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The Dynamics of Group Codes:
Dual Abelian Group Codes and Systems

G. David Forney, Jr.,Fellow, IEEE,and Mitchell D. Trott,Member, IEEE

Abstract— Fundamental results concerning the dynamics of
abelian group codes (behaviors) and their duals are developed.
Duals of sequence spaces over locally compact abelian groups
may be defined via Pontryagin duality; dual group codes are
orthogonal subgroups of dual sequence spaces. The dual of a
complete code or system is finite, and the dual of a Laurent code
or system is (anti-)Laurent. If C and C

⊥ are dual codes, then the
state spaces ofC act as the character groups of the state spaces
of C

⊥. The controllability properties of C are the observability
properties of C⊥. In particular, C is (strongly) controllable if and
only if C

⊥ is (strongly) observable, and the controller memory
of C is the observer memory of C⊥. The controller granules
of C act as the character groups of the observer granules of
C
⊥. Examples of minimal observer-form encoder and syndrome-

former constructions are given. Finally, every observer granule
of C is an “end-around” controller granule of C.

Index Terms— Group codes, group systems, linear systems,
behavioral systems, duality, controllability, observability.

I. I NTRODUCTION

A GROUP CODE is a set of sequences that has a group
property under a componentwise group operation [15],

[29]. For example, ifG is any group andGZ is the direct
product group whose elements are the bi-infinite sequences
with components inG, then any subgroupC of GZ is a group
code.

A group code may be regarded as the behavior of a
behavioral group system, in the sense of Willems [46], [47],
[48], [49]. It has been shown in [15], [28], [29] that many of
the fundamental properties of linear codes and systems depend
only on their group structure. Most importantly, a group code
or system has naturally-defined minimal state spaces.

In this paper we study dual group codes and systems. Our
motivation is the importance of duality in the study of linear
codes and systems. (For brevity, we will usually say “code”
rather than “code or system/behavior.”)

Our first problem is to define the dualC⊥ of a group codeC.
For this purpose we use Pontryagin duality, a rather general
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notion of duality that applies to abelian topological groups.
A closed abelian group codeC in a sequence spaceW may
then be characterized as the set of all sequences inW that are
orthogonal to all sequences in the dual codeC⊥– i.e., C may
be characterized by a set of constraints (“checks”).

An immediate consequence of this definition is that the dual
of a complete code, namely a closed subgroup of a complete
sequence space such asGZ, is a finite code, namely a code
all of whose sequences are finite. On the other hand, the dual
of a Laurent code is (anti-)Laurent.

We derive fundamental duality relations between the dy-
namics ofC and the dynamics ofC⊥. For example, the state
spaces ofC act as the character groups of the state spaces of
C⊥, and the observability properties ofC are the controllability
properties ofC⊥. (Here observability is defined as in [28] as
a property of a code, not of a state space representation as in
[47].)

More precisely, we decompose the dynamics of a group
code into observer granules, in a decomposition dual to the
controller granule decomposition of [15].

Our original goal was to construct a minimal observer-form
encoder and a minimal syndrome-former/state observer forC
based on its observability structure. This is straightforward
in many particular cases, but surprisingly difficult in general.
Fagnani and Zampieri [10] have succeeded in providing such
constructions for group codes over general finite nonabelian
groups in a purely algebraic setting. Therefore we merely
present some general principles and examples of minimal
observer-form encoder and syndrome-former/state observer
constructions.

Finally, we show algebraically that every observer granuleis
isomorphic to an “end-around” controller granule. As corollar-
ies, we obtain purely algebraic proofs of many of our results.

We should say that our restriction to abelian groups does
not appear to us to be essential, except to allow the use
of Pontryagin duality. More general notions of duality of
nonabelian groups exist (see,e.g., [3]), but are beyond us.
Most of the results of this paper do not appear to depend on
the abelian property. (We show thatC has abelian dynamics
if and only if C is normal in its output sequence space;
however, normality appears to us to be no more fundamental
than abelianness.) It is striking that the syndrome-former
construction of [10], like the minimal encoder construction
of [15], applies to codes over (finite) nonabelian groups and
makes no use of duality, although it employs the observability
structure that we develop here.
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Section 2 briefly introduces Pontryagin duality. Section 3
discusses dual sequence spaces of several important types,
namely complete, finite and Laurent. Section 4 discusses dual
group codes, proves that projections and subcodes are duals,
gives dual definitions of wide-sense controllability and ob-
servability, and presents some examples of dual group codes.
Section 5 develops various results about dual state spaces.
Section 6 is concerned with dual notions of finite memory,
including strong controllability and observability. Section 7
develops observability decompositions into granules dualto
the controllability decompositions of [15], [29]. Section8
gives examples of the construction of minimal observer-form
encoders, state observers and syndrome-formers. Section 9
presents the end-around theorem and some corollaries. Section
10 is a brief conclusion.

II. PONTRYAGIN DUALITY

Our treatment is based on Pontryagin duality, which ap-
plies to topological groups. Pontryagin’s original treatise [35]
remains an excellent reference. For a more modern exposition,
see any book on Fourier (harmonic) analysis on groups;e.g.,
Rudin [39] or Hewitt and Ross [20].

A topological group is a group that is also a topological
space, such that the group and topological properties are con-
sistent. We do not expect the reader to have much background
in topology. We are not much interested in the topology
of individual symbol alphabets; we usually think of them
as being finite or at least discrete and/or compact, although
we make more general statements when they appear to be
warranted. However, topology does turn out to be important
when considering codes whose sequences are defined on
infinite index sets, even with finite symbol groups. For an
introduction to topology, see,e.g.,[25] or [40].

All topological groups in this paper will be assumed to
be metric spaces;i.e., to have a topology induced by a
distance function. Group homomorphisms will be assumed to
be continuous, and group isomorphisms will be assumed also
to be homeomorphisms. A subgroup of a topological group is
itself a topological group under the induced subspace topology,
but is considered to be a topological subgroup only if it is
closed.

In this section we review the two basic dualities of Pon-
tryagin duality theory: character group duality and orthogonal
subgroup duality. Sequence space duality is defined in termsof
the former, and code/system duality in terms of the latter. We
also introduce some additional fundamental duality principles:
direct product/direct sum duality, sum/intersection duality,
quotient group duality, and adjoint duality.

A. Character group duality

A character of a (topological) groupG is a (continuous)
homomorphism

h:G → R/Z

from G into the additive circle group (“1-torus”)R/Z (or
equivalently into the complex unit circle under multiplication,
to whichR/Z is isomorphic).

Thecharacter group of G, denoted byG ,̂ is the set of all
characters ofG, with group operation defined by

(h1 ◦ h2)(g) = h1(g) + h2(g).

Obviouslyh1 ◦ h2 = h2 ◦ h1, so Gˆ is abelian, and we may
use additive notation;i.e., the sum of two charactersh1, h2 is
h1+h2. The identity ofGˆ is the zero (or principal) character
0, defined by0(g) = 0 for all g ∈ G. The inverse ofh ∈ Gˆ is
the character−h defined by(−h)(g) = −h(g). The characters
of a groupG are by definition unique, in the sense that no two
charactersh1, h2 have equal valuesh1(g), h2(g) for all g ∈ G.

WhenG is locally compact abelian (LCA), the fundamental
Pontryagin duality theorem holds:

Theorem 2.1 (Pontryagin duality):Given an LCA groupG,

(a) its character groupGˆ is LCA;
(b) the character group ofGˆ is naturally isomorphic toG:

Gˆ̂ ∼= G.
The natural isomorphism of this theorem associatesg ∈ G

with the characterφg ∈ Gˆ̂ defined byφg(h) = h(g) for all
h ∈ G .̂ The theorem says that the character group ofGˆ is
precisely the set of all such characters:Gˆ̂ = {φg : g ∈ G}.
In this sense, we may say thatG acts asthe character group
of G ,̂ and writeGˆ̂ = G andg(h) = h(g).

Characters thus define a generalized inner product, called a
pairing, from Gˆ×G into R/Z, which we write as follows:

〈h, g〉 = h(g) = g(h).

A pairing satisfies the “bihomomorphic” relationships

〈0, g〉 = 〈h, 0〉 = 0;

〈h1 + h2, g〉 = 〈h1, g〉+ 〈h2, g〉;

〈h, g1 + g2〉 = 〈h, g1〉+ 〈h, g2〉.

We say thath ∈ Gˆ andg ∈ G areorthogonal if 〈h, g〉 = 0.
The character tableof G (or of G )̂ is the “matrix”

〈G ,̂G〉 = {〈h, g〉 | h ∈ G ,̂ g ∈ G}.

The “rows” and “columns” of this matrix are the “vectors”

〈h,G〉 = {〈h, g〉 | g ∈ G};

〈G ,̂ g〉 = {〈h, g〉 | h ∈ G }̂,

which explicitly specify the charactersh:G → R/Z ∈ Gˆ and
g:Gˆ → R/Z ∈ G, respectively. The rows are distinct and
form a group under row addition that is naturally isomorphic
to G ;̂ similarly, the columns are distinct and form a group
that is naturally isomorphic toG.

The elementary LCA groups in Pontryagin duality theory
are the real numbersR, the integersZ, the circle groupR/Z,
and the finite cyclic groupsZm = Z/mZ, which may be
identified with the finite subgroups(m−1

Z)/Z of R/Z. The
following table gives the corresponding character groups and
pairings:

G Gˆ 〈h, g〉
R R hg mod Z (in R/Z)
Z R/Z hg (in R/Z)
Zm Zm hg (in Zm)
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Note that in the cases ofR andZm, the character groupGˆ is
isomorphic toG; however, in these cases we caution that the
isomorphism is not a “natural” one. Moreover, the case ofZ

andR/Z shows thatG andGˆ need not even have the same
cardinality.

The fact thatZˆ = R/Z illustrates an important general
result: the character group of a discrete group is compact and
vice versa[39]. Since a finite group with the discrete topology
is both discrete and compact, the character group of a finite
group is finite;e.g.,(Zm )̂ ∼= Zm.

B. Finite direct product duality

Let I denote a discrete index set, which throughout this
section will be finite. We will often think ofI as an ordered
time axis, such as a finite subinterval ofZ. A set indexed by
I such asw = {wk ∈ Gk, k ∈ I} will correspondingly be
called asequence.

Given a finite set of LCAsymbol groups{Gk, k ∈ I}
indexed byI, their direct product is defined as the Cartesian
product set of all sequencesw = {wk ∈ Gk, k ∈ I}, denoted
by

W =
∏

k∈I

Gk.

The group operation ofW is defined componentwise, using
the symbol group operations. If allGk are equal to a common
groupG, then we writeW = GI . If |I| = n, then we may
alternatively writeW = Gn.

The finite direct productW is equipped with the natural
product topology [39]. If allGk are compact (resp. locally
compact), then the finite direct productW =

∏

k Gk is
compact (resp. locally compact) [39]. If allGk are discrete
(resp. finite), thenW is discrete (resp. finite).

As expected, the character group of a finite direct product
group is the direct product of the symbol character groups:

Theorem 2.2 (Finite direct product duality):The character
group of a finite direct productW =

∏

k∈I Gk of LCA groups
is the finite direct product

Wˆ =
∏

k∈I

Gk ,̂

with pairing 〈h, g〉 defined by the componentwise sum

〈h, g〉 =
∑

k∈I

〈hk, gk〉, h ∈ W ,̂ g ∈ W .

Note that
∑

k∈I〈hk, gk〉 is well defined sinceI is finite.
It follows that the character group ofG = R

n is Gˆ = R
n,

and that the pairing〈h, g〉 between vectorsg ∈ R
n, h ∈ R

n is
the ordinary inner (dot) producth · g, modZ.

Similarly, since every finite abelian group may be decom-
posed into a finite direct product of finite cyclic groups, it
follows that every finite abelian groupG is isomorphic to its
character groupG .̂ Moreover, ifm is the exponent ofG (the
least integer such thatmg = 0 for all g ∈ G), thenG may
be written as a subgroup of(Zm)n for somen. The character
group of (Zm)n may be identified with(Zm)n, and pairings
may then be defined in the usual manner as inner products
over the ringZm.

C. Orthogonal subgroup duality

We now consider a second kind of duality, which will be
the basis of our definition of dual codes and systems.

Let G be an LCA group with character groupG ,̂ and let
S be a subset ofG. The orthogonal subgroup to S ⊆ G
(the annihilator of S) is the set of all elements ofGˆ that are
orthogonal to all elements ofS:

S⊥ = {a ∈ Gˆ | 〈a, s〉 = 0 for all s ∈ S}.

The orthogonal subgroup toG itself isG⊥ = {0}, since the
zero character is the unique character inGˆ that is orthogonal
to all of G. Similarly, {0}⊥ = G .̂

In topological groups, the groupgenerated bya subset
S ⊆ G is defined as the smallest closed subgroup ofG that
containsS, called theclosureScl of S. S is closedif S = Scl.
Thus in topological groups the notion of closure involves both
algebraic and topological closure.

Orthogonal subgroups and closed subgroups are intimately
linked by the following duality theorem [34]:

Theorem 2.3 (Orthogonal subgroup duality):If G is an
LCA group, andS is a subset ofG, then

(a) the orthogonal subgroupS⊥ to S is a closed subgroup
of G ;̂

(b) the orthogonal subgroupS⊥⊥ to S⊥ is the closureScl

of S in G.
It follows that S is a closed subgroup ofG if and only if

S⊥⊥ = S. Also, S⊥⊥⊥ = S⊥.
We shall say that two orthogonal closed subgroupsH ⊆ G

andH⊥ ⊆ Gˆ aredual subgroups. We caution the reader that
when we say that a groupH⊥ is the orthogonal group toH ,
we do not imply thatH is closed, so thatH⊥⊥ = H . However,
if we say that two groups are dual or orthogonal groups, then
we imply mutual orthogonality, and thus that both groups are
closed.

This notion of duality is consistent with the usual definitions
of duality in a variety of contexts:

• If G = R
n andH is a subspaceof G as a vector space

over R, then H⊥ is the orthogonal subspaceto H in
Gˆ = R

n. Proof: for g ∈ G and a ∈ G ,̂ the pairing
〈a,g〉 is the ordinary dot producta · g, mod Z. But a
subspaceH of G is scale-invariant;i.e., h ∈ H implies
αh ∈ H for all α ∈ R. Now a · αh ≡ 0 mod Z for all
α ∈ R if and only if a · h = 0. Thus

H⊥ = {a ∈ Gˆ | a · h = 0 for all h ∈ H},

which is the usual definition of the orthogonal subspace
to H .

• If G = R
n andH is a lattice in R

n (a discrete subgroup
of Rn), thenH⊥ is thedual lattice in Gˆ = R

n. Proof:
Since〈a,g〉 = a · g mod Z,

H⊥ = {a ∈ Gˆ | a · h ≡ 0 mod Z for all h ∈ H},

which is the usual definition of the dual lattice toH .
• If G = (Zm)n andH is a subgroup (alinear block code

of lengthn overZm), thenH⊥ is the dual linear block
code in Gˆ = (Zm)n. Proof: Here the pairing〈a,g〉 is
the usual inner product over the ringZm.
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It is important to distinguish character group duality from
orthogonal subgroup duality. The character groupGˆ is often
called the “dual group” toG in the mathematical literature.
However, these examples show that the terms “dual code”
and “dual lattice” are to be understood in the orthogonal
subgroup sense. We use both types of duality in this paper;
for example, we use the term “dual sequence space” in the
character group sense, whereas we use the terms “dual code”
and “dual system” in the orthogonal subgroup sense. We
caution the reader to keep this distinction in mind, and to
refer to the notation if in doubt.

D. Sum/intersection duality

Let G be a topological group, and let{Sj ⊆ G, j ∈ J } be a
collection of subsets ofG indexed by an index setJ , possibly
infinite. For topological groups, the groupgenerated bythe
collection, called thesum of the subsets{Sj} and denoted
by
∑

j∈J Sj , is defined as the closureScl of the setS of
all finite sums

∑

j∈J sj , wheresj denotes an element ofSj.
Thus the sum (the group generated by theSj) is closed both
algebraically and topologically.

Let {S⊥
j ⊆ G ,̂ j ∈ J } be the collection of orthogonal

subgroups to the subsets{Sj , j ∈ J }. The intersection
⋂

j∈J S⊥
j of this set of closed subgroups is a closed subgroup

of G .̂ Moreover, by orthogonal subgroup duality, it is the
orthogonal group to the sum

∑

j∈J Sj :
Theorem 2.4 (Sum/intersection duality):

(
∑

j∈J

Sj)
⊥ =

⋂

j∈J

S⊥
j ;

∑

j∈J

Sj = (
⋂

j∈J

S⊥
j )⊥.

Proof. Let S be the set of all finite sums
∑

j sj for all
sj ∈ Sj. ThenS⊥ =

⋂

j S
⊥
j , sinceh ∈ Gˆ is orthogonal to

S if and only if h is in all orthogonal subgroupsS⊥
j . But by

definition
∑

j Sj = Scl, and by orthogonal subgroup duality
Scl = S⊥⊥ = (

⋂

j S
⊥
j )⊥.

This theorem applies particularly when the subsetsSj

consist of single elementssj ∈ G, called generators. The
orthogonal subgroup toSj is then the set of elementsa ∈ Gˆ
that pass the test〈a, sj〉 = 0, called acheck(or constraint).
This theorem then says that the orthogonal subgroup to the
subgroup generated by the generatorssj , j ∈ J , is the set of
a ∈ Gˆ that satisfy all checks〈a, sj〉 = 0, j ∈ J .

E. Quotient group duality

Let H andH⊥ be dual (closed) subgroups inG andG .̂
Every characterg in the character groupG of Gˆ is evidently
a character ofH⊥. However, since for a givenh ∈ H⊥

〈h, g〉 = 〈h, g′〉 ⇔ 〈h, g − g′〉 = 0,

two charactersg, g′ ∈ G of H⊥ are identical if and only
if g − g′ ∈ H , the orthogonal subgroup toH⊥. Thus the
characters ofH⊥ naturally correspond one-to-one to the cosets
H+r of H in G, which form the quotient groupG/H . Indeed,
it is easy to verify that the correspondence(H⊥ )̂ ↔ G/H
is an isomorphism. In this sense, the quotient groupG/H
acts as the character group ofH⊥, with pairing defined by
〈h,H + r〉 = 〈h, r〉, just asG acts as the character group of

G .̂ Correspondingly,H⊥ acts as the character group ofG/H
with the same pairing [45].

Theorem 2.5 (Subgroup/quotient group duality):If H and
H⊥ are dual closed subgroups inG andG ,̂ thenG/H acts
as the character group ofH⊥ andvice versa:

(H⊥)̂ = G/H ; (G/H )̂ = H⊥.

For example, ifH is a subspace ofG = R
n, andH⊥ is its

orthogonal subspace, then this theorem implies thatdimH⊥ =
dimG− dimH .

We note that each element of a groupG with a subgroupH
may be written uniquely asg = r+h, wherer is a representa-
tive of the cosetH+g ∈ G/H andh ∈ H . There is thus a one-
to-one correspondence betweenG and the Cartesian product
H×G/H , which may be viewed as a decomposition ofG into
two components,H andG/H . However, the two components
play different roles. In general,G/H is not a subgroup ofG;
moreover,G may have no subgroup isomorphic toG/H . For
example,R has no subgroup isomorphic toR/Z. Note that
although the character groupGˆ may similarly be thought of
as being composed ofHˆ and (G/H )̂ , the two components
exhange roles:(G/H )̂ = H⊥ is by definition a subgroup of
G ,̂ whereasHˆ is the quotientG /̂H⊥, which in general is
not a subgroup ofG .̂

This result may be straightforwardly extended to the quo-
tients of a finite chainJ ⊆ H ⊆ G of closed subgroups ofG.
Since h ∈ H⊥ implies h ∈ J⊥, the orthogonal subgroup
chain runs in the reverse order:H⊥ ⊆ J⊥ ⊆ G .̂ For
g ∈ H,h ∈ J⊥, the value of the pairing〈h, g〉 depends only
on the cosetsJ + g,H⊥ + h of J and H⊥ in H and J⊥,
respectively. ThereforeH/J andJ⊥/H⊥ act as dual character
groups, with pairing defined by〈H⊥ + h, J + g〉 = 〈h, g〉. In
summary:

Theorem 2.6 (Quotient group duality):If J ⊆ H ⊆ G,
then the dual quotient groupJ⊥/H⊥ to H/J acts as the
character group ofH/J : (H/J )̂ = J⊥/H⊥.

