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The Dynamics of Group Codes:
Dual Abelian Group Codes and Systems

G. David Forney, Jr.Fellow, IEEE,and Mitchell D. Trott, Member, IEEE

Abstract— Fundamental results concerning the dynamics of notion of duality that applies to abelian topological greup
abelian group codes (behaviors) and their duals are develeg. A closed abelian group codg in a sequence spadd’ may
Duals of sequence spaces over locally compact abelian graup {hep pe characterized as the set of all sequence that are

may be defined via Pontryagin duality; dual group codes are . .
orthogonal subgroups of dual sequence spaces. The dual of aCfthogonal to all sequences in the dual cdde- i.e.,C may

complete code or system is finite, and the dual of a Laurent cel 0€ characterized by a set of constraints (“checks”).

or system is (agn-)Laurerr]]t. |th and C are dua; ct?des, thenthe  Animmediate consequence of this definition is that the dual
state spaces of’ act as the character groups of the state spaces

of C*. The controllability properties of C are the observability of a complete code, ?]aggely a Cllfs.fd su(;:)group 0]; a Comdplete
properties of C*. In particular, C is (strongly) controllable if and sequence space suc ! 'S_a_ Inite code, namely a code
only if C* is (strongly) observable, and the controller memory all of whose sequences are finite. On the other hand, the dual

of C is the observer memory of C*. The controller granules of a Laurent code is (anti-)Laurent.

e Examples of minimal cbserver form encoder and syndrome. Ve derive fundamental duality relations between the dy-
former constructions are given. Finally, every observer ganule namics ofC and the dynamics of . For example, the state
of C is an “end-around” controller granule of C. spaces of’ act as the character groups of the state spaces of
C+, and the observability properties @fare the controllability
' properties ofCt. (Here observability is defined as in [28] as
a property of a code, not of a state space representation as in
[47].)

More precisely, we decompose the dynamics of a group
GROUP CODE is a set of sequences that has a grocgde into observer granules, in a decomposition dual to the
property under a componentwise group operation [15ontroller granule decomposition of [15].

[29]. For example, ifG' is any group and=” is the direct  Qur original goal was to construct a minimal observer-form
product group whose elements are the bi-infinite sequenggfoder and a minimal syndrome-former/state observet for
with components i, then any subgrou@ of G* is a group pased on its observability structure. This is straightémav
code. in many particular cases, but surprisingly difficult in geale

A group code may be regarded as the behavior of ygnani and Zampieri [10] have succeeded in providing such
behavioral group system, in the sense of Willems [46], [47¢onstructions for group codes over general finite nonabelia
[48], [49]. It has been shown in [15], [28], [29] that many ofyroups in a purely algebraic setting. Therefore we merely
the fundamental properties of linear codes and systems\depgresent some general principles and examples of minimal

only on their group structure. Most importantly, a group €odobserver-form encoder and syndrome-former/state observe
or system has naturally-defined minimal state spaces. constructions.

In this paper we study dual group codes and systems. OurFinaIIy

N . o _ we show algebraically that every observer graimsile
motivation is the importance of duality in the study of I'“eaisomorphicto an “end-around” controller granule. As ctzol

codes and systems. (For brevity, we will usually say “codggg \ve obtain purely algebraic proofs of many of our results

ratg(:: ]Eir:gtn r((:)cl)o(ljeemoirsstil)sctiee;?rllteﬁuzvém of a aroun code We should say that our restriction to abelian groups does
P group ) nolt appear to us to be essential, except to allow the use

For this purpose we use Pontryagin duality, a rather genegg Pontryagin duality. More general notions of duality of
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Section 2 briefly introduces Pontryagin duality. Section 3 Thecharacter group of GG, denoted byG", is the set of all
discusses dual sequence spaces of several important typkaracters of, with group operation defined by
namely complete, finite and Laurent. Section 4 discussek dua
group codes, proves that projections and subcodes are, duals (71 © ha)(g) = hu(g) + ha(g)-
gives dual definitions of wide-sense controllability and Otbbviouslyhl o hy = he o hy, SOG" is abelian, and we may
servability, and presents some examples of dual group codgse additive notatiori;e., the sum of two characters,, i is
Section 5 develops various results about dual state spages, j,, The identity ofG" is the zero (or principal) character
Section 6 is concerned with dual notions of finite Memory, defined byd(g) = 0 for all g € G. The inverse of € G is
including strong controllability and observability. Sett 7 he character- defined by(—h)(g) = —h(g). The characters
develops observability decompositions into granules doal 4 5 groupG are by definition unique, in the sense that no two
the controllability decompositions of [15], [29]. Sectidh characters , hy have equal valuek, (g), ha(g) for all g € G.
gives examples of the construction of minimal observemfor \vhena is locally compact abelian (LCA), the fundamental
encoders, state observers and syndrome-formers. Sec'[ioﬁo%tryagin duality theorem holds:
presents the end-around theorem and some corollarieso®ect Theorem 2.1 (Pontryagin duality)Given an LCA group,

10 is a brief conclusion. (a) its character groug” is LCA:
(b) the character group " is naturally isomorphic ta=:
Il. PONTRYAGIN DUALITY Q.

Our treatment is based on Pontryagin duality, which ap- The natural isomorphism of this theorem associgtesG
plies to topological groups. Pontryagin’s original treat{35] with the charactep, € G*" defined by, (h) = h(g) for all
remains an excellent reference. For a more modern expositib € G*. The theorem says that the character groug-ofis
see any book on Fourier (harmonic) analysis on groegs, precisely the set of all such charactets” = {¢, : g € G}.
Rudin [39] or Hewitt and Ross [20]. In this sense, we may say th@t acts asthe character group

A topological group is a group that is also a topologicaif G*, and writeG™" = G andg(h) = h(g).
space, such that the group and topological properties are co Characters thus define a generalized inner product, called a
sistent. We do not expect the reader to have much backgroyairing, from G* x G into R/Z, which we write as follows:
in topology. We are not much interested in the topology
of individual symbol alphabets; we usually think of them {h, g) = h(g) = g(h).
as being finite or at least discrete and/or compact, althoughyairing satisfies the “bihomomorphic” relationships
we make more general statements when they appear to be
warranted. However, topology does turn out to be important (0,9) = (h,0) = 0;
yv?er: c.or(;siderir;g codes \{\;Eofs.,e.t sequegc:es are de';‘ined on (hi+ha,g) = (h1,g) + (ha,g);
infinite index sets, even with finite symbol groups. For an _
introduction to topology, see.g.,[25] or [40]. (hogitg2) = (hogu) + (i g2).

All topological groups in this paper will be assumed t&e say thath € G andg € G areorthogonal if (h, g) = 0.
be metric spacesi.e., to have a topology induced by a The character tableof G (or of G") is the “matrix”
distance function. Group homomorphisms will be assumed to . .
be continuous, and group isomorphisms will be assumed also (@,G) ={(h,g) | heG,g€G}.
to be homeomorphisms. A subgroup of a topological group4§,¢ «
itself a topological group under the induced subspace tapo!
but is considered to be a topological subgroup only if it is (h,Gy = {(h,g9)|geG};
closed. . N (@90 = {hg)|hEG,

In this section we review the two basic dualities of Pon-
tryagin duality theory: character group duality and ortbiogl Which explicitly specify the charactets G — R/Z € G" and
subgroup duality. Sequence space duality is defined in tefmg/: G~ — R/Z € G, respectively. The rows are distinct and
the former, and code/system duality in terms of the lattez. Viorm a group under row addition that is naturally isomorphic
also introduce some additional fundamental duality pptesi: to G”; similarly, the columns are distinct and form a group
direct product/direct sum duality, sum/intersection dyal that is naturally isomorphic t6:.

guotient group duality, and adjoint duality. The elementary LCA groups in Pontryagin duality theory
are the real numbeiR, the integer<Z, the circle groulR/Z,

and the finite cyclic group&,, = Z/mZ, which may be
_ _ _ identified with the finite subgroupgn~'Z)/Z of R/Z. The
A characterof a (topological) group’ is a (continuous) following table gives the corresponding character groups a

rows” and “columns” of this matrix are the “vectors”

A. Character group duality

homomorphism pairings:
h:G—R/Z .
G |G |(hg)
from G into the additive circle group (“1-torus”R/Z (or R |R hg mod Z (in R/Z)
equivalently into the complex unit circle under multipliicen, Z |R/Z| hg (inR/Z)
to whichR/Z is isomorphic). Zon | Zn | hg (in Z,,)
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Note that in the cases @ andZ,,, the character grou@” is C. Orthogonal subgroup duality

isomorphic toG; however, in these cases we caution that the \ne now consider a second kind of duality, which will be
isomorphism is not a “natural” one. Moreover, the case.of ihe pasis of our definition of dual codes and systems.
andR/Z shows thatz and G" need not even have the same | g (7 e an LCA group with character grou, and let
cardinality. S be a subset ofy. The orthogonal subgroupto S C G

The fact thatZ" = R/Z illustrates an important general(the annihilator of S) is the set of all elements @ that are
result: the character group of a discrete group is compatt a§ythogonal to all elements df:

vice versg39]. Since a finite group with the discrete topology N X
is both discrete and compact, the character group of a finite ST ={a€ G |(a,s)=0forall s € S}.

group is finite;e.g., (Zm)" = Zn. The orthogonal subgroup @ itself is G- = {0}, since the

zero character is the unique charactetinthat is orthogonal

B. Finite direct product duality to all of G. Similarly, {0} = G".
In topological groups, the groupenerated bya subset
C G is defined as the smallest closed subgroug=athat
containsS, called theclosureS<! of S. S is closedif S = S¢!.
Thus in topological groups the notion of closure involvethbo
algebraic and topological closure.

Orthogonal subgroups and closed subgroups are intimately
linked by the following duality theorem [34]:

Theorem 2.3 (Orthogonal subgroup dualityf: G is an
LCA group, andS is a subset of7, then
W= H G (a) the orthogonal subgroug’ to S is a closed subgroup

of G*;

(b) the orthogonal subgroug'+ to S+ is the closureS!
The group operation oV is defined componentwise, using  of 5 in (.

the symbol group operations. If al;; are equal to a common |t follows that S is a closed subgroup a if and only if
group G, then we writeW = G*. If |Z| = n, then we may gll _ g Also, S+1L — g1,
alternatively write)V = G™. We shall say that two orthogonal closed subgrofips G
The finite direct productV is equipped with the natural gng g+ ¢ G aredual subgroupsWe caution the reader that
product topology [39]. If allG}, are compact (resp. locally when we say that a groui* is the orthogonal group té/,
compact), then the finite direct produt¥ = [, Gk is we do notimply tha#l is closed, so thakl -+ = H. However,
compact (resp. locally compact) [39]. If alF, are discrete if we say that two groups are dual or orthogonal groups, then
(resp. finite), thenV is discrete (resp. finite). we imply mutual orthogonality, and thus that both groups are
As expected, the character group of a finite direct produghsed.
group is the direct product of the symbol character groups: Thjs notion of duality is consistent with the usual definiso
Theorem 2.2 (Finite direct product duality)fhe character of duality in a variety of contexts:
group of a finite direct produdt = [], ., G of LCA groups
is the finite direct product

Let Z denote a discrete index set, which throughout thi§
section will be finite. We will often think off as an ordered
time axis, such as a finite subinterval &f A set indexed by
Z such asw = {wy, € Gk, k € Z} will correspondingly be
called asequence

Given a finite set of LCAsymbol groups{Gy,k € T}
indexed byZ, their direct product is defined as the Cartesian
product set of all sequences = {wy € Gy, k € I}, denoted

by

kel

« If G=R" andH is asubspacef G as a vector space
over R, then H+ is the orthogonal subspacéo H in
W = H Gy, G = R" Proof:_ for g € G anda € G, the pairing
(a,g) is the ordinary dot produch - g, mod Z. But a

kel

. . i © ) subspace of G is scale-invariantj.e., h € H implies

with pairing (h, g) defined by the componentwise sum ohe Hforal a cR. Nowa-ah =0 mod Z for all
(h,g) = Z(hk,gk), heW,gew. a€Rifand only ifa-h = 0. Thus
kel , . e Ht ={aeG |a-h=0foralhe H},

Note that), . (hx, gr) is well defined since is finite.

It follows that the character group ¢f = R" is G* = R”, which is the usual definition of the orthogonal subspace
and that the pairingh, g) between vectorg € R", h € R" is o H.
the ordinary inner (dot) produdt- g, modZ. o If G=R"andH is alatticein R™ (a discrete subgroup

Similarly, since every finite abelian group may be decom- of R"), then H- is thedual latticein G~ = R™. Proof:
posed into a finite direct product of finite cyclic groups, it  Since(a,g) = a-g mod Z,
follows that every finite abelian grou@ is isomorphic to its 1 - _
o O H- = G -h=0mod Z forallhe H
character grous-". Moreover, ifm is the exponent of7 (the {ac | o € H},

least integer such thatg = 0 for all g € G), thenG may which is the usual definition of the dual lattice .
be written as a subgroup 6%, )™ for somen. The character « If G =(Z,,)" andH is a subgroup (éinear block code
group of (Z,,)™ may be identified with(Z,,,)", and pairings of lengthn overZ,,), then H+ is thedual linear block

may then be defined in the usual manner as inner products codein G = (Z,,)". Proof: Here the pairing(a, g) is
over the ringZ,,. the usual inner product over the riffy,, .
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It is important to distinguish character group duality fron@&:". Correspondingly[/ - acts as the character group@f H
orthogonal subgroup duality. The character gratipis often with the same pairing [45].
called the “dual group” ta& in the mathematical literature. Theorem 2.5 (Subgroup/quotient group dualityf): H and
However, these examples show that the terms “dual codd#*- are dual closed subgroups @ and G", thenG/H acts
and “dual lattice” are to be understood in the orthogonak the character group ¢f+ andvice versa
subgroup sense. We use both types of duality in this paper; (HY) = G/H; (G/H) = H*.
for example, we use the term “dual sequence space” in theE,or example, iff is a subspace of — R", and H is its

chareicter group sein_se, whereas we use the terms “dual CO&%hogonaI subspace, then this theorem impliesdhatF - —
and. dual system” in the orthogqngl s.ubg_roup.sense. VM?mG—dimH.
caution the read_er to .keep this distinction in mind, and t0\yu note that each element of a groGpwith a subgroug!
refer to the notation if in doubt. may be written uniquely ag = r+ h, wherer is a representa-
tive of the coseH{ +¢ € G/H andh € H. There s thus a one-
D. Sum/intersection duality to-one correspondence betwe6nand the Cartesian product
Let G be a topological group, and I¢8; C G,j € 7} be a H xG/H, which may be viewed as a decompositiorthinto
collection of subsets of indexed by an index sef, possibly two componentsi/ andG/H. However, the two components
infinite. For topological groups, the grogenerated bythe ~Play different roles. In generafy/ H is not a subgroup of:;
collection, called thesum of the subsetsS;} and denoted moreoverG may have no SUbQFOUD lsomorph'CwH- For
by . S;. is defined as the closurs® of the setS of €xampleR has no subgroup isomorphic /7. Note that
all finite sumsy__ ; s;, wheres; denotes an element ¢f;. ~ although the character grou” may similarly be thought of
Thus the sum (the group generated by fj¢ is closed both aS being composed df " and (G/H)", the two components
algebraically and topologically. exhange roles(G/H)" = H* is by definition a subgroup of
Let {Sj C G",j € J} be the collection of orthogonal G", whereasH" is the quotientG"/H~*, which in general is
subgroups to the subseS;,j € J}. The intersection not a subgroup ot:". .
N, S; of this set of closed subgroups is a closed subgroupThis result may be straightforwardly extended to the quo-
of G". Moreover, by orthogonal subgroup duality, it is thdients of a finite chain/ C 1 C G of closed subgroups af.

orthogonal group to the suift . ; S;: Sinceh € H* implies h € J*, the orthogonal subgroup
Theorem 2.4 (Sum/intersection duality): chain runs in the reverse ordel~ C J* C G". For
g € H,h € J*, the value of the pairingh, g) depends only
QoS =S Dosi=() 5™ on the cosets/ + g, H- + h of J and H* in H and J*,
J JeT JeT jed respectively. Therefor&l/.J and.J-/H~' act as dual character

JjE

Proof. Let S be the set of_aII finite su_mij s; for all groups, with pairing defined by * + h, J + g) = (h,g). In
sj € Sj. ThenS+ = (), S5, sinceh € G” is orthogonal t0 gymmary:
S if and only if & is in all orthogonal subgrouijL. But by Theorem 2.6 (Quotient group duality)f J € H C G,
definition . S; = S, and by orthogonal subgroup dualitythen the dual quotient groug~/H~L to H/J acts as the
S =85+ = (N, 5+ O character group ofl/J: (H/J) = J+/H*.

This theorem applies particularly when the subséts  Quotient groups such a&/J and J-/H* will be called
consist of single elements; € G, called generators The dual quotient groups.
orthogonal subgroup t§; is then the set of elementse G* Thedual diagramselow illustrate two chains of subgroups,
that pass the tesls, s;) = 0, called acheck(or constraint). with their quotients. The right chain is obtained by invert-
This theorem then says that the orthogonal subgroup to theg the left chain, replacing subgroups by their orthogonal
subgroup generated by the generatorsi € 7, is the set of subgroups, and replacing quotient groups by their characte

a € G" that satisfy all checksa, s;) =0,j € J. groups.
G {0}t =a"
E. Quotient group duality | G/H | GJJt=T
Let H and H+ be dual (closed) subgroups @& and G". H J*t
Every charactey in the character grou@ of G” is evidently | H/J | JE/HY = (H/J)
a character off-. However, since for a giveh ¢ H+ J H+
, , | J | H* = (G/H)
(h,g) = (h,g') < (h,g—g") =0, (0} Gt = {0}

two charactersy,g’ € G of H* are identical if and only The following dual diagrams illustrate the chain of elenaept
if ¢g— ¢ € H, the orthogonal subgroup t&/*. Thus the groups{0} € mZ C Z C R, whose quotients arexZ =
characters o+ naturally correspond one-to-one to the cosets, Z/mZ = Z,,, andR/Z, and its dual chain

H+r of H in G, which form the quotient grou@'/ H. Indeed, 1 n -1 .

it is easy to verify that the corresponder(déL/)A < G/H {027 =2C(m2)”=m~ZCR =R,
is an isomorphism. In this sense, the quotient grayff whose quotients are congruentZo=~ (R/Z)", Z,, = (Zm)",
acts as the character group Af-, with pairing defined by andR/Z = (mZ)", respectively. Indeed, the dual chain is just
(h, H +r) = (h,r), just asG acts as the character group othe primal chain scaled by~ .
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A subgroup chain such a0} C J C H C G implies a

R R =R chain of inclusion maps.g.,

| R/Z | R/(m™1Z) = R/Z (O} = J = H—G.

