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the tightness of the bounds on Csum(SSS) when L � K � 2 (mod 4)
(Cases iii) and iv)) depends on the existence of Hadamard matrices of
sizeK�2 andK+2. Indeed, if a sizeK�2 Hadamard matrix exists
and K � L + 2, then the signature design method in [9] provides us
withminimum-TSC sets whoseCsum achieves the upper bound in Case
iii) or iv) of Proposition 2, Part b). If a size K + 2 Hadamard matrix
exists, then the minimum-TSC sets designed in [10], [11] have Csum
equal to the lower bound in Case iii) or iv) of Proposition 2, Part b).
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A Counterexample for the Open Problem on the Minimal
Delays of Orthogonal Designs With Maximal Rates
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Abstract—X. Liang systematically investigated orthogonal designs with
maximal rates, gave the maximal rates of complex orthogonal designs and
a concrete construction procedure for complex orthogonal designs with the
maximal rates. He also posed an open problem on the minimal decoding
delays of complex orthogonal designs with maximal rates, and proved that
the problem is correct for less than or equal to six transmit antennas. In
this correspondence, we give a counterexample for the open problem for
= 8 and prove that the minimal delay for complex orthogonal designs

with eight columns is 56. Hence, we give a negative answer for the open
problem.

Index Terms—Complex orthogonal designs, decoding delays, full diver-
sity, maximal rates, space–time block codes.

I. INTRODUCTION

Recently, space–time codes have been extensively investigated for
wireless communication systemswithmultiple transmit and receive an-
tennas. Alamouti [1] proposed a remarkable transmission scheme using
two transmit antennas, which has linear maximum-likelihood (ML) de-
coding complexity and full diversity. Subsequently, Tarokh, Jafarkhani,
and Calderbank [9] generalized Alamouti’s idea to the general case
by orthogonal designs, i.e., space–time codes from orthogonal designs,
and provided a systematic method to construct real orthogonal designs
with code rate 1 and complex orthogonal designs with code rate 1=2. It
was proved in [8] and [9] that the code rate of real or complex orthog-
onal designs is not larger than 1. Hence, what are the maximal rates
for complex orthogonal designs is an open problem. Lately, an upper
bound of the maximal rate for space–time codes from generalized com-
plex orthogonal designs was given by Wang and Xia in [11] by use of
elegant matrix analysis. However, we do not know if the upper bound in
[11] can be achieved for more than four transmit antennas. At almost
the same time, Liang [3] systematically and smartly investigated the
maximal rates of space–time codes from complex orthogonal designs:
he not only gave the maximal rates of complex orthogonal designs for
any number of transmit antennas, but also presented a concrete con-
struction procedure for complex orthogonal designs with the maximal
rates. Furthermore, Liang discussed the minimal decoding delays of
complex orthogonal designs with the maximal rates. He proved that
the complex orthogonal designs with the maximal rates obtained from
his construction procedure have the minimal decoding delays for fewer
than or equal to six transmit antennas, and posed an open problem for
the minimal decoding delays.
In the correspondence, we give a counterexample for the open

problem in [3], thus giving a negative answer to the open problem. In
Section II, we introduce some preliminaries on orthogonal designs. A
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counterexample for the open problem is given in Section III. Further-
more, we prove that the minimal delay of complex orthogonal designs
with eight columns is 56.

II. PRELIMINARIES ON ORTHOGONAL DESIGNS

In this section, we introduce some basic notions on space–time codes
and orthogonal designs. In what follows, denotes the field of all com-
plex numbers, the field of all real numbers, and the ring of all in-
tegers. All vectors are assumed to be column vectors. For any field ,
denote by n and Mm�n( ) the set of all n-dimensional vectors in
and the set of all m � n matrices in , respectively. For any vector

x 2 n, denote by xt the transpose of x. For any a 2 , denote by
a� the conjugate of a. For any vector x = (x1; x2; . . . ; xn)

t 2 n,
denote by x� = (x�1; x

�

2; . . . ; x
�

n)
t the conjugate of x, and denote by

xH = (x�1; x
�

2; . . . ; x
�

n) the conjugate transpose of x. Similarly, for
any matrix A 2 Mm�n( ), At denotes the transpose of A, A� the
conjugate of A, and AH the conjugate transpose of A. Denote by

