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Abstract. We provide two new construction methods for nonlinear re-
silient functions. The first method is a simple modification of an elegant
construction due to Zhang and Zheng and constructs n-input, m-output
resilient S-boxes with degree d > m. We prove by an application of
the Griesmer bound for linear error correcting codes that the modified
Zhang-Zheng construction is superior to the previous method of Cheon
in Crypto 2001. Our second construction uses a sharpened version of
the Maiorana-McFarland technique to construct nonlinear resilient func-
tions. The nonlinearity obtained by our second construction is better
than previously known construction methods.
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1 Introduction

An (n,m) S-box (or vectorial function) is a map f : {0, 1}n → {0, 1}m. By an
(n,m, t) S-box (or (n,m, t)-resilient function) we mean t-resilient (n,m) S-box.
An (n, 1, t)-resilient S-box is a resilient Boolean function. The cryptographic
properties (like resiliency, nonlinearity, algebraic degree) of Boolean functions
necessary for stream cipher applications have already been extensively studied.
The resiliency property of S-box was introduced by Chor et al [5] and Ben-
nett et al [1]. However, to be used in stream ciphers several other properties
of S-box like nonlinearity and algebraic degree are also very important. Stinson
and Massey [18] considered nonlinear resilient functions but only to disprove a
conjecture.
It was Zhang and Zheng [20] who first proposed a beautiful method of trans-

forming a linear resilient S-box to construct a nonlinear resilient S-box with
high nonlinearity and high algebraic degree keeping cryptography in mind. Af-
ter that, serious efforts to construct nonlinear S-box with high nonlinearity and
high algebraic degree has been made [8, 7, 12, 4](see Section 2.4).
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The current state-of-art in resilient S-box design can be classified into the
following two approaches.

1. Construction of (n,m, t)-resilient functions with very high nonlinearity.
2. Construction of (n,m, t)-resilient functions with degree d > m and high
nonlinearity.

The first problem has been studied in [20, 8, 7, 12]. The currently best known
results are obtained using the construction described in [12], though in certain
cases, for small number of variables, the search technique of [7] yields better
results. The second problem has been less studied. To the best of our knowledge,
the only known construction which provides functions of the second type is due
to Cheon [4].
In this paper, we first prove that the correlation immunity of a resilient

function is preserved under composition with an arbitrary Boolean function. This
property is useful for possible application of resilient S-boxes in designing secure
stream ciphers. Our main contribution consists of two different constructions for
the above two classes of problems. In both cases our results provide significant
improvement over all previous methods.
The construction for the second problem is a simple modification of the

Zhang-Zheng method [20]. To get algebraic degree d > m, we start with an [n, d+
1, t + 1] code. Then we apply Zhang-Zheng construction to obtain a nonlinear
S-box. Finally we drop d+1−m output columns to obtain an (n,m, t)-resilient
S-box (see Section 4). This simple modification is powerful enough to improve
upon the best known construction with algebraic degree greater than m [4].
This clearly indicates the power of the original Zhang-Zheng construction. Our
contribution is to apply the Griesmer bound for linear error correcting codes to
prove that the modified Zhang-Zheng construction is superior to the best known
construction [4]. We know of no other work where such a provable comparison
of construction has been presented.
The Maiorana-McFarland technique is a well known method to construct non-

linear resilient functions. The idea is to use affine functions on small number of
variables to construct nonlinear resilient functions on larger number of variables.
We provide a construction to generate functions of the first type using a sharp-
ened version of the Maiorana-McFarland method. For Boolean functions, the
Maiorana-McFarland technique to construct resilient functions was introduced
by Camion et al [2]. Nonlinearity calculation for the construction was first per-
formed by Seberry, Zhang and Zheng [16]. This technique was later sharpened
by Chee et al [3] and Sarkar-Maitra [15]. For S-boxes this technique has been
used by [7] and [12], though [7] uses essentially a heuristic search technique.
Here we develop and sharpen the technique of affine function concatenation to
construct nonlinear resilient S-boxes. This leads to significant improvement in
nonlinearity over that obtained in [12]. Thus we obtain better results than [12]
which currently provides the best known nonlinearity results for most choices of
input parameters n,m, t.
The paper is organized as follows. Section 2 provides basic definitions, no-

tations, theory needed and a quick review of recent construction. In Section 3
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we prove the composition theorem. Section 4 provides modified Zhang-Zheng
construction and some theorems to prove its advantage over Cheon construc-
tion. Section 5 provide some definitions and theory needed in that section. It
also provides a construction by which we get (n,m, t)-resilient S-box with non-
linearity greater than the nonlinearity obtained in [12] which is known to be
best till date. In Section 6 we compare modified Zhang-Zhang construction with
Cheon construction, and also compare Construction-I of Section 5 with Pasalic
and Maitra construction [12]. Section 7 concludes this paper.

2 Preliminaries

This section has four parts. We cover preliminaries on Boolean functions and
S-boxes in Sections 2.1 and 2.2 respectively. In Section 2.3, we mention the
coding theory result that we require. In Section 2.4, we summarize the previous
construction results.

2.1 Boolean Functions

Let F2 = GF (2). We consider the domain of a Boolean function to be the vector
space (Fn

2 ,⊕) over F2, where ⊕ is used to denote the addition operator over both
F2 and the vector space Fn

2 . The inner product of two vectors u, v ∈ F n
2 will

be denoted by 〈u, v〉. The weight of an n-bit vector u is the number of ones in
u and will be denoted by wt(u). The (Hamming) distance between two vectors
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) is the number of places where they
differ and is denoted by d(x, y). The Walsh Transform of an m-variable Boolean
function g is an integer valued function Wg : {0, 1}m → [−2m, 2m] defined by
(see [9, page 414])

Wg(u) =
∑

w∈Fm
2

(−1)g(w)⊕〈u,w〉. (1)

The Walsh Transform is called the spectrum of g. The inverse Walsh Transform
is given by

(−1)g(u) =
1

2m

∑

w∈Fm
2

Wg(w)(−1)〈u,w〉. (2)

An m-variable function is called correlation immune of order t (t-CI) if Wg(u) =
0 for all u with 1 ≤ wt(u) ≤ t [17, 19]. Further the function is balanced if and
only if Wg(0) = 0. A balanced t-CI function is called t-resilient. For even n, an
n-variable function f is called bent if Wf (u) = ±2

n
2 , for all u ∈ Fn

2 (see [14]).
This class of functions is important in both cryptography and coding theory.
A parameter of fundamental importance in cryptography is the non-linearity

of a function (see [9]). This is defined to be the distance from the set of all affine
functions. It is more convenient to define it in terms of the spectrum of a Boolean
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function. The non-linearity nl(f) of an n-variable Boolean function f , is defined
as

nl(f) = 2n−1 − 1
2
max
u∈Fn

2

|Wf (u)|.

