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Abstract: We show that if X and Y are integers independently and uniformly distributed

in the set {1, . . . , N}, then the information lost in forming their product (which is given

by the equivocation H(X, Y | X · Y )), is Θ(log logN). We also prove two extremal results

regarding cases in which X and Y are not necessarily independently or uniformly dis-

tributed. First, we note that the information lost in multiplication can of course be 0. We

show that the condition H(X, Y | X · Y ) = 0 implies 2 log2 N −H(X, Y ) = Ω(log logN).

Furthermore, if X and Y are independent and uniformly distributed on disjoint sets

of primes, it is possible to have H(X, Y | X · Y ) = 0 with log2 N − H(X) and

log2 N−H(Y ) each O(log logN). Second, we show that however X and Y are distributed,

H(X, Y | X · Y ) = O(logN/ log logN). Furthermore, there are distributions (in which X

and Y are independent and uniformly distributed over sets of numbers having only small

and distinct prime factors) for which we have H(X, Y | X · Y ) = Ω(logN/ log logN).

http://arxiv.org/abs/math/0408043v1


1. Introduction

Let X and Y be random integers. We regard a multiplier as a deterministic channel

whose input is the pair (X, Y ) and whose output is the product X · Y . The information

lost in multiplication is, according to Shannon [S3], the equivocation H(X, Y | X · Y ).

From the definition of conditional entropy, we have

H(X, Y | X · Y ) = H(X, Y,X · Y )−H(X · Y )

= H(X, Y )−H(X · Y ), (1.1)

where we have used the fact that the channel is deterministic (X · Y is determined by X

and Y , so that H(X, Y,X · Y ) = H(X, Y )).

We first consider the case in whichX and Y are independent and uniformly distributed

on the set {1, . . . , N}, so that H(X, Y ) = 2 log2 N . We shall show in Section 2 that in this

case we have

H(X, Y | X · Y ) = Θ(log logN). (1.2)

If X and Y have arbitrary (that is, not necessarily independent or uniform) dis-

tributions on {1, . . . , N}, then it is of course possible that H(X, Y | X · Y ) = 0. We

may then ask how close H(X, Y ) can come to its maximum 2 log2 N , while still achieving

H(X, Y | X · Y ) = 0. We shall show in Section 3 that H(X, Y | X · Y ) = 0 implies that

2 log2 N −H(X, Y ) = Ω(log logN). (1.3)

Furthermore, by taking X and Y to be independent, with distributions concentrated on

disjoints sets of primes, it is possible to achieve H(X, Y | X · Y ) = 0 with log2 N −H(X)

and log2 N −H(Y ) each O(log logN), so that (1.3) is the best possible bound.

We shall also consider the distributions of X and Y that maximize the information

loss. We shall show in Section 4 that for any distributions of X and Y on {1, . . . , N} we

have

H(X, Y | X · Y ) = O(logN/ log logN). (1.4)

Furthermore, by taking X and Y to be independent, with distributions concentrated on

integers having only small and distinct prime factors, we can achieve

H(X, Y | X · Y ) = Ω(logN/ log logN),

so that (1.4) is the best possible bound.
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Results concerning information flow through a multiplier have been used by Abelson

and Andreae [A] and by Brent and Kung [B] to obtain lower bounds involving the area

and time required for multiplication. Furthermore, the results in Section 4 give a lower

bound to the number of ancillary lines required by a reversible multiplier (see Fredkin

and Toffoli [F] for a discussion of reversible computation). This lower bound is achievable

if multiplication is performed by a single gate; it is an open question whether it can be

achieved if the multiplier is implemented using standard reversible gates, such as those

proposed by Fredkin and Toffoli.

The proofs in this paper draw upon a variety of results from number theory. Many

of these in turn rely on the prime-number theorem (first proved by Hadamard [H1] and

independently by de la Vallée Poussin [V]) and its extension to primes in arithmetic pro-

gressions (first proved by de la Vallée Poussin [V]). While these deep theorems now have

elementary proofs (due to Selberg [S1, S2] and Erdős [E1]), none of our results actually

depend on theorems of this depth, and thus we shall take care to point out the simplest

results that support our proofs.

2. The Uniform Distribution

Our goal in this section is to establish (1.2). For X and Y independent with the

uniform distribution, we have

H(X, Y ) = 2 log2 N.

Thus from (1.1) we have

H(X, Y | X · Y ) = 2 log2 N −H(X · Y ). (2.1)

Define m(N) by

m(N) = #{x · y : 1 ≤ x ≤ N, 1 ≤ y ≤ N}.

We have

H(X · Y ) ≤ log2 m(N).

Thus the bound

H(X, Y | X · Y ) = Ω(log logN) (2.2)

is a consequence of (2.1) and the following result.

