (power) costs . Given the
total cost, different sources are accumulated with different
factors in this case, and the former ball is replaced by
some ellipsoid .

Another example arises when some sources generate more
valuable data that have higher priorities . Given that the total
energy is limited by , the combined data still belong to the
ball . However, a quantizer may take into account different
priorities , in which case rounding errors are also weighed dif-
ferently. In this case, we have an inverse setting, when a -cov-
ering of the ball by small ellipsoids can become the
model of choice.

Finally, suppose that a data block of length is split and then
transmitted over a few independent memoryless Gaussian chan-
nels , which have different noise powers . The received
blocks represent Gaussian vectors in that have different vari-
ances in different positions . General ellipsoidal setting is
again more applicable in this scenario, for both the received
vector and its quantized version.

The above examples show that ellipsoidal -coverings can be
used whenever data signals incur different costs or carry dif-
ferent priorities or get disturbed by a different amount of noise.
The minimum covering size required for this ellipsoidal setting
is the main subject of this paper.

II. SUMMARY OF THE RESULTS

Given an ellipsoid , define the quantity as

(3)

We begin with a lower bound on the unit entropy of an ellipsoid
, which holds for all dimensions and vectors . The proof

is given in Section III.

Theorem 1: (Generalized packing bound, see also [8]). For
any ellipsoid , its unit entropy satisfies the inequality

(4)

In the sequel, we assume that , for the case
gives the immediate answer . In the following
theorem, we derive an asymptotic upper bound on the unit en-
tropy . Here we only assume that parameters and
vary in such a way that . For example, can be fixed
while components grow. Therefore, our asymptotic setting

(or, briefly, ) will also serve as a limiting
condition for all other conditions described in the following the-
orem. This theorem will be proved in Section III.
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Theorem 2: The unit entropy of an ellipsoid satisfies
asymptotic equality

(5)

provided that

(6)

where is defined in (3) and is the number of half-axes
of length greater than one

(7)

Geometric Interpretation: Consider the sub-ellipsoid

obtained by projecting an ellipsoid into the subspace
spanned over those dimensions that have half-axes . Note
that has the largest volume among all -dimen-
sional sub-ellipsoids obtained from . Then our bound (5) can
be rewritten as

Also, define the ball of the same volume
. Then is the mean of , which in turn is equal

to . Now condition (6) can be rewritten as

(8)

In our proof of Theorem 2, we will also show that condition (6)
is equivalent to the combination of the following conditions:

(9)

and

(10)

Now we see that condition (8) shows that our tight asymptotic
bound (5) can fail only on the most oblong ellipsoids, for which

as . In other words, condition (8)
fails if the longest half-axis is lower-bounded as a polyno-
mial of increasing degree . In this case, the eccen-
tricity of sub-ellipsoid also undergoes an in-
creasingly rapid growth.

Remark 1: Recall that an -covering of an ellipsoid is
equivalent to a unit covering of the ellipsoid . Therefore,
the -entropy is readily obtained from formulas (3),
(6), and (7), by replacing symbols with rescaled quantities

. In this case, the bound of Theorem 2 reads

where

(11)

Remark 2: Consider the case when ellipsoid has equal
coefficients and, therefore, forms the ball . In this
case, Theorem 2 gives , provided that condi-
tion (9) holds

Note that the above result of Rogers also gives the same asymp-
totics , since

according to (2).

Remark 3: Note also that expression (11) coincides with the
expression obtained in [13], [14] for the -entropy of a random
Gaussian vector whose independent components

have (possibly different) variances for all
.

Examples:
1) Let for all , where and are

positive constants. In other words, here coefficients form a
power series bounded by . Then direct calculations show that
Theorem 2 holds and

where . Thus, the unit entropy grows linearly in .
2) Let for all , where and

(for , we have Example 1). Now coefficients
form an unbounded power series as grows. Similar calcu-

lations again show that Theorem 2 holds but the unit entropy is
quasi-linear in , due to the asymptotic equality

Note also that the main asymptotic term in does not depend
on in this case.

Finally, we consider some subclasses of ellipsoids, for which
condition (6) can be removed. Note that condition (6) and The-
orem 2 always hold if

(12)

due to the fact that by definition (3). In partic-
ular, Theorem 2 holds if or some other coefficients grow for
fixed .

Another similar condition is defined as follows. Given an el-
lipsoid and some , consider the number

(13)

We will show that the proof of Theorem 2 can be modified to
obtain the following.