Quotient groups such asH/J andJ⊥/H⊥ will be called
dual quotient groups.

Thedual diagramsbelow illustrate two chains of subgroups,
with their quotients. The right chain is obtained by invert-
ing the left chain, replacing subgroups by their orthogonal
subgroups, and replacing quotient groups by their character
groups.

G {0}⊥ = Gˆ
| G/H | G /̂J⊥ = Jˆ
H J⊥

| H/J | J⊥/H⊥ = (H/J )̂
J H⊥

| J | H⊥ = (G/H )̂
{0} G⊥ = {0}

The following dual diagrams illustrate the chain of elementary
groups{0} ⊆ mZ ⊆ Z ⊆ R, whose quotients aremZ ∼=
Z,Z/mZ = Zm, andR/Z, and its dual chain

{0} ⊆ Z
⊥ = Z ⊆ (mZ)⊥ = m−1

Z ⊆ Rˆ = R,

whose quotients are congruent toZ ∼= (R/Z)̂ ,Zm
∼= (Zm )̂ ,

andR/Z ∼= (mZ)̂ , respectively. Indeed, the dual chain is just
the primal chain scaled bym−1.
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R Rˆ = R

| R/Z | R/(m−1
Z) ∼= R/Z

Z (mZ)⊥ = m−1
Z

| Z/mZ = Zm | (m−1
Z)/Z ∼= Zm

mZ Z
⊥ = Z

| mZ ∼= Z | Z

{0} {0}

F. Adjoint duality

Quotient group duality is a special case of a general duality
principle for adjoint homomorphisms.

Let φ:G → U be a homomorphism of an LCA groupG to
another LCA groupU . The adjoint homomorphism

φ∗:Uˆ→ Gˆ

is the unique homomorphism such that〈v, φ(g)〉 = 〈φ∗(v), g〉
for all g ∈ G, v ∈ U ,̂ whereGˆ and Uˆ are the character
groups ofG andU , respectively. Explicitly, the adjoint char-
acterφ∗(v) is the unique character inGˆ whose values are
given byφ∗(v)(g) = 〈v, φ(g)〉. Evidently the adjoint ofφ∗ is
φ; i.e., φ∗∗ = φ.

For example, letH be a closed subgroup ofG, and let
φ:G → G/H be the natural map defined byφ(g) = H +
g. Since H⊥ acts as the character group ofG/H , with
〈v,H + g〉 = 〈v, g〉 for g ∈ G, v ∈ H⊥ ⊆ G ,̂ the adjoint
φ∗:H⊥ → Gˆ is the inclusion ofH⊥ into G .̂

The fundamental adjoint duality theorem is as follows:
Theorem 2.7 (Adjoint duality):Given adjoint homomor-

phismsφ:G → U , φ∗:Uˆ → G ,̂ the kernel ofφ is the
orthogonal subgroup inGˆ to the image ofφ∗.

Proof. We show thatg ∈ (im φ∗)⊥ if and only if g ∈ kerφ.
Let g ∈ kerφ; i.e., φ(g) = 0. Then〈φ∗(v), g〉 = 〈v, φ(g)〉 =
0; i.e., every g ∈ kerφ is orthogonal toφ∗(v) ∈ Gˆ for all
v ∈ U .̂ Conversely, ifg is not in kerφ, thenφ(g) 6= 0, so
〈φ∗(v), g〉 = 〈v, φ(g)〉 6= 0 for someφ∗(v) ∈ G ,̂ because0 ∈
U is the unique characteru ∈ U = Uˆ̂ such that〈v, u〉 = 0
for all v ∈ U .̂

Note that whereas the kernel ofφ is necessarily closed, the
image ofφ∗ may not be closed; the orthogonal subgroup to
kerφ is therefore the closure ofim φ∗.

In our example, the kernelH of the natural mapφ:G →
G/H is indeed the orthogonal subgroup inG to the image
H⊥ of the inclusionφ∗:H⊥ → G .̂ Also, the kernel ofφ∗

is {0} ⊆ H⊥ and the image ofφ is the trivially orthogonal
subgroupG/H = (H⊥)̂ in (H⊥ )̂ .

The decomposition ofG into H and G/H is sometimes
illustrated by the followingshort exact sequence:

{0} → H → G → G/H → {0},

where the first two maps are inclusions and the second two
are natural maps. (“Exact” means that the image of each map
is the kernel of the next.) The adjoint short exact sequence

{0} → (G/H )̂ = H⊥ → Gˆ→ Hˆ= G /̂H⊥ → {0},

illustrates the exchange of roles upon which we previously
remarked.

A subgroup chain such as{0} ⊆ J ⊆ H ⊆ G implies a
chain of inclusion maps,e.g.,

{0} → J → H → G.

The adjoint chain runs in the opposite direction,

Gˆ→ Hˆ→ Jˆ→ {0},

and consists of a chain of natural maps with kernelsH⊥ =
(G/H )̂ , J⊥/H⊥ = (H/J )̂ , andG /̂J⊥ = J ,̂ illustrating
the same decomposition ofGˆ as in the first dual diagram
above.

III. D UAL SEQUENCE SPACES

A group code or system (behavior)C is a subgroup of
a sequence spaceW . In this section we define complete,
Laurent and finite topological sequence spaces, and determine
their character groups (dual sequence spaces)W .̂ We briefly
discuss more general memoryless sequence spaces.

A. Complete and finite sequence spaces

We now let the discrete indexI be possibly countably
infinite: e.g.,I = Z. In general,I need not be ordered; for
example, we could consider ann-dimensional index set such
as I = Z

n. However, for simplicity we will assumeI ⊆ Z

from now on. We will continue to call a set indexed byI a
sequence.

Given a set of LCA symbol groups{Gk, k ∈ I} indexed
by I, their direct product is again defined as the Cartesian
product set of all sequencesw = {wk ∈ Gk, k ∈ I}, now
denoted by

Wc =
∏

k∈I

Gk.

We call a direct productWc a complete sequence space. Its
group operation is still defined componentwise. We continue
to write Wc = GI if all symbol groups are equal toG.

The complete sequence spaceWc is equipped with the
natural product topology [39]. If all symbol groupsGk are
compact, then under the product topologyWc is compact.
However, even when all symbol groups are locally compact,
Wc need not be locally compact [39].

In topology, “completeness” is a property of metric spaces
(every Cauchy sequence converges). Ametric spaceis a
topological space whose topology is induced by adistance
function d(·, ·) that satisfies the distance axioms: strict posi-
tivity, symmetry, and the triangle inequality.

For example, ifI ⊆ Z and all Gk are discrete, then the
product topology is induced by the distance metric

d(w,w′) = 2−l(w,w′),

where l(w,w′) is the least absolute value|k| of an index
k ∈ I such thatwk 6= w′

k. In other words, two sequences are
regarded as “close” if they agree over a large central interval.
In this case the product topology is also called thetopology
of pointwise convergence, because a series{wn, n ∈ N}
converges tow if and only if, for all k ∈ I, wn

k = wk for all
sufficiently largen.
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In general, a topological direct productWc =
∏

I Gk is
complete if and only if allGk are complete [40, II.3.5]. We
will therefore assume from now on that all symbol groups
Gk are complete metric spaces. Moreover, a countable direct
productWc of complete metric spaces is metrizable (can be
endowed with a metric under which it is a metric space) [40,
II.3.8].

In a complete metric space, a subspace is complete if and
only if it is closed [40, II.3.2]. Since all sequence spaces we
consider will be complete metric spaces, we will generally
use the term “closed” rather than “complete” for subspaces.
We will reserve the term “complete” to mean “closed in the
product topology;”i.e., as a subspace of a complete sequence
spaceWc.

In behavioral system theory, a behaviorC ⊆ Wc is called
“complete” if whenever a sequencew ∈ Wc satisfies all finite
C-checks, thenw ∈ C. As we will discuss in Section 4.6, this
notion of completeness usually coincides with the topological
definition, but may need to be generalized.

On the other hand, thedirect sum of the symbol groups
{Gk, k ∈ I} is defined as the subset ofWc comprising the
sequencesw = {wk} in which only finitely many symbol
valueswk are nonzero (sometimes called the set of “Laurent
polynomials” in system theory), denoted by

Wf =
⊕

k∈I

Gk.

We will call a direct sumWf a finite sequence space. Sums
are still defined componentwise, andWf is evidently closed
under finite sums. If all symbol groups are equal to a common
groupG, then we writeWf = (GI)f .

The direct sumWf is equipped with the natural sum
topology [39]. If all Gk are discrete, then the sum topology
is simply the discrete topology (the topology induced by the
Hamming metric). Such a setting is purely algebraic, with
no additional topological structure. If all symbol groups are
complete, thenWf is topologically complete under the sum
topology.

If I is finite, then there is no distinction between a direct
product Wc and the corresponding direct sumWf , either
algebraically or topologically. However, ifI is infinite, then
Wf is a proper subset ofWc, and the sum topology ofWf is
in general different from the topology ofWf as a subspace of
Wc. In particular,Wf is not closed inWc, and its closure is
(Wf )

c = Wc, where the first superscript “c” denotes closure
or completion inWc.

B. Direct product/direct sum duality

Although an infinite direct product of LCA groups is not
necessarily LCA, the following duality theorem nevertheless
holds [22]:

Theorem 3.1 (Direct product/direct sum duality):The
character group of a direct productWc =

∏

k∈I Gk of LCA
groups is the direct sum

(Wc)̂ =
⊕

k∈I

Gk ,̂

with pairing 〈h, g〉 defined by the componentwise sum

〈h, g〉 =
∑

k∈I

〈hk, gk〉

for h ∈ (Wc)̂ , g ∈ Wc.
Note that the sum

∑

k∈I〈hk, gk〉 is well defined, since only
finitely manyhk are nonzero.

In other words, the dual of a complete sequence space is
the finite sequence space with the dual symbol groups, and
vice versa.

C. Laurent sequence spaces

In convolutional coding theory and classical linear sys-
tem theory, all sequences are usually semi-infinite Laurent
sequences—i.e., sequences that have only finitely many
nonzero symbol values before some arbitrary time, sayk = 0,
or equivalently that have a definite “starting time.”

A natural definition of aLaurent sequence spaceis the
direct product of a finite sequence space defined on the “past,”
I− = {k ∈ I | k < 0} and a complete sequence space defined
on the “future,”I+ = {k ∈ I | k ≥ 0}:

WL =

(

⊕

k∈I−

Gk

)

×

(

∏

k∈I+

Gk

)

,

We call WL the Laurent product of the symbol groups
{Gk, k ∈ I}.

Similarly, we define ananti-Laurent sequence spaceby the
anti-Laurent product

WL̃ =

(

∏

k∈I−

Gk

)

×

(

⊕

k∈I+

Gk

)

.

By direct product/direct sum duality, it is immediate that the
dual of a Laurent sequence space is an anti-Laurent sequence
space:

Theorem 3.2 (Laurent/anti-Laurent duality):. The anti-
Laurent sequence spaceXL̃ =

(
∏

k∈I− Gkˆ
)

×
(
⊕

k∈I+ Gkˆ
)

acts as the character group of the Laurent sequence space
WL =

(
⊕

k∈I− Gk

)

×
(
∏

k∈I+ Gk

)

, and vice versa:
(WL)̂ = XL̃.

Note that in this case, forx ∈ XL̃,w ∈ WL, the pairing
〈x,w〉 =

∑

k∈I〈xk, wk〉 is well defined, because only finitely
many pairings〈xk, wk〉 are nonzero.

It is customary to reverse the direction of time in the dual
sequence spaceXL̃, so that it also becomes a Laurent sequence
space. This yields a nice symmetry between the primal and
dual spaces, which is lacking for the complete/finite pair.

D. Memorylessness

Memorylessness is a set-theoretic property of a subsetV
of a Cartesian product sequence spaceWc =

∏

k∈I Gk. The
subsetV will be calledmemorylessif for any partition of the
index setI into two disjoint subsetsJ andI −J , if V|J and
V|I−J are the corresponding restrictions ofV (see Section
4.3), thenV is the Cartesian product

V = V|J × V|I−J .
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In general,V will be called asequence spaceif and only if
V is memoryless. It is easily verified that complete, finite and
Laurent sequence spaces are memoryless.

Another example of a memoryless sequence space is the
set l2 of all square-summable sequences in a real or complex
complete sequence spaceWc. The character group ofl2 is the
dual square-summable sequence spacel2. More generally, for
1 ≤ p ≤ ∞, the setlp of all p-power-summable sequences
is memoryless, and its character group is(lp)̂ = lq, where
1
p
+ 1

q
= 1 [39].

Given a set of symbol groups{Gk, k ∈ I}, the direct prod-
uct Wc =

∏

k∈I Gk is clearly the largest possible sequence
space with these symbol groups, since it consists of all possible
sequencesw such thatwk ∈ Gk for all k ∈ I. Conversely,
the direct sumWf =

⊕

k∈I Gk is the smallest memoryless
sequence spaceV such thatV|k = Gk for all k ∈ I, since by
memorylessness the finite sequence(

∏

j∈J V|j)×0|I−J must
be inV for any finiteJ ⊆ I. It follows that if I is finite, then
Wc = Wf is the only possible memoryless sequence space
with symbol groups{Gk}.

IV. D UAL GROUP CODES

A group code, system or behavior is a subgroupC of a
sequence spaceW . In the topological group setting, it is
natural to define atopological group codeor system to be
a closedsubgroup of a topological sequence space. Therefore,
unless stated otherwise, the termgroup code will hereafter
mean a closed subgroupC of a complete, finite or Laurent
sequence spaceW .

In this section we establish the basic duality between a
closed group codeC and its dual codeC⊥. This shows that
the dual code of a complete code is a finite code, andvice
versa. We show that ifC has certain symmetries such as
linearity or time-invariance, then so doesC⊥. We prove a basic
projection/subcode duality theorem. A more general principle
is conditioned subcode duality, which can be regarded as
a fundamental behavioral control theorem. We discuss the
meaning of completeness in both a topological and behavioral
sense, and agree to define completeness here as closure in a
complete sequence space (i.e.,closed in the product topology).
Completeness is then dual to finiteness. We briefly discuss
Laurent completion and “Laurentization.” Finally, we define
dual notions of controllability and observability, based on the
notions of completion and finitization. Several example codes
are given to illustrate these concepts.

A. Group code duality

We define thedual codeC⊥ to a group codeC ⊆ W as the
orthogonal subgroup toC in the dual sequence spaceW .̂ By
orthogonal subgroup duality, we have immediately:

Theorem 4.1 (Group code duality):If C ⊆ W is a (closed)
group code, then its dualC⊥ is a (closed) group code inW ,̂
andC⊥⊥ = C.

Thus, givenW , a group codeC is completely characterized
by its dual codeC⊥, andvice versa. Moreover, the dual code
of a complete code is a finite code, andvice versa.

If all symbol groupsGk are discrete, then the finite sequence
spaceWf =

⊕

I Gk is discrete, so every subgroupC of Wf is
closed. In other words, this discrete setting is purely algebraic
and topology may be ignored, even whenI is infinite.

The dual sequence space ofWf =
⊕

I Gk is the complete
sequence space(Wf )̂ =

∏

I Gk .̂ If eachGk is discrete, then
eachGkˆ is compact and(Wf )̂ is compact. By the orthogonal
subgroup duality theorem, the closed subgroups of(Wf )̂ are
precisely those subgroups that are duals of group codes inWf .

Thus whereas all subgroups ofWf are closed, only certain
subgroups of(Wf )̂ are closed. This asymmetry should not
be surprising, since even ifGkˆ∼= Gk, the complete sequence
space(Wf )̂ is much larger than the finite sequence space
Wf , and by Theorem 4.1 there is a one-to-one correspondence
between codes in(Wf )̂ and codes inWf .

Behavioral system theory has traditionally restricted itself
to complete behaviors.1 But we observe that the dual of
a complete group behaviorC ⊆ Wc is a finite behavior
C⊥ ∈ (Wc)̂ . Thus any theory that encompasses both com-
plete behaviors and their duals must encompass non-complete
behaviors, particularly finite behaviors.

B. Linearity and time-invariance

In this subsection we briefly discuss the important properties
of linearity and time-invariance. As in [15], linearity andtime-
invariance play no essential role in our development, although
we often use linear and/or time-invariant codes as examples.
Within our group-theoretic framework, linearity and time-
invariance are simply additional symmetries of a group code,
which are reflected by dual symmetries in the dual group code.

A group codeC ⊆ (Rn)I over the real fieldR is linear if it
is invariant under all isomorphismsα: (Rn)I → (Rn)I defined
by scalar multiplication by a nonzero scalarα 6= 0 ∈ R. Since
〈x, αw〉 = 〈αx,w〉, the dualC⊥ of a linear codeC is linear.

Similarly, a group codeC ⊆ W is time-invariant(or shift-
invariant) if the time axis isI = Z, if all symbol groups are
the same, and ifC is invariant under the delay isomorphism
D:W → W defined byD(w)|k = wk−1; i.e., if DC = C.
Since 〈x, D(w)〉 = 〈D−1(x),w〉, the dualC⊥ of a time-
invariant group codeC satisfiesD−1C⊥ = C⊥ and is thus
time-invariant.

If C ⊆ (Rn)Z is both linear and time-invariant, then
〈x,w〉 = (x̃ ∗w)0, wherex̃ is the time-reverse ofx and “∗”
denotes convolution. More generally,〈x, Dk(w)〉 = (x̃∗w)k.
It follows thatx is in C⊥ if and only if the convolutioñx ∗w
is the zero sequence0 for all w ∈ C. This shows that pairings
of linear time-invariant code sequences may be evaluated by
sequence convolutions, and further motivates inverting the
direction of time in the dual sequence spaceW .̂

C. Restrictions, projections and subcodes

In [15], we asserted that projections and subcodes of a
group codeC play dual roles. This will turn out to be our
key dynamical principle.

1Indeed, Willems [46, p. 567] has asserted, no doubt whimsically, that “the
study of non-complete systems does not fall within the competence of system
theorists and could be better left to cosmologists or theologians. . . .”
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Let W be a sequence space defined on an index setI, let
J ⊆ I be a subset ofI, and letI −J be the complementary
subset.

The restriction RJ :W → W|J defined byRJ (w) =
w|J = {wk, k ∈ J } is a continuous homomorphism. Since
W is memoryless,W = W|J × W|I−J , the image of the
homomorphism isW|J and its kernel is{0}|J × W|I−J .
The topology ofW|J is induced from that ofW .

The projection PJ :W → W is an essentially identical
map defined byPJ (w) = (w|J ,0|I−J ), a continuous homo-
morphism with the same kernel whose image isPJ (W) =
W|J × {0}|I−J .

Let C be a closed subgroup ofW . Then the kernel of either
the restrictionRJ : C → W|J or the projectionPJ : C → W is
the subcodeC:I−J = C ∩ ({0}|J ×W|I−J ), namely the set
of all code sequencesw ∈ C such thatwk = 0 whenk ∈ J .
As the kernel of a continuous homomorphism ofC, a subcode
C:I−J is a closed subgroup ofC.

Similarly, the restrictionC|:I−J = (C:I−J )|I−J of the
subcodeC:I−J to I −J , which is isomorphic toC:I−J , is a
closed subgroup of therestricted codeC|I−J = RI−J (C).

By the fundamental homomorphism theorem, the imageC|J
of RJ : C → W|J (or the imageC|J × {0}|I−J of PJ : C →
W) is algebraically isomorphic to the quotient groupC/C:I−J .

However, we caution that in certain atypical cases the
topology of the restrictionC|J as a subspace ofW|J is not
necessarily consistent with the topology of the quotient group
C/C:I−J . In particular, even thoughC/C:I−J is necessarily
closed,C|J may not be closed inW|J .

Example 1. Let W = R
2, and letC be an irrational lattice in

R
2; e.g., the lattice

C = {(am+ bn,−bm+ an) | (m,n) ∈ Z
2},

where the ratioa/b is irrational.C is discrete, and thus a closed
subgroup ofR2. The restrictionC|J of C to either coordinate is
C|J = {am+ bn | (m,n) ∈ Z

2}. The kernel of the restriction
is C:I−J = {0}, sinceam+bn = 0 impliesm = n = 0 when
a/b is irrational. ThusC/C:I−J is discrete and homeomorphic
to Z

2.
On the other hand, as a subspace ofW|J = R, the

restrictionC|J is not closed, but rather is a dense subgroup of
R whose closure is(C|J )cl = R. Thus these two topologies
are inconsistent.