For even n, bent functions achieve the maximum possible nonlinearity.

A Boolean function g can be uniquely represented by a multivariate poly-
nomial over F2. The degree of the polynomial is called the algebraic degree or
simply the degree of g.

2.2 S-Boxes

An (n,m) S-box (or vectorial function) is a map f : {0, 1}n → {0, 1}m. Let
f : {0, 1}n → {0, 1}m be an S-box and g : {0, 1}m → {0, 1} be an m-variable
Boolean function. The composition of g and f , denoted by g ◦ f is an n-variable
Boolean function defined by (g◦f)(x) = g(f(x)). An (n,m) S-box f is said to be
t-CI, if g◦f is t-CI for every non-constant m-variable linear function g (see [20]).
Further, if f is balanced then f is called t-resilient. ( The function f is said to
be balanced if g ◦f is balanced for every non-constant m-variable linear function
g ). By an (n,m, t) S-box we mean t-resilient (n,m) S-box. Let f be an (n,m)
S-box. The nonlinearity of f , denoted by nl(f), is defined to be

nl(f) = min{nl(g ◦ f) : g is a non-constant m-variable linear function }.
Similarly the algebraic degree of f , denoted by deg(f), is defined to be

deg(f) = min{deg(g ◦ f) : g is a non-constant m-variable linear function }.
We will be interested in (n,m) S-boxes with maximum possible nonlinearity.

If n = m, the S-boxes achieving the maximum possible nonlinearity are called
maximally nonlinear [6]. If n is odd, then maximally nonlinear S-boxes have

nonlinearity 2n−1 − 2n−1
2 . For even n, it is possible to construct (n,m) S-boxes

with nonlinearity 2n−1− 2n2 , though it is an open question whether this value is
the maximum possible.

An (n,m) S-box with nonlinearity 2n−1 − 2n2 −1 is called perfect nonlinear
S-box. Nyberg [10] has shown that perfect nonlinear functions exist if and only
if n is even and n ≥ 2m. For odd n ≥ 2m, it is possible to construct S-boxes
with nonlinearity 2n−1 − 2n−1

2 .

If we fix an enumeration of the set {0, 1}n, then an (n,m) S-box f is uniquely
defined by a 2n ×m matrix Mf . Given a sequence of S-boxes f1, · · · , fk; where
fi is an (ni,m) S-box we define the concatenation of f1, · · · , fk to be the matrix

M =











Mf1

Mf2

...
Mfk











.

If 2n1 + · · ·+2nk = 2n for some n, then the matrix M uniquely defines an (n,m)
S-box f . In this case we say f is the concatenation of f1, · · · , fk.
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2.3 Coding Theory Results

We will use some standard coding theory results and terminology all of which
can be found in [9]. An [n, k, d] binary linear code is a subset of F n

2 which is
a vector space of dimension k over F2 having minimum distance d. We here
mention the Griesmer bound (see [9, page 546]). For an [n, k, d] linear code let
N(k, d) = length of the shortest binary linear code of dimension k and minimum
distance d.
The Griesmer bound states (see [9, page 547])

N(k, d) ≥
k−1
∑

i=0

⌈

d

2i

⌉

. (3)

We say that the parameters n, k, d satisfy the Griesmer bound with equality if
n =

∑k−1
i=0

⌈

d
2i

⌉

. There is a general construction (see [9, page 550]) which gives
large class of codes meeting the Griesmer bound with equality. Given d and k ,
define s = d d

2k−1 e and d = s2k−1 −∑p
i=1 2

ui−1 where k > u1 > · · · > up ≥ 1.
Given d and k, there is an [n = s(2k− 1)−∑p

i=1(2
ui − 1), k, d] code meeting the

Griesmer bound with equality if
∑min(s+1,p)

i=1 ui ≤ sk (see [9, page 552]). This
condition is satisfied for most values of d and k.

2.4 Some Recent Constructions

Here we summarize the previous construction results.

1. Zhang and Zheng [20]: This is the first paper to provide an elegant general
construction of nonlinear resilient S-boxes. The main result proved is the
following [20, Corollary 6]. If there exists a linear (n,m, t)-resilient function,
then there exists a nonlinear (n,m, t)-resilient function with algebraic degree
(m− 1) and nonlinearity ≥ (2n−1 − 2n−m

2 ).
2. Kurosawa, Satoh and Yamamoto [8, Theorem 18]: For any even l such that

l ≥ 2m, if there exists an (n− l,m, t)-resilient function , then there exists an

(n,m, t)-resilient function, whose nonlinearity is at least 2n−1 − 2n− l
2−1.

3. Johansson and Pasalic [7]: They use a linear error correcting code to build
a matrix A of small affine functions. Resiliency and nonlinearity is ensured
by using non-intersecting codes along with the matrix A. The actual non-
intersecting codes used were obtained by a heuristic search technique. It
becomes difficult to carry out this search technique for n > 12.

4. Pasalic and Maitra [12]: They use the matrix A of the previous method (3)
along with highly nonlinear functions for their construction. The nonlinearity
obtained is higher than the previous methods, except in certain cases, where
the search technique of (3) yields better results.

5. Cheon [4, Theorem 5]: Uses linearized polynomial to construct nonlinear
resilient function. The nonlinearity calculation is based on Hasse-Weil bound
for higher genus curves. The main result is the following. If there exists
[n,m, t] linear code then for any non-negative integer D there exists a (n+
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D+1,m, t−1)-resilient function with algebraic degree D and nonlinearity at
least (2n+D − 2nb

√
2n+D+1c+ 2n−1). To date, this is the only construction

which provides (n,m, t) nonlinear resilient S-boxes with degree greater than
m.

3 A Composition Theorem for S-boxes

We consider the composition of an (n,m) S-box and an m-variable Boolean
function. The following result describes the Walsh Transform of the composition.

Theorem 1. Let f : {0, 1}n → {0, 1}m and g : {0, 1}m → {0, 1}. Then for any
w ∈ Fn

2 ,

W(g◦f)(w) =
1

2m

∑

v∈Fm
2

Wg(v)W(lv◦f)(w)

where lv = 〈v, x〉 and (lv ◦ f)(x) = 〈v, f(x)〉 .