Theorem 3: The unit entropy of an ellipsoid satisfies
asymptotic equality (5) if there exists such that

(14)

Theorem 3 and condition (14) are closely related to the re-
sults known for general convex bodies [8]. Note, however, that
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the new condition (14) can still be much more restrictive for
generic ellipsoids than the former condition (6). Namely, recall
that and therefore condition (14) holds only for ex-
panding ellipsoids, such that . In particular, condition
(14) is not valid for a ball of any given radius, or any ellip-
soid, whose axes fall within some interval .

III. PROOFS

A. Proof of Theorem 1

We present a short proof to keep the paper self-contained (see
also [8] for a more general setting). The lower bound (4) can
be obtained almost immediately, by slightly detailing the argu-
ments used in the geometric interpretation of Section II. Indeed,
consider the projection of an ellipsoid into the subspace
spanned over the last coordinates. Then we obtain the sub-
ellipsoid

Also, the unit ball becomes . By dividing the volume of
by the volume of , we define the minimum number of

covering balls in . Thus,

It is well known that the unit ball has the volume

whereas the ellipsoid has the volume

Thus,

where the last equality simply reflects the fact that if
.

Note that in case , both sets— and —are taken
in the original space , and the above arguments yield the
(Hamming) packing bound. Obviously, the new condition (4),
which we call the generalized packing bound, is stronger when-
ever for some .

To prove Theorem 2, we also need the following definitions
and an intermediate statement—formulated later as Theorem 4.
First, note that an ellipsoid is contained in the unit ball
if inequalities hold for all coefficients . Therefore,
in the following we take vectors such that for some

. Consider the subset of vectors
that satisfy restrictions

(15)

Note that is a closed set. Given a vector , we also con-
sider the subset of vectors that satisfy
restrictions

(16)

Then for any , we define the function

(17)

where we assume that . Given , we say that
is an -optimal vector if achieves its minimum

(18)

on . Note that exists for any vector since
is a continuous function on the closed bounded subset .
In the sequel, we also prove that is a continuous function
on the closed bounded subset , in which case there exists an
optimum pair that achieves the (global) optimum

(19)

The following theorem—proven in the Appendix—will play a
key role in deriving the upper bound on .

Theorem 4: For all dimensions and vectors

(20)

As above, let be an -dimensional ball of radius cen-
tered at the origin. We start the proof of Theorem 2 with the
following lemmas.

Lemma 5: For any dimension , a ball of radius
has unit entropy

(21)

where the constant does not depend on the dimension nor
on the radius .

Proof: Note that for , inequality (21) immediately
follows from the Rogers bound (2). Next, we prove that in-
equality (21) also holds for . Indeed, for any we can
use the inequality

(22)

To prove this inequality, note that the ball can be enclosed
in a cube with a side , centered at the origin. In turn, this
cube can be cut into smaller cubes with a side , having
at most smaller cubes at each side (rounding off to
the closest integer from above). Finally, each small cube can
be enclosed in a unit ball. Thus, (22) directly follows from the
bound on the number of unit balls used in this
enclosure.
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Lemma 6: Condition (6) is equivalent to the combination of
conditions (9) and (10).

Proof: First, note that the former gives the combination
of the latter. Indeed, (10) immediately follows from (6). Also,

, in which case (6) gives the condition
, which is equivalent to (9).

In turn, let us show that condition (6) also follows from (9)
and (10). Indeed, the radius satisfies both the equality

and the inequality . Thus, we can replace
(10) as

According to (9), and we have condition (8)

which is equivalent to (6). This completes the proof.

B. Proof of Theorem 2

The proof will include three steps. The main idea of the first
step is to cover an ellipsoid with a finite number of sub-
sets each of which is a direct product of the balls (of lesser di-
mensions). In the second step, we obtain a general upper bound
on the unit entropy , which depends on parameters in-
troduced in the first step. Here we will use Lemma 5 and The-
orem 4. Finally, in the third step we estimate the asymptotic be-
havior of the bound and employ the two asymptotic conditions
of Lemma 6.

Step 1: Divide the set of integers into a set
of subintervals of length ,
where and

From now on, we assume that the lengths are fixed. These
lengths will be optimized later, in Step 3 of our proof. We will
also use the parameter and the set of numbers

with increments equal to . For any , let
be the closest point in exceeding . Finally, consider any

vector (with all components from )
such that

(23)

In what follows, denotes the subset of all such vec-
tors .