Notice that, by orthogonal subgroup duality,(C|J )⊥ = {0}
and (C|J )⊥⊥ = R. Therefore projection/subcode duality (see
next subsection) holds in the formC|:J = (C|J )⊥, even though
(C|:J )⊥ 6= C|J (rather,(C|:J )⊥ = (C|J )cl).

It can be shown that a restrictionC|J is closed inW|J

if the sequence spaceW is discrete (because all subgroups
are closed in the discrete topology), or ifW is compact (the
dual to the discrete case; see Section 5.3), or ifW = (Rn)I

andC is a subspace (since subspaces ofR
n are closed in the

Euclidean topology). As these are the cases of most interestin
coding and system theory, the potential pathology illustrated
by Example 1 may usually be ignored;i.e., restrictions and
projections are usually closed subgroups of their respective
sequence spaces. We discuss this point again in Section 5.3.

D. Projection/subcode duality

The results of this subsection follow from the simple
observation that forw ∈ W ,x ∈ W ,̂ the pairing〈x,w〉 may
be decomposed as follows:

〈x,w〉 = 〈x|J ,w|J 〉+ 〈x|I−J ,w|I−J 〉.

Lemma 4.2 (Restricted sequence spaces):Let W be a se-
quence space defined on an index setI, let Wˆ be its dual
sequence space, and letJ be any subset ofI; then

(i) (W|J )̂ = (W )̂|J ; i.e., the character group of a restric-
tion (W|J )̂ is the corresponding restriction ofW .̂

(ii) W = W|J ×W|I−J impliesWˆ = (W )̂|J ×(W )̂|I−J ;
i.e., if W is memoryless, thenWˆ is memoryless.

(iii) PJ (W)⊥ = PI−J (W )̂; i.e., the orthogonal subgroup to
the projectionPJ (W) is the complementary projection
of W .̂

Our central result is then the following projection/subcode
duality theorem:

Theorem 4.3 (Projection/subcode duality):Let C and C⊥

be orthogonal closed group codes in sequence spacesW
and W ,̂ respectively. Then the orthogonal subgroup to the
restrictionC|J is the restricted subcode(C⊥)|:J .

Proof. Since〈(x|J ,0|I−J ),w〉 = 〈x|J ,w|J 〉, we have the
following logical chain:

x|J ⊥ C|J ⇔ (x|J ,0|I−J ) ⊥ C

⇔ (x|J ,0|I−J ) ∈ C⊥

⇔ x|J ∈ (C⊥)|:J .

Note that ifC|J is not closed, then the orthogonal subgroup
to (C⊥)|:J is the closure ofC|J .

In the language of coding theory, this theorem is stated as
follows: the dual of a punctured code is the corresponding
shortened code of the dual code.

This result immediately implies various corollaries:
Corollary 4.4 (Projection/subcode duality corollaries):

Under the same conditions:

(a) The orthogonal subgroup to the projectionPJ (C) =
C|J × {0}|I−J is (C⊥)|:J × (W )̂|I−J .

(b) The orthogonal subgroup to the restricted subcodeC|:J
is the closure of(C⊥)|J in (W )̂|J .

(c) The orthogonal subgroup to the subcodeC:J is the
closure of(C⊥)|J × (W )̂|I−J in W .̂

(d) If C|J is closed inW|J , thenC|J and (C⊥)|:J are dual
group codes.

(e) The orthogonal subgroup to the direct productC|J ×
C|I−J is (C⊥)|:J × (C⊥)|:I−J .

E. Conditioned code duality

The following generalization of projection/subcode duality
is the key lemma for the graph duality results of [14]. It is
also a fundamental result for behavioral control theory.2

2We are grateful to H. Narayanan for pointing out that our conditioned code
duality theorem is closely related to his “implicit dualitytheorem,” which he
has proved and used extensively in various settings [31], [32], [33].
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W|J
C

W|I−J
D

Figure 4.1. Conditioned code(C | D).

(W )̂|J
C⊥

(W )̂|I−J
D⊥

Figure 4.2. Dual conditioned code(C⊥ | D⊥).

Let C be a group code in a sequence spaceW defined on
an index setI, and letD be a group code defined onW|I−J ,
whereJ ⊆ I. The conditioned code(C | D) is then defined
as the set of allc ∈ C such thatc|I−J ∈ D:

(C | D) = {c ∈ C | c|I−J ∈ D} = C ∩ (W|J ×D).

Note that sinceC,W|J andD are closed,(C | D) is closed.
The conditioned code may be interpreted in the behavioral

control context of Figure 4.1. The symbols inW|J represent
to-be-controlled variables, those inW|I−J represent control
variables, andC represents a plant whose behavior constrains
both. The symbols inW|I−J are further constrained by a
controller D. The restricted conditioned code(C | D)|J
represents the controlled behavior of the variables inW|J .

The generalized theorem is then as follows (see Figure 4.2):

Theorem 4.5 (Conditioned code duality):If C and C⊥ are
dual group codes defined onI, andD andD⊥ are dual group
codes defined on a subsetI − J ⊆ I, then the restricted
conditioned codes(C | D)|J and(C⊥ | D⊥)|J are dual group
codes defined onJ , assuming both are closed.
Proof. First observe that(C | D)|J may alternatively be
characterized as the restricted subcode

(C | D)|J = (C + ({0}|J ×D))|:J ,

sincec ∈ (C | D) if and only if there is ad|I−J ∈ D such
that (c + (0|J ,d|I−J ))|I−J = 0|I−J . Assuming that both
(C | D)|J and (C⊥ | D⊥)|J are closed, we then have

(

(C | D)|J
)⊥

=
(

(

C + ({0}|J ×D)
)

|:J

)⊥

=
(

(

C + ({0}|J ×D)
)⊥
)

|J

=
(

C⊥ ∩ ({0}|J ×D)⊥
)

|J

=
(

C⊥ ∩ ((W )̂|J ×D⊥)
)

|J

= (C⊥ | D⊥)|J ,

where we have used projection/subcode, sum/intersection,and
direct product duality.

Notice that(C | W|I−J ) = C, whereas(C | {0}|I−J ) =
C:J . Therefore projection/subcode duality, namely(C|J )⊥ =
(C⊥)|:J , is a special case of conditioned code duality.

Moreover, asD ranges from{0}|I−J to W|I−J , the re-
stricted conditioned code(C | D)|J ranges from the restricted
subcodeC|:J to the restrictionC|J . This is the essence of the
“most beautiful behavioral control theorem” [42].

F. Completeness revisited

In behavioral system theory, the completion of a systemC
in a complete sequence spaceWc is defined as [47]

Ccompl = {w ∈ Wc | w|J ∈ C|J for all finite J ⊆ I},

andC is called complete ifCcompl = C. In other words,C is
complete if any sequencew ∈ Wc that looks like a sequence
in C through all finite windows is actually inC.

The following result characterizes the closureCcl of a
subgroupC ∈ Wc, which we also call itscompletionCc, in
almost the same way:

Theorem 4.6 (Completion):If C is a subgroup of a com-
plete sequence spaceWc defined on an index setI, then the
closure (completion) ofC is

Cc = {w ∈ Wc | w|J ∈ (C|J )cl for all finite J ⊆ I}.

Proof. By orthogonal subgroup duality,Cc is the dual of the
dual codeC⊥ in the dual finite sequence space(Wc)̂ . Since
C⊥ is finite, it is certainly generated by its subcodes(C⊥):J
for all finite J :

C⊥ =
∑

J finite

(C⊥):J .

By sum/intersection duality,Cc = C⊥⊥ is the intersection of
the dual codes((C⊥):J )⊥:

Cc =
⋂

J finite

((C⊥):J )⊥.

The theorem follows since by Corollary 4.4(c),

((C⊥):J )⊥ = (C|J )cl × (Wc)|I−J

= {w ∈ Wc | w|J ∈ (C|J )cl}.

It follows that if the restrictionC|J is closed for all finite
J ⊆ I, then completeness in the behavioral system theory
sense is equivalent to closure in the product topology, which
is what we call “completeness” in this paper. In particular,the
two concepts coincide if all symbol groupsGk are discrete.

A reviewer has pointed out that Theorem 4.6 may be
extended to the case in whichC is merely a subset ofWc.

G. Completion/finitization duality

The finite subset (or “finitization”) of a subgroupC of a
complete sequence spaceWc will be denoted byCf = C∩Wf .
We say thatC is finite if C = Cf . C is evidently a subgroup
of Wf . We will assume thatCf is closed when endowed with
the topology ofWf . For example, the finite subset ofWc or
of WL is Wf .

The following result shows that completion and finitization
are duals:

Theorem 4.7 (Completion/finitization duality):Let C be a
closed subgroup of a complete, finite or Laurent sequence
spaceW with symbol groups{Gk, k ∈ I}, and letC⊥ be the
dual subgroup in the dual sequence spaceW ,̂ with symbol
groups{Gk }̂. Let Cf be the finite subset ofC, and assume
that Cf is closed when endowed with the topology ofWf .
Then the dual subgroup toCf in (W )̂c =

∏

k∈I Gkˆ is the
completion ofC⊥ in (W )̂c: (Cf )⊥ = (C⊥)c.
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Proof. Following the proof of Theorem 4.6,Cf is generated
by the finite subcodesC:J of C for all finite J :

Cf =
∑

J finite

C:J .

By sum/intersection duality,(Cf )⊥ is the intersection of the
dual codes(C:J )⊥:

(Cf )
⊥ =

⋂

J finite

(C:J )⊥

By projection/subcode duality,

(C:J )⊥ = {w ∈ (W )̂c | w|J ∈ ((C⊥)|J )cl},

so

(Cf )
⊥ = {w ∈ (W )̂c | w|J ∈ ((C⊥)|J )cl for all finite J },

which by Theorem 4.6 is(C⊥)c.

H. Laurent codes

Similarly, a Laurent group codeis a closed subgroupC of
a Laurent sequence spaceWL. The dual of a Laurent group
codeC is an (anti-)Laurent group codeC⊥ in the dual (anti-)
Laurent sequence space(WL)̂ .

As in Theorem 4.1, ifC and C⊥ are dual Laurent group
codes, then either determines the other. Here the primal and
dual codes are symmetric.

The Laurent completionof a subgroupC of a Laurent
sequence spaceWL is the closure of the group generated by
C in WL, denoted byCL. C is a Laurent group code if and
only if C = CL. For example, the Laurent completion ofWf

is WL.
The Laurent subset(“Laurentization”) of a subgroupC of

a sequence spaceW will be denoted byCL; i.e.,

CL = C ∩WL.

CL is endowed with the topology ofWL. C is Laurent if C =
CL. For example, the Laurent subset ofWc is WL.

I. Wide-sense controllability and observability

Fagnani [6] has proposed an elegant definition of (wide-
sense) controllability, which we restate as follows. A complete
group codeC ⊆ Wc is controllable if (Cf )

c = C. In other
words, a complete group code is controllable if it is generated
by its finite sequences. Fagnani has shown that a complete
compact time-invariant group code that is controllable in this
sense is controllable in the sense of Willems [47].

More generally, we say that a group codeC in a sequence
spaceW is controllable if(Cf )c = Cc; i.e., if the completion
of C in Wc is the completion of the finite sequences ofC. The
complete code(Cf )c will be called thecontrollable subcodeof
the complete codeCc. Note that any finite codeC is necessarily
controllable.

We then propose the following dual definition: a group code
C in a sequence spaceW is observable if (Cc)f = Cf . In
other words, completingC does not introduce any new finite
sequences beyond those already inC. The finite code(Cc)f

will be called theobservable supercodeof the finite codeCf .
Note that any complete code is necessarily observable.

The following shows that these two definitions are duals:
Theorem 4.8 (Controllability/observability duality):If C

andC⊥ are dual group codes, then:

(a) Cc and (C⊥)f are dual group codes;
(b) The controllable subcode(Cf )c of Cc and the observable

supercode((C⊥)c)f of (C⊥)f are dual group codes;
(c) The quotient group((C⊥)c)f/(C

⊥)f acts as the character
group ofCc/(Cf )

c;
(d) C is controllable if and only ifC⊥ is observable.
Proof. Part (a) is Theorem 4.7. This also implies part (b), since

((Cf )
c)⊥ = ((Cf )

⊥)f = ((C⊥)c)f .

Part (c) follows by quotient group duality. Part (d) is a
corollary of part (c), since

Cc = (Cf )
c ⇔ Cc/(Cf )

c = {0}

⇔ ((C⊥)c)f/(C
⊥)f = {0}ˆ= {0}

⇔ ((C⊥)c)f = (C⊥)f .

Note that these notions of controllability and observability
do not depend onI being ordered. Therefore they apply to
systems with unordered time axes;e.g., two-D systems [36],
[44], [11], [12].

The core meaning of “controllable” is that any code se-
quence can be reached from any other code sequence in a finite
interval. We will consider a strong notion of controllability
below, and will prove that strong controllability implies con-
trollability in the sense of this section when all symbol groups
are compact. Similarly, the core meaning of “observable” is
that observation of a code sequence during a finite interval
gives a sufficient statistic for the future or the past. We will
show below that strong observability in this sense implies
observability in the sense of this section when all symbol
groups are discrete.

We say that a code islocal if it is both controllable and
observable. By Theorem 4.8, the dual of a local group code is
local. Local codes can be completed or finitized without lossof
structure, so it does not matter much whether we consider the
complete, finite or Laurent versions of such codes. Practical
convolutional codes are always chosen to be local, so as to
avoid the pathologies associated with uncontrollability (au-
tonomous behavior) and unobservability (“catastrophicity”).

To illustrate, we now give a standard example of an un-
controllable (autonomous) group codeC that is inherently
complete and cannot be “finitized” or “Laurentized” without
losing its dynamical structure. Its dualC⊥ is an unobservable
(catastrophic) group code that is inherently finite and cannot
be completed without losing its structure.

Example 2. Let G be an LCA group, letWc be the complete
sequence spaceGZ, and letC ⊆ GZ be thebi-infinite repetition
codeoverG; i.e.,

C = {g = (. . . , g, g, g, . . .) | g ∈ G}.

C is a complete time-invariant group code which is isomorphic
to G.
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The dual sequence spaceWˆ to Wc is the finite sequence
space((G )̂Z)f , whereGˆ is the character group ofG. The
dual group codeC⊥ is thebi-infinite zero-sum codeoverG ,̂
namely the finite code defined by

C⊥ = {h ∈ ((G )̂Z)f |
∑

k∈Z

hk = 0}.

This follows since forg = (. . . , g, g, g, . . .) ∈ C andh ∈ W ,̂
the pairing〈h,g〉 is

〈h,g〉 =
∑

k∈Z

〈hk, g〉 = 〈
∑

k∈Z

hk, g〉,

which is equal to0 for all g ∈ G if and only if
∑

k hk = 0, the
sum being well-defined because there are only finitely many
nonzero components inh ∈ W .̂ C⊥ is a closed subgroup
of the finite sequence spaceW ,̂ since it is the orthogonal
subgroup to the complete codeC. Like C, it is time-invariant.

The repetition codeC is uncontrollable, since its finite
subcode consists of only the all-zero sequence,Cf = {0},
and this trivial subcode is complete. The zero-sum codeC⊥ is
unobservable, since its completion is the complete sequence
space(G )̂Z.3 Thus finitization of C or completion ofC⊥

destroys dynamical structure.
Clearly C/Cf ∼= G, which by Theorem 4.8(c) implies that

W /̂C⊥ ∼= G .̂ The cosets ofC⊥ in Wˆ are in fact the
subsets ofWˆ such that

∑

k hk = h, for eachh ∈ G .̂ C⊥

is unobservable because no finite observation can distinguish
between these cosets.

J. Further examples

We now give two more examples of dual group codes.
The first involves a standard controllable and observable
(local) time-invariant convolutional code over a finite symbol
group and its dual. The second exhibits a curious complete
time-invariant group code that can be finitized on the past
(“Laurentized”) without loss of dynamical structure, but not
on the future. Its dual has the dual property. These two codes
were proposed in [27] and [28], respectively, but were not
recognized there as duals.

Example 3. Let C be the complete rate-1/3 linear time-
invariant convolutional code overZ4 comprising all linear
combinations of time shifts of the generator

g = (. . . , 000, 100, 010, 002, 000, . . .)

C is closed in the complete sequence space((Z4)
3)Z.

The finite subcodeCf of C is generated by all finite linear
combinations of time shifts ofg, and is closed in the finite
sequence space(((Z4)

3)Z)f . The completion ofCf is C, soC
is controllable. ThusC is local, since as a complete code it is
automatically observable.

Similarly, the Laurent subcodeCL is generated by all
Laurent linear combinations of time shifts ofg, and is closed
in the Laurent sequence space(((Z4)

3)Z)L.

3Proof: let c(m,n) be the sequence inC⊥ with cm = g, cn = −g, and
ck = 0 for k 6= m,n; then for fixedm the “limit” of c

(m,n) asn → ∞ in
the product topology is the sequence withcm = g andck = 0 for k 6= m, a
finite sequence that is not inC⊥. Since such unit sequences generate(G )̂Z ,
we have(C⊥)c = (G )̂Z .

The dual codeC⊥ is the finite rate-2/3 code linear time-
invariant convolutional code overZ4 consisting of all finite
linear combinations of time shifts of the two generators

h1 = (. . . , 000, 100, 030, 000, . . .);

h2 = (. . . , 000, 020, 001, 000, . . .),

which are orthogonal to all time shifts ofg under the usual
inner product overZ4. (Equivalently, the convolutions̃h1 ∗ g
and h̃2 ∗ g of the time-reverses̃h1 and h̃2 are equal to0.)
C⊥ is closed in the finite sequence space(((Z4)

3)Z)f .
The dual complete code(Cf )⊥ is the set of all linear

combinations of time shifts ofh1 and h2. C⊥ is the finite
subcode of(Cf )⊥, and(Cf )⊥ is the completion ofC⊥. Thus
C⊥ is local.

Here there is no essential difference between the finite,
Laurent, or complete versions ofC or C⊥. In general, the
dynamical structure of a group codeC is not affected by
completion or finitization if and only ifC is local.

Example 4. The following is a much more exotic example (a
“solenoid” [26]), and is a rich source of counterexamples.

Loeliger [27], [1] proposed the following curious PSK-type
code. LetC be the complete compact linear time-invariant code
over the additive circle groupR/Z that consists of all integer
linear combinations of time shifts of the Laurent generator

g = (. . . , 0, 12 ,
1
4 ,

1
8 , . . .).

Since 2g (mod Z) is a shift of g, the “input” at each time
k is essentially a binary variableuk ∈ {0, 12}, which may be
regarded as representing the subgroup(12Z)/Z of R/Z. The
“output” symbol at timek is

ck =
uk

2
+

uk−1

4
+

uk−2

8
+ · · · =

uk

2
+

ck−1

2
∈ R/Z.

Thusck determines the entire past input sequence.
If the output symbol is mapped onto the complex unit circle

via ck 7→ e2πick , thenC is a well-defined PSK-type code that
transmits one bit per symbol and has a well-defined minimum
squared distance (6.79. . . ). However, the symbol alphabet of
C is the entire infinite circle groupR/Z, rather than a finite
subgroup as with ordinary PSK codes. Also, the code “state”
ck−1 lies in the infinite state spaceR/Z. Each stateck−1 has
two successorsck, but eachck has only one predecessorck−1.

The dual codeC⊥ to C is the finite discrete linear time-
invariant code over the integersZ (the character group ofR/Z)
comprising all finite integer linear combinations of time shifts
of the finite generator

h = (. . . , 0, 1,−2, 0, . . .).

It is easily verified thath is orthogonal (modZ) to all time
shifts ofg, that a sequence in(R/Z)Z is in C if and only if it
is orthogonal to all shifts ofh, and that a sequence in(ZZ)f
is in C⊥ if and only if it is orthogonal to all shifts ofg.