Z (mZ)+ =m=1Z

| Z/mZ =7y, | (m~172)/7Z = 7,,  The adjoint chain runs in the opposite direction,
mZ zt =1 G — H — J — {0}

| mZ>2Z | Z ’
{0} {0} and consists of a chain of natural maps with kerndls =
(G/H),J+/H* = (H/J)", andG"/J+ = J, illustrating
F. Adjoint duality the same decomposition @" as in the first dual diagram

Quotient group duality is a special case of a general duall?)bove'
principle for adjoint homomorphisms.

Let ¢: G — U be a homomorphism of an LCA group to I1l. DUAL SEQUENCE SPACES
another LCA groufd/. The adjoint homomorphism A group code or system (behaviof) is a subgroup of
U = G a sequence spack. In this section we define complete,

Laurent and finite topological sequence spaces, and determi
is the unique homomorphism such tHat ¢(g)) = (¢*(v),g) their character groups (dual sequence spakgs)We briefly
for all g € G,v € U", whereG" andU" are the character discuss more general memoryless sequence spaces.
groups ofG and U, respectively. Explicitly, the adjoint char-

apter(b*(v) is the unique chara(_:ter i whos_e _values are o complete and finite sequence spaces

given by ¢*(v)(g) = (v, #(g)). Evidently the adjoint ofp* is _ ) i

b ie., o = o, We now let the discrete indeX be possibly countably
For example, letd be a closed subgroup aF, and let infinite: e.q.,Z = Z. In general,Z need not be ordered; for

¢:G — G/H be the natural map defined by(g) = H + example, we could consider ardimensional index set such
g. Since H acts as the character group 6f/H, with asZ = Z". However, for simplicity we will assum& C Z
(v,H +g) = (v,g) for g € G,v € H- C G", the adjoint from now on. We will continue to call a set indexed Ifya

¢*: H+ — G" is the inclusion of H* into G". sequence :
The fundamental adjoint duality theorem is as follows; _ CGiven a set of LCA symbol groupgGy, k & I} indexed
Theorem 2.7 (Adjoint duality)Given adjoint homomor- by Z, their direct product is again defined as the Cartesian
phisms ¢:G — U, ¢*:U" — G, the kernel ofé is the Product set of all sequences = {wr € Gk, k € I}, now

orthogonal subgroup iG" to the image oip*. denoted by .
Proof. We show thay € (im ¢*)= if and only if g € ker ¢. We = H G-
Let g € ker ¢; i.e., ¢(g) = 0. Then(¢*(v),g) = (v, é(9)) = het

0; i.e., every g € ker¢ is orthogonal togp*(v) € G" for all We call a direct producV® a complete sequence spacéts

v € U". Conversely, ifg is not in ker ¢, then¢(g) # 0, so group operation is still defined componentwise. We continue
(¢*(v),g) = (v,6(g)) # 0 for somegp*(v) € G*, becausd® € to write W¢ = G if all symbol groups are equal tG'.

U is the unique character € U = U™ such that(v,u) = 0 The complete sequence spakg® is equipped with the
forallve U". O natural product topology [39]. If all symbol grougs, are

Note that whereas the kernel ¢fis necessarily closed, thecompact, then under the product topology© is compact.
image of * may not be closed; the orthogonal subgroup tdowever, even when all symbol groups are locally compact,
ker ¢ is therefore the closure afn ¢*. We need not be locally compact [39].

In our example, the kerndll of the natural mapp: G — In topology, “completeness” is a property of metric spaces
G/H is indeed the orthogonal subgroup @ to the image (every Cauchy sequence converges).nfetric spaceis a
H* of the inclusion¢*: H- — G". Also, the kernel of¢* topological space whose topology is induced bylistance
is {0} C H* and the image of is the trivially orthogonal functiond(-,-) that satisfies the distance axioms: strict posi-

subgroupG/H = (H*)" in (HY)". tivity, symmetry, and the triangle inequality.
The decomposition of7 into H and G/H is sometimes  For example, ifZ C Z and all G;, are discrete, then the
illustrated by the followingshort exact sequence product topology is induced by the distance metric
{0} = H— G — G/H — {0}, d(w,w') = 271ww"),

where the first two maps are inclusions and the second twere /(w, w’) is the least absolute valug| of an index
are natural maps. (“Exact” means that the image of each mag: 7 such thatw, # wj,. In other words, two sequences are
is the kernel of the next.) The adjoint short exact sequenceegarded as “close” if they agree over a large central iaterv
(0} = (G/H) = H - & = H = &"/H* = {0}, In this_ case the product topology is also_called tbpology
of pointwise convergencebecause a seriew™ n € N}
illustrates the exchange of roles upon which we previoustypnverges tow if and only if, for all & € Z, w}} = wy, for all
remarked. sufficiently largen.
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In general, a topological direct produkv® = [[; G is with pairing (h, g) defined by the componentwise sum
complete if and only if allG, are complete [40, 11.3.5]. We
will therefore assume from now on that all symbol groups (h, g) = Z<h’“9k>
G, are complete metric spaces. Moreover, a countable direct kel
productWW¢ of complete metric spaces is metrizable (can Her h € (W¢)", g € W°.
endowed with a metric under which it is a metric space) [40, Note that the sun} , ., (hx, g) is well defined, since only
11.3.8]. finitely many h; are nonzero.

In a complete metric space, a subspace is complete if andn other words, the dual of a complete sequence space is
only if it is closed [40, 11.3.2]. Since all sequence spaces vithe finite sequence space with the dual symbol groups, and
consider will be complete metric spaces, we will generalljice versa
use the term “closed” rather than “complete” for subspaces.

We will reserve the term “complete” to mean “closed in thes | 5/ rent sequence spaces
product topology;'i.e., as a subspace of a complete sequence
spacewe.

In behavioral system theory, a behavorC We is called
“complete” if whenever a sequenee € We¢ satisfies all finite
C-checks, therw € C. As we will discuss in Section 4.6, this
notion of completeness usually coincides with the topaabi
definition, but may need to be generalized.

On the other hand, thdirect sum of the symbol groups
{G,k € I} is defined as the subset ¥¥V¢ comprising the
sequencesv = {wy} in which only finitely many symbol
valueswy are nonzero (sometimes called the set of “Laurent W <

=

In convolutional coding theory and classical linear sys-
tem theory, all sequences are usually semi-infinite Laurent
sequences—i.e., sequences that have only finitely many
nonzero symbol values before some arbitrary time,ksay0,

or equivalently that have a definite “starting time.”

A natural definition of aLaurent sequence spaces the
direct product of a finite sequence space defined on the *past,
I~ ={k €I |k <0} andacomplete sequence space defined
on the “future,”Z* ={k € Z | k > 0}:

@ Gk) X < H Gk) )
ke~ keZt

We :@Gk' We call Wy, the Laurent productof the symbol groups

el {Gy,k € I}.
We will call a direct sumW; afinite sequence spaceSums  Similarly, we define aranti-Laurent sequence spabg the
are still defined componentwise, ail; is evidently closed anti-Laurent product
under finite sums. If all symbol groups are equal to a common
W, = (

polynomials” in system theory), denoted by

groupG, then we writeW; = (G%);.

The direct sumW; is equipped with the natural sum
topology [39]. If all G are discrete, then the sum topology
is simply the discrete topology (the topology induced by th
Hamming metric). Such a setting is purely algebraic, wit hace:

no additional topological structure. If all symbol group® a Theorem 3.2 (Laurent/anti-Laurent duality): The anti-

complete, thenV; is topologically complete under the SUM _ urent sequence spadé — (erf GkA) y (@keﬁ GkA)

topology. - . L . acts as the character group of the Laurent sequence space
If Z is finite, then there is no distinction between a dire - (EB Gk) % (H Gk) and vice versa
- kel—- keIt ’

product W¢ and the corresponding direct suiv;, either ( - ) =
algebraically or topologically. However, if is infinite, then
Wy is a proper subset afv°, and the sum topology ofV; is
in general different from the topology 0¥ as a subspace of
We. In particular,V; is not closed i/, and its closure is
(Wy)e = We, where the first superscript™ denotes closure
or completion inWe.

o) (@)

By direct product/direct sum duality, it is immediate thag t
ual of a Laurent sequence space is an anti-Laurent sequence

7.

Note that in this case, fox € X;,w € W, the pairing
(x,w) = >, 7 (zr, wr) is well defined, because only finitely
many pairings(xy, wy) are nonzero.

It is customary to reverse the direction of time in the dual
sequence spack¥;, so that it also becomes a Laurent sequence
space. This yields a nice symmetry between the primal and
dual spaces, which is lacking for the complete/finite pair.

B. Direct product/direct sum duality

Although an infinite direct product of LCA groups is not?- Memorylessness
necessarily LCA, the following duality theorem nevertlssle Memorylessness is a set-theoretic property of a subset

holds [22]: of a Cartesian product sequence spige = [[, ., Gx. The

Theorem 3.1 (Direct product/direct sum dualityfhe subsety will be calledmemorylessif for any partition of the
character group of a direct produet® = ], ., G of LCA index setZ into two disjoint subsets/ andZ — 7, if V|7 and
groups is the direct sum Viz_z are the corresponding restrictions bf (see Section

4.3), thenV is the Cartesian product
(WC)A = @ Gy,

kel V= V‘j X V|I7J-
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In general,V will be called asequence spadéand only if If all symbol groups5}. are discrete, then the finite sequence
V is memoryless. It is easily verified that complete, finite ansbaceV; = @, Gy, is discrete, so every subgrodpf Wy is
Laurent sequence spaces are memoryless. closed. In other words, this discrete setting is purely lage

Another example of a memoryless sequence space is #ra topology may be ignored, even wheris infinite.
setly of all square-summable sequences in a real or complexThe dual sequence spacelofy = @, Gy, is the complete
complete sequence spak¥’. The character group @f is the sequence spadeV;)” = [[; G\ . If eachG), is discrete, then
dual square-summable sequence spgachlore generally, for eachGy" is compact andWy)" is compact. By the orthogonal
1 < p < oo, the setl, of all p-power-summable sequencesubgroup duality theorem, the closed subgroup8®f)" are
is memoryless, and its character group(is)” = [,, where precisely those subgroups that are duals of group cod@sin
1—17 + % =1 [39]. Thus whereas all subgroups 4, are closed, only certain
Given a set of symbol groupssy, k € Z}, the direct prod- subgroups offW;)" are closed. This asymmetry should not
uct W¢ = [],.7 Gk is clearly the largest possible sequencke surprising, since evend;” = G, the complete sequence
space with these symbol groups, since it consists of allipless space(W;)" is much larger than the finite sequence space
sequencesv such thatw;, € G, for all k € Z. Conversely, Wy, and by Theorer 41 there is a one-to-one correspondence
the direct sumW; = @, 7 Gi is the smallest memorylessbetween codes i(/Vy)" and codes iV;.
sequence spade such thaty|, = G}, for all k € Z, since by Behavioral system theory has traditionally restricteelfts
memorylessness the finite sequetEg . ; V|;) x 077 must 10 complete behaviors.But we observe that the dual of
be inV for any finite 7 C Z. It follows that if Z is finite, then a complete group behavic®@ C W€ is a finite behavior
We = Wy is the only possible memoryless sequence spa& € (W¢)". Thus any theory that encompasses both com-
with symbol groups Gy }. plete behaviors and their duals must encompass non-camplet
behaviors, particularly finite behaviors.

IV. DUAL GROUP CODES . ] o ]
B. Linearity and time-invariance

A group code, system or behavior is a subgraljof a In this subsection we briefly discuss the important properti

sequence spac®V. In the topological group setting, it is , . . S . : . . :
natural to define dopological group codeor system to be of linearity and time-invariance. As in [15], linearity atiche-

a closedsubgroup of a topological sequence space. Therefofd/anance play_ no essential role In our development, aifho
unless stated otherwise, the tegroup code will hereafter we often use linear and/or time-invariant codes as examples

mean a closed subgroup of a complete, finite or Laurent W'th'_n our grou_p-tf;eordectjl.ct:- fraTework,tI}near;ty and tmz—
sequence space. invariance are simply additional symmetries of a group code

. . ; , , which are reflected by dual symmetries in the dual group code.
In this section we establish the basic duality between an group codeC C (R™)T over the real fieldR is linear if it

. R
closed group cod€ and its dual cod&~. This shows that is invariant under all isomorphisnas (R™)Z — (R™)Z defined

the dual code of a complete code is a finite code, wic O .
mp . o d by scalar multiplication by a nonzero scatat~ 0 € R. Since
versa We show that ifC has certain symmetries such a:ix aw) = (ax, w), the dualC of a linear code is linear

linearity or time-invariance, then so do@s. We prove a basic Similarly, a group code C W is time-invariant(or shift-

projection/subcode duality theorem. A more general ppieci ipvariant) i the time axis i< = Z, if all symbol groups are

is conditioned subcode duality, which can be regarded ags I, . ; .
. ; e same, and it is invariant under the delay isomorphism
a fundamental behavioral control theorem. We discuss t

) . . W — W defined byD(w),, = w1, i.e., if DC = C.
meaning of completeness in both a topological and behdvio nce (x, D(w)) = (D-L(x),w), the dualC® of a time-

sense, and agree to define completeness here as closure:in & iy .
g . pi€ invariant group code satisfiesD~'C+ = C* and is thus
complete sequence space ( closed in the product topology). fime-invarant
Completeness is then dual to finiteness. We briefly discus AT . L .
. o R ' f ¢ C (R™* is both linear and time-invariant, then
Laurent completion and “Laurentization.” Finally, we defin . - . o
. - o (x,w) = (X * w)p, wherex is the time-reverse ot and “

dual notions of controllability and observability, based the ; & -

: ' P denotes convolution. More generallk, D*(w)) = (X*W).
notions of completion and finitization. Several exampleesd R - -

It follows thatx is in C- if and only if the convolutionk « w

are given to illustrate these concepts. : . -
9 P is the zero sequendefor all w € C. This shows that pairings
of linear time-invariant code sequences may be evaluated by
A. Group code duality sequence convolutions, and further motivates inverting th

We define thedual codeC™ to a group cod€ C W as the direction of time in the dual sequence spatg.
orthogonal subgroup t6 in the dual sequence spakg”. By o o
orthogonal subgroup duality, we have immediately: C. Restrictions, projections and subcodes

Theorem 4.1 (Group code duality)f C C W is a (closed) In [15], we asserted that projections and subcodes of a
group code, then its dudl*- is a (closed) group code W, group codeC play dual roles. This will turn out to be our
andCt+ =C. key dynamical principle.

Thus, given/V, a group cod€ is completely characterized _ o

. n dvi M the dual code Indeed, Willems [46, p. 567] has asserted, no_doubt whirthgidhat “the

by its dual codeC, andvice versa vioreover, study of non-complete systems does not fall within the cdeme of system
of a complete code is a finite code, avide versa theorists and could be better left to cosmologists or thgatt. .. "
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Let W be a sequence space defined on an indeX s&t D. Projection/subcode duality

J C 1 beasubsetd, and letZ — 7 be the complementary the results of this subsection follow from the simple
subset. _ observation that fow € W,x € W", the pairing(x, w) may
The restriction R7:W — W, s defined by Ry (w) = pe decomposed as follows:
w7 = {wy, k € J} is a continuous homomorphism. Since
W is memoryless)V = W, ; x Wz_ 7, the image of the (x,w) = (X7, W|7) + (X|z-7, W|z_7)-
homomorphism isW, ; and its kernel is{0} 7 x Wz_7.
The topology ofW, s is induced from that odV.
The projection P7: W — W is an essentially identical
map defined byP7(w) = (w7,0z_7), & continuous homo-
morphism with the same kernel whose imageHg (W) =

Lemma 4.2 (Restricted sequence spacés): W be a se-
guence space defined on an index Befet W~ be its dual
sequence space, and |tbe any subset dof; then

Wiz x {0}z 7. (i) W z)" = (WV"),7; i.e., the character group of a restric-
Let C be a closed subgroup oF. Then the kernel of either  tion (W 7)" is the corresponding restriction o%".

the restrictionR 7:C — W, or the projectionPy:C — Wis (i) W =Wz xWz_7 impliesW” = (W) 7 x(W)jz—;

the subcodeC.z_ 7 = C N ({0},7 x Wjz_ ), namely the set _ 1-€, if W is memoryless_, themV" is memoryless.

of all code sequences < C such thatwy, = 0 whenk € 7. (i) P7z(W)* = Pr_7(W"); i.e. the orthogonal subgroup to

As the kernel of a continuous homomorphisnCofa subcode the projectionP7 (V) is the complementary projection

C.z_7 is a closed subgroup f. of W".

Similarly, the restrictionCj.z_; = (C.z—z)z_s of the Our central result is then the following projection/subeod
subcodeC.z_ 7 to Z — 7, which is isomorphic t&€.z_ 7, is a duality theorem: _
closed subgroup of theestricted codeC|z_ 7 = Rz_7(C). Theorem 4.3 (Projection/subcode dl_Jallty)et C and C*+

By the fundamental homomorphism theorem, the imgge be orthogonal closed group codes in sequence spazes
of R7:C — W, (or the imageC|; x {0}z_; of P7:C — and W respgctlvely. Th.en the orthogonal subgroup to the
W) is algebraically isomorphic to the quotient gra@ifC.z_ .  festrictionC, is the restricted subcod€™"),. ;.