Proof. By Equation 2 , we have (−1)g(x) =
1

2m

∑

w∈Fm
2

Wg(w)(−1)<w,x>.

Hence ,

(−1)(g◦f)(x) = (−1)g(f(x)) =
1

2m

∑

v∈Fm
2

Wg(v)(−1)〈v,f(x)〉

=
1

2m

∑

v∈Fm
2

Wg(v)(−1)(lv◦f)(x).

By Equation 1 , we have

Wg◦f (w) =
∑

x∈Fn
2

(−1)(g◦f)(x)⊕<w,x> =
1

2m

∑

x∈Fn
2

∑

v∈Fm
2

Wg(v)(−1)(lv◦f)(x)⊕<w,x>

=
1

2m

∑

v∈Fm
2

Wg(v)
∑

x∈Fn
2

(−1)(lv◦f)(x)⊕<w,x> =
1

2m

∑

v∈Fm
2

Wg(v)W(lv◦f)(w) ut

Corollary 1. Let f : {0, 1}n → {0, 1}m be a balanced S-box. Let g be an m-
variable Boolean function. Then (g ◦ f) is balanced if and only if g is balanced.

Proof. Since f is balanced, W(lv◦f)(w) = 0 for all nonzero v ∈ Fm
2 .

Thus Wg◦f (0) =
1

2mWg(0)2
m =Wg(0). ut

Remark: It is possible for (g ◦ f) to be balanced even when either only f

is unbalanced or both f and g are unbalanced. We present examples for these
cases. Let f : {0, 1}3 → {0, 1}2 be an unbalanced S-box and f1, f2 are component
functions.
(a) Let f1(x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3 and f2(x1, x2, x3) =

x2⊕x1x2⊕x2x3⊕x1x3⊕x1x2x3 and g(x1, x2) = x1⊕x2. Here f is unbalanced
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but g is balanced. Observe (g ◦ f)(x1, x2, x3) = f1(x1, x2, x3) ⊕ f2(x1, x2, x3) =
x1 ⊕ x2x3 is balanced.
(b) Let f1(x1, x2, x3) = x3 ⊕ x1x2 ⊕ x1x2x3 and f2(x1, x2, x3) = x2 ⊕ x3 ⊕

x1x2 ⊕ x2x3 ⊕ x1x2x3 and g(x1, x2) = x1x2. Here both f and g are unbalanced.
Observe (g ◦f)(x1, x2, x3) = f1(x1, x2, x3)f2(x1, x2, x3) = x3, which is balanced.
Theorem 1 and Corollary 1 provide the following theorem.

Theorem 2. Let f be a t-resilient S-box and g be any arbitrary Boolean function
then (g ◦ f) is t-CI. Further (g ◦ f) is t-resilient if and only if g is balanced.

Theorem 2 shows that correlation immunity of an (n,m, t)-resilient S-box is
preserved under composition with an arbitrary m-variable Boolean function.
This is an important security property for the use of resilient S-boxes in stream
cipher design.

4 Construction of (n, m, t)-Resilient S-box with Degree
> m.

In this section we modify an elegant construction by Zhang and Zheng [20]
to obtain high degree nonlinear resilient S-boxes. The following result is well
known(see for example [20]).

Theorem 3. Let C be a [n,m, t+1] binary linear code. Then we can construct
an linear (n,m, t)-resilient function.

Modified Zhang-Zheng (MZZ) Construction.

– Inputs : Number of input columns = n, number of output columns = m,
degree = d ≥ m and resiliency = t.

– Output : An (n,m, t)-resilient function having degree d and nonlinearity

2n−1 − 2n−d d+1
2 e.

Procedure.

1. Use an [n, d+ 1, t+ 1] code to obtain an (n, d+ 1, t)-resilient function f .
2. Define g = G◦f , where G : {0, 1}d+1 → {0, 1}d+1 is a bijection and deg(G) =

d, nl(G) ≥ 2d − 2b d+1
2 c [11]. Then nl(g) ≥ 2n−d−1(2d − 2b d+1

2 c) = 2n−1 −
2n−d d+1

2 e and deg(g) = d [20, Corollary 6].
3. Drop (d+1−m) columns from the output of g to obtain an (n,m, t)-resilient

function with degree d and nonlinearity 2n−1 − 2n−d d+1
2 e.

Remark: For Step 2 above, there are other bijections by which we get the same
value of nl(G) but deg(G) = d is achieved only for G obtained from the inverse
mapping τ : GF (2d+1)→ GF (2d+1), with τ(x) = x−1 [6].
The modification to the Zhang-Zheng construction is really simple. If we

want degree d, then we start with an [n, d + 1, t + 1] code. Then we apply the
main step of Zhang-Zheng construction to obtain a nonlinear S-box. Finally we
drop d + 1 − m output columns to obtain an (n,m, t)-resilient S-box. Though
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simple, this modification is powerful enough to improve upon the best known
construction with high algebraic degree [4]. This shows the power of the original
Zhang-Zheng construction. Our contribution is to prove by an application of the
Griesmer bound that the MZZ construction is superior to the best known con-
struction [4, Cheon]. We know of no other work where such provable comparisons
of construction has been presented.

Theorem 4. Let n,m, d, t be such that the following two conditions hold.
1. Either (a) d < m or (b) d ≥ m ≥ log2(t+ 1).
2. The parameters n, d+ 1, t+ 1 meet the Griesmer bound with equality.
Then it is not possible to construct an (n,m, t)-resilient function f with degree
d using Cheon [4] method.

Proof. Recall the Cheon construction from Section 2.4. Given any [N,M, T +1]
and a non negative integer D, the Cheon construction produces an (N + D +
1,M, T )-resilient function with degree D. Thus if f is obtained by the Cheon
construction we must have n = N +D + 1 , m =M , t = T and d = D.