A(i1; i2; . . . ; ik; j1; j2; . . . ; jk) and A(s1 � s2; t1 � t2)

the submatrix consisting of the i1th; i2th; . . . ; ikth rows and the
j1th; j2th; . . . ; jkth columns of A, and the submatrix consisting of
the s1th; (s1 + 1)th; . . . ; s2th rows and the t1th; (t1 + 1)th; . . . ; t2th
columns of A, where s1 < s2 and t1 < t2, respectively. Sometimes,
we denote by A(i1; i2; . . . ; ik; t1 � t2) the submatrix consisting of
the i1th; i2th; . . . ; ikth rows and the t1th; (t1+1)th; . . . ; t2th columns
of A. So A(i; j) denotes the 1 � 1 submatrix consisting of the (i; j)
element of A. We use A(i; j) for the (i; j) element of the matrix A.
For any x 2 , dxe and bxc denote the least integer larger than or
equal to x and the largest integer less than or equal to x.

Definition 1: A [p; n; k] complex orthogonal design O is a p � n
rectangular matrix whose nonzero entries are

z1; z2; . . . ; zk;�z1;�z2; . . . ;�zk

or

z�1 ; z
�

2 ; . . . ; z
�

k;�z
�

1 ;�z
�

2 ; . . . ;�z
�

k

where z1; z2; . . . ; zk; z�1 ; z
�

2 ; . . . ; z
�

k are indeterminates over the com-
plex number field , such that

OHO = (jz1j
2 + jz2j

2 + � � �+ jzkj
2)In�n:

When p = n, O is called a square complex orthogonal design. k=p is
called the code rate of O, and p is called the decoding delay of O.

A [p; n; k] generalized complex orthogonal design O is a p � n
rectangular matrix whose entries are complex linear combinations of
z1; z2; . . . ; zk; z

�

1 ; z
�

2 ; . . . ; z
�

k such that

OHO = (jz1j
2 + jz2j

2 + � � �+ jzkj
2)In�n:

It has been proved in [11] that the code rate of generalized complex
orthogonal designs is upper-bounded by 3=4 when n > 2. Here, we
only consider the complex orthogonal designs defined in Definition 1.

Clearly, a [p; n; k] complex orthogonal design O is still a [p; n; k]
complex orthogonal design under the following transformations: 1)
multiplication of rows or columns with �1; 2) permutation of rows
or columns of O; 3) permutation of complex variables in O; 4) multi-
plication of some complex variables with �1; 5) substitution of some
complex variables in O with their conjugates.

From Definition 1 , it is easy to check that, for a [p; n; k] complex
orthogonal design O, every column of O exactly contains one of zi,
�zi, z�i , and �z

�

i for each i = 1; 2; . . . ; k, and every row contains at
most one of zi,�zi, z�i and�z

�

i for each i = 1; 2; . . . ; k. IfO includes
the following submatrix:

zi s1
s2 zi

or
s1 zi
zi s2

then s1 = s2 = 0. If O includes the following submatrix:

zi s1
s2 z�i

or
s1 zi
z�i s2

then s2 = �s�1 .
Tarokh [9] gave a construction method for complex designs with

code rate 1=2. It is very difficult to construct complex designs with
code rates larger than 1=2. However, Liang [3] made great progress
in dealing with this problem. He proved that the maximal rate of a
[p; n; k] complex orthogonal design is m+1

2m
, where n = 2m or 2m�

1, m � 1. Furthermore, he presented a procedure for constructing
complex orthogonal designs with the maximal rates. For details of this
procedure, the reader can refer to [3] and find many examples there.
Given a positive integer n and n = m + l, a [p(m; l); n; k(m; l)]

complex orthogonal designO can be constructed by Liang’s procedure,
where

k(m; l) =
n

m
and p(m; l) =

n

m+ 1
+

n

m� 1
:

Furthermore, whenm = n

2
, k(m;l)
p(m;l)

achieves the maximal value, i.e.,
k(m;l)
p(m;l)

= m+1
2m

. More concretely, when n = 2m

k(m;m) =
2m

m
; p(m;m) =

2m

m+ 1

2m

m

and
k(m;m)

p(m;m)
=
m+ 1

2m
:

When n = 2m � 1

k(m;m� 1) =
1

2
k(m;m); p(m;m� 1) =

1

2
p(m;m)

and
k(m;m)

p(m;m)
=
m+ 1

2m
:

Let n = m+1
2m

, where n = 2m or 2m � 1. Let } (n; r) denote the
minimal positive integer p such that there exists a [p; n; k] complex
orthogonal design with k

p
� r. Liang [3] conjectured that

} (n; n) =
2m
m+1

n

m
; if n = 2m or 2m� 1, but n 6= 4

4; if n = 4.
(1)

He proved the above equation is correct for 1 � n � 6. Is (1) correct
for n � 7? This is an open problem.