However, we caution that in certain atypical cases the Proof Since((x7,0z_7), W) = (x|7, w|7), we have the
topology of the restrictiorC|; as a subspace o#,; is not following logical chain:
necessarily consistent with the topology of the quotienugr
C/C.z— 7. In particular, even thougti/C.z_ 7 is necessarily L
closed,C|; may not be closed iV, ;. & (x7,0z-7) €C
= X|‘7€(CL)‘:‘7. O

Xjg LCs & (x7,0z-5) LC

Example 1 Let W = R2, and letC be an irrational lattice in

R?; e.g.,the lattice Note that ifC| 7 is not closed, then the orthogonal subgroup
to (C*)|.7 is the closure of’| ;.

In the language of coding theory, this theorem is stated as
where the ratia,/b is irrational.C is discrete, and thus a closedollows: the dual of a punctured code is the corresponding
subgroup ofR?. The restrictiorC, ; of C to either coordinate is shortened code of the dual code.

Cig = {am+bn | (m,n) € Z*}. The kernel of the restriction ~ This result immediately implies various corollaries:
is C.z—g = {0}, sinceam+bn = 0 impliesm = n = 0 when Corollary 4.4 (Projection/subcode duality corollaries):
a/bis irrational. Thu</C.z_ 7 is discrete and homeomorphicUnder the same conditions:

C = {(am + bn, —bm + an) | (m,n) € Z*},

to Z2. (a) The orthogonal subgroup to the projectidty (C) =
On the other hand, as a subspace Wf; = R, the Clz x {0}z—7is (C1) .7 x W) z_7-

restrictionC| 7 is not closed, but rather is a dense subgroup qb) The orthogonal subgroup to the restricted subaGde

R whose closure i4Cj7)®" = R. Thus these two topologies is the closure ofC*)| 7 in (W), 7.

are inconsistent. (c) The orthogonal subgroup to the subcode; is the
Notice that, by orthogonal subgroup dualityw)L = {0} closure of(CL)U x W)iz_g in W™

and (C|7)** = R. Therefore projection/subcode duality (see(d) If C,7 is closed inW, 7, thenC|; and (C1),.; are dual

next subsection) holds in the foréh ; = (C;7)*, even though group codes.

(Cr.0)* #C 7 (rather,(C.z)* = (C17)). O (e) The orthogonal subgroup to the direct proddgy x
It can be shown that a restrictioy ; is closed inW, Ciz—gis (CH).7 x (CH) 127

if the sequence spac® is discrete (because all subgroups
are closed in the discrete topology), o is compact (the
dual to the discrete case; see Section 5.3), ait= (R")?
andC is a subspace (since subspace®dfare closed in the  The following generalization of projection/subcode diyali
Euclidean topology). As these are the cases of most interests the key lemma for the graph duality results of [14]. It is
coding and system theory, the potential pathology illustta also a fundamental result for behavioral control theory.

by Example 1 may usually be ignoreide., restrictions and . .
We are grateful to H. Narayanan for pointing out that our dorted code

projections are usually Flosed sgbgrqups Of. their res;fsztiduality theorem is closely related to his “implicit dualitjeorem,” which he
sequence spaces. We discuss this point again in Section 5h3s proved and used extensively in various settings [32], [33].

E. Conditioned code duality
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W Wiz-g F. Completeness revisited

—— ¢
In behavioral system theory, the completion of a system
Figure 4.1. Conditioned cod@ | D). in a complete sequence spad¢ is defined as [47]

Ccompl _ {W c W° | w7 c C\j for all finite J - I}7

D

W)iz-g andC is called complete iC<°™?! = C. In other words( is

'7 1
¢ complete if any sequence € W€ that looks like a sequence
Figure 4.2. Dual conditioned cod€= | D). in C through gll finite windows is f_;lctually ig.
The following result characterizes the closuf€' of a
subgroupC € We¢, which we also call itscompletionCe, in
) ) almost the same way:

LetC be a group code in a sequence sp_mzedefmed 0N Theorem 4.6 (Completion)f C is a subgroup of a com-

an index sef, and letD be a group code defined Ofz_7, plete sequence spad&* defined on an index sét, then the

whereJ C Z. The conditioned codéC | D) is then defined ¢|osure (completion) of is

as the set of alt € C such thatc|z_; € D: Cc={we W |w; € (Cz)" for all finite J C Z}.

C|D)={ceClcz-7 €D} =CN(W 7 xD). Proof. By orthogonal subgroup dualitgc is the dual of the
L - RO
Note that since?, W, andD are closed(C | D) is closed. dual codeC— in the dual finite sequence spaf@’c)". Since

The conditioned code may be interpreted in the behavim%lr :” ?i?iﬁ}ls certainly generated by its subcodes-).s
control context of Figure 4.1. The symbols it ; represent ‘

to-be-controlled variables, those W z_; represent control ct = Z CH).s.
variables, and represents a plant whose behavior constrains J finite

both. The symbols inVz_; are further constrained by a . . e Al . :
controller D. The restricted conditioned cod@ | D) By sum/intersection duality;¢ = C—- is the intersection of

1 1.
represents the controlled behavior of the variablelin. the dual code(C™).7)™
The generalized theorem is then as follows (see Figure 4.2): Cc = m (ct).2)*.
J finite

The theorem follows since by Corollafy #.4(c),

fDL

Theorem 4.5 (Conditioned code dualitylj: C andC+ are
dual group codes defined @i andD andD-- are dual group
codes defined on a subsét— J C Z, then the restricted ((C1).7)* = (C7)" x W)z
conditioned code¢C | D)U_and(cl | D4),7 are dual group = {weW | wye )} O
codes defined o/, assuming both are closed.

Proof. First observe tha{C | D), may alternatively be It follows that if the restrictionC ; is closed for all finite

characterized as the restricted subcode J C I, then completeness in the behavioral system theory
sense is equivalent to closure in the product topology, whic
€ [D)7 =(C+ ({0} xD)).g, is what we call “completeness” in this paper. In particulbe,

two concepts coincide if all symbol grougs, are discrete.
A reviewer has pointed out that Theordm]4.6 may be
extended to the case in whichis merely a subset ofyc.

sincec € (C | D) if and only if there is ad;z_ s € D such
that (¢ + (0,7,d|z—7))jz—7 = 0jz_7. Assuming that both
(C| D)7 and (C* | D+),7 are closed, we then have

(€|D)s)" = ((C +({0}7 x D))I:J)L G. Completionffinitization duality
The finite subset (or “finitization”) of a subgroupC of a
- ((C +({0}7 % D)) )| complete sequence spade will be denoted byC; = CNWy.
_ (CL N ({0} x D)L)‘j We say thaﬂ_ is finite if C = Cf C is evidently a subgroqp
of W¢. We will assume thaf; is closed when endowed with
= (€ n(W)g xDY) the topology ofW;. For example, the finite subset B9 or
_ (CJ_ | DL)IJa of Wy, is Wf_. _ o .
The following result shows that completion and finitization
where we have used projection/subcode, sum/interseeti@h, are duals:
direct product duality. | Theorem 4.7 (Completion/finitization dualitylet C be a
Notice that(C | Wiz_y) = C, whereas(C | {0}|z_s) = closed subgroup of a complete, finite or Laurent sequence
C.7. Therefore projection/subcode duality, name(lyj)L = space)V with symbol groups Gy, k € Z}, and letC* be the
(C1)|.7. is a special case of conditioned code duality. dual subgroup in the dual sequence spagge with symbol

Moreover, asD ranges from{0}z_ s to Wiz_, the re- groups{G}"}. Let C; be the finite subset of, and assume
stricted conditioned codg | D), s ranges from the restrictedthat C; is closed when endowed with the topology Wf;.
subcodeC|. ; to the restrictiorC, ;. This is the essence of theThen the dual subgroup ©; in WW")¢ = [[,c; G~ is the
“most beautiful behavioral control theorem” [42]. completion ofC+ in (W")e: (Cy)* = (CH)e.
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Proof. Following the proof of Theorerfi4.€]; is generated will be called theobservable supercodef the finite codeC;.

by the finite subcodes. s of C for all finite 7: Note that any complete code is necessarily observable.
The following shows that these two definitions are duals:
Cr= Z Cr. Theorem 4.8 (Controllability/observability duality)f C
J finite andC* are dual group codes, then:
By sum/intersection dualitygcf)L is the intersection of the (a) c© and (Cl)f are dual group codes;
dual codeg(C.7)*: (b) The controllable subcod@ )¢ of C¢ and the observable
n n supercode (C+)¢); of (C*); are dual group codes;
€)= = ﬂ (€.7) (c) The quotient groug(C+)¢);/(C*); acts as the character
7 finite group ofC¢/(Cy)*;
By projection/subcode duality, (d) C is controllable if and only ifC* is observable.
(Cr)t = {w e (W) | Wiy € ((CL)|J)C1}’ Proof. Part (a) is Theoreln4.7. This also implies part (b), since
o ((Cr)) == () )y = (€H))y-

1_ ~\e 1y el . Part (c) follows by quotient group duality. Part (d) is a
€ {w e W)l wiz € ((€7)7)" for all finite 7}, corollary of part (c), since

Cc=(Cp)* <« C°/(Cy)" ={0}
H. Laurent codes & ((CH))p/ch)y ={0} = {0}

1ye 1
Similarly, a Laurent group codés a closed subgrou@ of & (€)= (C)s- =
a Laurent sequence spak®;. The dual of a Laurent group Note that these notions of controllability and observapili
codeC is an (anti-)Laurent group code" in the dual (anti-) do not depend o being ordered. Therefore they apply to
Laurent sequence space/;,)". systems with unordered time axesg.,two-D systems [36],
As in TheorenZl1, ifC and C* are dual Laurent group [44], [11], [12].
codes, then either determines the other. Here the primal and’he core meaning of “controllable” is that any code se-
dual codes are symmetric. guence can be reached from any other code sequence in a finite
The Laurent completionof a subgroupC of a Laurent interval. We will consider a strong notion of controllahyjli
sequence spacdd/;, is the closure of the group generated byelow, and will prove that strong controllability impliesm-
C in Wy, denoted byC~. C is a Laurent group code if andtrollability in the sense of this section when all symbolgps
only if C = CL. For example, the Laurent completion ¥f; are compact. Similarly, the core meaning of “observable” is

which by TheoreniC 416 i$C+)c. O

is Wr. that observation of a code sequence during a finite interval
The Laurent subse{“Laurentization”) of a subgrou@ of gives a sufficient statistic for the future or the past. Wel wil
a sequence spad®’ will be denoted byC%; i.e., show below that strong observability in this sense implies
cl_cnw observability in the sense of this section when all symbol
L groups are discrete.
Cr is endowed with the topology ofV;.. C is Laurentif C = We say that a code ibcal if it is both controllable and
CL. For example, the Laurent subset)dfc is W observable. By Theore%.8, the dual of a local group code is

local. Local codes can be completed or finitized without tafss
structure, so it does not matter much whether we consider the
complete, finite or Laurent versions of such codes. Prdctica
Fagnani [6] has proposed an elegant definition of (wid@pnyolutional codes are always chosen to be local, so as to
sense) controllability, which we restate as follows. A cdet® 5y0id the pathologies associated with uncontrollabiliay-(
group codeC C W* is controllable if (C¢)® = C. In other tonomous behavior) and unobservability (“catastropyiiit
words, a complete group code is controllable if it is ger&tat 1o jllustrate, we now give a standard example of an un-
by its finite sequences. Fagnani has shown that a complgigtrollable (autonomous) group codk that is inherently
compact time-invariant group code that is controllablehiis t complete and cannot be “finitized” or “Laurentized” without
sense is controllable in the sense of Willems [47]. losing its dynamical structure. Its dudt- is an unobservable
More generally, we say that a group codén a sequence (catastrophic) group code that is inherently finite and cann

spacelV is controllable if (C)¢ = C°; i.e., if the completion pe completed without losing its structure.
of C in W¢ is the completion of the finite sequence<ofThe

complete codéC )¢ will be called thecontrollable subcodef ~Example 2 Let G be an LCA group, letV* be the complete
the complete codé®. Note that any finite codé is necessarily Sequence spac&”, and letC C G* be thebi-infinite repetition
controllable. codeoverG; i.e.,

We then propose the following dual definition: a group code e
C in a sequence spacé’ is observableif (C°); = Cy. In C={g=(-999.)]gcCh
other words, completing does not introduce any new finiteC is a complete time-invariant group code which is isomorphic
sequences beyond those alreadyCinThe finite code(C¢); to G.

I. Wide-sense controllability and observability
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The dual sequence spak®” to W¢ is the finite sequence The dual codeC is the finite rate-2/3 code linear time-
space((G")%)¢, whereG" is the character group af. The invariant convolutional code ovef, consisting of all finite

dual group cod€ is the bi-infinite zero-sum codever G*, linear combinations of time shifts of the two generators
namely the finite code defined by hy = (...,000,100,030,000,...);
Ct={he ((G)");|> hp=0} h, = (...,000,020,001,000,...),

keZ

This follows since forg = (...,9,9,9,...) € C andh € W~,
the pairing(h, g) is

which are orthogonal to all time shifts @f under the usual
inner product ovefZs. (Equivalently, the convolutionh; * g
and h, * g of the time-reversef; and hy, are equal to0.)

(h,g) = Z<h’“9> - <Z Bk, 9), Ct is closed in the finite sequence spd¢€Z,)?)%);.
keZ keZ The dual complete codéC;)*: is the set of all linear

C : . binations of time shifts oh; and h,. C* is the finite
which is equal ta) for all g € G if and only if Y, . = 0, the <O f oot 2 N
sum being well-defined because there are only finitely maﬁVbCOde oflCy)~, and(Cy)~ is the completion of’~. Thus

Y
. - . is local.
nonzero components ih € W". Ct is a closed subgrou . . . .

P group Here there is no essential difference between the finite,

of the finite sequence spadé#’”, since it is the orthogonal .
q P 9 Laurent, or complete versions @f or C. In general, the

subgroup to the complete code Like C, it is time-invariant. d ical struct f @i t affected b
The repetition codeC is uncontrollable, since its finite ynamical Structure of a group coa=1s not affected by
completion or finitization if and only i€ is local. O

subcode consists of only the all-zero sequerite= {0},
and this trivial subcode is complete. The zero-sum adtlés Example 4. The following is a much more exotic example (a
unobservable, since its completion is the complete seguefisolenoid” [26]), and is a rich source of counterexamples.
space(G")%?.2 Thus finitization of C or completion ofC* Loeliger [27], [1] proposed the following curious PSK-type
destroys dynamical structure. code. LetC be the complete compact linear time-invariant code
Clearly C/C; = G, which by Theorenf418(c) implies thatover the additive circle grouR/Z that consists of all integer
W"/Ct = G°. The cosets ofCt in W~ are in fact the linear combinations of time shifts of the Laurent generator
subsets ofW" such that}", hi, = h, for eachh € G". C* - 111
is unobservable because no finite observation can disthgui g=(-0515 )

between these cosets. O Since2g (mod Z) is a shift of g, the “input” at each time
k is essentially a binary variable, € {0, 3}, which may be
J. Further examples regarded as representing the subgré@f)/Z of R/Z. The
We now give two more examples of dual group codesQUtPut” symbol at timek is
The first involves a standard controllable and observable - Uk + Uk—1 + Uk—2 4= %+ Cr—1 € R/Z.
(local) time-invariant convolutional code over a finite dyoh 2 4 8 2 2

group and its dual. The second exhibits a curious compléiBusc; determines the entire past input sequence.
time-invariant group code that can be finitized on the past!f the output symbol is mapped onto the complex unit circle
(“Laurentized”) without loss of dynamical structure, buitn via c, — €™+, thenC is a well-defined PSK-type code that
on the future. Its dual has the dual property. These two codégnsmits one bit per symbol and has a well-defined minimum
were proposed in [27] and [28], respectively, but were néguared distance (6.79...). However, the symbol alphabet o
recognized there as duals. C is the entire infinite circle groufR/Z, rather than a finite

. . b ith ordi PSK codes. Also, th de “state”
Example 3 Let C be the complete rate-1/3 linear tlme—Su group as with ordinary coces. /IS0, e code state

: . . e ) _1 lies in the infinite state spad®/Z. Each state’;,—; has
invariant convolutional code oveZ, comprising all linear Ck—1 pace/ .

L . X two successorg;, but each;, has only one predecessgr ;.
combinations of time shifts of the generator The dual codeCt to C is the finite discrete linear time-

g=(...,000,100,010,002,000,...) invariant code over the integeZs(the character group @& /Z)
comprising all finite integer linear combinations of timefth

i i 3\Z
C is closed in the complete sequence spg@ )~)”. of the finite generator

The finite subcod€; of C is generated by all finite linear
combinations of time shifts of, and is closed in the finite h=(..,0,1,-2,0,...).