This means that an [n − d − 1,m, t + 1] code will be required by the Cheon
construction. Since the parameters n, d+ 1, t+ 1 satisfies Griesmar bound with
equality we have n =

∑d
i=0d t+1

2i e.
Claim : If (a) d < m or (b) d ≥ m ≥ log2(t+ 1) then n− d− 1 <

∑m−1
i=0 d t+1

2i e.
Proof of the claim: Since n =

∑d
i=0d t+1

2i e we have that n− d− 1 <
∑m−1

i=0 d t+1
2i e

if and only if
∑d

i=0d t+1
2i e − d− 1 <

∑m−1
i=0 d t+1

2i e. If d < m, then the last mentioned condition
is trivially true. So suppose d ≥ m ≥ log2(t + 1). Then the above inequality
holds if and only if

∑d
i=md t+1

2i e < d + 1. Since m ≥ log2(t + 1),
∑d

i=md t+1
2i e =

d−m+ 1 < d+ 1 for m ≥ 1. This completes the proof of the claim.
Since n − d − 1 <

∑m−1
i=0 d t+1

2i e, the parameters n − d − 1,m, t + 1 violate the
Griesmer bound and hence an [n−d−1,m, t+1] code do not exist. Thus Cheon
method cannot be used to construct the function f . ut

The following result is a consequence of Theorem 4 and the MZZ construc-
tion.

Theorem 5. Let n,m, d, t be such that the following two conditions hold.
1. Either (a) d < m or (b) d ≥ m ≥ log2(t+ 1).
2. An [n, d+ 1, t+ 1] code meeting the Griesmer bound with equality exist.
Then it is possible to construct an (n,m, t)-resilient function f with degree d by
the MZZ method which cannot be constructed using Cheon [4] method.

Remark: As mentioned in [9, page 550] there is a large class of codes which meet
the Griesmer bound with equality. Further, the condition d ≥ m ≥ log2(t+1) is
quite weak. Hence there exists a large class of (n,m, t)-resilient functions which
can be constructed using MZZ construction but cannot be constructed using
Cheon [4] construction. See Section 6 for some concrete examples.

Nonlinearity in Cheon method is (2N+D − 2Nb
√
2N+D+1c+ 2n−1) (see item

5 of Section 2.4) which is positive if D ≥ N+1 for N ≥ 2. So for D ≤ N , Cheon
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method do not provide any nonlinearity. Thus Cheon method may provide high
algebraic degree but it does not provide good nonlinearity. In fact, in the next
theorem we prove that nonlinearity obtained by MZZ method is larger than
nonlinearity obtained by Cheon method.

Theorem 6. Let f be an (n,m, t)-resilient function f of degree d and nonlinear-
ity n1 constructed by Cheon method. Suppose there exists a linear [n, d+1, t+1]
code. Then it is possible to construct an (n,m, t)-resilient function g with degree
d and nonlinearity n2 using MZZ method . Further n2 ≥ n1.

Proof. Since [n, d + 1, t + 1] code exists, the MZZ construction can be ap-
plied to obtain an (n,m, t)-resilient function g with degree d and nonlinearity

nl(g) = n2 = 2
n−1 − 2n−d d+1

2 e. It remains to show that n2 ≥ n1, which we show

now. Recall n1 = 2
n−1 − 2n−d−1b

√
2nc + 2n−d−2. Hence n2 − n1 ≥ −2n− d+1

2 +

2n−d−1b
√
2nc − 2n−d−2. Thus we have n2 ≥ n1 if −2

−(d+1)
2 + 2−(d+1)b

√
2nc −

2−(d+2) ≥ 0. The last condition holds if and only if b
√
2nc ≥ 2d+1( 1

2
d+1
2

+ 1
2d+2 ).

So n2 ≥ n1 if
√
2n−1 ≥ 2 d+1

2 +2−1. i.e. if 2
n
2 ≥ 2 d+1

2 + 3
2 . Again the last condition

hold for 1 ≤ d ≤ n−3. Hence n2 ≥ n1 for 1 ≤ d ≤ n−3. The maximum possible
degree of an S-box is n − 1. For d = n − 1 and d = n − 2, Cheon construction
requires [0,m, t+1] and [1,m, t+1] codes respectively. Clearly such code do not
exist. Hence n2 ≥ n1 holds for all d. ut

Lemma 1. Let f be an (n,m, t)-resilient function f of degree d ≥ m constructed
by Cheon method and m ≥ log2(t+1). Then the parameters n, d+1, t+1 satisfy
the Griesmer bound.

Proof. Since f has been obtained from Cheon method, there exists an [n− d−
1,m, t+1] code. Hence the parameters n−d−1,m and t+1 satisfy the Griesmar
bound. Since n−d−1,m and t+1 satisfy the Griesmar bound we have n−d−1 ≥
∑m−1

i=0 d t+1
2i e. i.e. we have n ≥ d+ 1 +

∑m−1
i=0 d t+1

2i e. As m ≥ log2(t+ 1) we have
d t+1

2i e = 1 for i ≥ m. Hence n ≥ (d+1)−(d−m+1)+
∑d

i=md t+1
2i e+

∑m−1
i=0 d t+1

2i e.
This shows n ≥ m +

∑d
i=0d t+1

2i e and consequently n ≥
∑d

i=0d t+1
2i e. Thus the

parameters n, d+ 1, t+ 1 satisfy the Griesmer bound. ut

Remark: Since the parameters n, d + 1 and t + 1 satisfy the Griesmer bound,
in most cases it is possible to obtain an [n, d+ 1, t+ 1] code (see [9, page 550])
and apply Theorem 6. In fact we do not know any case where a function can be
constructed using the Cheon method but not by the MZZ method. Theorems 5 and
6 prove the clear advantage of the MZZ method over the Cheon construction.
Thus MZZ method is the currently known best method to construct [n,m, t]-
resilient function with degree d > m.

5 A Construction to Obtain High Nonlinearity

In this section we concentrate on obtaining (n,m, t)-resilient S-boxes with high
nonlinearity only. We present a construction method which improves the non-
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linearity obtainable by the previously known methods. We start by mentioning
the following result which is restatement of Lemma 7 in [7].

Theorem 7. Let C be a [u,m, t+1] code. Then it is possible to construct (2m−
1) ×m matrix D with entries from C, such that, {c1Di,1 ⊕ · · · ⊕ cmDi,m : 1 ≤
i ≤ 2m − 1} = C \ {(0, · · · , 0)} for each nonzero vector (c1, · · · , cm) ∈ Fm

2 .

Let D be the matrix in Theorem 7. For (1 ≤ i ≤ 2m − 1) and (1 ≤ j ≤ m)

define a u-variable linear function Li,j(x1, · · · , xu)
4
= 〈Di,j , (x1, · · · , xu)〉. Given

the code C we define a (2m − 1)×m matrix L(C) whose entries are u-variable
linear functions by defining the i, j th entry of L(C) to be Li,j(x1, · · · , xu). We
have the following result which follows directly from Theorem 7.

Proposition 1. Let c ∈ Fm
2 be a nonzero row vector. Then all the entries of

the column vector L(C)cT are distinct.