Loeliger’s codeC is uncontrollable, since its finite subcode
consists only of the all-zero sequence,Cf = {0}. Indeed, its
time-reverseC̃ is a standard example of a chaotic dynamical
system whose evolution depends entirely on initial conditions
[2]. Nevertheless,C may be generated by a causal encoder
with one input bit per unit time.
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C has a natural Laurent subcodeCL that is generated by
the input sequences that are Laurent. Thus while finitization
destroys its structure, Laurentization does not. (However,
Laurentization does reduce the symbol alphabet from the
uncountably infinite setR/Z to the countably infinite set of
dyadic numbers inR/Z.) On the other hand, the anti-Laurent
subcode ofC is {0}, since if the output is0 at any time, then
it must have been0 at all previous times. Thus even though
C is time-invariant, its time axis has a distinct directionality.

The finite dual codeC⊥ is unobservable, since its comple-
tion is the complete sequence spaceZ

Z. Its Laurent completion
is (ZZ)L (the dual of {0} ⊆ ((R/Z)Z)L̃). However, its
anti-Laurent completion is simply the set of all anti-Laurent
integer combinations of shifts ofh, which again indicates the
directionality of the time axis.

Interestingly,C⊥ is a version of an example given in [28],
[29] to show that the set of all sequences generated by a group
trellis whose state space (in this caseZ) does not satisfy the
descending chain condition may not be a complete code.

Pontryagin suggested as a general rule that a compact group
might be best studied via its discrete character group [35].In
this spirit, we suggest that it might be useful in general to
study compact solenoids via their discrete duals. In this case,
for instance, the dual codeC⊥ is finite and has short integer-
valued generators.

V. DYNAMICAL DUALITY

This section develops basic dynamical dual properties of
dual group codesC andC⊥, such as:

• The state spaces ofC⊥ act as the character groups of the
state spaces ofC.

• The observability properties ofC⊥ are the controllability
properties ofC.

A. Topological state space theorems

The fundamental result of [15] is the state space theorem,
which shows that for a group codeC every two-way partition
of the time axis induces a certain group-theoretic minimal
state spaceΣJ . Moreover, there exists a minimal state re-
alization forC in which every state space is isomorphic to the
corresponding minimal state spaceΣJ . We now discuss this
theorem for the topological group codes of this paper.

Given a subsetJ ⊆ I, the subcodesC:J and C:I−J and
their internal direct productC:J × C:I−J are closed normal
subgroups ofC. The (two-sided)state spaceof C induced
by the two-way partition ofI into {J , I − J } is then well
defined as the quotient group

ΣJ (C) =
C

C:J × C:I−J
.

The proof of the following version of the state space
theorem goes through as in [15]:

Theorem 5.1 (State space theorem):Given a group codeC
in a sequence space defined on an index setI and a two-
way partition of I into “past” J and “future” I − J , the
minimal state space of any state realization ofC at the time
corresponding to this “cut” isΣJ (C).

In [15], one-sided state spacesPJ (C)/C:J and
PI−J (C)/C:J are also introduced, and shown to be
algebraically isomorphic to the state spaceΣJ (C). This
follows from the correspondence theorem, since the kernels
of the projections ofC and of C:J × C:I−J onto J are the
same, namelyC:I−J . One-sided state spaces may also be
defined using restrictions since,e.g.,

PJ (C)

C:J
∼=

C|J

C|:J
.

As discussed in Subsection IV-C, a restrictionC|J is home-
omorphic to the quotient groupC/C:J , provided thatC|J is
closed. With this caveat, we obtain a topological version of
the one-sided state space theorem:

Theorem 5.2 (One-sided state spaces):Under the same
conditions, letC|J and C|I−J be the restrictions ofC to J
andI − J , respectively, and assume both are closed. Then

C|J

C|:J
∼=

C|I−J

C|:I−J

∼= ΣJ (C).

Example 1 (cont.) Again, letC be a lattice{(am+bn,−bm+
an) | (m,n) ∈ Z

2}, wherea/b is irrational.C is isomorphic
and homeomorphic toZ2. Letting J and I − J denote the
two single-coordinate subsets, we haveC:J = C:I−J = {0}.
ThereforeΣJ (C) ∼= C ∼= Z

2, as expected, since either
coordinate determines the lattice point and thus the other
coordinate.

In this case, ifC|J andC|I−J are endowed with the discrete
topology, then they are homeomorphic toZ2, so Theorem 5.2
holds. However, as subspaces ofR, C|J and C|I−J are not
closed, and not homeomorphic toΣJ (C).

We will continue this discussion in Section 5.3.

B. The dual state space theorem

We can now relate the state spaces of a dual codeC⊥ to
those ofC, using the one-sided state space theorem. We must
therefore continue to require restrictions to be closed.

Theorem 5.3 (Dual state space theorem):If C and C⊥ are
dual group codes defined onI, then for any subsetJ ⊆ I, the
corresponding one-sided state space ofC⊥ acts as the character
group of the corresponding one-sided state space ofC:

(

C|J

C|:J

)ˆ

=
(C⊥)|J

(C⊥)|:J
.

Consequently the state space ofC⊥ is isomorphic to the
character group of the state space ofC:

(ΣJ (C))̂ ∼= ΣJ (C⊥).

Proof. By quotient group and projection/subcode duality,
(

C|J

C|:J

)ˆ

=
(C|:J )⊥

(C|J )⊥
=

(C⊥)|J

(C⊥)|:J

In the usual cases, this simple but powerful theorem gen-
eralizes a known result for linear codes over fields: the state
spaces of dual codes have the same dimensions. In particular:

• If ΣJ (C) is finite, thenΣJ (C) ∼= ΣJ (C⊥).
• If ΣJ (C) is a finite-dimensional real vector space, then

dimΣJ (C) = dimΣJ (C⊥).
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The following examples show that when the restrictions
C|J and C|I−J are closed, the dual state space theorem
gives a satisfactory system-theoretic result, even whenC is
uncontrollable, unobservable, or solenoidal.

Example 2 (cont.) For the bi-infinite repetition codeC overG,
given any proper subsetJ ⊆ Z, we haveC:J = C:I−J = {0},
so the state spaceΣJ (C) is isomorphic toC ∼= G. For the dual
bi-infinite zero-sum codeC⊥ overG ,̂ (C⊥):J is the set of all
finite sequencesh with support inJ whose component sum
is 0,

∑

k∈J hk = 0, whereas(C⊥)|J is the set((G )̂J )f of
all finite sequences with support inJ , so

ΣJ (C⊥) ∼=
(C⊥)|J

(C⊥)|:J
∼= G ,̂

where the cosets of(C⊥)|:J in (C⊥)|J correspond to the
different possible component sums

∑

k∈J hk ∈ G .̂ Hence
ΣJ (C⊥) ∼= (ΣJ (C))̂ . The dual state spaces are isomorphic if
and only ifG ∼= G .̂

Note that C⊥ has nontrivial state spaces, even though
its completion is the memoryless sequence spaceW .̂ The
unobservability ofC⊥ is reflected in the fact that the state of a
sequenceh ∈ C⊥ cannot be observed from any finite segment
h|J of h.
Example 3 (cont.) For any partition of the time axis into
pastk− and futurek+, the state spaces of both time-invariant
codesC and C⊥ of Example 3 are isomorphic toZ2 × Z4,
which as a finite abelian group is isomorphic to its char-
acter group. Generators for representatives of the cosets of
C|:k+ in C|k+ are |010, 002, 000, . . .) and |002, 000, 000, . . .),
which generate cyclic groups of orders 4 and 2, respectively.
Generators for representatives of the cosets of(C⊥)|:k+ in
(C⊥)|k+ are |030, 000, 000, . . .) and |001, 000, 000, . . .); the
first has order 4, but the order of the second is only 2, since
|002, 000, 000, . . .) is a code sequence in(C⊥)|:k+ .

Example 4 (cont.) The state of Loeliger’s codeC at time
k is the outputck ∈ R/Z, sinceC:k− = {0} (if the future
is all-zero, thenck = 0, which implies that the pastc|k−

is all-zero). Since the dual codeC⊥ is the set of all finite
integer combinations ofh = (. . . , 0, 1,−2, 0, . . .), the state of
C⊥ at time k is essentially its most recent inputuk−1 ∈ Z

(representatives of the cosets of(C⊥)|:k+ in (C⊥)|k+ are
generated by| − 2, 0, 0, . . .)). The dual state spaces are thus
R/Z andZ, which are indeed each other’s character groups,
but which are not isomorphic.

C. Non-closed restrictions

However, in the exceptional cases where restrictions are not
closed, the dual state space theorem can fail.

Example 1 (cont.) As shown above, the irrational lattice
C = {(am + bn,−bm + an) | (m,n) ∈ Z

2} is isomorphic
and homeomorphic toZ2, and so is its state spaceΣJ (C)
corresponding to splitting the two coordinates. The two re-
strictionsC|J andC|I−J are isomorphic and homeomorphic
to Z

2 under the discrete topology, but not under the subspace
topology.

The definition of the dual codeC⊥ depends on the sequence
space in whichC is considered to lie. IfC is regarded as a
subspace ofR2, then the dual sequence space isR

2, with
pairing equal to the usual inner product modZ. Let us write

C = AZ2, whereA =

[

a b

−b a

]

. The dual code is then

the irrational latticeC⊥ = A−1
Z
2 in R

2, whose state space
is again isomorphic toZ2. Thus, under the usual subspace
topologies, the dual state space theorem fails.

However, suppose we regardC as a subspace of the trimmed
sequence spaceC|J × C|I−J under the discrete topology;
then this sequence space is isomorphic and homeomorphic
to Z

2 × Z
2, and the dual sequence space is isomorphic to

(R/Z)2 × (R/Z)2. As C is isomorphic to a repetition code
over Z2, the dual codeC⊥ in this dual sequence space is
isomorphic to a zero-sum code over(R/Z)2, whose state space
is isomorphic to(R/Z)2 (see Example 2, above). Thus, under
these topologies, the dual state space theorem holds.

We conjecture that the dual state space theorem, and all later
duality results, hold when the symbol groupsGk are taken as
the restrictionsC|{k}, with the appropriate topologies.

However, as we see from this example, although use of
nonstandard topologies may lead to results which are formally
correct, they may not be consistent with the usual conventions,
which are often based on subspace topologies. For instance,
the usual definition of a dual lattice is with respect toRn;
then the dual lattice of any full-rank lattice, even an irrational
lattice, is itself a lattice (a discrete subgroup ofR

n), not some
weird continuous compact group like(R/Z)2.

One drawback of a Laurent sequence space is that in
general it is neither discrete nor compact, so we may expect
Laurent codes to provide further counterexamples, such as the
following one.

Example 5. Let C ⊆ (Z2)
Z be the binarymirror-image code

consisting of all binary sequencesx ∈ (Z2)
Z that exhibit

mirror symmetry; i.e., xk = x−k for all k ∈ Z. C is
complete (a closed subgroup of the complete sequence space
Wc = (Z2)

Z) and controllable (C is generated by its finite
sequences,C = (Cf )

c). Its dual codeC⊥ in Wf = ((Z2)
Z)f

is the set of all finite binary sequences inC with x0 = 0; i.e.,

C⊥ = (Cf ):Z−{0}.

C⊥ may also be regarded as a Laurent codeCL in the
Laurent sequence spaceWL = ((Z2)

Z)L, where it remains
closed. Its dual(CL)⊥ in this setting is an anti-Laurent code
in WL̃, which as a set is equal to the finite subcodeCf .

WhereasWf is discrete andWc is compact, the sequence
spacesWL and WL̃ are neither discrete nor compact. Thus
whereas the restrictions ofC ⊆ Wc and C⊥ ⊆ Wf to
the past intervalP = (−∞, 0) are necessarily closed, the
restrictions(CL)|P and ((CL)⊥)|P are not necessarily closed.
In fact, (CL)|P is closed inWL, but ((CL)⊥)|P is not closed
in WL̃, even though they are identical as sets (both are equal
to ((Z2)

P)f ).
This shows again that the validity of our topological results

depends very much on the topologies of the sequence spaces
in which codes are regarded as being defined, and in particular
on whether restrictions are necessarily closed.
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{0}
✟✟✟✟✯ C|J

✟✟✟✟✙

❍❍❍❍❥
C|:J

❍❍❍❍❨ ΣJ (C)

✟✟✟✟✯✟✟✟✟✙

C|J × C|I−J

RJ

C
PPPPPP✐ ΣJ(C)

✏✏✏✏✏✏✶

C|:J × C|:I−J

❍❍❍❍❥❍
❍❍❍❨ ΣJ(C)

❍❍❍❍❨❍❍❍❍❥
RI−J

✏✏✏✏✏✏✶

PPPPPP✐

✟✟✟✟✙✟
✟✟✟✯

{0}
❍❍❍❍❨C|I−J

❍❍❍❍❥

✟✟✟✟✙
C|:I−J

✟✟✟✟✯ΣJ(C)

Figure 5.1. Tableau illustrating state space and reciprocal state space theorems.

In order not to have to continually deal with such patho-
logical cases, we therefore impose from now on the following
closed-projections assumption:

The topology induced by every restriction or pro-
jection onto a subsetJ ⊆ I is consistent with the
topology ofW|J . In particular, projections of closed
subgroups are closed in the subspace topology.

A reviewer has pointed out that the closed-projections
assumption is satisfied for a complete sequence spaceW if all
symbol groupsGk are compact metric spaces, and in particular
if all Gk are finite. ThenW is a compact metrizable space,
so every closed and thus compact subset ofW has a compact
and thus closed image under the continuous restriction map
RJ : W → W|J .

Under the closed-projections assumption, we can apply
our duality results freely without continual consideration of
topological issues. The reader must therefore use our results
with caution whenever topological subtleties are suspected.

D. The reciprocal state space theorem

What is the character group of the two-sided state space
ΣJ (C)? The following theorem shows that it is the (two-
sided)reciprocal state spaceof C⊥, defined as

ΣJ (C⊥) =
(C⊥)|J × (C⊥)|I−J

C⊥
.

(The reciprocal state space was introduced in a different
context in [7].)

Theorem 5.4 (Reciprocal state space theorem):If C and
C⊥ are dual group codes, then the reciprocal state space
ΣJ (C⊥) acts as the character group of the two-sided state
spaceΣJ (C).
Proof. Using quotient group, direct product, and projec-
tion/subcode duality, we have
(

C

C|:J × C|:I−J

)ˆ

=
(C|:J × C|:I−J )

⊥

C⊥

=
(C|:J )⊥ × (C|:I−J )

⊥

C⊥

=
(C⊥)|J × (C⊥)|I−J

C⊥
.

The reciprocal state space theorem has an immediate corol-
lary, which yields a fourth state space for the group codes that
we are considering:

Corollary 5.5: The reciprocal state spaceΣJ (C) is isomor-
phic to the state spaceΣJ (C).
Proof. By the reciprocal state space and dual state space
theorems,

ΣJ (C) = (ΣJ (C⊥))ˆ ∼= ΣJ (C).

We caution the reader that this result depends on the closed-
projections assumption. Moreover, as we will discuss further
below, it applies only whenC is abelian. Nonetheless, it rounds
out the state space theorem nicely when it applies.

When the reciprocal state space theorem holds, there is a
chain

C|:J × C|:I−J ⊆ C ⊆ C|J × C|I−J ,

in which both quotients are isomorphic toΣJ (C). The dual
chain is

(C⊥)|:J × (C⊥)|:I−J ⊆ C⊥ ⊆ (C⊥)|J × (C⊥)|I−J ,

which has quotients isomorphic toΣJ (C⊥) ∼= ΣJ (C )̂ , as
illustrated by the dual diagrams below.

C|J × C|I−J (C⊥)|J × (C⊥)|I−J

| ΣJ (C) | ΣJ (C⊥)
C C⊥

| ΣJ (C) | ΣJ (C⊥)
C|:J × C|:I−J (C⊥)|:J × (C⊥)|:I−J

Figure 5.1 exhibits a related tableau of homomorphisms, in
which all quotient groups are isomorphic to the state space
ΣJ (C). Note that every left-to-right or right-to-left chain of
four maps in this tableau is a short exact sequence (a sequence
in which the image of each map is the kernel of the next).
Moreover, this tableau is self-dual, in the sense that the dual
diagram is the corresponding tableau forC⊥.

E. The abelian dynamics theorem

In this subsection we give a purely algebraic proof that the
reciprocal state spaceΣJ (C) is isomorphic to the state space
ΣJ (C) whenΣJ (C) is abelian. WhenΣJ (C) is not abelian,
ΣJ (C) is not well defined, but on the other hand the situation
is not essentially different. Finally, we show that these results
are a special case of the abelian dynamics theorem.
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The one-sided state space theorem shows that we can
compute the stateσJ (c) ∈ ΣJ (C) of a code sequencec ∈ C
from either its “past”c|J or its “future” c|I−J ; i.e., there
exist homomorphicstate mapsσ|J : C|J → ΣJ (C) and
σ|I−J : C|I−J → ΣJ (C), whose images are the state space
ΣJ (C) and whose kernels are the restricted subcodesC|:J and
C|:I−J , respectively. Forc ∈ C, the images of these maps must
agree:σJ (c|J ) = σI−J (c|I−J ).

A general pair(w|J ,w|I−J ) ∈ C|J × C|I−J is in C if
and only if σJ (w|J ) = σI−J (w|I−J ) [15]. Therefore we
can test whether(w|J ,w|I−J ) is in C by forming the state
difference (“syndrome”)

d(w|J ,w|I−J ) = σJ (w|J )− σI−J (w|I−J ).

Then (w|J ,w|I−J ) ∈ C if and only if d(w|J ,w|I−J ) = 0.
In other words,C is the kernel of the state difference map
d : C|J × C|I−J → ΣJ (C).

When ΣJ (C) is abelian, the state difference map is a
homomorphism. SinceC is its kernel, it follows thatC is a
closed normal subgroup ofC|J × C|I−J , and therefore that
the quotient group(C|J × C|I−J )/C (i.e., the reciprocal state
space) is well defined.

WhenΣJ (C) is not abelian,C is still the kernel of the state
difference map. The following theorem shows that in this case
C cannot be a normal subgroup ofC|J ×C|I−J , and therefore
the state difference map cannot be a homomorphism.

Theorem 5.6 (algebraic reciprocal state space theorem):
If C is an algebraic group code in the sense of [15], then the
state spaceΣJ (C) is abelian if and only ifC is a normal
subgroup ofC|J × C|I−J .
Proof. On the one hand, ifΣJ (C) is abelian, then the state
difference mapd : C|J ×C|I−J → ΣJ (C) is a homomorphism
with kernelC, so C is a normal subgroup ofC|J × C|I−J .

On the other hand, ifC is a normal subgroup ofC|J×C|I−J ,
then the reciprocal state spaceΣJ (C) = (C|J × C|I−J )/C is
abelian, which implies thatΣJ (C) ∼= ΣJ (C) is abelian. Let
w ∈ PJ (C); thenw ∈ C|J × {0}|I−J ⊆ C|J × C|I−J , so
by normalitywcw−1 ∈ C and thuswcw−1c−1 ∈ C for any
c ∈ C. Now w has supportJ , so P|I−J (wcw−1c−1) =
0, which implies wcw−1c−1 ∈ C:J and wcw−1c−1 =
wPJ (c)w−1(PJ (c))−1. As w and PJ (c) run through
PJ (C), the commutatorswPJ (c)w−1(PJ (c))−1 ∈ C:J
therefore run through the generators of the commutator sub-
group [PJ (C), PJ (C)]. Therefore[PJ (C), PJ (C)] ⊆ C:J .
By a general property of commutator subgroups [38, Ex. 2.52],
(C|J × C|I−J )/C is thus abelian.

Theorem 5.6 shows that there is a distinct algebraic dif-
ference between the abelian and nonabelian cases. However,
the two cases are otherwise not fundamentally different. Even
when C is not a normal subgroup ofC|J × C|I−J , we can
still partition C|J × C|I−J into “cosets” corresponding to the
distinct possible state differences inΣJ (C) under the state
difference map, thus establishing a one-to-one map between
the “cosets” ofC in C|J × C|I−J and the state spaceΣJ (C).
Thus the basic idea of a correspondence between syndrome
equivalence classes ofC|J × C|I−J andΣJ (C) still holds.