For each point , let for any
. Also, consider a ball

of dimension . Here the radius is defined by the parameter
. Finally, define the direct products of all balls

Equivalently

Our next goal is to prove an important property

(24)

Indeed, consider any point and any set of sub-
intervals. Let

denote the contribution of the point to the overall squared
“weight” in (1). Then we consider the ball defined by pa-
rameter . Recall that . There-
fore, the inclusion holds according to the inequalities

Second, for any point and any set , parameters
satisfy inequality (23)

Thus, by considering all possible vectors for any point
, we find a subset that covers this point. As a result,

inclusion (24) holds.
Step 2: Given a subset , consider its covering by unit

balls. Let us cover each ball , , with the balls
of some radius . Then the direct product of the balls

is completely covered by the direct product of their coverings.
Correspondingly, this set has unit entropy

(25)

where different radii form a vector such that

(26)

The first restriction limits the overall radius of our covering
by , while other restrictions reflect the fact that

if . Obviously, the infimum in (25)
cannot be achieved in the latter case.
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Note that inequality (23) can be rewritten as

Also, all numbers are positive integers. Therefore, the
number of vectors that satisfy inequality (23) is equal
to , where

(27)

From (24) and (25)

(28)

Now we use Lemma 5 to estimate quantities in (28).
This yields the estimate

(29)

where constant does not depend on all other parameters.
Next, we rewrite the first sum in (29) to employ Theorem 4.

Obviously, this sum can be rewritten without coefficients , by
taking terms and using times our parameters ,

, and . Secondly, for all , let us temporarily
replace variables , , and coefficients with

where

(30)

Note that for all , according to (26). Moreover, vari-
ables and satisfy all other restrictions (15) and (16). There-
fore, we can use Theorem 4 with coefficients as follows:

(31)

Now consider vector and ellipsoid with
coefficients

Then

(32)

Our next goal is to estimate the difference . We choose
, where is defined in (7). Then it is readily verified

that

(33)

Now from (29) and (31)–(33), we obtain the upper bound

(34)

which is used in Step 3 to derive tight asymptotic bound (5).
Step 3: To prove asymptotic equality (5), we use conditions

(9) and (10), which are equivalent to the original condition (6)
according to Lemma 6. For the asymptotic setting , our
goal is to optimize the set of subintervals and the quantization
step , so that all terms in the right-hand side of (34) fall to the
order of , with the exception of the first term . In so
doing, we will also employ a positive vanishing function

such that for

(35)

Obviously, our original conditions (9) and (10) can be modified
into the latter conditions if this function approaches slowly
enough.

We take and choose all other intervals ,
, of equal length

(36)

From (36), we derive the upper bound

(37)

Now we can estimate the terms in the right-hand side of (34).
We rewrite the second term using convexity of the logarithmic
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function. Then we use (9) and (37) to obtain the following
estimates:

(38)

Next, we use asymptotic conditions (35), which show that the
last term in (34) also has the order of

(39)

Finally, we choose the quantization step , and verify
that the two remaining terms in (34) have the same order .
Indeed, we use Stirling formula for in (27) and obtain

(40)

Also, from (30)

(41)

Now combining our estimates (38)–(41) with the upper bound
(34), we obtain

The latter bound has the same order as the lower bound of
Theorem 1, and the proof of Theorem 2 is completed.

Our final goal is to prove Theorem 3. Here we extensively use
the proof of Theorem 2.

C. Proof of Theorem 3

Given condition (14) for some , we choose
intervals of length

(42)

Also, we choose

(43)

where

(44)

Finally, given any vector , we completely
cover the first ball of radius taking the identical covering
radius

First, we prove that , so that such a choice is possible.
Indeed, note that and . Also,
for all . Therefore,

(45)

Now we follow Steps 2 and 3 of the Proof of Theorem 2, with all
modifications resulting from (42)–(44). Since for all

, each ball is now replaced with the one-dimensional

interval of radius . To cover these intervals we
can use any set of nonnegative numbers and ( -incremental)
numbers provided that

(46)

Now we can rewrite the estimate (29) as

(47)
(Here the universal constant is taken from Lemma 5). Next, we
rewrite the first sum in (47) to employ Theorem 4. We replace
variables , , and coefficients with the new variables

using two scaling factors

(48)

Now the new variables and satisfy all earlier restrictions
(15) and (16). Therefore, we can use Theorem 4 with coeffi-
cients and estimate the first term in (47) as follows:

Finally, recall that for , in which case the numbers
entirely fill the set of integers . In this case, we

have equalities
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Therefore, we arrive at the estimate

(49)

which only depends on the ratio from (48) defined by .
Given our choice of , , and from (43), (44), and (48), it is
easy to see that for any

with maximum achieved at . Also, similarly to (40)

Summarizing, we see that the last three terms in (49) are linear
in

Now we see that restriction gives tight bound
.