For positive integers k, l with k ≤ l, we define L(C, k, l) to be the submatrix of
L(C) consisting of the rows k to l. Thus L(C, 1, 2m−1) = L(C). Let G(y1, · · · , yp)
be a (p,m) S-box whose component functions are G1, · · · , Gm. We define G ⊕
L(C, k, l) to be an (l− k+ 1)×m matrix whose i, j th entry is Gj(y1, · · · , yp)⊕
Lk+i−1,j(x1, · · · , xu) for 1 ≤ i ≤ l − k + 1 and 1 ≤ j ≤ m. If l − k + 1 = 2r for
some r then G ⊕ L(C, k, l) defines an S-box F : {0, 1}r+p+u → {0, 1}m in the
following manner.

Fj(z1, · · · , zr, y1, · · · , yp, x1, · · · , xu) = Gj(y1, · · · , yp)⊕ Lk+i−1,j(x1, · · · , xu)

where 1 ≤ j ≤ m, 1 ≤ i ≤ 2r, F1, · · · , Fm are the component functions of F and
z1 · · · zr is the binary representation of i−1. By F = G⊕L(C, k, l) we will mean
the above representation of the S-box F . Note that the function F is t-resilient,
since each Li,j(x1, · · · , xu) is non-degenerate on at least (t + 1) variables and
hence t-resilient.
In the matrixM = G(y1, · · · , yp)⊕L(C, k, l) we say that the row Li,∗ of L(C)

is repeated 2p times. Let G(y1, · · · , yp) and H(y1, · · · , yq) be (p,m) and (q,m)
S-boxes respectively and M1 = G⊕L(C, k, l), M2 = H⊕L(C, k, l). Then we say
that the row Li,∗ of L(C), (k ≤ i ≤ l) is repeated a total of 2p + 2q times in the

matrix [M1 M2]
T
.

Proposition 1 has also been used by [12] in the construction of resilient S-
boxes. However we improve upon the construction of [12] by utilizing the follow-
ing two ideas.
1. We use all the 2m− 1 rows of the matrix L(C). In contrast, [12] uses at most
2m−1 rows of L(C).
2. We allow a row of L(C) to be repeated 2r1 or 2r1 + 2r2 or 2r1 + 2r2 + 2r3

times as required. On the other hand, the number of times a row of L(C) can
be repeated in [12] is of the form 2r.

It turns out that a proper utilization of the above two techniques result in
significant improvement in nonlinearity. We will require (r,m) S-boxes with very
high nonlinearity. For this we propose to use the best known results which we
summarize in the following definition.
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Definition 1. Let G be an (r,m) S-box satisfying the following.
1. If r < m, G is a constant S-Box.
2. If m ≤ r < 2m, G is a maximally nonlinear S-Box [6].
3. If r ≥ 2m and r is even, G is a perfect nonlinear S-Box [11].
4. If r ≥ 2m and r is odd, G is concatenation of two perfect nonlinear S-
Boxes(see Section 2.2).
Then we say that G is a PROPER S-box.

The following result summarizes the best known results on the nonlinearity
of PROPER S-boxes.

Proposition 2. Let G be an (r,m) PROPER S-box. Then
1. If r < m, nl(G) = 0.

2. If m ≤ r < 2m, then nl(G) = 2r−1 − 2 r−1
2 if r is odd and nl(G) ≥ 2r−1 − 2 r2

if r is even.

3. If r ≥ 2m, then nl(G) = 2r−1 − 2 r2−1 if r is even and nl(G) = 2r−1 − 2 r−1
2 if

r is odd.

Now we are in a position to describe a new construction of resilient S-boxes. The
construction has two parts. In Part-A, we compute the number of rows of L(C)
to be used and the number of times each row is to be repeated. The output
of Part-A is a list of the form list = 〈(n1, R1), (n2, R2), · · · , (nk, Rk)〉 which
signifies that ni rows of L(C) are to be repeated Ri times each. Part-A also
computes a variable called effect which determines the nonlinearity of the S-box
(see Theorem 8). In Part-B of the construction, we choose PROPER functions
based on list and describe the actual construction of the S-box.
Construction-I.

1. Input: Positive integers (n,m) and t.
2. Output: A nonlinear (n,m, t)-resilient S-box F .

Part-A

1. Obtain minimum u such that [u,m, t+ 1] code C exists.
2. Case: n− u ≤ 0 , then function cannot be constructed using this method.
Hence stop.
3. Case: n− u ≥ 0

(a) 0 ≤ n− u < m; list = 〈(2n−u, 1)〉 and effect = 1.
(b) m ≤ n− u < 2m− 1; list = 〈(2m−1, 2n−u−m+1)〉
and effect= 2n−u−m+1.
(c) n− u = 2m− 1; list = 〈(2m−1, 2m)〉 and effect= 2bm2 c+1.
(d) 2m ≤ n− u < 3m.

(i) n− u = 2m+ 2e; m even; 0 ≤ e < m
2 ;

list = 〈(1, 2m+2e+1), (2m − 2, 2m+2e)〉 and effect= 2e+1+m
2 .

(ii) n−u = 2m+ 2e+ 1; m even; 0 ≤ e ≤ m
2 − 1;

• 0 ≤ e ≤ m
2 − 2;

list = 〈(2, 2m+2e+1 + 22e+1 + 22e), (2m − 3, 2m+2e+1 + 22e+1)〉
and effect= 22e+1 + 22e + 2e+1+m

2 .
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• e = m
2 − 1; list = 〈(2m−1, 2m)〉 and effect= 2m.

(iii) n− u = 2m+ 2e+ 1; m odd; 0 ≤ e ≤ bm
2 c − 1;

list = 〈(1, 2m+2e+2), (2m − 2, 2m+2e+1)〉 and effect= 2m+2e+3
2 .

(iv) n− u = 2m+ 2e; m odd; 0 ≤ e < bm
2 c;

list = 〈(2m − 2, 2m+2e + 22e+1), (1, 22e+2)〉
and effect= 22e+1 + 2

m+2e+1
2 .

(v) n− u = 3m− 1; m odd;
list = 〈(2m−1, 22m)〉 and effect= 2m.