3\Z\ . 7 H
sequence spadé(Z4))") . The completion of’; is C, soC |, i easily verified thath is orthogonal (modz) to all time

is contrqllable. Thug is local, since as a complete code it i nifts of g, that a sequence ifR /Z)% is in C if and only if it
automatically observable.

i i Z
Similarly, the Laurent subcod€;, is generated by all is orthogonal to all shifts oh, and that a sequence {Z”)y

L y binati f i hifts af and is closed is in C* if and only if it is orthogonal to all shifts of.
-aurent inear combinations o 'm% ‘Z s gl and 1s close Loeliger's codeC is uncontrollable, since its finite subcode
in the Laurent sequence spadéZ,4)°)”) L.

consists only of the all-zero sequencg,= {0}. Indeed, its

3Proof: let (™™ be the sequence i+ with ¢, = g,cn, = —g, and time-reverseC is a standard example of a chaotic dynamical
cx = 0 for k # m, n; then for fixedm the “limit” of ¢(™™) asn — coin  gystem whose evolution depends entirely on initial condii
the product topology is the sequence with = g andc,, = 0 for k # m, a 21 N hel b d b | d
finite sequence that is not i&-. Since such unit sequences genei@ié)?, [ ] evert e ES.SC may . e_ generate y a causal encoaer
we have(Cl)c = (G")%. with one input bit per unit time.
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C has a natural Laurent subcodg that is generated by In [15], one-sided state spacesPs(C)/C.; and
the input sequences that are Laurent. Thus while finitinatid’z_ 7(C)/C.; are also introduced, and shown to be
destroys its structure, Laurentization does not. (Howevealgebraically isomorphic to the state spaZb;(C). This
Laurentization does reduce the symbol alphabet from tfallows from the correspondence theorem, since the kernels
uncountably infinite seR/Z to the countably infinite set of of the projections o’ and ofC.s x C.z_7 onto J are the
dyadic numbers iR /Z.) On the other hand, the anti-Laurensame, namel\C.z_ 7. One-sided state spaces may also be
subcode of’ is {0}, since if the output i$ at any time, then defined using restrictions since.g.,
it must have bee® at all previous times. Thus even though C
et Hlave DRI & d ) - cVEn P7(C) o Cug
C is time-invariant, its time axis has a distinct directiatal . S
The finite dual cod& is unobservable, since its comple- 7 .7
tion is the complete sequence spéce Its Laurent completion ~ As discussed in Subsectipn TV-C, a restricti@y is home-
is (Z%);, (the dual of {0} C ((R/Z)%);). However, its omorphic to the quotient groug/C.s, provided thatC, s is
anti-Laurent completion is simply the set of all anti-Lanire closed. With this caveat, we obtain a topological version of
integer combinations of shifts df, which again indicates the the one-sided state space theorem:
directionality of the time axis. Theorem 5.2 (One-sided state spacddnder the same
Interestingly,C* is a version of an example given in [28],conditions, letC; andCz_ s be the restrictions of to J
[29] to show that the set of all sequences generated by a gréiplZ — J, respectively, and assume both are closed. Then
trellis whose state space (in this cagpdoes not satisfy the C7
descending chain condition may not be a complete code. CI—J = Czs
Pontryagin suggested as a general rule that a compact group N .
might be best studied via its discrete character group [85]. EXample 1(cont.2) Again, letC be a lattice{(am +bn, —bm+
this spirit, we suggest that it might be useful in general %) | (m.n) € Z°}, whgrea/b_ is irrational.C is isomorphic
study compact solenoids via their discrete duals. In thigca@"d Nomeomorphic (@*. Letting J andZ — J denote the

for instance, the dual cod" is finite and has short integer-WO Single-coordinate subsetSQ, we have = C.z—7 = {0}.
valued generators. ThereforeX 7(C) = C = Z*, as expected, since either

coordinate determines the lattice point and thus the other
coordinate.
) ) ) . ) In this case, i| ; andCjz_ s are endowed with the discrete
This section develops basic dynamical dual properties @fyology, then they are homeomorphicZd, so Theoreni 512

Ciz—g

o~

V. DYNAMICAL DUALITY

dual group code€ andC*, such as: holds. However, as subspacesR®f C; andCjz_; are not
« The state spaces 6f- act as the character groups of thelosed, and not homeomorphic ¥, (C).
state spaces df. We will continue this discussion in Section 5.3.
« The observability properties @ are the controllability
properties ofC. B. The dual state space theorem
_ We can now relate the state spaces of a dual ¢bddo
A. Topological state space theorems those ofC, using the one-sided state space theorem. We must

The fundamental result of [15] is the state space theoretherefore continue to require restrictions to be closed.
which shows that for a group codkevery two-way partiton ~ Theorem 5.3 (Dual state space theorertf).C andC* are
of the time axis induces a certain group-theoretic minimgual group codes defined an then for any subsef C 7, the
state space.;. Moreover, there exists a minimal state recorresponding one-sided state spacé-ofcts as the character
alization forC in which every state space is isomorphic to thgroup of the corresponding one-sided state spacé of
corresponding minimal state spake;. We now discuss this Cs : C€H)s
theorem for the topological group codes of this paper. (—) = o

Given a subset/ C Z, the subcode€§.; andC.z_s and Cra Gl
their internal direct producf.; x C.z_s are closed normal Consequently the state space ©f is isomorphic to the
subgroups ofC. The (two-sided)state spaceof C induced character group of the state spaceCof
by the two-way partition off into {7,Z — J} is then well (B7(C)) =xs(Ch).
defined as the quotient group

c Proof. By quotient group and projection/subcode duality,

27(C) = CrxCr s (CI_J) (C)t (€Y

= = [l
1 1
The proof of the following version of the state space Cr.g (€7) Gl

theorem goes through as in [15]: In the usual cases, this simple but powerful theorem gen-
Theorem 5.1 (State space theoreriven a group cod€ eralizes a known result for linear codes over fields: theestat

in a sequence space defined on an indexZseind a two- spaces of dual codes have the same dimensions. In particular

way partition ofZ into “past” J and “future” Z — 7, the o If X 7(C) is finite, thenS 7(C) = £ 7(C1).

minimal state space of any state realizationCoéit the time « If ¥ 7(C) is a finite-dimensional real vector space, then

corresponding to this “cut” i£ 7 (C). dim Y 7(C) = dim X 7(C1).
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The following examples show that when the restrictions The definition of the dual codé- depends on the sequence
Cls and Cjz_; are closed, the dual state space theorespace in whichC is considered to lie. I is regarded as a
gives a satisfactory system-theoretic result, even wiieées subspace ofR?, then the dual sequence spaceRi$, with
uncontrollable, unobservable, or solenoidal. pairing equal to the usual inner product médLet us write

b .
Example 2 (cont.) For the bi-infinite repetition codzoverG, C = AZ?, where A = { _% “ ] The dual code is then

given any proper subset ¢ Z, we h"’_‘veCJN: Cz-7 =10}, the irrational latticeC = A~1Z2in R2, whose state space

so the state space (C) is isomorphic teC = G. For the dual s a4ain isomorphic t&Z2. Thus, under the usual subspace
bi-infinite zero-sum cod€- overG”, (C1).s is the set of all topologies, the dual state space theorem fails.

finite sequenced with supportLinj whose comp9n§nt SUM  However, suppose we regafdas a subspace of the trimmed
is 0, ez i = 0, whereas(C) 7 is the set((G")”); of  sequence spacé ; x Cjz_s under the discrete topology;

all finite sequences with support iff, so then this sequence space is isomorphic and homeomorphic
1 to Z2 x Z2, and the dual sequence space is isomorphic to
€)1z
Sg(Ch) = ©Ds =G (R/Z)? x (R/Z)2. As C is isomorphic to a repetition code
-7

over Z?2, the dual codeCt in this dual sequence space is
where the cosets ofC*).; in (C*),s correspond to the isomorphic to a zero-sum code o\@/Z)?, whose state space
different possible component sunis:kej he € G". Hence is isomorphic to(R/Z)? (see Example 2, above). Thus, under
Y 7(Ct) = (24(C))". The dual state spaces are isomorphic these topologies, the dual state space theorem holds. O
and only if G =~ G". We conjecture that the dual state space theorem, and all late
Note thatC+ has nontrivial state spaces, even thougiuality results, hold when the symbol grou@s are taken as
its completion is the memoryless sequence spate The the restrictiong’;(;;, with the appropriate topologies.
unobservability o€’ is reflected in the fact that the state of a However, as we see from this example, although use of
sequencé € C+ cannot be observed from any finite segmertonstandard topologies may lead to results which are fdymal
h|; of h. O correct, they may not be consistent with the usual convestio
Example 3 (cont.) For any partition of the time axis intowhich are often based on subspace topologies. For instance,
pastk— and futurek*, the state spaces of both time-invariarihe usual definition of a dual lattice is with respectR8;
codesC and C* of Example 3 are isomorphic té, x Zi, then the dual lattice of any full-rank lattice, even an ioasl
which as a finite abelian group is isomorphic to its chafattice, is itself a lattice (a discrete subgroupist), not some
acter group. Generators for representatives of the cogetsWwgird continuous compact group K& /Z)>. . _
Clp+ In Cppe are|010,002, 000, ...) and|002,000, 000, ...), One drawback of a Laurent sequence space is that in
which generate cyclic groups of orders 4 and 2, respective§gneral it is neither discrete nor compact, so we may expect
Generators for representatives of the cosetg@f);..+ in Laure_nt codes to provide further counterexamples, sucheas t
(C1)x+ are 030,000,000, ...) and|001,000,000,...); the following one.
first has order 4, but the order of the second is only 2, sing&ample 5. Let C C (Z3)* be the binarymirror-image code
002,000,000, ...) is a code sequence {{C"),.j+. O  consisting of all binary sequences € (Z,)” that exhibit
mirror symmetry;i.e.,, zx = x_ for all £k € Z. C is
complete (a closed subgroup of the complete sequence space
We = (Zs)*) and controllable € is generated by its finite
sequences; = (Cy)°). Its dual codeCt in Wy = ((Z2)%)s
is the set of all finite binary sequencesdrwith =, = 0; i.e.,

Example 4 (cont.) The state of Loeliger's codé at time
k is the outpute, € R/Z, sinceC.,- = {0} (if the future
is all-zero, thenc; = 0, which implies that the past;-

is all-zero). Since the dual codg" is the set of all finite
integer combinations dh = (...,0,1,-2,0,...), the state of
C* at time k is essentially its most recent inpu._, € Z ct = (Cs)z—10y-
(representatives of the cosets @)+ in (C)+ are oL
generated by — 2,0,0,...)). The dual state spaces are thuEaure
R/Z andZ, which are indeed each other’s character 9rouPSpse
but which are not isomorphic.

may also be regarded as a Laurent calein the

nt sequence spad®; = ((Z2)%)r, where it remains

d. Its dualCr)* in this setting is an anti-Laurent code

in W;, which as a set is equal to the finite subcdije
WhereasWy is discrete andV* is compact, the sequence

C. Non-closed restrictions spacesWV;, and W; are neither discrete nor compact. Thus

e g N
However, in the exceptional cases where restrictions atre *@ereas _the restrictions of < W* and C . < Wy to
closed, the dual state space theorem can fail. the past intervalP = (—o0,0) are necessarily closed, the

restrictions(C);» and ((C.)*);» are not necessarily closed.

Example 1 (cont.) As shown above, the irrational latticen fact, (C)p is closed inWVy, but ((C.)*)p is not closed

C = {(am + bn,—bm + an) | (m,n) € Z?} is isomorphic in W;, even though they are identical as sets (both are equal
and homeomorphic t&?, and so is its state spaces(C) to ((Z2)%);).

corresponding to splitting the two coordinates. The two re- This shows again that the validity of our topological result
strictionsC); andCz_ ; are isomorphic and homeomorphiadepends very much on the topologies of the sequence spaces
to Z2 under the discrete topology, but not under the subspaoevhich codes are regarded as being defined, and in particula
topology. on whether restrictions are necessarily closed. O
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C|j X C\I—j

C|:J X C|:I*;7

Figure 5.1. Tableau illustrating state space and recipisiate space theorems.

In order not to have to continually deal with such patho- Corollary 5.5: The reciprocal state spa&e’ (C) is isomor-
logical cases, we therefore impose from now on the followinghic to the state spac@(C).
closed-projections assumption Proof. By the reciprocal state space and dual state space
The topology induced by every restriction or pro-  theorems,
jection onto a subsey C 7 is consistent with the 7 B Lw
topology of W, 7. In particular, projections of closed U0 = (Es(€) =2s(0). -
subgroups are closed in the subspace topology. ~  we caution the reader that this result depends on the closed-
A reviewer has pointed out that the closed-projectiongojections assumption. Moreover, as we will discuss &irth
assumption is satisfied for a complete sequence spadeall  below, it applies only whed is abelian. Nonetheless, it rounds
;ymbol ngUpi:;I_c are compact metric spaces, ahd in particulayut the state space theorem nicely when it applies.
if all G are finite. Then/V is a compact metrizable space, When the reciprocal state space theorem holds, there is a
so every closed and thus compact subseétlohas a compact chain
and thus closed image under the continuous restriction map Chg X Crz-7 CCCCg xCz_g,
Rj W — W‘j. ] ) ) ) )
Under the closed-projections assumption, we can apgfy which both quotients are isomorphic 7 (C). The dual
our duality results freely without continual consideratiof chain is
topological issues. The reader must therefore use ourtsesul n n n n n
. X . i . . C C
with caution whenever topological subtleties are suspecte (€)rg x (€T)pz-g €€ € (€7 X (CT)iz-g
which has quotients isomorphic t67(Ct) = $7(C)", as

D. The reciprocal state space theorem illustrated by the dual diagrams below.
What is the character group of the two-sided state space
Y7(C)? The following theorem shows that it is the (two- C oL ct
sided)reciprocal state spaceof C*, defined as 7 X| =7 27 (C) (€5 > |( Jz-g 27 (Ch)
s7ety = g x (Ciz—g c ct
ct ' | X7(C) | Bg(Ch)
(The reciprocal state space was introduced in a differen€.s x Cj.z—7 (CL)\:j X (CJ_)|:I—J

context in [7].)
Theorem 5.4 (Reciprocal state space theoreth):C and
C*t are dual group codes, then the reciprocal state Spag

J(cL i
£7(C") acts as the character group of the two-sided Sta}iej(C). Note that every left-to-right or right-to-left chain of

spacexz (C). four maps in this tableau is a short exact sequence (a seguenc

Prooi Using quotient group, direct product, and projecl-n which the image of each map is the kernel of the next).
tion/subcode duality, we have

Figure 5.1 exhibits a related tableau of homomorphisms, in
fiich all guotient groups are isomorphic to the state space

Moreover, this tableau is self-dual, in the sense that the du

C (G x Crz—g)*t diagram is the corresponding tableau €b.
C|:J X C|:I*;7 a ct
)t x (Crz—)t E. The abelian dynamics theorem
B ct In this subsection we give a purely algebraic proof that the
() x(C)iz-g o reciprocal state spacg”(C) is isomorphic to the state space
N ct ' Y 7(C) whenX 7 (C) is abelian. Wherk 7 (C) is not abelian,

The reciprocal state space theorem has an immediate cobof-(C) is not well defined, but on the other hand the situation
lary, which yields a fourth state space for the group codas ths not essentially different. Finally, we show that thessutts
we are considering: are a special case of the abelian dynamics theorem.
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The one-sided state space theorem shows that we ¢&5], thelabel groupsof C are defined as the quotient groups
compute the state s (c) € X 7(C) of a code sequencec C  {Cix}/Cl.qx) = X413 (C), k € Z}. The group cod€ then has
from either its “past’c|; or its “future” ¢jz_7; i.e., there the same dynamical structure as its label cqd€), obtained
exist homomorphicstate mapso|; : C|; — X7(C) and by the natural magy : Cj(xy — Cjqx}/C).qx} Of eachoutput
oiz7-7 : Cz—g — X 7(C), whose images are the state spaagroupCjy,; of C onto its label groupC is said to haveabelian
¥7(C) and whose kernels are the restricted subcdggsand dynamicsf all label groups are abelian, for then and only then
Cj.z— 7, respectively. Foe € C, the images of these maps muséll state space¥ 7(C) are abelian [15].
agree.os(ciy) =oz_s(ciz_7). We define theoutput sequence spaad C as the direct

A general pair(w|7,w|z_7) € Cjy x Cjz_z is in C if product (or whatever product/sum is appropriate) of th@uatt
and only if 0.7(w ) = o7_7(wz_7) [15]. Therefore we groupsW(C) = [,z Cj{x}. and thenondynamical sequence
can test whethefw| 7, wz_7) is in C by forming the state spaceas the producv(C) =[], o7 Cj:{x}-
difference (“syndrome”) Theorem 5.7 (abelian dynamics theorenif):.C is an alge-

AWz, Wir_g) = 02 (W7) — 017 (Wiz_ 7). braic group code in t_he sense of [15], thénhas abelian
] ) dynamics if and only ifC is normal in its output sequence
Then (w7, wiz_7) € C if and only if d(w| 7, wiz_7) = 0. spacew(C).
In other words,C is the kernel of the state difference map proof If ¢ has abelian dynamics, thew(C)/V(C) =
d:C g xCz_g—=X7(C). .  ITeez C1ry /Cl:qxy is abelian. Thug€/V(C) is an abelian and

When £7(C) is abelian, the state difference map is &ormal subgroup. By the correspondence theotzia,normal
homomorphism. Sinc€ is its kernel, it follows thatC is a j, W(C).
closed normal subgroup df; x C|z_ 7, and therefore that Conversely, ifC is a normal subgroup ofV(C) = C %
the quotient Cly % C C (i.e., the reciprocal stat ’ S o

e quotient grouCy x Cjz—z)/C (i.e., the reciprocal state [Tier (k) Ciwy, then a fortiori C is normal in Cjy x
spac:) is well d_efmed.b lianc is still the kernel of th Ciz—k}» SINC€Ciz_ (13 € [Tpez_ qxy Ciwy- Therefore, by the
d'f\rN enzy(C) |sﬂr:otfa”e |§mCth still t eh erne;hott_ eths_tate revious theorem, the label grodlpy; /Cy.¢xy (Which is the

iiterence map. The toliowing theorem shows that In thiCag e spac&y; (C)) is abelian, for any € Z. Since all label

€ cannot be a normal subgroup @y x €z, and therefore groups are abeliart; has abelian dynamics. O
tht?l_state dlfgegencle mbap_ cannot belathct)momorpmsm. . A syndrome-formerfor C is a dynamical map defined
earem 5.6 (algebraic reciprocal state space theorem: on the output sequence spa¥®(C) (or a larger sequence

If Cis an algebrai(? group cod_e in the sense .Of [15], then ﬂégace) whose kernel iS. It follows from this theorem that
state spacel7(C) is abelian if and only ifC is a normal a syndrome-former can be homomorphic if and onlyCif
subgroup ofCy7 x Ciz_7. . . . has abelian dynamics. However, as we see from the example
P_roof. On the one hand, i£7(C) is abghan, then the state ot 5 state difference map, a syndrome-former can be non-
SJEE rsgﬁli{gazi(; CC ‘ig ZCrLJ(T);r% al—>s§l57 (rCO)uls thotocmorphlsm homomorphic while still being straightforward and essalhi