APPENDIX

PROOF OF THEOREM 4

First, note that for any

Indeed, we can always take the vector with components

if
if

and obtain the lower bound

Here has equal components , due to convexity of
the logarithmic function. Also, we see that , since
for some positions .

Second, let be the subset of vectors that satisfy
inequality

(50)

Note that optimum can be sought only in the (closed)
subset . Indeed, if inequality (50) does not hold, we can
always take for all and obtain . For
this reason, in the following we replace our former set by

. Note that is nonempty, since otherwise , which
contradicts the preceding arguments. Also, is achieved inside

since if equality holds in (50).
Now we need to prove that equality (20) holds. Recall that

is the difference between the two convex functions
and . In this case, our arguments become

slightly more convoluted than those used in direct convex
optimization. However, below we also make an extensive use
of convexity of the logarithmic function. Our proof includes
the following lemmas.

Lemma 7: For any vector , any -optimal vector
has components

(51)

where , and is the root of the equation

(52)

Proof: Given any vector , consider any -op-
timal vector . We first prove that equality holds
for any pair of its symbols such that and .
Indeed, suppose that the latter two inequalities hold but .
Obviously, all three inequalities are satisfied if we choose suf-
ficiently small , and use new symbols and

. Let be the new vector obtained from by
this replacement. Due to convexity of the logarithmic function,
we have the inequality

Therefore, , and vector is not
-optimal. This contradiction shows that there exists some pa-

rameter such that whenever . Let be the
subset of such positions . Obviously, is nonempty, since oth-
erwise we have equalities , which is a contradiction
to inequality (50).

Next, consider the subset of remaining positions , for
which . Then for any such . Indeed, given
the opposite inequality for some , we take any
and replace the former symbols and by the new symbols

and , where is sufficiently small. Now the proof
completely repeats the first part and shows that the vector
is not -optimal. Thus, any -optimal vector has com-
ponents (51).

Finally, we use restrictions (50) valid for any . In
this case, any -optimal vector with components (51)
must satisfy the equality , since some components

can be increased otherwise. This gives a unique solution (52)
and completes the proof.

The preceding lemma also shows that is a contin-
uous function of on the bounded closed subset . Thus,
there exists some (not necessarily unique) optimal vector

. Also, the proof of Lemma 7 shows that for any
optimal pair there exists such that positions

form two complementary subsets

(53)

Lemma 8: Any optimal vector satisfies equality

and has equal components on the subset defined in (53)

for any (54)

Proof: The proof is similar to that of Lemma 7. First, we
can always increase some components and if
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Second, suppose that in vector for some indices ,
. Then we can increase , by using -rebalancing

and taking and for sufficiently small . Note that
both restrictions (15) and (16) are satisfied for the new vector

. Also, , since . Thus, we have a con-
tradiction, for .

Lemma 9: There exists an optimal vector with zero com-
ponents on the subset defined in (53)

for any

Proof: Rephrasing Lemmas 7 and 8, we see that for any
optimal pair , there exist two subsets and such
that

for any
for any
for any
for any

(55)

where

(56)

and is the size of . Also, .
Note that conditions (55) and (56) always give vectors

and . Now consider all such pairs given
some “boundary” vector with components , . This
vector defines both parameters and . Therefore, also
becomes the function

of vector . Next, we study how this function changes
with any argument , . By changing , we also replace

and , according to (55) and (56). Let

(57)

Using (56), one can readily obtain equality

(58)

When combined, (56) and (57) also show that

In particular,

(59)

Equality (58) shows that an optimal vector can be found
among those vectors , which either satisfy the equality

or belong to the boundary for some .
Consider the first case with , and let for some

. First, note that is a nondecreasing function of by
definition (57), and is positive according to inequalities in (55).
Since , the inequality holds for any .
According to formulas (58) and (59), both quantities and

do not change when is being reduced. In this process,
we also redefine all parameters using equalities in (55) and (56).

Finally, note that inequalities in (55) also hold after
reduction. Indeed, the original value is left unchanged,
and therefore, for . Thus, by taking ,
we keep the function unchanged and obtain new valid
vectors and . Repeating this reduction, we obtain
components for all . This completes the proof.

Now we see that Theorem 4 directly follows from Lemma 9.
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