(e) n− u ≥ 3m.
(i) n− u = 3m+ 2e+ 1; e ≥ 0;

list = 〈(2m−1, 22m+2e+2)〉 and effect= 2m+e+1.
(ii) n− u = 3m+ 2e; (m even; e ≥ m

2 ) or (m odd; 0 ≤ e < bm
2 c);

list = 〈(2, 22m+2e + 2m+2e + 2m+2e−1), (2m − 3, 22m+2e + 2m+2e)〉
and effect= 2m+e + 2e+1+m

2 .
(iii) n− u = 3m+ 2e; m even; 0 ≤ e < m

2
list = 〈(2m − 2, 22m+2e + 2m+2e+1), (1, 2m+2e+2)〉
and effect= 2m+e + 2e+1+m

2 .
(iv) n− u = 3m+ 2e; m odd; e ≥ bm

2 c
list = 〈(2m − 2, 22m+2e + 2m+2e+1), (1, 2m+2e+2)〉
and effect= 2m+e + 2e+m+1

2 .

Part-B

1. If list = 〈(2s, 2r)〉;
• Obtain L(C, 1, 2s) from L(C) by selecting first 2s rows of L(C).
• Let G be an (r,m) PROPER S-box.
• Define F = G⊕ L(C, 1, 2s).
• This covers cases 3.(a),(b),(c),(d)(ii) second item, (d)(v)
and e(i) of Part-A.

2. Case: 3(d)(i) of Part-A
• Let G1 and G2 be (m+ 2e+ 1,m) and (m+ 2e,m) PROPER S-boxes.
• Define F1 = G1 ⊕ L(C, 1, 1), F2 = G2 ⊕ L(C, 2, 2m − 1) .
• F is the concatenation of F1 and F2 .

3. Case: 3(d)(ii) first item of Part-A and e = 0
• Let G1 and G2 be (m+ 1,m) and (1,m) PROPER S-boxes.
• Define F1 = G1 ⊕ L(C), F2 = G2 ⊕ L(C), F3 = L(C, 1, 2) .
• F is the concatenation of F1, F2 and F3 .

4. Case: 3(d)(ii) first item of Part-A and e 6= 0
• Let G1, G2 and G3 be (m+ 2e+ 1,m), (2e+ 1,m) and (2e,m) PROPER
S-boxes.
• Define F1 = G1 ⊕ L(C), F2 = G2 ⊕ L(C), F3 = G3 ⊕ L(C, 1, 2) .
• F is the concatenation of F1, F2 and F3 .

5. Case: 3(d)(iii) of Part-A
• Let G1 and G2 be (m+ 2e+ 2,m) and (m+ 2e+ 1,m) PROPER S-boxes.
• Define F1 = G1 ⊕ L(C, 1, 1), F2 = G2 ⊕ L(C, 2, 2m − 1) .
• F is the concatenation of F1 and F2 .
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6. Case: 3(d)(iv) of Part-A
• Let G1, G2 and G3 be (m+ 2e,m), (2e+ 2,m) and (2e+ 1,m) PROPER
S-boxes.
• Define F1 = G1 ⊕ L(C, 1, 2m − 2), F2 = G2 ⊕ L(C, 2m − 1, 2m − 1),
F3 = G3 ⊕ L(C, 1, 2m − 2) .
• F is the concatenation of F1, F2 and F3 .

7. Case: 3(e)(ii) of Part-A
• Let G1, G2 and G3 be (2m+ 2e,m), (m+ 2e,m) and (m+ 2e− 1,m)
PROPER S-boxes.
• Define F1 = G1 ⊕ L(C), F2 = G2 ⊕ L(C), F3 = G3 ⊕ L(C, 1, 2) .
• F is the concatenation of F1, F2 and F3 .

8. Case: 3(e)(iii) and 3(e)(iv) of Part-A
• Let G1, G2 and G3 be (2m+ 2e,m), (m+ 2e+ 2,m)
and (m+ 2e+ 1,m) PROPER S-boxes.
• Define F1 = G1 ⊕ L(C, 1, 2m − 2), F2 = G2 ⊕ L(C, 2m − 1, 2m − 1),
F3 = G3 ⊕ L(C, 1, 2m − 2) .
• F is the concatenation of F1, F2 and F3 .

Theorem 8. Construction-I provides a nonlinear (n,m, t)-resilient S-box with
nonlinearity = (2n−1 − 2u−1× effect), where effect is as computed in Part-A.

Proof. There are several things to be proved.
(a) The output function F is an (n,m) S-box. (b) F is t-resilient. (c) nl(f) =
(2n−1 − 2u−1× effect).
Proof of (a) The output of Part-A is a list = 〈(n1, R1), (n2, R2), · · · , (nk, Rk)〉.
Part-B ensures that for 1 ≤ i ≤ k, ni rows of L(C) are repeated Ri times each.

It is easy to verify that in each case of Part-A we have
∑k

i=1 niRi = 2
n−u. Since

each row Li,∗ of L(C) defines a (u,m) S-box, ultimately F is an (n,m) S-box.
Proof of (b) Each row Li,∗ of L(C) defines a t-resilient (u,m) S-box. F is formed
by concatenating the rows of L(C) one or more times. Hence F is t-resilient.
Proof of (c) The nonlinearity calculation is similar for all the cases. As an ex-
ample, we perform the calculation for Case 3(e)(ii). In this case, Part-A com-
putes list = 〈(2, 22m+2e + 2m+2e + 2m+2e−1), (2m − 3, 22m+2e + 2m+2e)〉. Let
R1 = 2

2m+2e + 2m+2e + 2m+2e−1 and R2 = 2
2m+2e + 2m+2e. Rows L1,∗ and

L2,∗ of L(C) are repeated R1 times each and each of the rows L3,∗ to L2m−1,∗ is
repeated R2 times each. Part-B uses three PROPER functions G1, G2 and G3

to construct S-boxes F1, F2 and F3 respectively. F is the concatenation of F1, F2

and F3. We have to show that if ν is a non constant m-variable linear function
and λ is an n-variable linear function, then d(ν ◦ F, λ) ≥ (2n−1 − 2u−1× effect).
We write λ as λ(y1, · · · , yn−u, x1, · · · , xu) = λ1(y1, · · · , yn−u) ⊕ λ2(x1, · · · , xu).
Let ν(z1, · · · , zm) = 〈(c1, · · · , cm), (z1, · · · , zm)〉 for some non-zero vector c =
(c1, · · · , cm) ∈ Fm

2 . The Boolean function ν ◦ F is a concatenation of Boolean
functions ν ◦ F1, ν ◦ F2 and ν ◦ F3. For 1 ≤ i ≤ 2, ν ◦ Fi = (ν ◦Gi)⊕ (L(C)cT )
and ν ◦F3 = (ν ◦G3)⊕ (L(C, 1, 2)cT ). Using Proposition 1, we know that all the
entries of the column vector L(C)cT are distinct u-variable linear functions. Let
L(C)cT = [µ1, · · · , µ2m−1]

T . The function ν◦F is a concatenation of the µi’s and
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their complements. Further, µ1 and µ2 are repeated R1 times and µ3, · · · , µ2m−1

are repeated R2 times in the construction of ν ◦ F . If λ 6∈ {µ1, · · · , µ2m−1} then
d(λ2, µi) = 2

u−1 for each 1 ≤ i ≤ 2m − 1 and hence d(ν ◦ F, λ) = 2n−u(2u−1) =
2n−1. Now suppose λ2 = µi for some i ∈ {1, · · · , 2m− 1}. In this case d(ν ◦F, λ)
will be less than 2n−1 and the actual value is determined by the repetition factors
R1 and R2. There are two cases to consider.