There is a nice generalization of the above theorem, as
follows. Given an algebraic group codeC in the sense of

[15], the label groupsof C are defined as the quotient groups
{C|{k}/C|:{k} ∼= Σ{k}(C), k ∈ I}. The group codeC then has
the same dynamical structure as its label codeq(C), obtained
by the natural mapqk : C|{k} → C|{k}/C|:{k} of eachoutput
groupC|{k} of C onto its label group.C is said to haveabelian
dynamicsif all label groups are abelian, for then and only then
all state spacesΣJ (C) are abelian [15].

We define theoutput sequence spaceof C as the direct
product (or whatever product/sum is appropriate) of the output
groups,W(C) =

∏

k∈I C|{k}, and thenondynamical sequence
spaceas the productV(C) =

∏

k∈I C|:{k}.
Theorem 5.7 (abelian dynamics theorem):If C is an alge-

braic group code in the sense of [15], thenC has abelian
dynamics if and only ifC is normal in its output sequence
spaceW(C).

Proof. If C has abelian dynamics, thenW(C)/V(C) =
∏

k∈I C|{k}/C|:{k} is abelian. ThusC/V(C) is an abelian and
normal subgroup. By the correspondence theorem,C is normal
in W(C).

Conversely, ifC is a normal subgroup ofW(C) = C|{k} ×
∏

k′∈I−{k} C|{k′}, then a fortiori C is normal in C|{k} ×
C|I−{k}, sinceC|I−{k} ⊆

∏

k′∈I−{k} C|{k′}. Therefore, by the
previous theorem, the label groupC|{k}/C|:{k} (which is the
state spaceΣ{k}(C)) is abelian, for anyk ∈ I. Since all label
groups are abelian,C has abelian dynamics.

A syndrome-formerfor C is a dynamical map defined
on the output sequence spaceW(C) (or a larger sequence
space) whose kernel isC. It follows from this theorem that
a syndrome-former can be homomorphic if and only ifC
has abelian dynamics. However, as we see from the example
of a state difference map, a syndrome-former can be non-
homomorphic while still being straightforward and essentially
group-theoretic. Thus our assumption of abelian dynamics
in this paper is not fundamental, as the syndrome-former
constructions of Fagnani and Zampieri [10] show.

VI. N OTIONS OF FINITE MEMORY

In this section we discuss several notions of finite memory,
and study their duality properties in a group-theoretic context.
Most of these notions have been introduced previously in
behavioral system theory [47] in a set-theoretic context.

We first introduceL-controllability and L-observability,
which turn out to be duals. We give two characterizations of
each, which are also duals. We then introduceL-finiteness
andL-completeness, also duals, and show that they are equiv-
alent toL-controllability andL-observability, respectively, in
appropriate settings.

To discuss memory, we must assume that the time index set
I is ordered;i.e., without loss of generality,I ⊆ Z. We will
use the notation of [15] for subintervals ofI; e.g.,

[m,n) = {k ∈ I | m ≤ k < n};

m− = {k ∈ I | k < m};

n+ = {k ∈ I | k ≥ n}.

Thus I is the disjoint union of the three subintervals
{m−, [m,n), n+}.
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Figure 6.1. Illustration of[m,n)-controllability
with code sequencesc, c′ andc′′.

A. Strong controllability and observability

We now study the duality between notions of strong control-
lability and observability. Our definition of strong controllabil-
ity is the same as that of Willems [47]. Our definition of strong
observability (introduced in [28]) corresponds to Willems’ def-
inition of “finite memory.”4 We show that these two notions are
duals. We also show that strong controllability or observability
implies controllability or observability, respectively,as defined
earlier.

Given a finite interval [m,n), a code C is [m, n)-
controllable if for any c, c′ ∈ C there exists ac′′ ∈ C such
thatc′′|m− = c|m− andc′′|n+ = c′|n+ . A code isL-controllable
if it is [m,m + L)-controllable for every length-L interval
[m,m+ L), andstrongly controllable if it is L-controllable
for someL. The least suchL is thecontroller memory of C.

The following controllability test follows directly from the
definition.

Theorem 6.1 (first [m, n)-controllability test):A code C is
[m,n)-controllable if and only ifC|I−[m,n) = C|m− × C|n+ .

Proof. This merely restates the definition; it says thatC is
[m,n)-controllable if and only if any past inC|m− can be
linked to any future inC|n+ .

If C is a group code, then we have an alternative controlla-
bility test:

Theorem 6.2 (second [m, n)-controllability test):A group
codeC is [m,n)-controllable if and only ifC = C:n− + C:m+ .

Proof. If C is generated byC:n− and C:m+ , then any past
c|m− can be linked to any futurec|n+ as follows: find any
c− ∈ C:n− and c+ ∈ C:m+ such that(c−)|m− = c|m− and
(c+)|n+ = c|n+ ; thenc−+c+ is the desired linking sequence.
Conversely, ifC is [m,n)-controllable, then anyc− ∈ C:m−

can be linked to0 ∈ C:n+ , and anyc+ ∈ C:n+ can be linked
to 0 ∈ C:m− , which implies thatC = C:n− + C:m+ .

The definition of[m,n)-controllability, illustrated in Figure
6.1, involves a notion of finite reachability: from any state
(set of past trajectories) at timem we can reach any state (set
of future trajectories) at timen. The first[m,n)-controllability
test translates this into a notion of memorylessness: the state at
timen is not constrained by the trajectory before timem. The
second[m,n)-controllability test relies on the group property,
by which it suffices to show that every state at timem can
reach the zero state at timen and every state at timen can
be reached from the zero state at timem; it then translates
this observation into the statement that every code sequence
can be decomposed into a code sequence inC:n− and a code
sequence inC:m+ , which is a generatability criterion.

4In [49, p. 336], Willems calls this notion “insightful” for discrete-time
behaviors.

c

c = c′ = c′′

c′
m

c′′

n

c

c′′

c′

Figure 6.2. Illustration of[m,n)-observability
with code sequencesc, c′ andc′′.

We define a codeC to be [m, n)-observable if whenever
c|[m,n) = c′|[m,n) for c, c′ ∈ C, then the concatenation of
c|m− , c|[m,n) = c′|[m,n), and c′|n+ is in C. A code is L-
observable if it is [m,m + L)-observable for every length-
L interval [m,m + L), and strongly observable if it is L-
observable for someL. The least suchL is the observer
memory of C.

The following observability test follows directly from this
definition:

Theorem 6.3 (first [m, n)-observability test):A codeC in a
sequence spaceW is [m,n)-observable if and only if

C = {w ∈ W | w|n− ∈ C|n− ,w|m+ ∈ C|m+}.

Proof. If C = {w ∈ W | w|n− ∈ C|n− ,w|m+ ∈ C|m+}
and c, c′ ∈ C have a common central segmentc|[m,n), then
w = (c|m− , c|[m,n), c

′
|n+) satisfies the constraintsw|n− ∈

C|n− ,w|m+ ∈ C|m+ and is therefore inC, so C is [m,n)-
observable. Conversely, ifC is [m,n)-observable, then the fact
that if c, c′ ∈ C have a common central segmentc|[m,n) then
w = (c|m− , c|[m,n), c

′
|n+) is a code sequence implies that any

sequencew ∈ W whose restrictionsw|n− andw|m+ equal
restricted code sequencesc|n− ∈ C|n− and c|m+ ∈ C|m+ ,
respectively, is a valid code sequence.

If C is a group code, then we have an alternative observ-
ability test:

Theorem 6.4 (second [m, n)-observability test):A
group code C is [m,n)-observable if and only if
C:I−[m,n) = C:m− × C:n+ .

Proof. In general,C:m− × C:n+ ⊆ C:I−[m,n). If c ∈
C:I−[m,n), thenc|[m,n) = 0|[m,n). Since0 ∈ C, if C is [m,n)-
observable, then the concatenations(c|m− ,0|m+) = Pm−(c)
and (0|n− , c|n+) = Pn+(c) are in C, and thus inC:m− and
C:n+ , respectively. SoC:I−[m,n) ⊆ C:m−×C:n+, which implies
that C:I−[m,n) = C:m− × C:n+ .

Conversely, ifc, c′ ∈ C are such thatc|[m,n) = c′|[m,n), then
c − c′ ∈ C:I−[m,n). If C:I−[m,n) = C:m− × C:n+ , thenc − c′

may be written asc − c′ = c− + c+, wherec− ∈ C:m− and
c+ ∈ C:n+ . It follows that

Pm−(c) + Pm+(c′) = c′ + Pm−(c − c′) = c′ + c−,

which by the group property ofC is in C. So C is [m,n)-
observable.

Our definition of [m,n)-observability, illustrated in Figure
6.2, is implicitly a notion of state observability: given a
segment of a code sequencec|[m,n), the states at timem
and n (and indeed during the entire interval[m,n)) are
determined. The first[m,n)-observability test translates this
into a checkability criterion: if a sequence looks like a code
sequence during the overlapping intervalsn− andm+, then
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it is a code sequence. The second[m,n)-observability test
relies on the group property, by which it suffices to show
that c|[m,n) = 0|[m,n) implies thatc ∈ C passes through the
zero state at timesm andn (and therefore during the entire
interval [m,n)); it then translates this observation into the
statement that every code sequence withc|[m,n) = 0|[m,n) can
be decomposed into a code sequence inC:m− and a sequence
in C:n+ , which is another notion of memorylessness.

Our desired duality theorem then follows directly from pro-
jection/subcode duality, applied to either of two dual pairs of
tests. The first proof shows that the first[m,n)-controllability
test and the second[m,n)-observability test are duals, whereas
the second proof shows that the second[m,n)-controllability
test and the first[m,n)-observability test are duals.

Theorem 6.5 (strong controllability/observability duality):
Given dual group codesC, C⊥ and a finite interval[m,n) ⊆ I,
C is [m,n)-controllable if and only ifC⊥ is [m,n)-observable.

First proof. By the first [m,n)-controllability test, C is
[m,n)-controllable if and only ifC|I−[m,n) = C|m−×C|n+ . By
projection/subcode duality, the duals of the left and rightsides
of this equation are(C⊥)|:I−[m,n) and (C⊥)|:m− × (C⊥)|:n+ ,
respectively. ThereforeC|I−[m,n) = C|m− × C|n+ if and only
if (C⊥)|:I−[m,n) = (C⊥)|:m− × (C⊥)|:n+ , which is effectively
the second[m,n)-observability test forC⊥.

Second proof. By the second[m,n)-controllability test,C
is [m,n)-controllable if and only ifC = C:n− + C:m+ . By
projection/subcode and sum/intersection duality, the duals of
these two codes areC⊥ and(C:n−)⊥ ∩ (C:m+)⊥, respectively.
Furthermore, by projection/subcode duality,

(C:n−)⊥ = {x ∈ Wˆ | x|n− ∈ (C⊥)|n−};

(C:m+)⊥ = {x ∈ Wˆ | x|m+ ∈ (C⊥)|m+};

so (C:n−)⊥ ∩ (C:m+)⊥ is equal to

{x ∈ Wˆ | x|n− ∈ (C⊥)|n− ,x|m+ ∈ (C⊥)|m+}.

But this isC⊥ if and only if C⊥ is [m,n)-observable, by the
first [m,n)-observability test forC⊥.

As immediate corollaries, we have:
Corollary 6.6: Given dual group codesC andC⊥,

(a) C is L-controllable⇔ C⊥ is L-observable;
(b) C is strongly controllable⇔ C⊥ is strongly observable;
(c) controller memory ofC = observer memory ofC⊥.

This fundamental duality result provides strong support for
our use of the term “observability” rather than “finite memory”
in [28] and here. Also, it is desirable to distinguish between
controller and observer memory.

All notions of zero memory coincide: a code is 0-
controllable or 0-observable or memoryless if for any time
m and anyc, c′ ∈ C, the concatenation(c|m− , c′|m+) is in C.

However, ifC is not memoryless, then there is no necessary
relationship between its controller memory and its observer
memory; these are two distinct (and dual) notions of the
memory ofC. The controller memory measures the maximum
time needed to link any past to any future. The observer
memory measures the maximum observation time needed to
obtain a “sufficient statistic” for predicting the future (resp.
the past) from the past (resp. the future).

Finally, we now verify that strong controllability (resp.
observability) implies wide-sense controllability (resp. observ-
ability) as defined earlier. For observability, we will consider
only the case in which all symbol groups are discrete, in
which case the topology of the complete sequence space
Wc is the topology of pointwise convergence. Under our
standing assumptions, the corresponding controllabilityresult
then holds when all symbol groups are compact.

Theorem 6.7:Let C and C⊥ be dual group codes in se-
quence spacesW andW ,̂ respectively. Let all symbol groups
Gk of Wc be discrete, and all symbol groupsGkˆ of (Wc)̂
be compact. ThenC is observable ifC is strongly observable,
andC⊥ is controllable ifC⊥ is strongly controllable.
Proof. SupposeC is strongly observable but not observable;
i.e., (Cc)f 6= Cf . Then there exists some finite sequencew ∈
(Cc)f that is not inCf . Since the topology ofCc is the topology
of pointwise convergence, this means that there is some series
{cn} of code sequencescn ∈ C that converges pointwise to
w as n → ∞. Now C is L-observable for some integerL,
and the support ofw is some finite interval[k, k′). Pointwise
convergence then implies thatcn|[k−L,k′+L) = w|[k−L,k′+L)

for all sufficiently largen. But L-observability then implies
thatw is a finite code sequence inC, sincecn|[k−L,k′+L) is a
code sequence that agrees with the all-zero sequence0 during
the length-L intervals[k−L, k) and[k′, k+L); contradiction.
ThusC must be observable.

Finally, C⊥ is controllable if and only ifC is observable by
Theorem 4.8, andC⊥ is strongly controllable if and only ifC
is strongly observable by the corollary above.

On the other hand, the following example shows that a
controllable code need not be strongly controllable, and an
observable code need not be strongly observable.

Example 6. Let I = {1, 2, . . .}, and letC be the group code
over a groupG in which the symbolsck are chosen freely
from G at timesk = 2n for all n ∈ {0, 1, . . .}, but at all other
times ck = ck−1. Then C is generated by finite sequences
of the form(. . . , 0, g, g, . . . , g, 0, . . .) with support[2n, 2n+1)
and is thus controllable, butC is notL-controllable for anyL ∈
Z. The dual subcodeC⊥ is thus observable but not strongly
observable.

B. L-finiteness andL-completeness

In this subsection we introduceL-finiteness andL-
completeness, which turn out to be duals. Our definition of
L-completeness is the same as that of Willems [47], except
for the modification that we made earlier when defining
completeness; it is a notion of finite checkability in complete
sequence spaces. We defineL-finiteness in a dual way as
a notion of finite generatability that applies to group codes
in finite sequence spaces. We show that in these restricted
contextsL-finiteness is equivalent toL-controllability, andL-
completeness is equivalent toL-observability.

We define a group codeC in a finite sequence spaceWf

to beL-finite if it is generated by its finite code sequences of
lengthL+ 1:

C =
∑

k∈Z

C:[k,k+L].
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In other words,C is L-finite if and only if anyc ∈ C may be
decomposed into a sum of code sequencesc[k,k+L] ∈ C:[k,k+L]

whose supports are intervals of lengthL+ 1:

c =
∑

k∈Z

c[k,k+L].

Notice that this definition makes sense only in the setting of
group codes; no analogue exists for set-theoretic codes.

The following theorem shows that for such group codes,
L-finiteness is equivalent toL-controllability:

Theorem 6.8 (L-finite = L-controllable + finite):If C is a
group code in a finite sequence spaceWf , thenC is L-finite
if and only if C is L-controllable.

Proof. If C is L-finite, then we may write anyc ∈ C as
c =

∑

j∈Z
c[j,j+L], so for anyk, c may be written as a sum

c = c(k+L)− +ck+ with c(k+L)− ∈ C:(k+L)− andck+ ∈ C:k+ ,
as follows:

c =
∑

j<k

c[j,j+L] +
∑

j≥k

c[j,j+L] = c(k+L)− + ck+ .

Thus C = C:(k+L)− + C:k+ , so by the second[m,n)-
controllability testC is [k, k + L)-controllable for allk, and
thusL-controllable.

Conversely, letC be L-controllable. Since all code se-
quences are finite, the support of anyc ∈ C is a finite interval,
say[k, k′+L]. By L-controllability, for anyj ∈ Z there exists
a cj+ ∈ C:j+ such that(cj+)|j− = 0|j− and (cj+)|(j+L)+ =
c|(j+L)+ . Thenc[j,j+L] = cj+ − (c(j+1)+)|(j+L)+ has support
[j, j+L]. Thus for anyc ∈ C we havec =

∑

j∈[k,k′ ] c[j,j+L];
so C is L-finite.

Dually, a group codeC in a complete sequence spaceWc

will be defined asL-complete if

C = {w ∈ Wc | w|[k,k+L] ∈ (C|[k,k+L])
cl for all k ∈ Z}.

As in our definition of completeness, this definition uses closed
restrictions(C|[k,k+L])

cl. If the closed-projections assumption
holds, then this reduces to Willems’ definition [47]. In other
words, C is L-complete if wheneverw ∈ Wc looks like a
code sequence through all windows of lengthL + 1, thenw
is in fact a code sequence.

The duality ofL-completeness andL-finiteness then follows
directly from projection/subcode duality:

Theorem 6.9 (L-finiteness/L-completeness duality):If C
and C⊥ are dual group codes in dual finite and complete
sequence spacesWf and (Wf )̂ , then C is L-finite if and
only if C⊥ is L-complete.

Proof. By sum/intersection duality,C =
∑

k∈Z
C:[k,k+L] if

and only if C⊥ =
⋂

k∈Z
(C:[k,k+L])

⊥. By projection/subcode
duality, (C:[k,k+L])

⊥ is the closure of

{x ∈ (Wf )̂ | x|[k,k+L] ∈ (C⊥)|[k,k+L]}.

Then

C⊥ = {x ∈ (Wf )̂ | (x|[k,k+L])
cl ∈ (C⊥)|[k,k+L] for all k},

which is the definition ofL-completeness forC⊥.
Corollary 6.10 (L-complete = L-observable + complete):

If C is a (complete) group code in a complete sequence space
Wc, thenC is L-complete if and only ifC is L-observable.

Proof. We have now shown that the following are equivalent:

C is L-complete ⇔ C⊥ is L-finite ⇔

C⊥ is L-controllable ⇔ C is L-observable.

This is a group-theoretic version of Willems’ set-theoretic
theorem [47] that a complete code isL-complete if and only
if it has L-finite memory (isL-observable).

While L-finiteness andL-controllability are equivalent
(resp.L-completeness andL-observability), the tests that they
imply are different in practice, as we show by revisiting the
controllability and observability tests of Subsection VI-A, and
then applying these tests to our examples.

The tests of Subsection VI-A involve a three-way partition
of the time axisI, namelyI = {m−, [m,n), n+}. We may
correspondingly identifyI with an equivalent finite time axis
I ′ = {1, 2, 3} of length 3, and we may regard any code
C defined onI as a codeC′ defined onI ′. Note that the
equivalent length-3 sequence spaceW ′ = W|m− ×W|[m,n)×
W|n+ is both complete and finite, assuming that each of the
restrictionsW|m− ,W|[m,n) andW|n+ is complete (closed).

Now in terms of the equivalent codeC′ on I ′, we have:
• C is [m,n)-controllable⇔ C′ is 1-controllable;
• C′ is 1-controllable⇔ C′

|{1,3} = C′
|{1} × C′

|{3};
• C′ is 1-finite⇔ C′ = C′

:{1,2} + C′
:{2,3}.

The latter two tests correspond to our first and second[m,n)-
controllability tests, respectively, and their equivalence follows
from Theorem 6.8. Similarly,

• C is [m,n)-observable⇔ C′ is 1-observable;
• C′ is 1-observable⇔ C′

:{1,3} = C′
:{1} × C′

:{3};
• C′ is 1-complete⇔

C′ = {w ∈ W ′ | w|{1,2} ∈ C′
|{1,2},w|{2,3} ∈ C′

|{2,3}}.

These two tests correspond to our second and first[m,n)-
observability tests, respectively, and their equivalencefol-
lows from Corollary 6.10, or by duality from our[m,n)-
controllability tests.

Now let us see how these various tests apply to some of
our example codes.