Proposition 2.1: For any ε > 0, we have

m(N) ≤
N2

(logN)α−ε
(2.3)

for all sufficiently large N , where α = 1− log2(e ln 2) = 0.08607 . . . .
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This result is due to Erdős [E2], who also proved the matching bound

m(N) ≥
N2

(logN)α+ε
.

For completeness, we shall give a simple proof of this proposition.

Proof of Proposition 2.1: Let f(n) denote the number of distinct prime factors in the

integer n ≥ 1. Let τk(x) denote the number of integers n in the interval 1 ≤ n ≤ x such

that f(n) = k. Hardy and Ramanujan [H2] (Lemma B) have shown that there are absolute

constants L and D such that

τk(x) ≤
Lx

lnx

(ln lnx+D)k−1

(k − 1)!
(2.4)

for all k ≥ 1 and x ≥ 2. Apart from an elementary precursor

τ1(x) = O

(

x

log x

)

to the prime-number theorem due to Chebyshev [C], their result relies only on the elemen-

tary estimates
∑

p≤x

ln p

p
= lnx+O(1)

and
∑

p≤x

1

p
= O(log log x)

(in which the sums are over primes p) due to Mertens [M]. We observe that (2.4) implies

τk(x) ≤
Mx

lnx

(ln lnx)k−1

(k − 1)!
(2.5)

for all x ≥ 2 and 1 ≤ k ≤ 2 log2 lnx, where M = L exp(2D log2 e).

Fix 0 < δ < 1/6. Define m1(N), m2(N) and m3(N) by

m1(N) = #
{

(x, y) : 1 ≤ x ≤ N, 1 ≤ y ≤ N and f(x) + f(y) ≤ (1 + 2δ) log2 lnN
}

,

m2(N) = #
{

z : 1 ≤ z ≤ n2 and f(z) ≥ (1 + δ) log2 lnN
}

and

m3(N) = #
{

z : 1 ≤ z ≤ N2 and w2 | z for some w with f(w) ≥ δ log2 lnN
}

.

Then we have

m(N) ≤ m1(N) +m2(N) +m3(N).
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For if z = x · y is not counted by m1(N), then we have f(x)+ f(y) > (1+ 2δ) log2 lnN . If

in addition z is not counted by m2(N), then we have f(z) < (1 + δ) log2 lnN , and thus

f
(

gcd(x, y)
)

> δ log2 lnN,

where gcd(x, y) denotes the greatest common divisor of x and y. If we now let w be

the product of the distinct primes dividing gcd(x, y), then we have w2 | z and f(w) ≥

δ log2 lnN , so that z = x ·y is counted by m3(N). Thus it will suffice to show that m1(N),

m2(N) and m3(N) each satisfy a bound of the form of that in (2.3).

For m1(N) we have

m1(N) ≤
∑

i+j≤(1+2δ) log
2
lnN

τi(N) τj(N)

≤
M2 N2

(lnN)2

∑

i+j=k≤(1+2δ) log
2
lnN

(ln lnN)k−2

(i− 1)! (j − 1)!

≤
M2 N2

(lnN)2

∑

i+j=k≤(1+2δ) log
2
lnN

(

k − 2

i− 1

)

(ln lnN)k−2

(k − 2)!

≤
M2 N2

(lnN)2

∑

i+j=k≤(1+2δ) log
2
lnN

(2 ln lnN)k−2

(k − 2)!

≤
M2 N2

(lnN)2

∑

i+j=k≤(1+2δ) log
2
lnN

(

2e ln lnN

k − 2

)k−2

, (2.6)

where we have used the definition of m1(N), the bound (2.5), the identity a!/b! (a− b)! =
(

a
b

)

, the inequality
(

a
b

)

≤ 2a and the inequality a! ≥ aa/ea.

The summand in (2.6) increases with k for k−2 ≤ 2 ln lnN , and decreases thereafter.

Since k − 2 < (1 + 2δ) log2 lnN ≤ 2e ln lnN , the largest terms of the sum are those with

the largest k. There are at most
(

(1 + 2δ) log2 lnN
)2

≤ (2 ln lnN)2 terms in all, and each

term is at most

(2e ln 2)(1+2δ) log
2
lnN = (lnN)(1+2δ)(2−α).

Thus we obtain the bound

m1(N) ≤
M2 (2 ln lnN)2 (lnN)2δ(2−α)N2

(lnN)α
,

which is of the form desired, since if 2δ(2− α) < ε, the factors

M2 (2 ln lnN)2 (lnN)2δ(2−α)

in the numerator can be absorbed by the factor (lnN)ε in the denominator of (2.3).
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For m2(N) we have

m2(N) ≤
∑

k≥(1+δ) log
2
lnN

τk(N
2)

≤
M N2

lnN

∑

k≥(1+δ) log
2
lnN

(ln lnN)k−1

(k − 1)!