Case 1: λ2 = µ1 or µ2. Without loss of generality we assume λ2 = µ1,
the other case being similar. Since λ2 = µ1, we have d(λ2, µi) = 2

u−1 for 2 ≤
i ≤ 2m − 1. The function µ2 is repeated R1 times and each of the functions
µ3, · · · , µ2m−1 is repeatedR2 times. So the total contribution of µ2, µ3, · · · , µ2m−1

to d(ν◦F, λ) is 2u−1(R1+(2
m−3)R2). We now have to compute the contribution

of µ1 to d(ν ◦F, λ). The function µ1 is repeated in ν ◦Fi by XORing with ν ◦Gi.
Hence the contribution of µ1 to d(F, λ) is equal to
2u(nl(ν ◦ G1) + nl(ν ◦ G2) + nl(ν ◦ G3)) = 2

u(nl(G1) + nl(G2) + nl(G3)) since
nl(ν ◦Gi) = nl(Gi). Each Gi is a PROPER function whose nonlinearity is given
by Proposition 2.
Hence, d(ν ◦ F, λ) = 2u−1(R1 + (2

m − 3)R2 + 2(nl(G1) + nl(G2) + nl(G3))
= 2u−1(2n−u−(R1−2(nl(G1)+nl(G2)+nl(G3)))) = 2

n−1−2u−1(R1−2(nl(G1)+
nl(G2) + nl(G3))).
From the given conditions, it is easy to verify that effect = R1 − 2(nl(G1) +
nl(G2) + nl(G3)) and so d(ν ◦ F, λ) = (2n−1 − 2u−1× effect).

Case 2: λ2 = µi for some i ∈ {3, · · · , 2m − 1}. In this case we proceed as in
the previous case to obtain
d(ν ◦F, λ) = 2u−1(2R1+(2

m−4)R2)+2
u(nl(G1)+nl(G2)) = 2

u−1(2R1+(2
m−

4)R2 + 2(nl(G1) + nl(G2))
= 2u−1(2n−u−R2+2(nl(G1)+nl(G2)) = 2

n−1−2u−1(R2−2(nl(G1)+nl(G2)))
> 2n−1 − 2u−1× effect, since effect = R1 − 2(nl(G1) + nl(G2) + nl(G3)) >

R1 − 2(nl(G1) + nl(G2)).
By Case 1 and Case 2 above it follows that nl(ν ◦F ) = 2n−1− 2u−1× effect.

Hence nl(F ) = 2n−1 − 2u−1× effect. ut

6 Results and Comparisons

Here we compare the construction methods described in this paper to the known
construction methods.

6.1 Degree Comparison Based on MZZ Construction

We present examples to show the advantage of the MZZ method over the Cheon
method. Cheon method cannot construct (n,m, t)-resilient function of degree
d ≥ m ≥ 2 if the following two conditions hold.
(1)

t 1 2 to 3 4 to 7 8 to 15 16 to 31
m m ≥ 1 m ≥ 2 m ≥ 3 m ≥ 4 m ≥ 5

(2) The parameters n, d+ 1, t+ 1 satisfy Griesmer bound with equality.
We next present some examples of n,m, d and t satisfying condition (1) and (2)
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such that the MZZ method can be used to construct (n,m, t)-resilient function
with degree d.
(a) t = 1, 2 ≤ m ≤ d, n = d + 2. It is easy to check that a [d + 2, d + 1, 2]

code exists.
(b) t = 2, 2 ≤ m ≤ d, (n, d) = (6, 2), (7, 3), (8, 4), (9, 5), (10, 6), (11, 7). In each

case an [n, d+ 1, t+ 1] code exists.
(c) t = 3, 2 ≤ m ≤ d, (n, d) = (7, 2), (8, 3), (11, 6), (12, 7), (13, 8). In each case

an [n, d+ 1, t+ 1] code exists.
In (a) to (c) above an (n,m, t)-resilient function with degree d can be constructed
using MZZ method, but cannot be constructed using Cheon method(see Theo-
rem 5). Now we present some examples where both MZZ and Cheon method
construct (n,m, t)-resilient function with degree d and compare their nonlinear-
ity using Theorem 6. An (n,m, d, t) S-box is an (n,m, t)-resilient S-box with
degree d.

Function (10, 3, 1, 5) (18, 4, 2, 10) (24, 5, 2, 15) (24, 7, 3, 12) (28, 6, 4, 14)

Cheon [4, Theorem 5] 8 216 + 29 223
− 220 + 27 210 212

MZZ 29
− 27 217

− 212 223
− 216 223

− 217 227
− 220

Table 1 : Comparison of nonlinearity obtained by MZZ Construction to that
obtained by Cheon [4].

We see that in each case the nonlinearity obtained by the MZZ method is far
superior to that obtained by the Cheon method.

6.2 Nonlinearity Comparison Based on Construction-I

We compare the nonlinearity obtained by Construction-I to the nonlinearity ob-
tained in Theorem 4 of [12]. The nonlinearity obtained in [12] is better than the
nonlinearity obtained by other methods. Hence we do not compare our method
with the other methods. It is to be noted that in certain cases the search tech-
nique of [7] provides better nonlinearity than [12].
Our first observation is that the nonlinearity obtained by Construction-I is

at least as large the nonlinearity obtained in [12]. The intuitive reason is that
we use all the rows of the matrix L(C) and hence the repetition factor is less
than that of [12]. The detailed verification of the superiority of Construction-I
over [12] is straightforward but tedious. In the next table we summarize the cases
under which Construction-I yields higher nonlinearity than [12].