III. A COUNTEREXAMPLE FOR THE OPEN PROBLEM

In this section, we give a counterexample for (1) for n = 8 and prove
that theminimal delay for [p; 8; k] complex orthogonal designswith the
maximal rate 5

8
is 56. We also prove that (1) is correct for n = 7.

According to (1), a [p; 8; k] complex orthogonal designO with k

p
=

5
8
should have the minimal delay

p =
8

5

8

4
= 112:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005 357

However, we construct a [56; 8; 35] complex orthogonal design G,
which is given in

G=

z1 0 0 0 z2 z3 z4 z5

0 z1 0 0 z6 z7 z8 z9

0 0 z1 0 z10 z11 z12 z13

0 0 0 z1 z14 z15 z16 z17

�z�2 �z�6 �z�10 �z�14 z�1 0 0 0

�z�3 �z�7 �z�11 �z�15 0 z�1 0 0

�z�4 �z�8 �z�12 �z�16 0 0 z�1 0

�z�5 �z�9 �z�13 �z�17 0 0 0 z�1

�z6 z2 0 0 0 z18 z19 z20

�z10 0 z2 0 0 z21 z22 z23

�z14 0 0 z2 0 z24 z25 z26

0 �z�18 �z�21 �z�24 �z�3 z�2 0 0

0 �z�19 �z�22 �z�25 �z�4 0 z�2 0

0 �z�20 �z�23 �z�26 �z�5 0 0 z�2

�z7 z3 0 0 �z18 0 z27 z28

�z11 0 z3 0 �z21 0 z29 z30

�z15 0 0 z3 �z24 0 z31 z32

0 �z�27 �z�29 �z�31 0 �z�4 z�3 0

0 �z�28 �z�30 �z�32 0 �z�5 0 z�3

�z8 z4 0 0 �z19 �z27 0 z33

�z12 0 z4 0 �z22 �z29 0 z34

�z16 0 0 z4 �z25 �z31 0 z35

0 �z�33 �z�34 �z�35 0 0 �z�5 z�4

�z9 z5 0 0 �z20 �z28 �z33 0

�z13 0 z5 0 �z23 �z30 �z34 0

�z17 0 0 z5 �z26 �z32 �z35 0

0 �z10 z6 0 0 z�35 �z�32 z�31

0 �z14 0 z6 0 �z�34 z�30 �z�29
z�18 0 �z35 z34 �z�7 z�6 0 0

z�19 0 z32 �z30 �z�8 0 z�6 0

z�20 0 �z31 z29 �z�9 0 0 z�6

0 �z11 z7 0 �z�35 0 z�26 �z�25
0 �z15 0 z7 z�34 0 �z�23 z�22

z�27 0 �z26 z23 0 �z�8 z�7 0

z�28 0 z25 �z22 0 �z�9 0 z�7

0 �z12 z8 0 z�32 �z�26 0 z�24

0 �z16 0 z8 �z�30 z�23 0 �z�21
z�33 0 �z24 z21 0 0 �z�9 z�8

0 �z13 z9 0 �z�31 z�25 �z�24 0

0 �z17 0 z9 z�29 �z�22 z�21 0

0 0 �z14 z10 0 z�33 �z�28 z�27

z�21 z35 0 �z33 �z�11 z�10 0 0

z�22 �z32 0 z28 �z�12 0 z�10 0

z�23 z31 0 �z27 �z�13 0 0 z�10

0 0 �z15 z11 �z�33 0 z�20 �z�19
z�29 z26 0 �z20 0 �z�12 z�11 0

z�30 �z25 0 z19 0 �z�13 0 z�11

0 0 �z16 z12 z�28 �z�20 0 z�18

z�34 z24 0 �z18 0 0 �z�13 z�12

0 0 �z17 z13 �z�27 z�19 �z�18 0

z�24 �z34 z33 0 �z�15 z�14 0 0

z�25 z30 �z28 0 �z�16 0 z�14 0

z�26 �z29 z27 0 �z�17 0 0 z�14

z�31 �z23 z20 0 0 �z�16 z�15 0

z�32 z22 �z19 0 0 �z�17 0 z�15

z�35 �z21 z18 0 0 0 �z�17 z�16

: (2)