Example 2 (cont.) A bi-infinite repetition codeC overG is 1-
observable, because two code sequences that agree anywhere
agree everywhere. It is 1-complete, because a sequencew is
in C if and only if the two components of every length-2 re-
strictionw|[k,k+1] are equal. The zero-sum codeC⊥ overGˆ is
1-controllable, because for any two finite sequencesx,x′ and
anyk ∈ Z, there is anh ∈ Gˆ such that(x|k− , h, (x′)|(k+1)+)
is in C⊥. It is 1-finite, because it is generated by its length-2
sequences(. . . , 0, g,−g, 0, . . .).

Example 3 (cont.) The finite subcodeCf of the rate-1/3
linear time-invariant convolutional codeC over Z4 com-
prising all linear combinations of time shifts ofg =
(. . . , 000, 100, 010, 002, 000, . . .) is by definition 2-finite and
evidently 2-controllable, since it has a feedbackfree encoder
with memory 2. The finite subset(C⊥)f of its dual rate-
2/3 code C⊥ comprising all linear combinations of time
shifts of the generatorsh1 = (. . . , 000, 100, 030, 000, . . .),
h2 = (. . . , 000, 020, 001, 000, . . .) is by definition 1-finite and
evidently 1-controllable.
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C is 1-complete, because it is the set of all sequences
orthogonal to all shifts of the length-2 sequencesh1 andh2. C
is 1-observable, because a zero symbol 000 can be observed
only if C is in the zero state. Similarly,C⊥ is 2-complete,
because it is the set of all sequences orthogonal to all shifts
of the length-3 sequenceg, and it is 2-observable since two
successive zero symbols(000, 000) can be observed only if
C⊥ is in the zero state, as the reader may verify.

Example 4 (cont.) Loeliger’s codeC is 1-observable, since
two code sequences with the same outputck have a uniquely
determined past and the same set of possible futures. It is 1-
complete, because a sequencew is in C if and only if the first
component of every length-2 restrictionw|[k,k+1] is twice the
second component (modZ). Its dualC⊥ is generated by the
time shifts of the length-2 generatorh = (. . . , 0, 1,−2, 0, . . .),
and thus is by definition 1-finite; it is 1-controllable sinceit
evidently has a feedbackfree encoder with memory 1.

VII. D UAL GRANULE DECOMPOSITIONS

The development of [15] is based on a decomposition of
an L-controllable group codeC according to a chain ofj-
controllable subcodesCj ,

C0 ⊆ C1 ⊆ · · · ⊆ CL = C,

and then a further decomposition of the quotientsCj/Cj−1

into direct products ofjth-level granules, defined (in additive
notation) as

Γ[k,k+j](C) =
C:[k,k+j]

C:[k,k+j) + C:(k,k+j]
.

We now give a dual decomposition of anL-observable
group codeC according to thej-observable supercode chain,

C = CL ⊆ CL−1 ⊆ · · · ⊆ C0,

and then a further decomposition of the quotientsCj−1/Cj

into products ofjth-level observer granulesΦ[k,k+j](C). Here
the “granules”Γ[k,k+j](C) of [15] will be called “controller
granules.”

We will show that thej-observable supercodeCj of C is
the dual of thej-controllable subcode(C⊥)j of its dualC⊥,
and that the observer granules ofC act as the character groups
of the corresponding controller granules ofC⊥.

In the following section, we will give examples of how
this observability structure can be used to construct mini-
mal observer-form encoders, state observers and syndrome-
formers. A general construction of syndrome-formers for
non-topological group codes over finite, possibly nonabelian
groups that uses this observability structure is given in [10].

A. Controller decomposition

We review the results of [15] in our topological group
setting, to prepare for dualizing them.

From here on, for simplicity, when we denote a sequence
subspace in a sequence spaceW by a Cartesian product,e.g.,
∏

k∈I Ak, we imply that the product is of the same type as
that ofW— e.g.,a direct product, Laurent product, or direct
sum.

As in [15], we define thej-controllable subcodeCj of a
group codeC in a sequence spaceW as the code generated
by the length-(j + 1) subcodesC:[k,k+j] of C:

Cj =
∑

k∈Z

C:[k,k+j].

If W is finite, thenCj by definition is j-finite. By a proof
like that of Theorem 6.8,Cj is j-controllable, andC is L-
controllable if and only ifC = CL.

If C isL-controllable, then we have a chain ofj-controllable
subcodes

{0} ⊆ C0 ⊆ C1 ⊆ · · · ⊆ CL = C.

For consistency in indexing, we may denote the trivial subcode
{0} by C−1.

The 0-controllable subcodeC0 (called theparallel transition
subcodeof C) is a memoryless sequence space of the same
type asW , whose symbol groups are the length-1 subcodes
C:{k}. Since it is memoryless, it has trivial dynamics (i.e.,
trivial state spaces).

The controller granulesΓ[k,k+j](C) are defined by

Γ[k,k+j](C) =
(Cj):[k,k+j]

(Cj−1):[k,k+j]
, k ∈ Z, 0 ≤ j ≤ L.

Since(Cj):[k,k+j] = C:[k,k+j] and(Cj−1):[k,k+j] = C:[k,k+j) +
C:(k,k+j], this is equivalent to the definition of [15]:

Γ[k,k+j](C) =
C:[k,k+j]

C:[k,k+j) + C:(k,k+j]
, 1 ≤ j ≤ L;

Γ[k,k](C) = C:[k,k] = C:{k}.

The cosets of(Cj−1):[k,k+j] in (Cj):[k,k+j] are represented by
sequences inC:[k,k+j] that are not in the(j − 1)-controllable
subcodeCj−1. The zeroth-level controller granulesΓ[k,k](C)
are called “nondynamical granules” and are equal to the
parallel transition subgroupsC:{k}.

As in the code granule theorem of [15], we can then show
that

Cj
Cj−1

∼=
∏

k∈Z

Γ[k,k+j](C), 0 ≤ j ≤ L,

where the product is a direct product, Laurent product, or
direct sum according to the character of the sequence space
W in which C lies. The proof essentially follows from the
facts thatCj/Cj−1 is generated by the sequences inC:[k,k+j]

that are not inCj−1 for all k ∈ Z, and that(Cj):[k,k+j+1] is
the direct product of(Cj):[k,k+j] and(Cj):[k+1,k+j+1] modulo
Cj−1, since the intersection of(Cj):[k,k+j] and(Cj):[k+1,k+j+1]

is (Cj):(k,k+j] ⊆ Cj−1.
The restrictions of the future subcodes(Cj):k+ to time k

are defined as thejth-level first-output groups

Fj,k(C) = ((Cj):k+)|{k}, 0 ≤ j ≤ L,

which form a chain

{0} ⊆ F0,k(C) ⊆ F1,k(C) ⊆ · · · ⊆ FL,k(C) = Fk(C),

whereFk(C) = (C:k+)|{k} is the first-output group of C at
time k (also called theinput group [15]). SinceFj,k(C) =
(C:[k,k+j])|{k} and the kernels of the restrictions to{k} of
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(Cj):[k,k+j] and (Cj−1):[k,k+j] are both equal toC:(k,k+j], it
follows from the correspondence theorem that the quotients
of this chain are isomorphic to the corresponding controller
granules:

Fj,k(C)

Fj−1,k(C)
∼= Γ[k,k+j](C).

Similarly, we define thejth-level last-output groups as

Lj,k(C) = ((Cj):(k+1)−)|{k}, 0 ≤ j ≤ L,

which form a chain up toLk(C) = (C:(k+1)−)|{k}, the last-
output group of C:

{0} ⊆ L0,k(C) ⊆ L1,k(C) ⊆ · · · ⊆ LL,k(C) = Lk(C),

with quotients also isomorphic to controller granules:

Lj,k(C)

Lj−1,k(C)
∼= Γ[k−j,k](C).

Thestate codeof C is the group codeσ(C), where the state
mapσ is the Cartesian product of the state mapsσk; i.e.,

σ(c) = {σk(c), k ∈ Z},

whereσk(c) ∈ Σk(C) is the state of the code sequencec ∈ C
at time k. The kernel of the state code map is the parallel
transition subcodeC0.

As in [15], the state spaces and state code ofC may be
decomposed according to the chains

{0} = σk(C0) ⊆ σk(C1) ⊆ · · · ⊆ σk(CL) = Σk(C);

{0} = σ(C0) ⊆ σ(C1) ⊆ · · · ⊆ σ(CL) = σ(C),

whereσk(Cj) is the state space of thej-controllable subcode
Cj at timek andσ(Cj) is the state code ofCj . The zeroth-level
state codeσ(C0) is trivial sinceC0 is memoryless.

The quotients of the latter chain are isomorphic toCj/Cj−1:

σ(Cj)

σ(Cj−1)
∼=

Cj
Cj−1

∼=
∏

k∈Z

Γ[k,k+j](C), 1 ≤ j ≤ L.

The quotients of the former chain are isomorphic to direct
products of thejth-level controller granules that are “active”
at timek:

σk(Cj)

σk(Cj−1)
∼=

∏

i∈[k−j,k)

Γ[i,i+j](C), 1 ≤ j ≤ L.

Each single controller granuleΓ[k,k+j](C) may be im-
plemented by a little state machine with an input group
and a state space isomorphic toΓ[k,k+j](C) which is ac-
tive during the interval(k, k + j], as follows. An input
in Fj,k(C)/Fj−1,k(C) ∼= Γ[k,k+j](C) arrives at timek and
determines a corresponding first output, which is the time-k
output symbol of a representative of the corresponding coset of
(Cj−1):[k,k+j] in (Cj):[k,k+j], as well as a corresponding state
in a state space isomorphic toΓ[k,k+j](C) at timek+1. During
the interval(k, k + j], the state is constant, and determines
the remaining output symbols of the representative sequence.
At time k + j, the last output is emitted (a representative
of Lj,k+j(C)/Lj−1,k+j(C) ∼= Γ[k,k+j](C)), and the granule
becomes “inactive;”i.e., no further memory is required.

A jth-level encoder forCj/Cj−1 in controller form may
then be implemented by combining the outputs of encoders
for Γ[k,k+j](C) for all k ∈ Z (with finite or Laurent
constraints, if appropriate;e.g., that there be only finitely
many nonzero inputs fork < 0). The resulting encoder
implements an isomorphism from the “input sequence space”
∏

k Fj,k(C)/Fj−1,k(C) ∼=
∏

k Γ[k,k+j](C) to the output space
Cj/Cj−1

∼=
∏

k Γ[k,k+j](C). The state space of thejth-level
encoder at any time is isomorphic toσk(Cj)/σk(Cj−1) and is
thus minimal.

Since the parallel transition subcodeC0 =
∏

k C:{k} is a
memoryless sequence space, the zeroth-level encoder forC0
requires no memory; the output is simply a complete, Laurent
or finite sequence of elements from the parallel transition
subgroupsF0,k(C) = C:{k}, k ∈ Z.

Finally, a minimal encoder forC in controller form may be
implemented by adding the outputs of alljth-level encoders,
0 ≤ j ≤ L. Such an encoder implements a one-to-one
correspondence from

∏

k Fk(C) to C, but not necessarily an
isomorphism [15] (see also [28], [29]).

B. Controllable and uncontrollable codes

We now extend the results above to codesC ⊆ W that are
not necessarily strongly controllable. For simplicity, wetake
W to be a complete sequence space.

We then have a chain of subcodes

{0} ⊆ C0 ⊆ C1 ⊆ · · · ⊆ (Cf )
c ⊆ C,

whereCj is thej-controllable subcode ofC, j ≥ 0, and(Cf )c

is the controllable subcode ofC. We recall thatC is controllable
if and only if (Cf )c = C.

Since (Cf )
c is the (closure of the) code generated by all

finite subcodes ofC,

(Cf )
c =

∑

finite J

CJ ,

it is clear in the topological setting that(Cf )c may be regarded
as the “limit” of the j-controllable subcodesCj as j → ∞.
For instance, if the symbol groups are discrete, then(Cf )

c is
the code consisting of the limits of all finite sequences inC
in the topology of pointwise convergence.
C is therefore controllable if and only if every sequence in

C can be expressed as such a limit of finite code sequences. If
C is uncontrollable, then the code sequences not in(Cf )

c not
only are not finite, but also are not the limit of any series of
finite sequences inC. For example, in Examples 2 and 4, the
only finite sequence inC is 0.

Again, there are state space and state code chains as follows:

{0} ⊆ σk(C1) ⊆ · · · ⊆ σk((Cf )
c) ⊆ σk(C) = Σk(C);

{0} ⊆ σ(C1) ⊆ · · · ⊆ σ((Cf )
c) ⊆ σ(C).

SinceC/(Cf)
c ∼= σ(C)/σ((Cf )

c) (because the kernelC0 of
the state map is a subcode of both(Cf )c and C), it follows
that (Cf )c = C if and only if σ((Cf )c) = σ(C):

Theorem 7.1 (dynamical controllability test):A complete
group codeC is controllable if and only ifσ((Cf )c) = σ(C).
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In other words, finitization preserves the dynamics ofC if
and only if C is controllable.

Let C be time-invariant, so that all state spacesΣk(C)
are congruent toΣ0(C), and suppose thatΣ0(C) satisfies the
descending chain condition (DCC). ThenC is complete [29,
Prop. 3.6]; moreover, by the DCC, there can be only a finite
number of steps in the state space chain, which implies that the
controllable subcode(Cf )c is strongly controllable (see [28],
[29]). Thus we have:

Theorem 7.2:If C is a time-invariant group code whose
state spaceΣ0(C) satisfies the descending chain condition,
then (Cf )

c is strongly controllable. ThusC is controllable if
and only if C is strongly controllable.

Example 6, in whichC is controllable but not strongly
controllable even though the state space is never larger than
G, shows that time-invariance is essential.

Theorem 7.2 has been extended to time-invariant group
codes over finitely generated abelian symbol groups in [6], and
to time-invariant ring codes over finitely generated modules
over a principal ideal domain in [9]. All versions of Theorem
7.2 depend on some sort of finiteness condition.

The basic structure theorem of Miles and Thomas [30] (see
[6]) says that ifG is a compact abelian Lie group andC ⊆ GZ

is a closed time-invariant group code overG, then there exists
a finite chain

{0} ⊆ C0 ⊆ C1 ⊆ · · · ⊆ CL = (Cf )
c ⊆ Cs ⊆ C

of closed normal time-invariant subcodes ofC, where
Cj/Cj−1

∼= (Gj)
Z for some compact Lie groupGj (in our

setting, Gj may be identified with thejth-level controller
granuleΓ[k,k+j]); Cs/(Cf)

c is a solenoid (a compact connected
abelian group of finite topological dimension), as in our
Example 4; andC/Cs is autonomous (a semi-simple Lie
group), as in our Example 2. Using this theorem, Kitchens
and Schmidt [24] show that ifC is a compact controllable
time-invariant group code whose state spaceΣ0(C) satisfies
the DCC, thenC is strongly controllable.

C. Observable and unobservable codes

An observer decomposition ofC may be obtained by simply
“dualizing” the controller decomposition just described.

The j-observable supercodeCj of a group codeC in a
sequence spaceW is defined as

Cj = {w ∈ W | w|[k,k+j] ∈ C|[k,k+j] for all k ∈ Z}.

If W is complete, thenCj by definition isj-complete.
By projection/subcode duality, we have:
Theorem 7.3 (subcode/supercode duality):If C andC⊥ are

dual group codes, then thej-observable supercode ofC⊥ is
the dual of thej-controllable subcode ofC:

(C⊥)j = (Cj)
⊥.

It follows thatCj is j-observable, and thatC isL-observable
if and only if C = CL.

Since the dual of the controllable subcode(Cf )c of a
complete codeC is the observable supercode((C⊥)c)f of the

finite codeC⊥, we have for a finite codeC a supercode chain
dual to the subcode chain ofC⊥:

C ⊆ (Cc)f ⊆ · · · ⊆ C1 ⊆ C0 = W(C) ⊆ Wf .

Again, by duality (Cc)f is the “limit” of the j-observable
supercodesCj as j → ∞.

Each of these supercodes has well-defined state spacesΣk,
which are trivial in the case of the memoryless supercodes
C0 = W(C) and Wf , and well-defined state mapsσk and
σ = {σk, k ∈ I}. By dualizing Theorem 7.1, we obtain:

Theorem 7.4 (dynamic observability test):A finite group
codeC is observable if and only ifσ((Cc)f ) = σ(C).

In other words, completion preserves the dynamics ofC if
and only if C is observable.

Also, by dualizing Theorem 7.2, we obtain:
Theorem 7.5:If C is a finite time-invariant group code

whose state spaceΣ0(C) satisfies the descending chain con-
dition, then(Cc)f is strongly observable. Consequently,C is
observable if and only ifC is strongly observable.

D. Observer granule decomposition

Now let C be a general finite, Laurent or completeL-
observable group code. Then we have an ascendingj-
observable supercode chain:

C = CL ⊆ CL−1 ⊆ · · · ⊆ C0 = W(C) ⊆ W .

For indexing consistency, we denoteW by C−1.
The 0-observable supercodeC0 =

∏

k C|{k} is the output
sequence spaceW(C), a memoryless sequence space of the
same type asW .

By Theorem 7.3, this chain is dual to the subcode chain of
the dual codeC⊥:

(C⊥)−1 = {0} ⊆ (C⊥)0 ⊆ (C⊥)1 ⊆ · · · ⊆ (C⊥)L = C⊥.

By quotient group duality, the quotients of the latter chainact
as the character groups of the quotients of the former:

(

Cj−1

Cj

)ˆ

=
(C⊥)j

(C⊥)j−1
, 0 ≤ j ≤ L.

Note that the output sequence spaceW(C) = C0 acts as the
character group of the parallel transition subcode(C⊥)0, and
thatW(C) = W if and only if (C⊥)0 = {0}. Dynamically,C
should be regarded as lying between the memoryless sequence
spacesC0 and W(C), rather than between{0} and W .
Trimming the sequence spaceW to W(C) is dual to factoring
out the parallel transition subcode to yield the dynamically
equivalent “label code”q(C) ∼= C/C0 [15].

Since
(C⊥)j

(C⊥)j−1

∼=
∏

k

Γ[k,k+j](C
⊥),

it follows from direct product/direct sum duality that

Cj−1

Cj
∼=
∏

k

Γ[k,k+j](C
⊥)̂

where as usual the indicated product denotes a direct product,
Laurent product, or direct sum according to the character of
W .
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Since the controller granuleΓ[k,k+j](C
⊥) is defined as a

quotient group, it is natural to define theobserver granule
Φ[k,k+j](C) as the dual quotient group:

Φ[k,k+j](C) =
(Cj−1)|[k,k+j]

(Cj)|[k,k+j]
, k ∈ Z, 0 ≤ j ≤ L.

For 0 ≤ j ≤ L, (Cj)|[k,k+j] = C|[k,k+j], so the cosets of
(Cj)|[k,k+j] in (Cj−1)|[k,k+j] are represented by sequences in
(Cj−1)|[k,k+j] that are not inC|[k,k+j].

For 1 ≤ j ≤ L, we may write(Cj−1)|[k,k+j] as

{w ∈ W | w|[k,k+j) ∈ C|[k,k+j),w|(k,k+j] ∈ C|(k,k+j]}

= (C|[k,k+j) ×W|{k+j}) ∩ (W|{k} × C|(k,k+j]).

In other words,Φ[k,k+j](C) is the quotient of the subset of
sequences inW|[k,k+j] that satisfy the checks ofC on the
intervals[k, k + j) and (k, k + j] with the subset that checks
on the entire interval[k, k + j].

For j = 1, we have(C0)|[k,k+1] = C|{k} × C|{k+1}, so

Φ[k,k+1](C) =
C|{k} × C|{k+1}

C|[k,k+1]
.

In other words,Φ[k,k+1](C) is the reciprocal state space of
C|[k,k+1] as a length-2 code.

For j = 0, we have(C−1)|[k,k] = Gk and(C0)|[k,k] = C|{k},
so the zeroth-level (nondynamical) time-k observer granule is

Φ[k,k](C) =
Gk

C|{k}
.

Now in summary, having defined observer granules to be
dual to controller granules, we obtain our main duality and
decomposition theorems:

Theorem 7.6 (granule duality):If C andC⊥ are dual group
codes, then the observer granuleΦ[k,k+j](C) acts as the
character group of the controller granuleΓ[k,k+j](C

⊥):
Γ[k,k+j](C

⊥)̂ = Φ[k,k+j](C).