’ group @7 X &1z group-theoretic. Thus our assumption of abelian dynamics

On the other hand, € is a normal subgroup df 7 xCiz 7, i "ihis paper is not fundamental, as the syndrome-former
then the reciprocal state spake’ (C) = (€ x Ciz—7)/C is construgtiopns of Fagnani and Zampieri [10] sf}:ow
abelian, which implies thaE 7(C) = 7 (C) is abelian. Let g P '

W € Pj(c), thenw € C‘j X {0}|Z—.7 - C‘j X C|Z—.7’ SO
by normalitywew ! € C and thuswew ~'c™! € C for any VI. NOTIONS OF FINITE MEMORY

—1,.-1\ __
c € C. Now w has su_plpcirlU, S0 Piz_z(wew . _1) = In this section we discuss several notions of finite memory,
0, which 1r1npl|es wew e - € C.g and wew™"c™" = a4 study their duality properties in a group-theoretictest
wP7(c)w™ (Ps(c))"". As w and Py(c) run through \ioqt of these notions have been introduced previously in

—1 —1
Pg(C), the commutatorswPy(c)w™ ' (P7(c))™" € C7 pehavioral system theory [47] in a set-theoretic context.
therefore run through the generators of the commutator subWe first introduce L-controllability and L-observability,

group [Py (C), P7(C)]. Therefore[FPy(C), P7(C)] S C.g- \which turn out to be duals. We give two characterizations of

By a general property of commutator subgroups [38, EX. .52,y \hich are also duals. We then introducéiniteness

(Clg x Ciz-7)/C is thus abelian. and L-completeness, also duals, and show that they are equiv-
Theorem[5J6 shows that there is a distinct algebraic dident to L-controllability and L-observability, respectively, in

ference between the abelian and nonabelian cases. Howesppropriate settings.

the two cases are otherwise not fundamentally differenénEv  To discuss memory, we must assume that the time index set

when C is not a normal subgroup a|; x C|z_7, we can T is ordered;.e., without loss of generalityZ C Z. We will

still partition C; 7 x Cz_ 7 into “cosets” corresponding to theuse the notation of [15] for subintervals &f e.g.,

distinct possible state differences Ki7(C) under the state

difference map, thus establishing a one-to-one map between [(m,n) = {keZl|m<k<nk
the “cosets” ofC in C 7 x Cjz_ 7 and the state space;(C). m- = {keZ|k<m};
Thus the basic idea of a correspondence between syndrome nt = {keT|k>nb)

equivalence classes 6f; x Cjz_7 andX 7(C) still holds.
There is a nice generalization of the above theorem, @kus Z is the disjoint union of the three subintervals
follows. Given an algebraic group codg in the sense of {m~,[m,n),n"}.



16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 11, N\(EMBER 2004
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Figure 6.1. lllustration ofm, n)-controllability
with code sequencas ¢’ andc”.

A. Strong controllability and observability

We now study the duality between notions of strong controfd™m)

lability and observability. Our definition of strong contedil-

ity is the same as that of Willems [47]. Our definition of sigon

observability (introduced in [28]) corresponds to Willérdef-

inition of “finite memory.* We show that these two notions ar®

m n
C/ - - C/
| |
\ | c= C/ — C// | J//
C// | |
| |
(¢ e . (¢

Figure 6.2. lllustration ofm, n)-observability
with code sequencas ¢’ andc”.

We define a cod€ to be[m, n)-observableif whenever
= |, fOr c,¢’ € C, then the concatenation of
Clm—Cllmn) = Cim,n)’ and cfw is in C. A code isL-
observableif it is &m,m + L)-observable for every length-
L interval [m, m + L), and strongly observableif it is L-
bservable for somd.. The least suchl is the observer

duals. We also show that strong controllability or obseititsib memory of C.

implies controllability or observability, respectives defined

earlier.

Given a finite interval [m,n), a codeC is [m, n)-
controllable if for any c,c¢’ € C there exists a&” € C such
thatc);, = ¢, andc[, . = ¢, .. A code isL-controllable
if it is [m, m 4+ L)-controllable for every lengtl- interval
[m,m + L), andstrongly controllable if it is L-controllable
for someL. The least suclL is thecontroller memory of C.

The following controllability test follows directly fromhie
definition.

Theorem 6.1 (first [m, n)-controllability test)A codeC is
[m,n)-controllable if and only ifCiz_{,, n) = Cjm— X Cjp+-

Proof. This merely restates the definition; it says tfais
[m,n)-controllable if and only if any past i€,,- can be
linked to any future inC,+. O

The following observability test follows directly from thi
definition:

Theorem 6.3 (first [m, n)-observability testk codeC in a
sequence spacde/ is [m,n)-observable if and only if

C = {W ew | Win- € C‘n—,W‘er S C|m+}.

Proof If C = {w € W | wj,- € Clp—, Wi+ € Cpt }
andc,c’ € C have a common central segment,, ), then
w = (c|m7,c|[m7n),cfn+) satisfies the constrainte,,- €
Cln— Wim+ € Cjmp+ and is therefore irC, soC is [m,n)-
observable. Conversely,(is [m, n)-observable, then the fact
that if ¢, ¢’ € C have a common central segment,, .,y then
W = (Clm— C|[m,n)> Cfrﬁ) is a code sequence implies that any
sequencew € W whose restrictionsv,,- and w,,,+ equal
restricted code sequences,- € Cj,- and ¢j,+ € Cip+,
respectively, is a valid code sequence.

If C is a group code, then we have an alternative controlla-|f ¢ is a group code, then we have an alternative observ-

bility test:
Theorem 6.2 (second [m, n)-controllability tes#: group
codeC is [m,n)-controllable if and only ifC = C.,,- +C.,,+.

ability test:
Theorem 6.4 (second [m, n)-observability tesd):
group code C is [m,n)-observable if and only if

Proof. If C is generated by¥.,,- and(C.,,+, then any past Cr—fmm) = Con— X Copt.

c»- can be linked to any future,,+ as follows: find any

¢ €C,- andct € C,,+ such that(c™),,- = ¢),,- and

Proof. In general,C.,,,- X C.pt € Cii—[mn)- If ¢ €
C:I—[m,n)i thenchm) = O\[m,n)- Since0 € C, if Cis [m,n)-

() jn+ = €+ thenc™ +c* is the desired linking sequence opservable, then the concatenatidog, -, 0j,,+) = P, (c)

Conversely, ifC is [m,n)-controllable, then ang~ € C.,,-

and (0y,—,cj,+) = P,+(c) are inC, and thus inC,,,- and

can be linked td € C.,,+, and anyc™ € C.,+ can be linked ¢, . respectively. SC.1—{m,n) € Cn— XC,ppr, which implies
to0 e C.,,-, which implies thaC =C.,,- +C.,,,+. O that C.;_(m,n) = Cm— X Copt.

The definition of{m, n)-controllability, illustrated in Figure Conversely, ifc, ¢’ € C are such that(,, ,) = Cf[m ny then
6.1, involves a notion of finite reachability: from any state _ ¢/ ¢ Cr—pmm)- If Cr—mn) = Com— X Cont, thenc — ¢’
(set of past trajectories) at time we can reach any state (sefnay be written ag — ¢ — c— + ¢*, wherec™ € C,,,- and
of future trajectories) at time. The first{m, n)-controllability ¢+ ¢ ¢, .. It follows that
test translates this into a notion of memorylessness: #ie at
time n is not constrained by the trajectory before time The
secondm, n)-controllability test relies on the group property.
by which it suffices to show that every state at timecan
reach the zero state at timeand every state at time can Our definition of [m, n)-observability, illustrated in Figure
be reached from the zero state at time it then translates L ! S

i L 6.2, is implicitly a notion of state observability: given a
this observation into the statement that every code seguen¢ .

. . ségment of a code sequencg,, ,), the states at timen
can be decomposed into a code sequendg. jn and a code '

P (€) + Pt (¢) = ¢ + Py (e —¢) = ¢/ ¢,

Wwhich by the group property of is in C. SoC is [m,n)-
observable. O

sequence irC' which is a generatability criterion and n (and indeed during the entire intervak, n)) are
q et 9 y ' determined. The firstm, n)-observability test translates this
into a checkability criterion: if a sequence looks like a eod

4In [49, p. 336], Willems calls this notion “insightful” for iscrete-time - § -
sequence during the overlapping intervals and m™, then

behaviors.
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it is a code sequence. The secopd, n)-observability test
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Finally, we now verify that strong controllability (resp.

relies on the group property, by which it suffices to showbservability) implies wide-sense controllability (resfpserv-
that ¢|(;,,,n) = Ojm,n) iMmplies thatc € C passes through the ability) as defined earlier. For observability, we will ceder

zero state at times: andn (and therefore during the entireonly the case in which all symbol groups are discrete, in
interval [m,n)); it then translates this observation into thevhich case the topology of the complete sequence space

statement that every code sequence Wijth ,,) = 0j,,,,») can

We is the topology of pointwise convergence. Under our

be decomposed into a code sequencé.jn- and a sequence standing assumptions, the corresponding controllabiésult

in C.,,+, which is another notion of memorylessness.

then holds when all symbol groups are compact.

Our desired duality theorem then follows directly from pro- Theorem 6.7:Let C and C*+ be dual group codes in se-

jection/subcode duality, applied to either of two dual paif
tests. The first proof shows that the fifst, n)-controllability

guence spaced’ andW", respectively. Let all symbol groups
Gy, of We be discrete, and all symbol groups,” of (W¢)"

test and the secorjéh, n)-observability test are duals, whereade compact. Theg is observable ifC is strongly observable,

the second proof shows that the secdmdn)-controllability
test and the firsfm, n)-observability test are duals.

Theorem 6.5 (strong controllability/observability dug):
Given dual group code, C* and a finite intervalm, n) C Z,
C is [m, n)-controllable if and only iC+ is [m, n)-observable.

First proof. By the first [m,n)-controllability test,C is
[m, n)-controllable if and only iC|; _ [, ) = Cjpm— X Cjypt- By
projection/subcode duality, the duals of the left and rigjtles
of this equation ar€C).;_n,») and (C+);.,,- x (C)p+,
respectively. Therefor€;_,, ) = Cjn- x Cj,+ if and only
if (CH):1—pmn) = (C)jm— % (C1)|.n+, Which is effectively
the secondm, n)-observability test foC-. O

Second proofBy the secondm,n)-controllability test,C
is [m, n)-controllable if and only ifC = C.,,- + C.,,+. By
projection/subcode and sum/intersection duality, thelsdoa
these two codes a@* and(C.,,- )+ N (C.,,+ )+, respectively.
Furthermore, by projection/subcode duality,

(C:n*)l = {X S | X|n— € (Cl)\n*};
(C:er)L = {X S | X|m+ € (CL)|m+};
S0 (C.p,- ) N (C.pp+ )t is equal to
(X EW X € (CH)jn s Xjmt € (CH)jm+ }-
But this isC* if and only if C* is [m,n)-observable, by the
first [m, n)-observability test foCL. O

As immediate corollaries, we have:

Corollary 6.6: Given dual group code§ andC+,
(@) Cis L-controllable< C* is L-observable;
(b) C is strongly controllable= C* is strongly observable;
(c) controller memory ol = observer memory of*.

andC* is controllable ifC* is strongly controllable.
Proof. SupposeC is strongly observable but not observable;
i.e., (C°)y # Cy. Then there exists some finite sequence
(C°) ¢ thatis notinCy. Since the topology af® is the topology
of pointwise convergence, this means that there is somesseri
{c"} of code sequences® € C that converges pointwise to
w asn — oo. Now C is L-observable for some integd,
and the support ofv is some finite intervalk, k’). Pointwise
convergence then implies thaf;, _; /., = Wjk—rr+1)
for all sufficiently largen. But L-observability then implies
thatw is a finite code sequence & sincecy;,_; ;.. is @
code sequence that agrees with the all-zero sequdceing
the lengthZ intervals[k — L, k) and[k’, k+ L); contradiction.
ThusC must be observable.

Finally, C* is controllable if and only iiC is observable by
TheorenZB, and is strongly controllable if and only i€
is strongly observable by the corollary above. O

On the other hand, the following example shows that a
controllable code need not be strongly controllable, and an
observable code need not be strongly observable.

Example 6 LetZ = {1,2,...}, and letC be the group code
over a groupG in which the symbols:;, are chosen freely
from G at timesk = 2" for all n € {0, 1,...}, but at all other
times ¢, = cx—1. ThenC is generated by finite sequences
of the form(...,0,9,9,...,9,0,...) with support[2™,2"+1)
and is thus controllable, bdtis not L-controllable for anyl, €

7. The dual subcodé€~ is thus observable but not strongly
observable. O

B. L-finiteness and.-completeness

This fundamental duality result provides strong suppart fo |n this subsection we introducd.-finiteness and L-

our use of the term “observability” rather than “finite merylor

completeness, which turn out to be duals. Our definition of

in [28] and here. Also, it is desirable to distinguish betweer.-completeness is the same as that of Willems [47], except

controller and observer memory.

for the modification that we made earlier when defining

All notions of zero memory coincide: a code is Ocompleteness; it is a notion of finite checkability in conele
controllable or 0-observable or memoryless if for any timgequence spaces. We defifiefiniteness in a dual way as

m and anye, ¢’ € C, the concatenatio(qu,cimg isin C.

a notion of finite generatability that applies to group codes

However, ifC is not memoryless, then there is no necessajy finite sequence spaces. We show that in these restricted
relationship between its controller memory and its observeontextsL-finiteness is equivalent té-controllability, andL-
memory; these are two distinct (and dual) notions of theompleteness is equivalent foobservability.
memory ofC. The controller memory measures the maximum We define a group codé in a finite sequence spadé’;
time needed to link any past to any future. The observgy beL-finite if it is generated by its finite code sequences of
memory measures the maximum observation time neededdfgth L + 1:

obtain a “sufficient statistic” for predicting the futureep.
the past) from the past (resp. the future).

C= ZC:[k,k+L]-

keZ
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In other words( is L-finite if and only if anyc € C may be Proof. We have now shown that the following are equivalent:
decomposed into a sum of code sequerges, 1| € C.(x x+L]
whose supports are intervals of length+ 1:

c= Z Clk,k+L]-
kez

Notice that this definition makes sense only in the setting Ig}
group codes; no analogue exists for set-theoretic codes.

The following theorem shows that for such group code
L-finiteness is equivalent té-controllability:

Theorem 6.8 (L-finite = L-controllable + finite)lf C is a
group code in a finite sequence spagg, thenC is L-finite
if and only if C is L-controllable.

Proof. If C is L-finite, then we may write ang € C as
€ =) iczClj+r), SO for anyk, ¢ may be written as a sum
C = C(kyL)- TCk+ with Ck+L)- € C:(k—ﬁ-L)* andcy+ € Cp+,

Cis L-complete « C* is L-finite &
Ct is L-controllable < ( is L-observable. O

This is a group-theoretic version of Willems’ set-theareti
eorem [47] that a complete codeliscomplete if and only

it has L-finite memory (isL-observable).

While L-finiteness andLZL-controllability are equivalent
f‘resp.L—completeness anf-observability), the tests that they
imply are different in practice, as we show by revisiting the
controllability and observability tests of SubsectionAland
then applying these tests to our examples.

The tests of Subsectidn_VIIA involve a three-way partition
of the time axisZ, namelyZ = {m~,[m,n),n"}. We may
correspondingly identififZ with an equivalent finite time axis
7' = {1,2,3} of length 3, and we may regard any code

as follows: C defined onZ as a codeC’ defined onZ’. Note that the
= cljtL+ D Chj+L] = Cletr)- + Cpt- equivalent length-3 sequence spaté = W,,,- x Wipn.n) X
j<k i>k W+ is both complete and finite, assuming that each of the

restrictionsW,,,,—, Wjjmn,n) @ndW,,+ is complete (closed).