It is very easy, but tedious, to verify

G
H
G =

1�i�35

jzij
2

I8:

In the above example, the numbers of variables and rows of G are 35
and 56, respectively. So G has the maximal code rate 5

8
and the delay

56. Hence, the open problem, as shown in (1), is wrong.
In fact, Liang gave a [112; 8; 70] complex orthogonal design, i.e.,

matrices (167) and (168) in [3, p. 2497]. Since all complex variables zi,
1 � i � 53, in Liang’s matrix (167) are arbitrary, our [56; 8; 35] com-
plex orthogonal design G is actually a special case of Liang’s matrix
(167) when we make the following replacements for complex variables
zi, 36 � i � 53:

z36 = z
�
35; z37 = �z�32; . . . ; z53 = z

�
18:

However, finding these replacements is not straightforward, but some-
what clever. To construct the [56; 8; 35] complex orthogonal designG,
we begin from the submatrix G(1 8; 1 8), then gradually extend
G(1 8; 1 8). Finally, we get the [56; 8; 35] complex orthogonal
design G.
Furthermore, we can prove that the minimal delay of [p; 8; k] com-

plex orthogonal designs is 56. Let O be any [p; 8; k] complex orthog-
onal design with the maximal rate m+1

2m
= 5

8
, where m = 4. Since O

has the maximal rate, according to [3, proof of Proposition 6], we can
assume that O contains the following submatrix:

O1 =

z1 0 0 0 z2 z3 z4 z5

0 z1 0 0 z6 z7 z8 z9

0 0 z1 0 z10 z11 z12 z13

0 0 0 z1 z14 z15 z16 z17

�z�2 �z�6 �z�10 �z�14 z�1 0 0 0

�z�3 �z�7 �z�11 �z�15 0 z�1 0 0

�z�4 �z�8 �z�12 �z�16 0 0 z�1 0

�z�5 �z�9 �z�13 �z�17 0 0 0 z�1

:

ExtendingO1 so that each column ofO includes�zj or�z�j , 2 � j �
5, we conclude, under the suitable transformations mentioned early, O

must contain the submatrix
O1

O2

, where

O2 =

�z6 z2 0 0 0 � � �

�z10 0 z2 0 0 � � �

�z14 0 0 z2 0 � � �

0 � � � �z�3 z�2 0 0

0 � � � �z�4 0 z�2 0

0 � � � �z�5 0 0 z�2

�z7 z3 0 0 � 0 � �

�z11 0 z3 0 � 0 � �

�z15 0 0 z3 � 0 � �

0 � � � 0 �z�4 z�3 0

0 � � � 0 �z�5 0 z�3

�z8 z4 0 0 � � 0 �

�z12 0 z4 0 � � 0 �

�z16 0 0 z4 � � 0 �

0 � � � 0 0 �z�5 z�4

�z9 z5 0 0 � � � 0

�z13 0 z5 0 � � � 0

�z17 0 0 z5 � � � 0

where � means an unoccupied or unfilled position. Now we prove
that the submatrices O2(4 � 6; 2 � 4), O2(10 � 11; 2 � 4), and
O2(15; 2 � 4) cannot include �zi or �z�i , 6 � i � 17. Clearly,
O2(4 � 6; 2 � 4) = O(12 � 14; 2 � 4). First, we note that �zi,
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6 � i � 17, have already appeared in the first column of O2. Obvi-
ously,�z�i , 6 � i � 17, cannot appear inO2(4 � 6; 2 � 4). It is easy
to see that �z6, �z10, and �z14 cannot appear in O2(4 � 6; 2 � 4).
For example, we verify O(14; 3) 6= z7. If O(14; 3) = z7, then

O(14; 2) = �z11; O(10; 8) = �z
�

7 and O(10; 6) = z
�

9 :