Case Nonlinearity of [12] Construction-I nonlinearity

2m ≤ n − u < 3m − 3, π even 2n−1 − 2(n+u−m+1)/2 2n−1 − 2(n+u−m−1)/2 − 3 × 2n−2m−2 (1)

2n−1 − 2(n+u−m−1)/2 − 2n−2m (2)

2m ≤ n − u < 3m − 3, π odd 2n−1 − 2(n+u−m+2)/2
2n−1 − 2(n+u−m)/2 (3)

n − u = 3m − 3 2n−1 − 2(u+m−1) 2n−1 − 11
16

2(u+m−1) (4)

n − u ≥ 3m, π odd 2n−1 − 2(n+u−m)/2
2n−1 − 2(n+u−m)/2( 1

2
+ 1

2m/2
) (5)

2n−1 − 2(n+u−m)/2( 1
2

+ 1

2((m+1)/2)
) (6)

Table 2 : Comparison of Construction-I nonlinearity with the nonlinearity
of [12].

We list the different cases of Part-A corresponding to the different rows of the
table.
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(1) Case 3(d)(ii)first item; (2) Case 3(d)(iv); (3) Case 3(d)(i) and Case 3(d)(iii);
(4) Case 3(d)(ii)first item; (5) Case 3(e)(iii), m > 2 and Case 3(e)(ii), m > 2;
(6) Case 3(e)(iv), m > 1.
In Tables 3 to 5 we provide some concrete examples of cases where the non-

linearity obtained by Construction-I is better than that obtained by [12]. Each
entry of Tables 3 to 5 is of the form (a, b), where a is the nonlinearity obtained
by [12] and b is the nonlinearity obtained by Construction-I.
The linear codes used in Table 3 are [5, 4, 2], [7, 4, 3] and [8, 4, 4]. The 2nd, 4th,

and 6th rows give the nonlinearity of (n,m, t)-resilient functions corresponding
to the codes [5, 4, 2], [7, 4, 3] and [8, 4, 4] respectively for different values of n.

n = 13 n = 14 n = 17 n = 19

(212 − 28), (212 − 27) (213 − 28), (213 − 11
16

28) (216 − 29), (216 − 3
4
29) (218 − 210), (218 − 3

4
210)

n = 15 n = 16 n = 19 n = 21

(214 − 210), (214 − 29) (215 − 210), (215 − 11
16

210) (218 − 211), (218 − 3
4
211) (220 − 212), (220 − 3

4
212)

n = 16 n = 17 n = 20 n = 22

(215 − 211), (215 − 210) (216 − 211), (216 − 11
16

211) (219 − 212), (219 − 3
4
212) (221 − 213), (221 − 3

4
213)

Table 3 : Comparison of Construction-I nonlinearity with [12] for m = 4 and
resiliency = 1, 2, 3.

The linear codes used in Table 4 are [6, 5, 2], [9, 5, 3] and [10, 5, 4].

n = 16 n = 17 n = 18 n = 21

(215 − 29), (215 − 5
8
29) (216 − 210), (216 − 29) (217 − 210), (217 − 11

16
210) (220 − 211), (220 − 5

8
211)

n = 19 n = 20 n = 21 n = 24

(218 − 212), (218 − 5
8
212) (219 − 213), (219 − 212) (220 − 213), (220 − 11

16
213) (223 − 214), (223 − 5

8
214)

n = 18 n = 19 n = 20 n = 25

(217 − 211), (217 − 5
8
211) (218 − 212), (218 − 211) (219 − 212), (219 − 11

16
212) (224 − 215), (224 − 5

8
215)

Table 4: Comparison of Construction-I nonlinearity with [12] for m = 5 and
resiliency = 1, 2, 3.

The linear codes used in Table 5 are [7, 6, 2], [10, 6, 3] and [10, 6, 4].

n = 19 n = 20 n = 21 n = 22

(218 − 211), (218 − 210) (219 − 211), (219 − 19
32

211) (220 − 212), (220 − 211) (221 − 212), (221 − 11
16

212)

n = 22 n = 23 n = 24 n = 25

(221 − 214), (221 − 213) (222 − 214), (222 − 19
32

214) (223 − 215), (223 − 214) (224 − 215), (224 − 11
16

215)

n = 22 n = 23 n = 24 n = 25

(221 − 214), (221 − 213) (222 − 214), (222 − 19
32

214) (223 − 215), (223 − 214) (224 − 215), (224 − 11
16

215)

Table 5 : Comparison of Construction-I nonlinearity with [12] for m = 6 and
resiliency = 1, 2, 3.

Nonlinearity of (36, 8, t) resilient S-box has been used as very important examples
in [8, 7, 12]. Now we compare our nonlinearity with those.

t 7 6 5 4 3 2 1

[8] 235
− 227 235

− 227 235
− 226 235

− 225 235
− 224 235

− 223 235
− 222

[7] 235
− 222 - 235

− 223 235
− 222 235

− 222 235
− 221 235

− 221

[12] 235
− 225 235

− 224 235
− 223 235

− 223 235
− 220 235

− 220 235
− 218

Ours 235
− 224 235

−

35

64
224 235

−

19

32
223 235

− 222 235
− 220 235

−

9

16
220 235

− 218

Codes [20, 8, 8] [19, 8, 7] [17, 8, 6] [16, 8, 5] [13, 8, 4] [12, 8, 3] [9, 8, 2]

Table 6 : Comparison of nonlinearity of (36, 8, t)-resilient S-boxes using different
methods.

The results of [7] are not constructive. They show that resilient S-box with
such parameter exist. Note that, except for resiliencies of order 1 and 3 our
nonlinearity is better than nonlinearity of [12]. It should also be noted that in
all the cases we provide construction with currently best known nonlinearity.
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7 Conclusion

In this paper we consider the construction of nonlinear resilient S-boxes. We
prove that the correlation immunity of a resilient S-box is preserved under com-
position with an arbitrary Boolean function. Our main contribution is to obtain
two construction methods for nonlinear resilient S-boxes. The first construction
is a simple modification of an elegant construction due to Zhang and Zheng [20].
This provides (n,m, t)-resilient S-boxes with degree d > m. We prove that the
modified Zhang Zheng construction is superior to the only previously known
construction [4] which provided degree d > m. Our second construction is based
on concatenation of small affine function to build nonlinear resilient S-boxes. We
sharpen the technique to construct (n,m, t)-resilient S-boxes with the currently
best known nonlinearity.
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