≤
M N2

lnN

∑

k≥(1+δ) log
2
lnN

(

e ln lnN

k − 1

)k−1

, (2.7)

where we have used the definition of m2(N), the bound (2.5) the inequality a! ≥ aa/ea.

The summand in (2.7) increases with k for k − 1 ≤ ln lnN , and decreases thereafter.

Since k − 1 ≥ (1 + δ) log2 lnN − 1 ≥ ln lnN , the largest terms of the sum are those with

the smallest k. There are at most 2e log2 lnN terms with k − 1 < 2e log2 lnN , and each

such term is at most

(e ln 2)(1+δ) log
2
lnN = (lnN)(1+δ)(1−α). (2.8)

Furthermore, all the terms with k − 1 ≥ 2e log2 lnN are bounded by the terms of a

geometric progression with ratio 1/2, and thus their sum is bounded by (2.8). Thus we

obtain the bound

m2(N) ≤
M (1 + 2e log2 lnN) (lnN)δ(1−α)N2

(lnN)α
,

which is of the form desired, since if δ(1− α) < ε, the factors

M (1 + 2e log2 lnN) (lnN)δ(1−α)

in the numerator can be absorbed by the factor (lnN)ε in the denominator of (2.3).

Finally, for m3(N) we have

m3(N) ≤
∑

f(w)≥δ log
2
lnN

N2

w2

≤
∑

w≥w0

N2

w2

≤
N2

w0
, (2.9)

where w0 denotes the smallest integer w such that f(w) ≥ δ log2 lnN . Clearly w0 =

p1 · · · pk is the product of the first k = ⌈δ log2 lnN⌉ primes. If N is sufficiently large that

there are fewer than k/2 primes that are less than 22/δ, then w0 contains at least k/2 prime

factors that are each at least 22/δ, and thus w0 ≥ lnN . The bound (2.9) is therefore also

of the desired form. This completes the proof of the proposition. ⊓⊔
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Next we turn to establishing the upper bound

H(X, Y | X · Y ) = O(log logN). (2.10)

To do this we use the formula

H(X, Y | X · Y ) =
∑

1≤x≤N

∑

1≤y≤N

Pr[X = x, Y = y]H(X, Y | X · Y = x · y). (2.11)

Using the bound

H(X, Y | X · Y = x · y) ≤ log2 #
{

(v, w) : 1 ≤ v ≤ N, 1 ≤ w ≤ N and v · w = x · y
}

≤ log2 d(x · y)

(where d(n) denotes the number of divisors of the integer n), we obtain

H(X, Y | X · Y ) ≤
∑

1≤x≤N

∑

1≤y≤N

Pr[X = x, Y = y] log2 d(x · y). (2.12)

For X and Y independent with the uniform distribution, (2.12) becomes

H(X, Y | X · Y ) ≤
1

N2

∑

1≤x≤N

∑

1≤y≤N

log2 d(x · y). (2.13)

Since log2 a is a concave function of a, the average of the logarithm in (2.13) is at most

the logarithm of the average, and we obtain

H(X, Y | X · Y ) ≤ log2





1

N2

∑

1≤x≤N

∑

1≤y≤N

d(x · y)



 .

Since d(x · y) ≤ d(x) · d(y), we obtain

H(X, Y | X · Y ) ≤ log2





1

N2

∑

1≤x≤N

∑

1≤y≤N

d(x) · d(y)





= 2 log2





1

N

∑

1≤n≤N

d(n)



 . (2.14)

We now use the asymptotic formula
∑

1≤n≤N

d(n) = N lnN +O(N)

due to Dirichlet [D2] (which is established simply by estimating the number of lattice

points in the region bounded by the x-axis, the y-axis and the hyperbola x · y = N).

Substituting this result in (2.14) completes the proof of (2.10), which together with (2.2)

establishes (1.2).
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3. Multiplication without Loss of Information

Our goal in this section is to determine the maximum entropy that X and Y can have

when H(X, Y | X · Y ) = 0. Let

W = {(x, y) : Pr[X = x, Y = y] > 0}

denote the support of the distribution of (X, Y ), and let

M = {x · y : 1 ≤ x ≤ N, 1 ≤ y ≤ N}

be the range of the multiplication map µ : {1, . . . , N}× {1, . . . , N} → {1, . . . , N2} defined

by µ(x, y) = x · y. Then H(X, Y | X ·Y ) = 0 implies that µ restricted to W is injective, so

that #(W) ≤ #M = m(N) and H(X, Y ) ≤ log2 m(N). Proposition 2.1 thus shows that

H(X, Y | X · Y ) = 0 implies (1.3).