Thus ¢ = C. - C..+, so by the secondm,n)- ) .
(ki D)~ + Lat y dm, n) Now in terms of the equivalent cod® on Z’, we have:

controllability testC is [k, k + L)-controllable for allk, and

thus L-controllable. e C is [m,n)-controllable< C’ is 1-controllable;
Conversely, letC be L-controllable. Since all code se- ° C'is 1-controllables Cf, 5, = C|(1y X C|(3);
guences are finite, the support of any C is a finite interval, o C'is 1finite < C' = C:I{I,Q} + :/{2,3}-
say|k, ¥’ + L]. By L-controllability, for any;j € Z there exists The latter two tests correspond to our first and sedend)-
acj+ € C;+ such that(c;+);- = 0;- and(c;+)|;4)+ = controllability tests, respectively, and their equivaleriollows
C|(j+1)+- Thency; ;1) = ¢+ — (C(j+1)+)|(j+L)+ has support from Theorenf®I8. Similarly,
[7,7+ L]. Thus for anyc € C we havec = Zje[;m/] Cljj+L]: o C is [m,n)-observable= C’ is 1-observable;
soC is L-finite. O « C'is 1-observables C!f, 41 = Cljy % Clrgy;
Dually, a group cod€ in a complete sequence spade e C'is 1-completes 7
will be defined ad_-completeif C'={weW |wjz € CI/{1,2}’W\{273} c C\/{z,?»}}'
C={weW | Wi € (C|[k,k+L])Cl for all k € Z}. These two tests correspond to our second and first)-

observability tests, respectively, and their equivalefae
As in our definition of completeness, this definition usesetd |ows from Corollary[B10, or by duality from oufim, n)-
restrictions(C( x+1;)°'. If the closed-projections assumption;ontrollability tests.
holds, then this reduces to Willems’ definition [47]. In athe Now |et us see how these various tests apply to some of
words, C is L-complete if whenevew € W looks like a oyr example codes.
code sequence through all windows of lendth- 1, thenw

is in fact a code sequence. Example 2 (cont.) A bi-infinite repetition cod€ overG is 1-
The duality of Z-completeness ank-finiteness then follows OPservable, because two code sequences that agree anywhere
directly from projection/subcode duality: agree everywhere. It is 1-complete, because a sequerise

Theorem 6.9 (L-finiteness/L-completeness duality): C in C if and only if the two components of every length-2 re-

and C* are dual group codes in dual finite and complef@"iCtionw)( ;1) are equal. The zero-sum code overG" is
sequence spaceg); and (Wy)", thenC is L-finite if and 1-controllable, because for any two finite sequences and

only if C* is L-complete. anyk € Z, there is am € G” such that(x;,—, h, (X')|(+1)+)
Proof. By sum/intersection dualit¢ = 3, ., C.pesrzy if is in C*. It is 1-finite, because it is generated by its length-2

and only if C+ = N, (C.ik,k41)) - By projection/subcode sequences...,0,9,—g,0,...). 0

duality, (C.(x x+ )" is the closure of Example 3 (cont.) The finite subcode; of the rate-1/3

A 1 linear time-invariant convolutional cod€ over Z, com-
Bee V)" Iy € € imnsn}- prising all linear combinations of time shifts of =
Then (...,000,100,010,002,000,...) is by definition 2-finite and
1 . al n evidently 2-controllable, since it has a feedbackfree daco
€= x e W) | (i)™ € (C)mry forall k) gy memory 2. The finite subseC); of its dual rate-
which is the definition ofL-completeness fo€ . O 2/3 codeCt comprising all linear combinations of time
Corollary 6.10 (L-complete = L-observable + complete): shifts of the generatorh; = (...,000, 100,030, 000,...),
If C is a (complete) group code in a complete sequence spaee= (..., 000,020,001, 000, ...) is by definition 1-finite and
wWe, thenC is L-complete if and only ifC is L-observable. evidently 1-controllable.
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C is 1-complete, because it is the set of all sequencesAs in [15], we define thg-controllable subcodeC; of a
orthogonal to all shifts of the length-2 sequenbgsandh,. C  group codeC in a sequence spadd®’ as the code generated
is 1-observable, because a zero symbol 000 can be obseygdhe lengthtj + 1) subcodeg’. ;. ;- of C:
only if C is in the zero state. Similarh¢t is 2-complete,
because it is the set of all sequences orthogonal to allsshift Cj = Zci[k7k+.7']'
of the length-3 sequenae, and it is 2-observable since two kez
successive zero symbo(800,000) can be observed only if If W is finite, thenC; by definition is j-finite. By a proof
C* is in the zero state, as the reader may verify. O like that of Theoren6I8(C; is j-controllable, andC is L-
controllable if and only ifC = Cy.

If C is L-controllable, then we have a chainjstontrollable

Tbcodes

Example 4 (cont.) Loeliger's codeC is 1-observable, since

two code sequences with the same outpuhave a uniquely

determined past and the same set of possible futures. It is

complete, because a sequereés in C if and only if the first {0jcCctc--cl=C

component of every length-2 restriction,. .11 is twice the  For consistency in indexing, we may denote the trivial saleco

second component (mdd). Its dualC* is generated by the {0} by C_,.

time shifts of the length-2 generatbr= (...,0,1,-2,0,...),  The 0-controllable subcodg, (called theparallel transition

and thus is by definition 1'f|n|te, it is 1-C0ntr0”ab|e Sinh:e subcodeof C) is a memory|ess sequence space of the same

eVidently has a feedbackfree encoder with memory 1. O type asw, whose Symb0| groups are the |ength-1 subcodes
C.(ky- Since it is memoryless, it has trivial dynamidse(,

VIl. D UAL GRANULE DECOMPOSITIONS trivial state spaces).
The development of [15] is based on a decomposition of The controller granuleg, ., ;(C) are defined by
an L-controllable group cod€ according to a chain of- )
controllable subcodes;, Tpopag) (€)= —22EEH ez 0<j< L.
(Ci=1): [k k9]

ChCCiC---CC=C, :
B . Since(Cy).ik,k+5] = Cikky] ANA(Ci—1): [k k5] = Clekty) +
and then a further decomposition of the quotieGf$C;—1  C.g, ., this is equivalent to the definition of [15]:
into direct products ofith-level granules, defined (in additive c
notation) as Ci e (C) = i) . 1<j<I;
e (€) Clokrs) T Ciirn
Pl (€) = Piew (€)= Cpry = Copry-

The cosets ofC;1).jx,k+5 IN (Cj). [k,k+5] are represented by
sequences i@ ;) that are not in thej — 1)- controllable
subcodeC7 1 The zeroth level controller granuldy;, ;(C
CicLCchlc'”CCo

= < < cC, are called “nondynamical granules” and are equal to the
parallel transition subgroupsg’. ;.

As in the code granule theorem of [15], we can then show

C.lke k4]
Colkkt5) T Cih, k4]

We now give a dual decomposition of afrobservable
group codeC according to thej-observable supercode chain,

and then a further decomposition of the quotiefits!/C’
into products ofjth-level observer granulesy,, ;.. ;(C). Here

the “granules™T;, ;4 (C) of [15] will be called “controller that _
granules.” H Lo k+g(C), 0<j <L,
We will show that thej-observable supercod® of C is kez

the dual of thej-controllable subcodéCt); of its dualC*, where the product is a direct product, Laurent product, or
and that the observer granules#ct as the character groupsiirect sum according to the character of the sequence space
of the corresponding controller granules®f. W in which C lies. The proof essentially follows from the

In the following section, we will give examples of howfacts thatC;/C;_; is generated by the sequence<ip,, k]
this observability structure can be used to construct mirthat are not inC;_; for all & € Z, and that(C;). kot jt1] 1S
mal observer-form encoders, state observers and syndromhe-direct product ofC; )1k k+4) @NA(Cj):[k41,k+54+1) Modulo
formers. A general construction of syndrome-formers far;_,, since themtersecﬂon Q). 1k kot and(C. ):[kt1,k4j+1]
non-topological group codes over finite, possibly nonaveliis (C;). . x4 € Cj-1.
groups that uses this observability structure is given Bj.[1  The restrictions of the future subcodés;).,+ to time k

are defined as thgh-level first-output groups

A. Controller decomposition .
P Fix(C) = ((Cj)uet ) jgry, 037 <L,

We review the results of [15] in our topological group
setting, to prepare for dualizing them. which form a chain

From here on, for simplicity, when we denote a sequence -
subspace in a sequence sp#eby a Cartesian produce,.g., {0} € Forl€) € Fip(€) & -+ € FLk(C) = Fr(C),
[1.cz Ax, we imply that the product is of the same type awhere F,(C) = (C.;+) (&} IS thefirst-output group of C at
that of W— e.g.,a direct product, Laurent product, or directime % (also called thenput group[15]). Since F} ;(C) =
sum. (C.tk,k+4))14xy and the kernels of the restrictions {d&} of
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(Cj):lhkrg) AN (Cj—1).[k,k45) are both equal t&. s 41, it A jth-level encoder foiC;/C;_; in controller form may
follows from the correspondence theorem that the quotierniteen be implemented by combining the outputs of encoders
of this chain are isomorphic to the corresponding controlléor T ;4 ;(C) for all & € Z (with finite or Laurent

granules: constraints, if appropriatee.g., that there be only finitely
Fy1(C) o 1(C) many nonzero inputs fok < 0). The resulting encoder
Fi_1x(C) Lare implements an isomorphism from the “input sequence space”

Similarly, we define thgth-level last-output groups as II1, F5.6(C)/ Ej—1,1(C) = TTj g 451 (C) to the OUtPUt space
C;i/Ci—1 =TI Ti,k+4(C). The state space of thgh-level
L;ik(C) = ((Cj):(hs)- Jiqkys 0<j <L, encoder at any time is isomorphic @ (C;)/o(C;—1) and is
thus minimal.
Since the parallel transition subcodg = [[,.C.;x; is a
memoryless sequence space, the zeroth-level encodél, for

which form a chain up ta.x(C) = (C.x+1)-)j{x}, the last-
output group of C:

{0} C Lo x(C) C L1 x(C) € --- C Lpx(C) = Li(C), requires no memory; the output is simply a complete, Laurent
. . ) . or finite sequence of elements from the parallel transition
with quotients also isomorphic to controller granules: subgroupsFy x (C) = C.(xy, k € Z.
Lix(C) Finally, a minimal encoder fof in controller form may be
m = Cie—jn (€)- implemented by adding the outputs of gth-level encoders,

) 0 < j < L. Such an encoder implements a one-to-one
Thestate codeof C is the group code (C), where the state ¢orrespondence from[, Fx(C) to C, but not necessarily an
map o is the Cartesian product of the state mapsi.e., isomorphism [15] (see also [28], [29]).

o(c) ={ok(c),k € Z},

whereoy,(c) € $,(C) is the state of the code sequence C B. Controllable and uncontrollable codes

at time k. The kernel of the state code map is the parallel We now extend the results above to codeS W that are

transition subcodé,. not necessarily strongly controllable. For simplicity, vedke
As in [15], the state spaces and state code’ahay be WV to be a complete sequence space.
decomposed according to the chains We then have a chain of subcodes
{0} =0k(Co) S ow(Cy) C--- Cow(Cr) = Zk(C); {0} CCCCiC--C(Cp)CC,

{0} =0(Co) C o(C)C---Co(Cr)=0a(C)

whereC; is the j-controllable subcode a, j > 0, and(Cy)°

whereoy,(C;) is the state space of thecontrollable subcode is the controllable subcode 6f We recall that is controllable
C; attimek anda (C;) is the state code ;. The zeroth-level if and only if (C¢)* =C.

state coder(C,) is trivial sinceC, is memoryless. ~ Since (Cy)“ is the (closure of the) code generated by all
The quotients of the latter chain are isomorphi€jgC;_,: finite subcodes of,
a(C;) G , €= > ¢
I/ _ o o~ » <j<L. ’
O'(Cj_l) Cj_l kl;[ZF[k’k_H] (C)’ 1 =J= L finite J

The quotients of the former chain are isomorphic to direll¢'s clear in the topological setting the;)© may be regarded

products of thejth-level controller granules that are “active@S the “limit” of the j-controllable subcodes; asj — oo.
For instance, if the symbol groups are discrete, tf@n°© is

at time k:
c the code consisting of the limits of all finite sequence<in
onlCy) o H Lpiits(C), 1<j< L. in the topology of pointwise convergence.
ok(Cj-1) ie[k—j,k) ' C is therefore controllable if and only if every sequence in

C can be expressed as such a limit of finite code sequences. If
C is uncontrollable, then the code sequences ngCin® not
uiny are not finite, but also are not the limit of any series of
finite sequences id. For example, in Examples 2 and 4, the
only finite sequence ig is 0.

Again, there are state space and state code chains as follows

Each single controller granuléy, ;. ;(C) may be im-
plemented by a little state machine with an input gro
and a state space isomorphic Ig ;. ;(C) which is ac-
tive during the interval(k,k + j], as follows. An input
in Fj,(C)/Fj—1x(C) = Ty x4;(C) arrives at timek and
determines a corresponding first output, which is the time-
output symbol of a representative of the correspondingtaise {0} C  04(C1) C -+ C 0% ((Cy)°) C 0% (C) = Zk(C);
(Cj—1):[k,k+5] 1N (C).1k,k44]» @S Well as a corresponding state {0} C o(C)C - Ca((Ch)) CalC).
in a state space isomorphicltg, ;. ;(C) at timek+1. During - -7 -
the interval (k, k + j], the state is constant, and determineSinceC/(Cs)° = o(C)/o((Cy)®) (because the kernel, of
the remaining output symbols of the representative sequenitie state map is a subcode of bdtfy)® andC), it follows
At time k + j, the last output is emitted (a representativthat (C;)¢ = C if and only if o((C¢)¢) = o(C):
of Ljxyj(C)/Lj—1145(C) = Trsj(C)), and the granule  Theorem 7.1 (dynamical controllability testh complete
becomes “inactive;l.e., no further memory is required. group codeC is controllable if and only ife((Cr)¢) = o(C).
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In other words, finitization preserves the dynamicCaf finite codeC*, we have for a finite codé a supercode chain
and only ifC is controllable. dual to the subcode chain 6f-:
Let C be time-invariant, so that all state spacEs(C) ¢ 1 0 _
are congruent t&,(C), and suppose that,(C) satisfies the CCle)yC--cCcCi=mWC)CWy.
descending chain condition (DCC). Thénis complete [29, Again, by duality (C°); is the “limit" of the j-observable
Prop. 3.6]; moreover, by the DCC, there can be only a finisupercodeg’ asj — oo.
number of steps in the state space chain, which implieshieatt Each of these supercodes has well-defined state spaces
controllable subcodéC )¢ is strongly controllable (see [28], which are trivial in the case of the memoryless supercodes
[29]). Thus we have: C® = W(C) and Wy, and well-defined state maps, and
Theorem 7.2:f C is a time-invariant group code whoseo = {0,k € Z}. By dualizing Theoreri 711, we obtain:
state spaces(C) satisfies the descending chain condition, Theorem 7.4 (dynamic observability tes#). finite group
then (Cy)¢ is strongly controllable. Thu€ is controllable if codeC is observable if and only i&((C¢)r) = o (C).
and only ifC is strongly controllable. In other words, completion preserves the dynamicg aff
Example 6, in whichC is controllable but not strongly and only ifC is observable.
controllable even though the state space is never larger thaAlso, by dualizing Theoreri.2, we obtain:
G, shows that time-invariance is essential. Theorem 7.5:f C is a finite time-invariant group code
Theorem[ZR has been extended to time-invariant groWfiose state spack,(C) satisfies the descending chain con-
codes over finitely generated abelian symbol groups in [&], adition, then(C¢), is strongly observable. Consequentlyjs
to time-invariant ring codes over finitely generated modul@bservable if and only i€ is strongly observable.
over a principal ideal domain in [9]. All versions of Theorem
[Z2 depend on some sort of finiteness condition. D. Observer granule decomposition
The basic structure theorem of Miles and Thomas [30] (seeNow let C be a general finite, Laurent or complefe
[6]) says that ifG is a compact abelian Lie group add= G*  observable group code. Then we have an ascenging
is a closed time-invariant group code oveythen there exists observable supercode chain:
a finite chain L L1 0
c=Cc~C¢C C...CC”=W(C) CwW.
ccbic-cl=(C)ecce For indexing consistency, we denoté by C—!.
of closed normal time-invariant subcodes & where  The O-observable supercodé = [T, Cj) is the output
C;/Ci_1 = (G;)% for some compact Lie grouf; (in our sequence spac®/(C), a memoryless sequence space of the
setting, G; may be identified with thejth-level controller Same type asV. _ o _
granulel', ., ;1); C*/(Cy)° is a solenoid (a compact connected By TheorenZB, this chain is dual to the subcode chain of

abelian group of finite topological dimension), as in oufh® dual code:

Example 4;_ andC/C® is autonomous (a semi-simplg Lie (¢h)_,={o}c(C ) C(C)C ---C(CH=Ct
group), as in our Example 2. Using this theorem, Kitchens _ _ ) _
and Schmidt [24] show that i€ is a compact controllable BY guotient group duality, the quotients of the latter chae

time-invariant group code whose state spaugC) satisfies 25 the character groups of the quotients of the former:

the DCC, therC is strongly controllable. ci-1\ €1y,
_ = I 0<j<L.
CJ (€CH)j—1
C. Observable and unobservable codes Note that the output sequence spat¥C) = C° acts as the

An observer decomposition 6fmay be obtained by simply character group of the parallel transition subcgde )o, and
“dualizing” the controller decomposition just described.  thatW(C) = W if and only if (C*)o = {0}. Dynamically,C
The j-observable supercodeC’ of a group codeC in a should be regarded as lying between the memoryless sequence

sequence spadé’ is defined as spacesCy and W(C), rather than betweed{0} and W.
_ Trimming the sequence spak® to W(C) is dual to factoring
C? ={w e W | W jk+j] € Cli,k+y) forall k € Z}. out the parallel transition subcode to yield the dynamycall
: , o equivalent “label code§(C) = C/Cy [15].
If W is complete, therf? by definition isj-complete. Since
By projection/subcode duality, we have: ch); ~TIr oL
Theorem 7.3 (subcode/supercode dualitf)C andC* are ChH,.1 H i) (€
. . k
dual group codes, then theobservable supercode Gf- is i . .
the dual of thej-controllable subcode af: it follows from direct product/direct sum duality that
, ci—t .
ety =)t o = [ Tikasa (€
It follows thatCV is j-observable, and thétis L-observable k
if and only if C = C*. where as usual the indicated product denotes a direct produc

Since the dual of the controllable subcodé;)¢ of a Laurent product, or direct sum according to the character of
complete cod€ is the observable supercod@)); of the W.
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Since the controller granul€, ;. ;(C*+) is defined as a  The dual bi-infinite repetition cod@overG is 1-observable.
guotient group, it is natural to define tlwbserver granule Its only nontrivial observer granules are the first-levelrgries

@1, 1451 (C) as the dual quotient group: Ppri+11(C) = Criey X Cling13)/Cliikr1]- NOW Cpppy X
(CF V) on Clik+13 i_s the set of all pairs{(g,h)zg,h € G}, while

O )(C) = AL ez 0< < L. Cik.k+1) is the set of all repeated paifgg, g),9 € G}, so
(C)\ k4] @, 14+1)(C) = G. Sets of coset representatives @y, ;1) (C)

For0 < j < L, (C)\pkts = Cliwrsy) SO the cosets of are{(0,9),g € G} or {(g,0),9 € G}. The quotientV/C is
(C9) |k krq] IN (G771 kksy) @re represented by sequences iipomorphic to the direct product of these granulese-, to
(€77 1) k.ry5) that are not IC, 1, 5] the complete sequence spaGeé. O

Forl<j < L, we may write(C?~") s k45 as Example 3(cont.) Here the rate-1/3 convolutional cagdlés 2-

(W eEW | Wik kss) € Clkkrs)s Witkkss) € Clikrid} controllable and 1-observable, while its dual rate-2/3e00d
_( W W “C ) is 1-controllable and 2-observable. The zeroth-level et
[k, k+3) ket [k} 2= Mk kb)) granules of¢! are generated by. .., 000,002,000, ...) and
In other words,®;, 1+;1(C) is the quotient of the subset ofare isomorphic toZ,; the first-level controller granules are
sequences NV, 14 that satisfy the checks of on the generated by generatots, = (...,000,100,030,000,...),
intervals[k, k + 7) and (k, k + j] with the subset that checkswhich has order 4, anth, = (...,000,020,001,000,...),
on the entire intervalk, k + j]. which has order 2 modulo the zeroth-level granules, so they
Forj =1, we have(CO)|[k,k+1] = Cjky X Clfk+1}» SO are isomorphic t&, x Z». This confirms that the state space

N ;
_ Cliry % Clisn) ¥o(C—) is isomorphic t0Z4 x Zs.