Since

O(10; 6) = z
�

9 and O(24; 1) = �z9 and O(10;1) = �z10;

O(24; 6) = �z�10.
Since

O(14; 2) = �z11 and O(14; 5) = �z
�

5 and O(24;2) = z5

O(24; 5) = �z�11. Then, we have the following submatrix:

O(3; 24; 5; 6) =
z10 z11

�z�11 �z�10

which is a contradiction. Hence, O(14; 3) 6= z7. If O(14;3) = �z7,
then, according to the above procedure, we get the submatrix

O(3; 24; 5; 6) =
z10 z11

z�11 z�10

which is also a contradiction. It is similar to verify that�z8,�z9,�z11,
�z12, �z13, �z15, �z16, and �z17 cannot appear in O2(4 � 6; 2 �
4) according to the steps that we just verifyO(14; 3) 6= z7. SoO2(4 �
6; 2 � 4) cannot include�zi or�z�i , 6 � i � 17. Similarly,O2(10 �
11; 2 � 4) andO2(15; 2 � 4) do not include�zi or�z�i , 6 � i � 17.
For example, let us prove O(19; 4) 6= z8. If O(19;4) = z8, then

O(19;2) = �z16; O(17; 8) = �z
�

8 andO(17; 7) = z
�

9 :

Since

O(17; 7) = z
�

9 and O(24;1) = �z9 and O(17; 1) = �z15

O(24; 7) = �z�15.
Since

O(19; 2) = �z16 and O(19; 5) = �z
�

5 and O(24;2) = z4

O(24; 6) = �z�16. So we get a contradiction

O(4; 24; 6; 7) =
z15 z16

�z�16 �z�15
:

Hence, O(19;4) 6= z8. Since �zi or �z�i , 6 � i � 17, do not appear
in O2(4 � 6; 2 � 4), O2(10 � 11; 2 � 4), and O2(15; 2 � 4), they
do not appear in other unoccupied positions of O2 either. Because the
unoccupied positions inO2 do not include�zi or�z�i , 6 � i � 9, we
can imply that O has the following submatrix:

O1

O2

O3

where

O3 =

0 �z10 z6 0 0 � � �

0 �z14 0 z6 0 � � �

� 0 � � �z�7 z�6 0 0

� 0 � � �z�8 0 z�6 0

� 0 � � �z�9 0 0 z�6

0 �z11 z7 0 � 0 � �

0 �z15 0 z7 � 0 � �

� 0 � � 0 �z�8 z�7 0

� 0 � � 0 �z�9 0 z�7

0 �z12 z8 0 � � 0 �

0 �z16 0 z8 � � 0 �

� 0 � � 0 0 �z�9 z�8

0 �z13 z9 0 � � � 0

0 �z17 0 z9 � � � 0

:

Noting that �zi, 10 � i � 17, have already appeared in the second
column of O3, we can similarly verify that �zi or �z�i , 10 � i � 17,
do not appear inO3(3 � 5; 3; 4),O3(8; 9; 3; 4), andO3(12; 3; 4). For
instance, we verify O(31;4) 6= z11. If O(31;4) = z11, then

O(31; 3) = �z15; O(28;8) = �z
�

11 and O(28; 6) = z
�

13:

Since

O(28;6) = z
�

13 and O(39;2) = �z13 and O(28; 2) = �z14

O(39;6) = �z�14.
Since

O(31; 3) = �z15 and O(31; 5) = �z
�

9 and O(39; 3) = z9

O(39;5) = �z�15. Hence, we get the folowing contradiction:

O(4; 39; 5; 6) =
z14 z15

�z�15 �z�14
:

Consequently,O(31;4) 6= z11. Because other unoccupied positions in
O3 are determined by the elements in O2(4 � 6; 2 � 4), O2(10 �
11; 2 � 4), O2(15; 2 � 4), O3(3 � 5; 3; 4), O3(8; 9; 3; 4), and
O3(12; 3; 4), so �zi or �z�i , 10 � i � 17, do not appear in O2 and
O3. Thus, to make each column of O contain �zi or �z�i , 10 � i �

17, we can similarly imply that O has the following submatrix:

O1

O2

O3

O4

O5

where

O4 =

0 0 �z14 z10 0 � � �

� � 0 � �z�11 z�10 0 0

� � 0 � �z�12 0 z�10 0

� � 0 � �z�13 0 0 z�10

0 0 �z15 z11 � 0 � �

� � 0 � 0 �z�12 z�11 0

� � 0 � 0 �z�13 0 z�11

0 0 �z16 z12 � � 0 �

� � 0 � 0 0 �z�13 z�12

0 0 �z17 z13 � � � �

and
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O5 =

� � � 0 �z�15 z�14 0 0

� � � 0 �z�16 0 z�14 0

� � � 0 �z�17 0 0 z�14
� � � 0 0 �z�16 z�15 0

� � � 0 0 �z�17 0 z�15
� � � 0 0 0 �z�17 z�16

:

Consequently, the number of rows of O is not less than 56. Therefore,
56 is the minimal delay for [p; 8; k] complex orthogonal designs. We
summarize the above results by the following theorem.

Theorem 1: The minimal delay of [p; 8; k] complex orthogonal de-
signs with the maximal rate 5

8
is 56.

Finally, we claim that the minimal delay of [p; 7; k] complex or-
thogonal designs with the maximal rate 5

8
is also 56, which can be

easily verified by the above procedure. This shows that (1) is correct
for n = 7. Furthermore, we conjecture that (1) is correct when n 6= 4t,
and } (n; n) =

m

m+1

n

m
when n = 4t, i.e., the factor “2” in (1) is

removed for n = 4k, where t is a natural number.
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Distance-Increasing Mappings From
Binary Vectors to Permutations

Jen-Chun Chang

Abstract—Mappings from the set of binary vectors of a fixed length to
the set of permutations of the same length that strictly increase Hamming
distances except when that is obviously not possible are useful for the con-
struction of permutation codes. In this correspondence, we propose recur-
sive and explicit constructions of such mappings. Some comparisons show
that the new mappings have better distance expansion distributions than
other known distance-preserving mappings (DPMs). We also give some ex-
amples to illustrate the applications of these mappings to permutation ar-
rays (PAs).

Index Terms—Code constructions, distance-preserving mappings
(DPMs), Hamming distance, mapping, permutation arrays (PAs).

I. INTRODUCTION

A distance-preserving mapping, shortly DPM, is a mapping from
the set of all binary vectors of length n to the set of all permutations of
Zn = f1; 2; . . . ; ng that preserves or increases the Hamming distance.
Recently, Chang and others [1] proposed several nice constructions of
DPMs and used their DPMs to improve some lower bounds on the size
of permutation arrays. Lee [2] also devised a construction of DPMs of
odd length. DPMs for vectors of length n are called n-DPMs.
The main objects studied in this correspondence are special n-DPMs

that strictly increase Hamming distances except when that is obviously
not possible. We call these special distance-preserving mappings
n-DIMs (distance-increasing mappings for vectors of length n). From
the point of view of DIMs, for n = 4 or n > 4 and n mod 4 = 2,
Chang’s n-DPMs are in fact n-DIMs. Unfortunately, Lee’s n-DPMs
are not n-DIMs.
In this correspondence, we devise recursive and explicit construc-

tions of n-DIMs for all n greater than or equal to 4. Some comparisons
of the distance expansion distribution of the newly constructed DIMs
and other known DPMs are then given. In the last section, we also give
some examples to illustrate the applications of these mappings to per-
mutation arrays (PAs).

II. BASIC NOTATIONS

Let Sn be the set of all n! permutations of Zn = f1; 2; . . . ; ng.
A permutation � : Zn ! Zn is represented by an n-tuple � =
(�1; �2; . . . ; �n) where �i = �(i). Let Zn

2 denote the set of all bi-
nary vectors of length n. A binary vector x 2 Zn

2 is denoted by an
n-tuple: x = (x1; x2; . . . ; xn) where xi is the ith bit of x.
The Hamming distance between two n-tuples aaa = (a1; a2; . . . ; an)

and bbb = (b1; b2; . . . ; bn), denoted d(aaa; bbb), is defined to be the number
of positions where they differ, that is,

d(aaa; bbb) = jfj 2 Zn j aj 6= bjgj:

A distance-increasing mapping of length n, an n-DIM for short, is
a mapping f : Zn

2 ! Sn such that for any pair of distinct binary
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