To show that this result is the best possible, we let X and Y be independent and

uniformly distributed over X and Y , respectively, where X and Y are the sets of primes

that are at most N and congruent to 1 and 3, respectively, modulo 4. To show that

log2 N − H(X) and log2 N − H(Y ) are each O(log logN), it will suffice to show that

#X = π1,4(N) and #Y = π3,4(N) are each Ω(N/ logN). This of course follows from

the extention of the prime-number theorem to arithmetic progressions, but we can obtain

what we need from the following simple result due to Shapiro [S4] (which is an elementary

quantitative version of the theorem of Dirichlet [D1] on primes in arithmetic progressions).

Let a and b be fixed with gcd(a, b) = 1. Then
∑

p ≤ x
p ≡ a (mod b)

ln p

p
=

lnx

φ(b)
+O(1), (3.1)

where φ(b) denotes Euler’s totient function: the number of a in the range 0 < a < b such

gcd(a, b) = 1. To show that (3.1) implies

πa,b(x) = Ω

(

x

log x

)

, (3.2)

we observe that (3.1) implies that
∑

x/A < p ≤ x
p ≡ a (mod b)

ln p

p
≥

lnA

φ(b)
− 2B (3.3)

for all A > 1, where B is a bound on the magnitude of the O(1) term in (3.1). Choosing

A sufficiently large that the right-hand side of (3.3) is strictly positive and observing that

each term in the sum is at most (A lnx)/x establishes that there must be Ω(x/ logx) terms,

and thus yields (3.2).
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4. The Maximum Loss of Information

Our goal in this section is to determine the maximum possible loss of information in

multipication. Our starting point is the formula (2.12). Since the average is at most the

maximum, we have

H(X, Y | X · Y ) ≤ max
1≤x≤N

max
1≤y≤N

log2 d(x · y),

and since log2 a is an increasing function of a, we obtain

H(X, Y | X · Y ) ≤ log2

(

max
1≤x≤N

max
1≤y≤N

d(x · y)

)

.

Using the fact that d(x · y) ≤ d(x) · d(y) as before, we obtain

H(X, Y | X · Y ) ≤ 2 log2

(

max
1≤n≤N

d(n)

)

. (4.1)

Wigert [W] was the first to show that

log2

(

max
1≤n≤N

d(n)

)

∼
lnN

ln lnN
, (4.2)

using the prime-number theorem. But Ramanujan [R] has shown that an estimate even

more precise than (4.2) can be obtained using only the crude bounds

π(x) = Θ

(

x

log x

)

(4.3)

for the number π(x) of primes not exceeding x obtained by Chebyshev [C]. Substituting

(4.2) into (4.1) yields (1.4).

To show that this result is the best possible, we let X and Y be independent and

uniformly distributed on the set V of the 2k divisors of the product vk = p1 · · · pk of the

first k primes, where k is the largest integer such that

vk ≤ N. (4.4)

If we define ϑ(x) by

ϑ(x) =
∑

p≤x

ln p

(in which the sum is over primes p), then

vk = expϑ(Pk),
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so that (4.4) is equivalent to

ϑ(pk) ≤ lnN.

The bounds

ϑ(x) = Θ(x)

are equivalent to the bounds (4.3) established by Chebyshev [C]. This implies that

pk = Θ(logN),

so that (again using (4.3))

k = Θ

(

logN

log logN

)

. (4.5)

From (2.11), we have

H(X, Y | X · Y ) =
1

22k

∑

x∈V

∑

y∈V

H(X, Y | X · Y = x · y). (4.6)

For x, y ∈ V, let u(x, y) denote the number of primes among p1, . . . , pk that divide one,

but not both, of x and y. (This number is also the number of primes that divide the

square-free part of x · y, and thus it depends only on x · y.) The random variable (X, Y ),

conditioned on X · Y = x · y, is uniformly distributed over the 2u(x,y) pairs in the set

U = {(v, w) ∈ V × V : v · w = x · y},

so that
H(X, Y | X · Y = x · y) = log2 #U

= u(x, y).

Thus (4.6) yields

H(X, Y | X · Y ) =
1

22k

∑

x∈V

∑

y∈V

u(x, y). (4.7)

Since X and Y are each uniformly distributed on the 2k divisors of vk, the divisibility

of each of X and Y by each of the primes p1, . . . , pk is probabilistically equivalent to the

occurrences of heads among 2k independent flips of an unbiased coin. In particular, each

of the primes p1, . . . , pk divides one, but not both, of X and Y with probability 1/2. Thus

the right-hand side of (4.7) is equal to k/2, and (4.5) yields

H(X, Y | X · Y ) = k/2

= Ω

(

logN

log logN

)

.
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This estimate shows that the result (1.4) is the best possible.
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