@, 1411 (C) C It follows thatC has nontrivial observer granules at levels 0
Tk, k1] and 1 isomorphic t&, and toZ4 x Z,, respectively. Indeed,
In other words,®(; ,417(C) is the reciprocal state space ol is the 32-element subgroufy x Z, x 2Z, of the 64-
Clx.k+1) @s a length-2 code. element groupG, = (Z4)3, so the nondynamical length-1

Forj =0, we have(C*l)Hk,k] = Gy, and(CO)Hk,k] = Cjqx}, granulesGy/Cjqy are isomorphic toZy; a nonzero coset
so the zeroth-level (nondynamical) tirhkesbserver granule is representative is 001. We verify that the length-2 observer
G grar?ulesb[k_,kﬂ] (C) = (Cgry X Cigk+13)/Cl [k, k1) have order
i (C) 8, since|C(xy X Ciqrt1}] = 32 x 32, whereas|Cij j+1]| =
) ) ] 8 x4 x4 (the number of states times the number of input pairs).

Now in summary, having defined observer granules to heset of coset representatives 0 .11 in Cjixy X Cjihs1)
dual to controller granules, we obtain our main duality angd generated by(000,010) and (000,002), so the length-2
decomposition theorems: . observer granules are indeed isomorphi&tox Z.

Theorem 7.6 (granule duality)tf C andC- are dual group  Similarly, the first-level controller granules 6f are gener-
codes, then the observer granulg ;. ;(C) acis as the ated by sequences such @s., 000, 200,020,000, ...) and
character group of the cinfroller grandlg, ;.5 (C): are isomorphic tdZ,, while the second-level controller gran-

Lt 1 (C7)" = P g5 (C). ules are generated by = (..., 000,100, 010,002,000, ...),

Proof Follows from quotient group duality, projec-mOdU|° the first-level granules, and thus are also isomorphi

tion/subcode duality, and subcode/supercode duality. [J to Z,. It follows thatC+ has nontrivial observer granules for
Corollary 7.7 (observer granule decomposition theorem):/ = 1 @andj = 2, all isomorphic t0Z;, as the reader may

If C is a complete (resp. Laurent, finite) group code, theffrify- Since first-level granules are active for 1 time wamid

¢7=1/¢7 is isomorphic to the direct product (resp. Laurent€cond-level granules are active for 2 time units, this iespl

S Cuy

product, direct sum) of the observer granulgs ;. (C): a state space of size 8. O
ci—t L - ;
o~ Hq’[k (), >0, Example 4 (cont.)_ The dual codeC— over Z is again
Ci . ’ 1-controllable. As in Example 2, the only nontrivial con-

troller granules are the first-level granul®s, ;1;(C*) =

Thus we may decompose a sequenciiraccording to the (CL):WH”, which are generated by time shifts &f —

j-observable supercode chain into a sequenc&amd repre- 0.1 -2.0 . ; 1
i : . - ...), and are isomorphic té. C— is generated
sentatives of’/~1/C7,0 < j < L, and then decompose eacl"gy ,0,1,-2,0,... ) P Cisg

of these into a product of observer granule representatives, all finite sums of such sequences, and thus is isomorphic
P g P to the finite sequence spacg&?);.

Example 2 (cont.) The bi-infinite zero-sum cod&- over G The primal codeC over R/Z is 1-observable. Its only
is 1-controllable. Its O-controllable subcode {8}, and its nontrivial observer granules are the first-level granules
1-controllable subcode is itself. Its only nontrivial cooiter @, . 11)(C) = (Ciqry X Citrt13)/Ciii,kr1]- NOW Cpgry X

granules are therefore the first-level granules, .1 (C+) = Cjqx+1y is the set of all pair(g, h),g,h € R/Z}, whereas
(CL):[,C_,,CH], each of which is a group of length-2 sequences 6fj;, ;.11 is the set of all pairg(g, h) | g = 2h mod Z}. Since
the form(...,0,h, —h,0,...) with h € G", and is isomorphic g is determined byh, Cjj r+1) = R/Z and @, 141)(C) =
to G*. C* is the code generated by all finite sums of sucR/Z. Sets of coset representatives @, 1) are{(g,0),9 €
sequences, and thus is isomorphic to the finite sequence sg&¢Z} or {(0,h/2),h € R/Z}. W/C is isomorphic to the
(GH%);. direct product of these granulesie., to (R/Z)Z. O
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E. Observer granule decomposition of state spaces F. Dual first-output and last-output groups

We now obtain an observer decomposition of the statewhat is the dual to theith first-output groupF} . (C) =
spaces and state code of Arpbservable cod€ by dualizing (C.y, x+;)) %} (Which can also be thought of as the input
the controller decomposition of aﬁ—controllable_codecl, group at levelj at time k)? By projection/subcode duality,
again using the chain gf-observable supercodé€s. it is the parallel transition subgroup at tinkeof (C)|(x k-

Combining the reciprocal state space theorem with sufgr other words, £} ;,(C)* is the set((C1).z— (. x+4) k) Of
code/supercode duality, we obtain the following basic ltesutime-% symbols in all sequences - whose components are

all zero during(k, k + 7].

Theorem 7.8 (state space dualityf: C andC* are group  Wwe therefore define thigh-level dual last-output group
codes, then the reciprocal state spack(C’) of the j- of ¢ at timek as

observable supercodE at timek acts as the character group ‘
of the state spac&;((C*);) of the j-controllable subcode L) = Fj(C)" = (Cz—(hhts)) 1)
(Ct); at timek: XF(C7) = Bk ((CH);)

Thus the j-observable state spacg,(C’) is isomorphic
to the character group of thg-controllable state space
or((Ch))), ande (C7) = a((Ch);)"

For the state spaces of the ascending chain of jhe
controllable subcode&); of the L-controllable dual code
C*, we have chains of inclusion maps as follows:

{0}y — ow((C ) = = or((CH)L) = ow(Ch);
{0} = o(C ) == a((C)r)=0a(C).
This shows that,(C*) ando(C*) may be regarded as beingis dual to the timek first-output chain ofCt. By quotient

composed of the quotient groups((CL);)/o((C*);_1) and 9roup duality, the quotients of this chain are the character
o((CL);)/o((CL);_1), respectively. groups of the quotients of the dual chain. These quotiemts ar

As discussed in Section II-F, although.((C1); 1) is a isomorphic to the controller granules 6f-, whose character
subgroup o, ((C*);), the dual state space (character grougfoups act as the observer granulegof

In other words,L’**(C) is the set of timek symbols that
can be followed by a sequence gfconsecutive zeroes, or
equivalently that can precede the zero statej(C’).

Note thatL%*(C) = C|(1;. Moreover, ifC is L-observable,
then LL-#(C) = Lx(C), because by the secondn,n)-
observability tesC.z_ (4 r+1) = C.g1)- X Cosn41)+-

Thus thetime-k dual last-output chaiof C,

Ly(C) = LMM(C) C LEFHR(C) € - C LOM(C) = Cyay,

o (C7~1) is not in general a subgroup of.(C?). Nevertheless, Li—Lk(C)
there still exists a decomposition into dual quotient gup TRC) > @ kys)(C), 0<j <L
The adjoint chains of the above inclusion map chains are
chains of natural maps, as follows: Similarly, we define thgth-level dual first-output group of
at timek as
oh(CF) = Sk(C) = -+ = aR(C) = {0} Catt

o) =a(C)— - —oC) - {0} FIHC) = Lin(C)" = (Corprjob) ) (k) -

Moreover, X;(C) and o(C) may be regarded as be-In other words,F7*(C) is the set of timek symbols that can
ing composed of the respective kernels of these maysliow a sequence of consecutive zeroes, or equivalently that
(ox((CH);)/or((CH)j-1)) and (a((C1);)/a((C1);-1))". can follow the zero state in,(C7).
Dualizing our granule decompositions of these quotient Again we haveF*:*(C) = Cjxy, and if C is L-observable,
groups and using direct product/direct sum duality, we havehen F1-#(C) = F}.(C), sinceC.z_(x—r k) = C.(j—1)~ X Cop+-
on((CL). R . The time-k dual first-output chainf C,
(U IE((C(L))j))> = H (I)[i’i+'j](c)’ 1 Sj = L; L,k L—1,k 0,k
k j—1 ielk—i k) F.(C)=F>%C)CF FC)C - CFY(C) = C|{k},
( a((€h);) ) N H B (C), 1<j<L. is dual to the timek last-output chain of +, and the quotients
a((C);j-1) " are isomorphic to observer granules:

As we have already seen, the latter is isomorphicito! /C7. Fi—LE(C)
In summary: Fik(C)
Theorem 7.9 (dual state granule theorenbet C be anL- ) ,

observable group code, I8, (C) be its state space at tinie The quotientGy/Fy(C) will be called thesyndrome group

and leto,(C7) be the state space at tinkeof its j-observable k(C) Of C attimek, and the quotient” -+ (C) /F7*(C) will

supercode’’. Then there exists a chain of natural maps € called thgth-level syndrome groups5;,x(C) attimek, 0 <
j < L. The syndrome group at time may be decomposed

ok (CY) = Tp(C) = -+ — ar(C") — {0} = 0% (C?), according to the dual first-output chain at tinkeinto an
whose kernels are isomorphic to direct products of jhe €lement of the first-output grouf, (C) and representatives of
observer granuled; ;, ;(C),k —j <i < k,for 1 <j < L. the quotientd™*—1(C)/F*3(C), which are isomorphic to the
Consequently there is a one-to-one correspondence betwgeperver granules that “end” at timie The syndrome group
the state spacE, (C) and the Cartesian product of the observetx(C) acts as the character group b(C*).
granules®(; ;4 ;(C), k—j <i<k,1<j<L. In summary:

0

kEZ

= dp_j;,(C), 0<j< L.
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Theorem 7.10 (first-output/last-output dualityj: C and state space at timk corresponds in some sense to the active
C+ are dual group codes aritis L-observable, then the dualobserver granules at time
first-output (resp. last-output) chain 6fat time & is dual to Our constructions will be based on the construction of a
the last-output (resp. first-output) chain 6f at time k. In  minimal state observer fof. If C is L-observable, then a

particular, state observerfor C with memory L is a system that maps
0.k ke il N Clik—L.k) € Cljk—L,k) t0 the stater;(c) of c € C at timek for
FRRC) = LPHC) = Cpry = ((CT)1qmy) 5 each timek. In other words, the state observer dynamically
FEEC) = F(C) = (Lp(ct)t implements the state mag : C — o (C) using a “sliding
LL,k(C) _ Lk(C) _ (Fk (CL))L. window” of width L.

In view of the dual state granule theorem, the state
The quotients of the dual chains ¢f act as the character, (¢ ) is determined by the values of the observer granules

groups of the corresponding quotients of the primal chafns @ 14(C),k <i < k+j,1<j< L; namely, the observer
C*, and are isomorphic to observer granules as follows: granules that are “active” at tire A state observer is minimal
Li=bk@)y , if it_s state space at timé cor_responds in some sense to the
TRC) Prpry(C), 0<j<I; active observer granules at tinke N
Fi-Lk(C) . Our approach to realizing such a .m|n|mallstate observer
— (), 0<j<L. is as follows. Ifc € C, thena fortiori ¢ € C’ for all j-
FIR(C) observable supercod€s,0 < j < L. Givenc € 71, the

jth-level observer granulé;;_;(C) may be computed by

VIII. M INIMAL OBSERVER-FORM ENCODERS AND determining the character table column (“check”)

SYNDROME-FORMERS N N

One original objective of this paper was to develop a (Pi—.0(C7), ) = {(x, €} [ x € T (CT)}
minimal syndrome-former construction based on observsincel';;_; ; (C1) acts as the character group ®f;—;,1(C).
granules for a strongly observable catithat would be dual to This requires the calculation of the pairig, c) only for a
the minimal controller-form encoder construction of [18} f set of generators df ;_; ;(C*).
strongly controllable codes, with memory equal to the ollser ~ Since the pairing(x,c) is a componentwise sum over
memory L. Such a syndrome-former is easily found in manghe interval [ — j,4], and since the character table column
cases: for Examples 2-4 of this paper, for codes and systeffis_; ;;(C*),c) specifies an element ob(;_; ;(C), imple-
over fields [13], [21], and we dare say for most codes that theentation of such a pairing requires only a memory element
reader is likely to imagine. However, finding a general miaiim storing an element ofb;_; ;(C) that is active during the
syndrome-former construction that has all of the propsttiat interval (i— 7, ]. At each time during this interval, the memory
one might desire turns out to be quite difficult. element stores a “partial sum” if;_; ;(C). The values of

This problem has now been solved satisfactorily by Fagnaail of the partial sums corresponding to all active observer
and Zampieri [10]. Interestingly, their construction wsrkgranules is then the observer state at titne
equally well for nonabelian codes and, although it is based o Given a minimal state observer f6; a minimal observer-
the observer granule decomposition of the previous sedtionform encoder foilC may then be realized as follows. Assume
does not make any use of duality. that at timek the encoder has generated the pgst of a

In this section we construct minimal syndrome-formers armbde sequence € C. A minimal state observer that tracks this
observer-form encoders for Examples 2-4 of this paper, apdst will indicate the current stats, (c) by the stored values
also for the main example of [10]. Our approach uses tloé its currently active observer granules. The next outgut i
observability granules of directly, and seems simpler thanthen determined by an “input” in the first-output grofp(C)
the general methods of [10] for these simple codes. and the current statey (c).

A minimal syndrome-former for C is a dynamical map  Specifically, the next output, € G must be chosen so
from W to the syndrome sequence spddg Sx(C) that has that all observer granule®;,_; 1(C), 0 < j < L, that end
at least the following properties: at time k£ take on the value 0O, since € C if and only if the

(a) The kernel of the map is the code values of all quotients in the chain

(b) If C i§ L-observable, then the map h_as memary c—cLcel-lc...coocw

(c) The time# state space corresponds in some way to the
active observer granules at tinke are equal to zero. In view of the dual first-output chain

We also desire that the inverse images of the syndrom Lok L1k 0k
sequences form a disjoint partition @ in which each inverse By(C) = FHHC) € F (€) € - CFRHC) = Crpny
image is in some sense isomorphicddqsee [10]). However, given  representatives of each  quotient  group
we ignore here the behavior of the syndrome-former for inpéit/ ~-*(C)/F7"*(C) = ®;_;x(C), this can be done by
sequences not il€. Nevertheless, in all our examples, ousubtracting representatives from an arbitrary “free” inpu
syndrome-former construction turns out to have this priyperC ¢, according to the current partial sums of the ending

An encoder forC is a dynamical one-to-one map from thegranules®(;,_; 4 (C), leaving a residual free input if,(C).
memoryless input sequence spddg F1.(C) to C. A minimal ~ This produces a next output such thaic|(; 1)~ € Cj(x41)-
observer-form encoder for C is an encoder foilC whose which determines the next state, and so forth.
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Wy

In short, C0,k,3 = 0, C1,k,3 = C0,k—1,2s andcm = Ck—1,1-
Ch P S Thus we obtain a minimal observer-form encoder with “free
Ck—1 Wg—1 i i ; i

input” cx1 € Z4, as shown in Figure 8.2(a). Note that this

encoder is feedbackfree, and is also a minimal controtiemf
. @ . (b) encoder with controller memory 2.
Figure 8.1. Minimal (a) opservgr-form (_apcoder and Similarly, a minimal syndrome-former f@ has two levels.
(b) syndrome-former for bi-infinite repetition code The zeroth (nondynamical) level checks whethgr; € 27,
or equivalently whethetvy ,, 3 = 0, and, if not, “corrects” to
meet this constraint. This can be done simply by regarding
Similarly, a minimal syndrome-former can simply check, , . as the zeroth-level syndrome, and ignoring it thereafter.

whether the next output is in the appropriate set determiyed The next (first) level checks the constraints, = c,_;.; and
ak( ). If so, it continues. If not, then it needs to make somg_ k3 = Cor_1.2 by forming the syndromes; o = wy.o —

“correction” to reduce it to this set, so that the state obeer ,,, 11 € Zy andgl k3 = W1 k3—Wok 1.2 € Lo, @S Shown in

can continue. Figure 8.2(b). For simplicity, we merely compare the twabit
We now give some applications of this approach. of wyo andwy_; 1; this makes the syndrome-former linear

Example 2 (cont.) For the bi-infinite repetition codé over overZ,.

G, the state space at any timds G, and consists of a single The syndrome-former is evidently feedbackfree and has

first-level observer granul@(,_; ,)(C) = G. The first-output memory 1. Its output sequeneeis 0 if and only if w € C,

(input) group ofC is trivial, F;.(C) = {0}, and the syndrome and in this case the syndrome-former acts as a state observer

group S, (C) is G. for C.