Proof. Follows from quotient group duality, projec-
tion/subcode duality, and subcode/supercode duality.

Corollary 7.7 (observer granule decomposition theorem):
If C is a complete (resp. Laurent, finite) group code, then
Cj−1/Cj is isomorphic to the direct product (resp. Laurent
product, direct sum) of the observer granulesΦ[k,k+j](C):

Cj−1

Cj
∼=
∏

k

Φ[k,k+j](C), j ≥ 0.

Thus we may decompose a sequence inW according to the
j-observable supercode chain into a sequence inC and repre-
sentatives ofCj−1/Cj, 0 ≤ j ≤ L, and then decompose each
of these into a product of observer granule representatives.

Example 2 (cont.) The bi-infinite zero-sum codeC⊥ overGˆ
is 1-controllable. Its 0-controllable subcode is{0}, and its
1-controllable subcode is itself. Its only nontrivial controller
granules are therefore the first-level granulesΓ[k,k+1](C

⊥) =
(C⊥):[k,k+1], each of which is a group of length-2 sequences of
the form(. . . , 0, h,−h, 0, . . .) with h ∈ G ,̂ and is isomorphic
to G .̂ C⊥ is the code generated by all finite sums of such
sequences, and thus is isomorphic to the finite sequence space
((G )̂Z)f .

The dual bi-infinite repetition codeC overG is 1-observable.
Its only nontrivial observer granules are the first-level granules
Φ[k,k+1](C) = (C|{k} × C|{k+1})/C|[k,k+1]. Now C|{k} ×
C|{k+1} is the set of all pairs{(g, h), g, h ∈ G}, while
C|[k,k+1] is the set of all repeated pairs{(g, g), g ∈ G}, so
Φ[k,k+1](C) ∼= G. Sets of coset representatives forΦ[k,k+1](C)
are{(0, g), g ∈ G} or {(g, 0), g ∈ G}. The quotientW/C is
isomorphic to the direct product of these granules—i.e., to
the complete sequence spaceGZ.

Example 3(cont.) Here the rate-1/3 convolutional codeC is 2-
controllable and 1-observable, while its dual rate-2/3 code C⊥

is 1-controllable and 2-observable. The zeroth-level controller
granules ofC⊥ are generated by(. . . , 000, 002, 000, . . .) and
are isomorphic toZ2; the first-level controller granules are
generated by generatorsh1 = (. . . , 000, 100, 030, 000, . . .),
which has order 4, andh2 = (. . . , 000, 020, 001, 000, . . .),
which has order 2 modulo the zeroth-level granules, so they
are isomorphic toZ4 ×Z2. This confirms that the state space
Σ0(C

⊥) is isomorphic toZ4 × Z2.
It follows thatC has nontrivial observer granules at levels 0

and 1 isomorphic toZ2 and toZ4 ×Z2, respectively. Indeed,
C|{k} is the 32-element subgroupZ4 × Z4 × 2Z4 of the 64-
element groupGk = (Z4)

3, so the nondynamical length-1
granulesGk/C|{k} are isomorphic toZ2; a nonzero coset
representative is 001. We verify that the length-2 observer
granulesΦ[k,k+1](C) = (C|{k}×C|{k+1})/C|[k,k+1] have order
8, since|C|{k} × C|{k+1}| = 32 × 32, whereas|C|[k,k+1]| =
8×4×4 (the number of states times the number of input pairs).
A set of coset representatives forC|[k,k+1] in C|{k} × C|{k+1}

is generated by(000, 010) and (000, 002), so the length-2
observer granules are indeed isomorphic toZ4 × Z2.

Similarly, the first-level controller granules ofC are gener-
ated by sequences such as(. . . , 000, 200, 020, 000, . . .) and
are isomorphic toZ2, while the second-level controller gran-
ules are generated byg = (. . . , 000, 100, 010, 002, 000, . . .),
modulo the first-level granules, and thus are also isomorphic
to Z2. It follows thatC⊥ has nontrivial observer granules for
j = 1 and j = 2, all isomorphic toZ2, as the reader may
verify. Since first-level granules are active for 1 time unitand
second-level granules are active for 2 time units, this implies
a state space of size 8.

Example 4 (cont.) The dual codeC⊥ over Z is again
1-controllable. As in Example 2, the only nontrivial con-
troller granules are the first-level granulesΓ[k,k+1](C

⊥) =
(C⊥):[k,k+1], which are generated by time shifts ofh =
(. . . , 0, 1,−2, 0, . . .), and are isomorphic toZ. C⊥ is generated
by all finite sums of such sequences, and thus is isomorphic
to the finite sequence space(ZZ)f .

The primal codeC over R/Z is 1-observable. Its only
nontrivial observer granules are the first-level granules
Φ[k,k+1](C) = (C|{k} × C|{k+1})/C|[k,k+1]. Now C|{k} ×
C|{k+1} is the set of all pairs{(g, h), g, h ∈ R/Z}, whereas
C|[k,k+1] is the set of all pairs{(g, h) | g ≡ 2h mod Z}. Since
g is determined byh, C|[k,k+1]

∼= R/Z and Φ[k,k+1](C) ∼=
R/Z. Sets of coset representatives forC|[k,k+1] are{(g, 0), g ∈
R/Z} or {(0, h/2), h ∈ R/Z}. W/C is isomorphic to the
direct product of these granules—i.e., to (R/Z)Z.
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E. Observer granule decomposition of state spaces

We now obtain an observer decomposition of the state
spaces and state code of anL-observable codeC by dualizing
the controller decomposition of anL-controllable codeC⊥,
again using the chain ofj-observable supercodesCj .

Combining the reciprocal state space theorem with sub-
code/supercode duality, we obtain the following basic result:

Theorem 7.8 (state space duality):If C and C⊥ are group
codes, then the reciprocal state spaceΣk(Cj) of the j-
observable supercodeCj at timek acts as the character group
of the state spaceΣk((C

⊥)j) of the j-controllable subcode
(C⊥)j at timek: Σk(Cj) = Σk((C

⊥)j )̂ .
Thus the j-observable state spaceσk(C

j) is isomorphic
to the character group of thej-controllable state space
σk((C

⊥)j), andσ(Cj) ∼= σ((C⊥)j )̂ .
For the state spaces of the ascending chain of thej-

controllable subcodes(C⊥)j of the L-controllable dual code
C⊥, we have chains of inclusion maps as follows:

{0} → σk((C
⊥)1) → · · · → σk((C

⊥)L) = σk(C
⊥);

{0} → σ((C⊥)1) → · · · → σ((C⊥)L) = σ(C⊥).

This shows thatσk(C
⊥) andσ(C⊥) may be regarded as being

composed of the quotient groupsσk((C
⊥)j)/σk((C

⊥)j−1) and
σ((C⊥)j)/σ((C

⊥)j−1), respectively.
As discussed in Section II-F, althoughσk((C

⊥)j−1) is a
subgroup ofσk((C

⊥)j), the dual state space (character group)
σk(C

j−1) is not in general a subgroup ofσk(C
j). Nevertheless,

there still exists a decomposition into dual quotient groups.
The adjoint chains of the above inclusion map chains are
chains of natural maps, as follows:

σk(C
L) = Σk(C) → · · · → σk(C

1) → {0};

σ(CL) = σ(C) → · · · → σ(C1) → {0}.

Moreover, Σk(C) and σ(C) may be regarded as be-
ing composed of the respective kernels of these maps,
(σk((C

⊥)j)/σk((C
⊥)j−1))̂ and (σ((C⊥)j)/σ((C

⊥)j−1))̂ .
Dualizing our granule decompositions of these quotient

groups and using direct product/direct sum duality, we have
(

σk((C
⊥)j)

σk((C⊥)j−1)

)

ˆ ∼=
∏

i∈[k−j,k)

Φ[i,i+j](C), 1 ≤ j ≤ L;

(

σ((C⊥)j)

σ((C⊥)j−1)

)

ˆ ∼=
∏

k∈Z

Φ[k,k+j](C), 1 ≤ j ≤ L.

As we have already seen, the latter is isomorphic toCj−1/Cj.
In summary:
Theorem 7.9 (dual state granule theorem):Let C be anL-

observable group code, letΣk(C) be its state space at timek,
and letσk(C

j) be the state space at timek of its j-observable
supercodeCj. Then there exists a chain of natural maps

σk(C
L) = Σk(C) → · · · → σk(C

1) → {0} = σk(C
0),

whose kernels are isomorphic to direct products of thej
observer granulesΦ[i,i+j](C), k − j ≤ i < k, for 1 ≤ j ≤ L.
Consequently there is a one-to-one correspondence between
the state spaceΣk(C) and the Cartesian product of the observer
granulesΦ[i,i+j](C), k − j ≤ i < k, 1 ≤ j ≤ L.

F. Dual first-output and last-output groups

What is the dual to thejth first-output groupFj,k(C) =
(C:[k,k+j])|{k} (which can also be thought of as the input
group at levelj at time k)? By projection/subcode duality,
it is the parallel transition subgroup at timek of (C⊥)|[k,k+j].
In other words,Fj,k(C)

⊥ is the set((C⊥):I−(k,k+j])|{k} of
time-k symbols in all sequences inC⊥ whose components are
all zero during(k, k + j].

We therefore define thejth-level dual last-output group
of C at timek as

Lj,k(C) = Fj,k(C)
⊥ = (C:I−(k,k+j])|{k}.

In other words,Lj,k(C) is the set of time-k symbols that
can be followed by a sequence ofj consecutive zeroes, or
equivalently that can precede the zero state inσk(C

j).
Note thatL0,k(C) = C|{k}. Moreover, ifC is L-observable,

then LL,k(C) = Lk(C), because by the second[m,n)-
observability testC:I−(k,k+L] = C:(k+1)− × C:(k+L+1)+ .

Thus thetime-k dual last-output chainof C,

Lk(C) = LL,k(C) ⊆ LL−1,k(C) ⊆ · · · ⊆ L0,k(C) = C|{k},

is dual to the time-k first-output chain ofC⊥. By quotient
group duality, the quotients of this chain are the character
groups of the quotients of the dual chain. These quotients are
isomorphic to the controller granules ofC⊥, whose character
groups act as the observer granules ofC:

Lj−1,k(C)

Lj,k(C)
∼= Φ[k,k+j](C), 0 ≤ j ≤ L.

Similarly, we define thejth-level dual first-output group of
C at timek as

F j,k(C) = Lj,k(C)
⊥ = (C:I−[k−j,k))|{k}.

In other words,F j,k(C) is the set of time-k symbols that can
follow a sequence ofj consecutive zeroes, or equivalently that
can follow the zero state inσk(C

j).
Again we haveF 0,k(C) = C|{k}, and if C is L-observable,

thenFL,k(C) = Fk(C), sinceC:I−[k−L,k) = C:(k−L)− ×C:k+ .
The time-k dual first-output chainof C,

Fk(C) = FL,k(C) ⊆ FL−1,k(C) ⊆ · · · ⊆ F 0,k(C) = C|{k},

is dual to the time-k last-output chain ofC⊥, and the quotients
are isomorphic to observer granules:

F j−1,k(C)

F j,k(C)
∼= Φ[k−j,k](C), 0 ≤ j ≤ L.

The quotientGk/Fk(C) will be called thesyndrome group
Sk(C) of C at timek, and the quotientF j−1,k(C)/F j,k(C) will
be called thejth-level syndrome groupSj,k(C) at timek, 0 ≤
j ≤ L. The syndrome group at timek may be decomposed
according to the dual first-output chain at timek into an
element of the first-output groupFk(C) and representatives of
the quotientsF k,j−1(C)/F k,j(C), which are isomorphic to the
observer granules that “end” at timek. The syndrome group
Sk(C) acts as the character group ofLk(C

⊥).
In summary:



24 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 11, NOVEMBER 2004

Theorem 7.10 (first-output/last-output duality):If C and
C⊥ are dual group codes andC is L-observable, then the dual
first-output (resp. last-output) chain ofC at timek is dual to
the last-output (resp. first-output) chain ofC⊥ at time k. In
particular,

F 0,k(C) = L0,k(C) = C|{k} = ((C⊥)|:{k})
⊥;

FL,k(C) = Fk(C) = (Lk(C
⊥))⊥;

LL,k(C) = Lk(C) = (Fk(C
⊥))⊥.

The quotients of the dual chains ofC act as the character
groups of the corresponding quotients of the primal chains of
C⊥, and are isomorphic to observer granules as follows:

Lj−1,k(C)

Lj,k(C)
∼= Φ[k,k+j](C), 0 ≤ j ≤ L;

F j−1,k(C)

F j,k(C)
∼= Φ[k−j,k](C), 0 ≤ j ≤ L.

VIII. M INIMAL OBSERVER-FORM ENCODERS AND

SYNDROME-FORMERS

One original objective of this paper was to develop a
minimal syndrome-former construction based on observer
granules for a strongly observable codeC that would be dual to
the minimal controller-form encoder construction of [15] for
strongly controllable codes, with memory equal to the observer
memoryL. Such a syndrome-former is easily found in many
cases: for Examples 2-4 of this paper, for codes and systems
over fields [13], [21], and we dare say for most codes that the
reader is likely to imagine. However, finding a general minimal
syndrome-former construction that has all of the properties that
one might desire turns out to be quite difficult.

This problem has now been solved satisfactorily by Fagnani
and Zampieri [10]. Interestingly, their construction works
equally well for nonabelian codes and, although it is based on
the observer granule decomposition of the previous section, it
does not make any use of duality.

In this section we construct minimal syndrome-formers and
observer-form encoders for Examples 2-4 of this paper, and
also for the main example of [10]. Our approach uses the
observability granules ofC directly, and seems simpler than
the general methods of [10] for these simple codes.

A minimal syndrome-former for C is a dynamical map
from W to the syndrome sequence space

∏

k Sk(C) that has
at least the following properties:

(a) The kernel of the map is the codeC;
(b) If C is L-observable, then the map has memoryL;
(c) The time-k state space corresponds in some way to the

active observer granules at timek.
We also desire that the inverse images of the syndrome

sequences form a disjoint partition ofW in which each inverse
image is in some sense isomorphic toC (see [10]). However,
we ignore here the behavior of the syndrome-former for input
sequences not inC. Nevertheless, in all our examples, our
syndrome-former construction turns out to have this property.

An encoder forC is a dynamical one-to-one map from the
memoryless input sequence space

∏

k Fk(C) to C. A minimal
observer-form encoder for C is an encoder forC whose

state space at timek corresponds in some sense to the active
observer granules at timek.

Our constructions will be based on the construction of a
minimal state observer forC. If C is L-observable, then a
state observerfor C with memoryL is a system that maps
c|[k−L,k) ∈ C|[k−L,k) to the stateσk(c) of c ∈ C at timek for
each timek. In other words, the state observer dynamically
implements the state mapσ : C → σ(C) using a “sliding
window” of width L.

In view of the dual state granule theorem, the state
σk(c) is determined by the values of the observer granules
Φ[i−j,i](C), k ≤ i < k + j, 1 ≤ j ≤ L; namely, the observer
granules that are “active” at timek. A state observer is minimal
if its state space at timek corresponds in some sense to the
active observer granules at timek.

Our approach to realizing such a minimal state observer
is as follows. If c ∈ C, then a fortiori c ∈ Cj for all j-
observable supercodesCj , 0 ≤ j ≤ L. Given c ∈ Cj−1, the
jth-level observer granuleΦ[i−j,i](C) may be computed by
determining the character table column (“check”)

〈Γ[i−j,i](C
⊥), c〉 = {〈x, c〉 | x ∈ Γ[i−j,i](C

⊥)}

sinceΓ[i−j,i](C
⊥) acts as the character group ofΦ[i−j,i](C).

This requires the calculation of the pairing〈x, c〉 only for a
set of generators ofΓ[i−j,i](C

⊥).
Since the pairing〈x, c〉 is a componentwise sum over

the interval [i − j, i], and since the character table column
〈Γ[i−j,i](C

⊥), c〉 specifies an element ofΦ[i−j,i](C), imple-
mentation of such a pairing requires only a memory element
storing an element ofΦ[i−j,i](C) that is active during the
interval(i−j, i]. At each time during this interval, the memory
element stores a “partial sum” inΦ[i−j,i](C). The values of
all of the partial sums corresponding to all active observer
granules is then the observer state at timek.

Given a minimal state observer forC, a minimal observer-
form encoder forC may then be realized as follows. Assume
that at timek the encoder has generated the pastc|k− of a
code sequencec ∈ C. A minimal state observer that tracks this
past will indicate the current stateσk(c) by the stored values
of its currently active observer granules. The next output is
then determined by an “input” in the first-output groupFk(C)
and the current stateσk(c).

Specifically, the next outputck ∈ Gk must be chosen so
that all observer granulesΦ[k−j,k](C), 0 ≤ j ≤ L, that end
at timek take on the value 0, sincew ∈ C if and only if the
values of all quotients in the chain

C = CL ⊆ CL−1 ⊆ · · · ⊆ C0 ⊆ W

are equal to zero. In view of the dual first-output chain

Fk(C) = FL,k(C) ⊆ FL−1,k(C) ⊆ · · · ⊆ F 0,k(C) = C|{k},

given representatives of each quotient group
F j−1,k(C)/F j,k(C) ∼= Φ[k−j,k](C), this can be done by
subtracting representatives from an arbitrary “free” input in
C|{k} according to the current partial sums of the ending
granulesΦ[k−j,k](C), leaving a residual free input inFk(C).
This produces a next outputck such thatc|(k+1)− ∈ C|(k+1)− ,
which determines the next state, and so forth.
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ck−1 ✲ck✲

(a)

wk−1 ✲− ♥ ✲sk

wk

❄+
✲

(b)
Figure 8.1. Minimal (a) observer-form encoder and

(b) syndrome-former for bi-infinite repetition codeC.

Similarly, a minimal syndrome-former can simply check
whether the next output is in the appropriate set determinedby
σk(c). If so, it continues. If not, then it needs to make some
“correction” to reduce it to this set, so that the state observer
can continue.

We now give some applications of this approach.

Example 2 (cont.) For the bi-infinite repetition codeC over
G, the state space at any timek is G, and consists of a single
first-level observer granuleΦ[k−1,k](C) ∼= G. The first-output
(input) group ofC is trivial, Fk(C) = {0}, and the syndrome
groupSk(C) is G.

The check corresponding toΦ[k−1,k](C) is orthogonality
to the dual first-level controller granuleΓ[k−1,k](C

⊥) =
{(. . . , 0, h,−h, 0, . . .) | h ∈ G }̂. For w ∈ GZ, we have

〈(. . . , 0, h,−h, 0, . . .),w〉 = {〈h,wk−1 − wk〉 | h ∈ G }̂,

which is equal to zero for allh ∈ Gˆ if and only ifwk = wk−1.
A minimal state observer forC therefore needs only to store
the partial sumwk−1 ∈ G at timek, so it has memory 1.

A minimal observer-form encoder forC stores the previous
output ck−1 ∈ G and enforces the constraintck = ck−1, as
shown in Figure 8.1(a);i.e., there is no nontrivial input, and the
state space isG. The initial condition of the memory element
is unspecified, and its effect persists indefinitely.

A minimal syndrome-former forC may simply be con-
structed by implementing this check dynamically, as shown
in Figure 8.1(b). (Conversely, the minimal encoder of Figure
8.1(a) may be obtained by forcingsk = 0 in Figure 8.1(b).)
The value of each check is the syndromesk = wk−wk−1 ∈ G.
The syndrome sequence is0 if and only if w ∈ C, and in this
case the syndrome-former acts as a state observer forC. In
this example each cosetC + s of C in W maps to a unique
syndrome sequences ∈ GZ.

Example 3 (cont.) We now consider our 1-observable rate-1/3
convolutional codeC overZ4.

For an elementg ∈ Z4, it will often be useful to consider a
two-bit representation(g1, g0) ∈ (Z2)

2 such thatg = 2g1+g0;
i.e., g1 is the “high-order bit” andg0 is the “low-order bit.”