The check corresponding t@®(,_; ) (C) is orthogonality  For the dual 2-observable rate-2/3 cagte, recall thatC+
to the dual first-level controller granul&,_; i (Ct) = has nontrivial observer granules at levels 1 and 2 isomorphi
{(-..,0,h,—h,0,...) | h € G"}. Forw € G%, we have to Z, and Z,, respectively. The first-level observer granules

. correspond to the constraint of orthogonality with the tshaff

(G 05y =h, 0, ), W) = {(hy wimy — i) [ B € G 2g = (...,000, 200,020, 000, . . .), which yields the constraint
which is equal to zero foralt € G™ifand only if wy, = wr_1.  2ck2 = 2ck—1,1, OF co k2 = Cok—1,1. The second-level ob-
A minimal state observer fo€ therefore needs only to storeserver granules correspond to orthogonality with the shuft
the partial sumw,_; € G at timek, so it has memory 1. g = (...,000, 100,010, 002,000, ...), which yields2¢; 5 =

A minimal observer-form encoder f@ stores the previous c,_1 2 + cx—2.1. If cox—1,2 = co,k—2,1, Which is guaranteed
outputci—1 € G and enforces the constraint = cx—1, as by the first-level constraint, then this is equivalentt, 3 =
shown in Figure 8.1(a);e.,there is no nontrivial input, and thec; ;1.2 + ¢1 k—2,1 + o, k—2.1, Wherecg 2,1 is a “carry bit.”
state space i&. The initial condition of the memory element Thus we obtain a minimal observer-form encoder with
is unspecified, and its effect persists indefinitely. “free” binary inputsci 1, co,k,1,C1,k,2, 1,k,3, Shown in Fig-

A minimal syndrome-former foil may simply be con- ure 8.3(a). The encoder is feedbackfree with memory 2, and
structed by implementing this check dynamically, as shows Z.-linear.
in Figure 8.1(b). (Conversely, the minimal encoder of Fegur A minimal syndrome-former foc+ again has two levels.
8.1(a) may be obtained by forcing. = 0 in Figure 8.1(b).) The first level checks whethet ; o = wo r—1,1 by forming
The value of each check is the syndrogpe= w,—wi—1 € G.  the syndromesg 2 = wo k2 + wo,xk—1,1 € Z2. The second
The syndrome sequenceQsif and only if w € C, and in this level checks whethewg 3 = w1 x—1,2+ w1 k—2,1 by forming
case the syndrome-former acts as a state observef.fox the syndromewgrs = wokrs + Wik—12 + Wi k—21 +
this example each cosét+ s of C in YW maps to a unique wg —2,1 = wo,k,3 +to,k—1,3 € Z2, as shown in Figure 8.3(b).
syndrome sequencec GZ. O The syndrome-former is feedbackfree with memory 2, and is

Example 3 (cont.) We now consider our 1-observable rate-1/32-linear. 0

convolutional code® over Z. Example 4(cont.) For Loeliger’s codé, the state space at any
For an elemeny € Zy, it will often be useful to consider a time & is R/Z, and it consists of a single first-level observer

two-bit representatioty1, go) € (Z2)* such thay = 2g1+go;  granule ., 4 (C) = R/Z. The first-output (input) group

i.e., g1 is the “high-order bit” andy, is the “low-order bit”  of C is binary, F}.(C) = {0, 1} = (32)/Z, and the syndrome
We recall thatC has nontrivial observer granules at levelgroups, (C) is (R/Z)/F,(C) = R/Z. A set of representatives

0 and 1 isomorphic tdZ, and Zs x Z,, respectively. The for (R/Z)/F,(C) is the interval(0,1/2).

zeroth-level observer granule corresponds to the constrai The check corresponding t,—1,4(C) is orthogonality

that c,3 € 2Z4— i.e., the low-order bitco s equals 0. to the dual first-level controller granulgy,_; 4 (C*), which

Thus Cjjoy = Za x Zy x 27Z4. The first- level granule cor- js generated byh = (...,0,1,-2,0,. ) Forw c W =
responds to the constraint of orthogonality with the shifts (R/Z)%, we have

the generatorh; = (...,000,100,030,000,...) andhy =
(...,000,020,001,000,...) of C+. The inner product with (h,w) = w1 — 2wy, € R/Z.

h; yields the constraint;_; - (100) 4+ ¢ - (030) = 0, or A minimal state observer fa therefore needs only to store
Ck,2 = ck—1,1. The inner product witthy yieldsc,_1-(020)+  the partial sumw,_; € R/Z of this check at timé:, and thus
¢k - (001) =0, Or ¢1 5,3 = Cok—1,2- has memory 1.
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C1,k,1 W1,k,1
— > W1,k—1,1
€0,k,1 wo,k,1
———» W0,k—1,1 I—
L C1,k,2 wW1,k,2 /D SLk2
€0,k,2 wo,k,2 /\\/ 50,k,2
Co,k—1,1 W
wo,k—1,2
w1,k,3 Yah S1,k,3
wo,k,3 N 50,k,3
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0 0,k,3

() (b)

Figure 8.2 Minimal (a) observer-form encoder and (b) symirdormer for rate-1/3 convolutional code ovéy.

C1,k,1 w

B Lk,1 W1, k—1,1

0,k,1 Wo,k,1

e Wo,k—1,1 N
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€0,k,2 W1, k,2
»{ Co,k—1,1 C) to,k—1,3

C1,k,3 wo,k,2 C) S0,k,2

€0,k,3 wo,k,3 50,k,3
et o o D

(a) (b)

Figure 8.3 Minimal (a) observer-form encoder and (b) symardormer for rate-2/3 convolutional code ovay.

A minimal observer-form encoder fdt stores the previous {00, 22,02, 20, 11, 33,13, 31}; thereforeC = Z4 x Z,. The
output c,_; € R/Z and enforces the constrair¥c;, = dual is the finite linear codé+ over Z, generated by shifts
ck—1 mod Z. The set ofc,, € R/Z that satisfy this constraint of h; = (...,0,2,2,0,...) andhy, = (...,0,1,0,1,0,...).
is the setc, = {ux + 3ce—1 | ux € {0,3}}, so the encoder C is clearly linear, time-invariant, autonomous and 2-
has a binary inputi;, € F;(C) and a state space &/Z, as observable. Its first-level observer granuigs_; ;) (C) check
shown in Figure 8.4(a). The initial condition of the memoryrthogonality to h; (2¢x = 2¢;_1) and are isomorphic
element decays to zero (but is still visible foreverciy). to Zs; its second-level observer granulés;,_ ;)(C) check

A minimal syndrome-former fo€ may be constructed by orthogonality toh, (¢x = cx—2) and are isomorphic t&-
implementing this check dynamically, as shown in Figur@ssuminge € C%). Its first-output (input) group i§0}, and
8.4(b). (Conversely, the minimal encoder of Figure 8.4(aym its syndrome group i€,.
be obtained by forcing; = 0 in Figure 8.4(b). Note that A minimal observer-form encoder férmay store the previ-
there are two values afy, that satisfy2w;, = wi_1 mod Z, ous outpuic,_; € Z4 in the two-bit form(cg —1,¢1,5-1). At
namelyw, = {uy + %wk_l | u € {0, %}}.) The value of the first level, it enforces the constraitd;, = 2c¢,_1, which
each check is the syndromg = 2wy, — wx_1 € R/Z. The determines the low-order bi ; of ¢;. Given this constraint,
syndrome sequence @sif and only if w € C, and in this case it need only store the high-order bi ,_; to enforce the
the syndrome-former acts as a state observerCfoin this second-level constraint , = ¢ ;—2, Which determines; 4.
example also each cosét+ s of C in YW maps to a uniqgue A minimal memory-2 syndrome-former faf may store
syndrome sequencec (R/Z)%. the low-order bitwy o for one time unit and the high-order

Finally, consider the chaotic time-reversed caddhe state bit wg,1 for two time units, so as to compute the first-level
space at any timé is R/Z, and consists of a single first-syndromesg , = wo —wo x—1 and the second-level syndrome
level observer granul@®,_; ;) (C) = R/Z. The first-output s1x = wix — wik-—2, @ shown in Figure 8.5(b). The
(input) group ofC is trivial, F}.(C) = Li(C) = {0}, and syndrome-former is feedbackfree with memory 2, and.is
the syndrome group(C) is R/Z. A minimal observer-form linear. Again, the encoder may be derived from the syndrome-

encoder forC stores the previous outpdf,_; € R/Z and former simply by forcing the syndromes to 0. O
enforces the constraidi, = 2¢;_1 mod Z, which completely
determinesé,, as shown in Figure 8.4(c);e., there is no IX. THE END-AROUND THEOREM

nontrivial input, and the state spaceRyZ. Since the map
Cr—1 — 2¢x—1 mod Z is “expansive,” the behavior of is
not only uncontrollable, but in fact chaotic.

In this section we show that every observer granule of a
group code C may be viewed purely algebraically as an “end-
around” controller granule, and vice versa. As consequence
Example 7. This code was the main example in [10]. It turn®f this observation, we develop:
out that our construction method yields a simpler syndrome-« A definition of observer granules for nonabelian group
former than the general construction given in [10]. codes;

Let C be the set of sequences(ii,)” that (a) are either all « Simple, purely algebraic alternative proofs of some pre-
odd or all even, and (b) have period 1 or 2. In other words, a vious results;
code sequence is the bi-infinite repetition of one of the 8spai « Myriad further isomorphisms.
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ULk +

{0,5}

Ck Ck—1

(a) (b) (©)
Figure 8.4. Minimal (a) observer-form encoder and (b) spnue-former for Loeliger’s cod€, and
(c) minimal observer-form encoder for the chaotic timeersed code.
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Figure 8.5 Minimal (a) observer-form encoder and (b) synmirdormer
for the Fagnani-Zampieri periodic code ov&y [10].

An intervalZ — [m, n),n > m, may be viewed as an “end-our observer dynamics results to nonabelian codes. Wedegar
around” interval that “starts” at time, wraps around from this as an important topic for further study, especially in
+00 to —o0, and finally “ends” at timen — 1. We denote such view of the successful constructions of [15] and [10] in the
an interval by[n, m). Similarly, we defindn,m] = Z—(m,n) nonabelian case.
for n > m, an interval which “starts” at timex and “ends”  We now sketch a few applications of the end-around theo-
at timem < n. If n = m+ 1, then(m,n) is the empty set rem. These involve partitioning the time adgsinto 2, 3, or 4
andZ — (m,n) is the entire time axi€. Finally, we define subintervals, which we then regard as a new finite time axis
(n,m] = Z — (m,n],n > m, the end-around interval from Z’ of length 2, 3, or 4, respectively (as in Subsection VI-B).
time n + 1 to time m. The state space theorem involves a two-way partitiod of

We then define arend-around controller granule on into disjoint subsets7 andZ — 7. We may regard a code
[n, m],n > m, analogously to an ordinary controller granule¢ defined onZ as a code defined on the length-2 time axis
as follows: 7' ={J,7—J}, which we identify with the length-2 interval

Cinom [1,2].
Linm) (€) = ﬁv n>m. Now the nondynamical controller granules a@f are
) '[n’n_l) ) (o] o ) I'1,1(C) = C.y and Tz, 9(C) = C.z— 7, and the sole dynam-
Then we obtain the following interesting isomorphism: ical controller granule is the first-level granulg, 5(C) =

Theorem 9.1 (end-around theoren.F)or. n > m, .the end- C/(C..7 + C.z_7), which is the two-sided state spaEe; (C).
around controller granuld’, ,,,;(C) is isomorphic to the e nondynamical observer granules ®fare &}, 1(C) =
observer granul@i,, ,j(C). W,7/Cly and @5 2(C) = Wiz_/Ciz_ 7, and the sole dy-
~ Proof. The restrictions oC., ) @ndC.n,m) 4 C.(n.m) OMO  namical observer granule is the first-level grandile ) (C) =
time n both have kemeL. ;, ), with images(C:j, m))|n) = (C7 +Cjz—7)/C, which we recognize as the two-sided recip-
Fr=m=tn(C) and (Cijnm)){ny = F"7™"(C), respectively, roca) state spac&? (C). The end-around controller granule

so by the correspondence theorem, L2y(C) is ¢/(C.s + Cz-7) = £7(C). The end-around
_ Fr=m=ln(e) theorem therefore implieX 7(C) = ¥7(C), an important
Linm) (€C) = Fr—mn(C) isomorphism that we derived previously as a corollary of the

L _ reciprocal state space theorem, as well as purely algeidtisaic
By TheorenZI0, this is isomorphic @y, ,)(C). . The [m,n)-controllability and [m,n)-observability tests

We may similarly define an end-around observer granulg,q e 5 three-way partition off into disjoint subsets
@ m)(C) for n > m, and show that it is isomorphic tom_7 [m, n), andn*. We may regard a codedefined or as a
Lo, n)(C)- code defined on the length-3 time agis= {m~, [m,n),n"},

One consequence of the end-around theorem is that il .\ e identify with the length-3 interval, 3]
dynamical observer granules may be expressed as end—arourmfow by the first [m, n)-observability tesi,c is [m,n)-

controller granules. But controller granules, unlike akee observabie if and only i€ is 1-observable od’; i.e., if and

granules, are well-defined for nonabelian group codes.e’Fhe{)nI if the second-level observer aran C) = cl/c?
fore it is possible to define the dynamical observer granofes; t?/ivial whereC? = C and granidg: 5)(¢) /

a nonabelian cod€ by @, ,1(C) = C.pn,m)/ (Cifn,m)C:(n,m))
(in multiplicative notation), which opens the door to exdery Cl={weWw| Wi,2] € Cjp,2)s Wii2,3) € Cli2,31}-
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By the end-around theorem, Cj1 xCi2 xCj3

_ C:[B,l] _ C:[n,m) ‘1323 (1)12
C:{B} + C:{l} C:nJr X C:m* ’ C|1 X C|23 C‘lg X C|3

D19 Doz

) N (Cj1 % Ca3)

®1.3(C) =T'3,1(C)

so C is [m,n)-observable if and only i, ) = C.pt X
C..m—- Thus the first{m, n)-observability test is equivalent to
the second by the end-around theorem.

Similarly, by our secondm, n)-controllability test,C is
[m, n)-controllable if and only ifC is 1-controllable onZ’;
i.e., if and only if the second-level controller granule

c 21 X 21 C 22 X E2
r C)=0————
1.3(C) Ci,2) +Cip2,3 o
is trivial. By the dual to the end-around theoreli, 5)(C) is o >
isomorphic to the end-around observer granule ! C1z X Cin 2

_ C‘{3} X C‘{l} _ C‘n+ X C|m— / \
SIERY Clinm) Ca x Cas T2 Tas Ca2 x Cs
w %

so C is [m,n)-controllable if and only ifC(, ) = Cjn+ X
Cjm- - Thus the firs{m, n)-controllability test is equivalent to Co % Co X C
the second by the dual end-around theorem. A2 A

Projections of these quotients onto the subinterval§igure 9.1. Granule isomorphisms on a length-3 time axis.
m~,[m,n), andn™ yield still further tests in terms of trivial
guotients of primal and dual first-output and last-outptinh,
which are cumbersome to write but which have the advantagg,ce the end-around controller granulEjs ;1(C) is

of being testable on a single interval. Even on a time axis gf[&l]/(c:[&él] + C.ja,1)), We have by projection onto time 2

3,11(C)

length 3, there are a great many isomorphisms that can be ggd the end-around theorem
rived from the general granule isomorphisms, since theeayst Fi-Lk(C)
dynamical structure is determined by only three dynamical —
controller granuled';5,T"23 and I'123 and three dynamical FIR(C)
observer granule®;,, P23 and @53 (or equivalently three where ®(; 3 (C) denotes the observer granue;,_; 1) (©).
end-around controller granuléss;, I's12 and'sg). The isomorphismL/=1#(C) /LI (C) = y 44 5(C) may be
A set of such isomorphisms is illustrated in Figure 9.derived similarly.
Moreover, every permutation of the three indicgk 2,3}
yields a similar set of further isomorphisms. Hefa x X. CONCLUSION

C.2 x C3 is the O-controllable subcode 6f andC.12 + C.23 In this paper we have extended the duality principles that
is the 1-controllable subcode d@f. The figure shows how have proved to be so useful in coding and system theory to
C/(C.1xC:2xC.3) decomposes into the controllability granulegpelian group codes. We have introduced a bit of topology in
I'12,T'25 and '3 = @31 Similarly, Cjp x Cj2 x Cj3 is the  order to make use of Pontryagin duality, but topology is not
0-observable supercode 6f (Cj12 x Cj3) N (Cj1 X Cj23) IS used in any essential way other than to clarify duality grinc
the 1-observable supercode @f and the figure shows how ples when the time axis is infinite. We have also introduced a
(Cj1 xCj2 x Cj3)/C decomposes into the observability granulegaw technical “well-behavedness” conditions, princigathe
D19, Po3 and @93 = T'3,. The diagram is self-dual. closed-projections assumption. Since this assumptioshol
Finally, our jth dual first-output and last-output groupyhen symbol groups are compact, arfortiori finite, we
results forj > 1 involve a four-way partition of I into disjoint do not believe that it will prove to be restrictive in praetic
subsets(k — j}, (k—j, k), {k}, (k, k — j), which we regard as applications.
a length-4 time axig€” and identify with the length-4 interval we have generalized the dual state space theorem of linear
[1,4]. _ system theory, which shows in a precise sense that the state
In this point of view, the dual first-output groufy’*(C) is  complexity of dual codes or systems is dual in the character
the set of time-2 symbols in the subcodg; 4 that “starts” group sense. We have also shown that there are well-defined

= Ti31(C) = @y 3(0),

at time % and “ends” at timek — j — 1, dual notions of controllability and observability for cadand
F-““(C) _( ) behaviors, .rather t_han for.state—space reglizatiqns okzod
(3,41J1{3}> and behaviors as in classical and behavioral linear system
while Fi=1*(C) is the set of time-2 symbols in the subcoddheory. Fi_n_ally, we have shown gl_ose connections between
C.(3.1) that “starts” at timek and “ends” at timek — j: controllability and finite generatability, on the one haadd

. observability and finite checkability (completeness), be t
Fj_l’k(C) = (C.3,1)) |43} other.
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