We recall thatC has nontrivial observer granules at levels
0 and 1 isomorphic toZ2 and Z4 × Z2, respectively. The
zeroth-level observer granule corresponds to the constraint
that ck,3 ∈ 2Z4— i.e., the low-order bit c0,k,3 equals 0.
Thus C|{0} = Z4 × Z4 × 2Z4. The first-level granule cor-
responds to the constraint of orthogonality with the shiftsof
the generatorsh1 = (. . . , 000, 100, 030, 000, . . .) and h2 =
(. . . , 000, 020, 001, 000, . . .) of C⊥. The inner product with
h1 yields the constraintck−1 · (100) + ck · (030) = 0, or
ck,2 = ck−1,1. The inner product withh2 yieldsck−1 ·(020)+
ck · (001) = 0, or c1,k,3 = c0,k−1,2.

In short, c0,k,3 = 0, c1,k,3 = c0,k−1,2, and ck,2 = ck−1,1.
Thus we obtain a minimal observer-form encoder with “free
input” ck,1 ∈ Z4, as shown in Figure 8.2(a). Note that this
encoder is feedbackfree, and is also a minimal controller-form
encoder with controller memory 2.

Similarly, a minimal syndrome-former forC has two levels.
The zeroth (nondynamical) level checks whetherwk,3 ∈ 2Z4,
or equivalently whetherw0,k,3 = 0, and, if not, “corrects” to
meet this constraint. This can be done simply by regarding
w0,k,3 as the zeroth-level syndrome, and ignoring it thereafter.
The next (first) level checks the constraintsck,2 = ck−1,1 and
c1,k,3 = c0,k−1,2 by forming the syndromessk,2 = wk,2 −
wk−1,1 ∈ Z4 ands1,k,3 = w1,k,3−w0,k−1,2 ∈ Z2, as shown in
Figure 8.2(b). For simplicity, we merely compare the two bits
of wk,2 andwk−1,1; this makes the syndrome-former linear
overZ2.

The syndrome-former is evidently feedbackfree and has
memory 1. Its output sequences is 0 if and only if w ∈ C,
and in this case the syndrome-former acts as a state observer
for C.

For the dual 2-observable rate-2/3 codeC⊥, recall thatC⊥

has nontrivial observer granules at levels 1 and 2 isomorphic
to Z2 andZ2, respectively. The first-level observer granules
correspond to the constraint of orthogonality with the shifts of
2g = (. . . , 000, 200, 020, 000, . . .), which yields the constraint
2ck,2 = 2ck−1,1, or c0,k,2 = c0,k−1,1. The second-level ob-
server granules correspond to orthogonality with the shifts of
g = (. . . , 000, 100, 010, 002, 000, . . .), which yields2ck,3 =
ck−1,2 + ck−2,1. If c0,k−1,2 = c0,k−2,1, which is guaranteed
by the first-level constraint, then this is equivalent toc0,k,3 =
c1,k−1,2 + c1,k−2,1 + c0,k−2,1, wherec0,k−2,1 is a “carry bit.”

Thus we obtain a minimal observer-form encoder with
“free” binary inputsc1,k,1, c0,k,1, c1,k,2, c1,k,3, shown in Fig-
ure 8.3(a). The encoder is feedbackfree with memory 2, and
is Z2-linear.

A minimal syndrome-former forC⊥ again has two levels.
The first level checks whetherw0,k,2 = w0,k−1,1 by forming
the syndromes0,k,2 = w0,k,2 + w0,k−1,1 ∈ Z2. The second
level checks whetherw0,k,3 = w1,k−1,2+w1,k−2,1 by forming
the syndromew0,k,3 = w0,k,3 + w1,k−1,2 + w1,k−2,1 +
w0,k−2,1 = w0,k,3 + t0,k−1,3 ∈ Z2, as shown in Figure 8.3(b).
The syndrome-former is feedbackfree with memory 2, and is
Z2-linear.

Example 4(cont.) For Loeliger’s codeC, the state space at any
time k is R/Z, and it consists of a single first-level observer
granuleΦ[k−1,k](C) ∼= R/Z. The first-output (input) group
of C is binary,Fk(C) = {0, 12} = (12Z)/Z, and the syndrome
groupSk(C) is (R/Z)/Fk(C) ∼= R/Z. A set of representatives
for (R/Z)/Fk(C) is the interval[0, 1/2).

The check corresponding toΦ[k−1,k](C) is orthogonality
to the dual first-level controller granuleΓ[k−1,k](C

⊥), which
is generated byh = (. . . , 0, 1,−2, 0, . . .). For w ∈ W =
(R/Z)Z, we have

〈h,w〉 = wk−1 − 2wk ∈ R/Z.

A minimal state observer forC therefore needs only to store
the partial sumwk−1 ∈ R/Z of this check at timek, and thus
has memory 1.
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Figure 8.2 Minimal (a) observer-form encoder and (b) syndrome-former for rate-1/3 convolutional code overZ4.
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Figure 8.3 Minimal (a) observer-form encoder and (b) syndrome-former for rate-2/3 convolutional code overZ4.

A minimal observer-form encoder forC stores the previous
output ck−1 ∈ R/Z and enforces the constraint2ck =
ck−1 mod Z. The set ofck ∈ R/Z that satisfy this constraint
is the setck = {uk + 1

2ck−1 | uk ∈ {0, 12}}, so the encoder
has a binary inputuk ∈ Fk(C) and a state space ofR/Z, as
shown in Figure 8.4(a). The initial condition of the memory
element decays to zero (but is still visible forever inck).

A minimal syndrome-former forC may be constructed by
implementing this check dynamically, as shown in Figure
8.4(b). (Conversely, the minimal encoder of Figure 8.4(a) may
be obtained by forcingsk = 0 in Figure 8.4(b). Note that
there are two values ofwk that satisfy2wk = wk−1 mod Z,
namelywk = {uk + 1

2wk−1 | uk ∈ {0, 12}}.) The value of
each check is the syndromesk = 2wk − wk−1 ∈ R/Z. The
syndrome sequence is0 if and only if w ∈ C, and in this case
the syndrome-former acts as a state observer forC. In this
example also each cosetC + s of C in W maps to a unique
syndrome sequences ∈ (R/Z)Z.

Finally, consider the chaotic time-reversed codeC̃. The state
space at any timek is R/Z, and consists of a single first-
level observer granuleΦ[k−1,k](C) ∼= R/Z. The first-output
(input) group of C̃ is trivial, Fk(C̃) = Lk(C) = {0}, and
the syndrome groupSk(C) is R/Z. A minimal observer-form
encoder forC̃ stores the previous output̃ck−1 ∈ R/Z and
enforces the constraint̃ck = 2c̃k−1 mod Z, which completely
determinesc̃k, as shown in Figure 8.4(c);i.e., there is no
nontrivial input, and the state space isR/Z. Since the map
c̃k−1 → 2c̃k−1 mod Z is “expansive,” the behavior of̃C is
not only uncontrollable, but in fact chaotic.

Example 7. This code was the main example in [10]. It turns
out that our construction method yields a simpler syndrome-
former than the general construction given in [10].

Let C be the set of sequences in(Z4)
Z that (a) are either all

odd or all even, and (b) have period 1 or 2. In other words, a
code sequence is the bi-infinite repetition of one of the 8 pairs

{00, 22, 02, 20, 11, 33, 13, 31}; thereforeC ∼= Z4 × Z2. The
dual is the finite linear codeC⊥ over Z4 generated by shifts
of h1 = (. . . , 0, 2, 2, 0, . . .) andh2 = (. . . , 0, 1, 0, 1, 0, . . .).
C is clearly linear, time-invariant, autonomous and 2-

observable. Its first-level observer granulesΦ[k−1,k](C) check
orthogonality to h1 (2ck = 2ck−1) and are isomorphic
to Z2; its second-level observer granulesΦ[k−2,k](C) check
orthogonality toh2 (ck = ck−2) and are isomorphic toZ2

(assumingc ∈ C1). Its first-output (input) group is{0}, and
its syndrome group isZ4.

A minimal observer-form encoder forC may store the previ-
ous outputck−1 ∈ Z4 in the two-bit form(c0,k−1, c1,k−1). At
the first level, it enforces the constraint2ck = 2ck−1, which
determines the low-order bitc0,k of ck. Given this constraint,
it need only store the high-order bitc1,k−1 to enforce the
second-level constraintc1,k = c1,k−2, which determinesc1,k.

A minimal memory-2 syndrome-former forC may store
the low-order bitwk,0 for one time unit and the high-order
bit wk,1 for two time units, so as to compute the first-level
syndromes0,k = w0,k−w0,k−1 and the second-level syndrome
s1,k = w1,k − w1,k−2, as shown in Figure 8.5(b). The
syndrome-former is feedbackfree with memory 2, and isZ2-
linear. Again, the encoder may be derived from the syndrome-
former simply by forcing the syndromes to 0.

IX. T HE END-AROUND THEOREM

In this section we show that every observer granule of a
group code C may be viewed purely algebraically as an “end-
around” controller granule, and vice versa. As consequences
of this observation, we develop:

• A definition of observer granules for nonabelian group
codes;

• Simple, purely algebraic alternative proofs of some pre-
vious results;

• Myriad further isomorphisms.
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Figure 8.4. Minimal (a) observer-form encoder and (b) syndrome-former for Loeliger’s codeC, and

(c) minimal observer-form encoder for the chaotic time-reversed codẽC.
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Figure 8.5 Minimal (a) observer-form encoder and (b) syndrome-former

for the Fagnani-Zampieri periodic code overZ4 [10].

An intervalI − [m,n), n > m, may be viewed as an “end-
around” interval that “starts” at timen, wraps around from
+∞ to −∞, and finally “ends” at timem−1. We denote such
an interval by[n,m). Similarly, we define[n,m] = I−(m,n)
for n > m, an interval which “starts” at timen and “ends”
at timem < n. If n = m + 1, then (m,n) is the empty set
and I − (m,n) is the entire time axisI. Finally, we define
(n,m] = I − (m,n], n > m, the end-around interval from
time n+ 1 to timem.

We then define anend-around controller granule on
[n,m], n > m, analogously to an ordinary controller granule,
as follows:

Γ[n,m](C) =
C:[n,m]

C:[n,m) + C:(n,m]
, n > m.

Then we obtain the following interesting isomorphism:
Theorem 9.1 (end-around theorem):For n > m, the end-

around controller granuleΓ[n,m](C) is isomorphic to the
observer granuleΦ[m,n](C).

Proof. The restrictions ofC:[n,m] andC:[n,m)+ C:(n,m] onto
time n both have kernelC:(n,m], with images(C:[n,m])|{n} =
Fn−m−1,n(C) and (C:[n,m))|{n} = Fn−m,n(C), respectively,
so by the correspondence theorem,

Γ[n,m](C) ∼=
Fn−m−1,n(C)

Fn−m,n(C)
.

By Theorem 7.10, this is isomorphic toΦ[m,n](C).
We may similarly define an end-around observer granule

Φ[n,m](C) for n > m, and show that it is isomorphic to
Γ[m,n](C).

One consequence of the end-around theorem is that all
dynamical observer granules may be expressed as end-around
controller granules. But controller granules, unlike observer
granules, are well-defined for nonabelian group codes. There-
fore it is possible to define the dynamical observer granulesof
a nonabelian codeC by Φ[m,n](C) = C:[n,m]/(C:[n,m)C:(n,m])
(in multiplicative notation), which opens the door to extending

our observer dynamics results to nonabelian codes. We regard
this as an important topic for further study, especially in
view of the successful constructions of [15] and [10] in the
nonabelian case.

We now sketch a few applications of the end-around theo-
rem. These involve partitioning the time axisI into 2, 3, or 4
subintervals, which we then regard as a new finite time axis
I ′ of length 2, 3, or 4, respectively (as in Subsection VI-B).

The state space theorem involves a two-way partition ofI
into disjoint subsetsJ and I − J . We may regard a code
C defined onI as a code defined on the length-2 time axis
I ′ = {J , I−J }, which we identify with the length-2 interval
[1, 2].

Now the nondynamical controller granules ofC are
Γ[1,1](C) = C:J andΓ[2,2](C) = C:I−J , and the sole dynam-
ical controller granule is the first-level granuleΓ[1,2](C) =
C/(C:J + C:I−J ), which is the two-sided state spaceΣJ (C).
The nondynamical observer granules ofC are Φ[1,1](C) =
W|J /C|J andΦ[2,2](C) = W|I−J /C|I−J , and the sole dy-
namical observer granule is the first-level granuleΦ[1,2](C) =
(C|J +C|I−J )/C, which we recognize as the two-sided recip-
rocal state spaceΣJ (C). The end-around controller granule
Γ[2,1](C) is C/(C:J + C:I−J ) = ΣJ (C). The end-around
theorem therefore impliesΣJ (C) ∼= ΣJ (C), an important
isomorphism that we derived previously as a corollary of the
reciprocal state space theorem, as well as purely algebraically.

The [m,n)-controllability and [m,n)-observability tests
involve a three-way partition ofI into disjoint subsets
m−, [m,n), andn+. We may regard a codeC defined onI as a
code defined on the length-3 time axisI ′ = {m−, [m,n), n+},
which we identify with the length-3 interval[1, 3].

Now by the first [m,n)-observability test,C is [m,n)-
observable if and only ifC is 1-observable onI ′; i.e., if and
only if the second-level observer granuleΦ[1,3](C) = C1/C2

is trivial, whereC2 = C and

C1 = {w ∈ W | w|[1,2] ∈ C|[1,2],w|[2,3] ∈ C|[2,3]}.
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By the end-around theorem,

Φ[1,3](C) ∼= Γ[3,1](C) =
C:[3,1]

C:{3} + C:{1}
=

C:[n,m)

C:n+ × C:m−

,

so C is [m,n)-observable if and only ifC:[n,m) = C:n+ ×
C:m− . Thus the first[m,n)-observability test is equivalent to
the second by the end-around theorem.

Similarly, by our second[m,n)-controllability test, C is
[m,n)-controllable if and only ifC is 1-controllable onI ′;
i.e., if and only if the second-level controller granule

Γ[1,3](C) =
C

C:[1,2] + C:[2,3]

is trivial. By the dual to the end-around theorem,Γ[1,3](C) is
isomorphic to the end-around observer granule

Φ[3,1](C) =
C|{3} × C|{1}

C|[3,1]
=

C|n+ × C|m−

C|[n,m)
,

so C is [m,n)-controllable if and only ifC|[n,m) = C|n+ ×
C|m− . Thus the first[m,n)-controllability test is equivalent to
the second by the dual end-around theorem.

Projections of these quotients onto the subintervals
m−, [m,n), andn+ yield still further tests in terms of trivial
quotients of primal and dual first-output and last-output chains,
which are cumbersome to write but which have the advantage
of being testable on a single interval. Even on a time axis of
length 3, there are a great many isomorphisms that can be de-
rived from the general granule isomorphisms, since the system
dynamical structure is determined by only three dynamical
controller granulesΓ12,Γ23 and Γ123 and three dynamical
observer granulesΦ12,Φ23 and Φ123 (or equivalently three
end-around controller granulesΓ231,Γ312 andΓ31).

A set of such isomorphisms is illustrated in Figure 9.1.
Moreover, every permutation of the three indices{1, 2, 3}
yields a similar set of further isomorphisms. HereC:1 ×
C:2 × C:3 is the 0-controllable subcode ofC, andC:12 + C:23
is the 1-controllable subcode ofC. The figure shows how
C/(C:1×C:2×C:3) decomposes into the controllability granules
Γ12,Γ23 and Γ123

∼= Φ31. Similarly, C|1 × C|2 × C|3 is the
0-observable supercode ofC, (C|12 × C|3) ∩ (C|1 × C|23) is
the 1-observable supercode ofC, and the figure shows how
(C|1×C|2×C|3)/C decomposes into the observability granules
Φ12,Φ23 andΦ123

∼= Γ31. The diagram is self-dual.
Finally, our jth dual first-output and last-output group

results forj ≥ 1 involve a four-way partition of I into disjoint
subsets{k− j}, (k− j, k), {k}, (k, k− j), which we regard as
a length-4 time axisI ′ and identify with the length-4 interval
[1, 4].

In this point of view, the dual first-output groupF j,k(C) is
the set of time-2 symbols in the subcodeC:[3,4] that “starts”
at timek and “ends” at timek − j − 1,

F j,k(C) = (C:[3,4])|{3},

while F j−1,k(C) is the set of time-2 symbols in the subcode
C:[3,1] that “starts” at timek and “ends” at timek − j:

F j−1,k(C) = (C:[3,1])|{3}.

C:1 × C:2 × C:3

C:1 × C:23
PPPPPP

Γ23
✏✏✏✏✏✏
Γ12

C:12 × C:3
✏✏✏✏✏✏

Γ12

PPPPPPΓ23

C:12 × C:23

�
�
�
�
�
�
�

Σ1

❅
❅

❅
❅

❅
❅

❅

Σ2

Φ31

C

Γ31

(C|12 × C|3) ∩ (C|1 × C|23)

❅
❅
❅
❅
❅
❅
❅

Σ1

�
�

�
�

�
�

�

Σ2

PPPPPP
Φ12

✏✏✏✏✏✏
Φ23

C|1 × C|23 C|12 × C|3
✏✏✏✏✏✏

Φ23 PPPPPP
Φ12

C|1 × C|2 × C|3

Σ1 × Σ1 Σ2 × Σ2

Figure 9.1. Granule isomorphisms on a length-3 time axis.

Since the end-around controller granuleΓ[3,1](C) is
C:[3,1]/(C:[3,4] + C:[4,1]), we have by projection onto time 2
and the end-around theorem

F j−1,k(C)

F j,k(C)
∼= Γ[3,1](C) ∼= Φ[1,3](C),

where Φ[1,3](C) denotes the observer granuleΦ[k−j,k](C).
The isomorphismLj−1,k(C)/Lj,k(C) ∼= Φ[k,k+j](C) may be
derived similarly.

X. CONCLUSION

In this paper we have extended the duality principles that
have proved to be so useful in coding and system theory to
abelian group codes. We have introduced a bit of topology in
order to make use of Pontryagin duality, but topology is not
used in any essential way other than to clarify duality princi-
ples when the time axis is infinite. We have also introduced a
few technical “well-behavedness” conditions, principally the
closed-projections assumption. Since this assumption holds
when symbol groups are compact, ora fortiori finite, we
do not believe that it will prove to be restrictive in practical
applications.

We have generalized the dual state space theorem of linear
system theory, which shows in a precise sense that the state
complexity of dual codes or systems is dual in the character
group sense. We have also shown that there are well-defined
dual notions of controllability and observability for codes and
behaviors, rather than for state-space realizations of codes
and behaviors as in classical and behavioral linear system
theory. Finally, we have shown close connections between
controllability and finite generatability, on the one hand,and
observability and finite checkability (completeness), on the
other.
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It is helpful to keep in mind both the controllability and
observability properties of a code or system. An uncontrollable
(resp. unobservable) system may have simple observability
(resp. controllability) properties, as shown in Example 4.A
“low-rate” code or system is usually more simply specified
in controller form (e.g., by a generator matrix, encoder or
image representation), whereas a “high-rate” code or system
is usually more simply specified in observer form (e.g., by
a parity-check matrix, syndrome-former or kernel represen-
tation). Controller memory and observer memory are both
important parameters of a system.

It can also be helpful to characterize a code or system by
its dual. For example, a complete compact code or system can
be characterized by its finite discrete dual, whose properties
are purely algebraic. Pathologies in the primal system willbe
reflected in pathologies in the dual system, but their nature
will usually be quite different (e.g., in Examples 2 and 4).

It appears to us that behavioral system theory and symbolic
dynamics have focussed largely on observability structure.
Systems are usually assumed to be complete and compact, and
“memory” usually means observer memory (see,e.g., [19]).
In automata theory, on the other hand, languages are usually
sets of discrete and finitely supported sequences. We believe
that each of these fields might benefit from a more balanced
viewpoint.

There are several clues in this work, as well as in [15] and
[10], that the abelian assumption is inessential. It is not needed
for the purely algebraic controllability structure discussed in
[15], nor for the more difficult observer-form constructions of
[10]. The key idea of [10] may be the recognition that even
when a subgroupH (such as a code) is not normal in a group
G (such as its output sequence space), the setG//H of left
cosets ofH in G is nonetheless a tractable group-theoretic
object upon whichG acts naturally by translation. Moreover,
in this paper we have shown that all observer granules are
isomorphic to “end-around” controller granules, which remain
well-defined in the nonabelian case. It may well be useful
therefore to develop an alternative purely algebraic general
theory of observability structure that will apply equally to
abelian and nonabelian group codes.
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