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Abstract

We study the use of channel state information for random access in fading channels. Traditionally, random access
protocols have been designed by assuming simple models for the physical layer where all users are symmetric and there is
no notion of channel state. We introduce a reception model that takes into account the channel states of various users.
Under the assumption that each user has access to his channel state information (CSI), we propose a variant of Slotted
ALOHA protocol for medium access control, where the transmission probability is allowed to be a function of the CSI. The
function is called the transmission control scheme. Assuming the finite user infinite buffer model we derive expressions for
the maximum stable throughput of the system. We introduce the notion of asymptotic stable throughput (AST) that is
the maximum stable throughput as the number of users goes to infinity. We consider two types of transmission control
namely population independent transmission control (PITC) where the transmission control is not a function of the size
of the network and population dependent transmission control where the transmission control is a function of the size of
the network. We obtain expressions for the AST achievable with PITC. For population dependent transmission control, we
introduce a particular transmission control that can potentially lead to significant gains in AST. For both PITC and PDTC,
we show that the effect of transmission control is equivalent to changing the probability distribution of the channel state.
The theory is then applied to CDMA networks with Linear Minimum Mean Square Error (LMMSE) receivers and Matched
Filters (MF) to illustrate the effectiveness of utilizing channel state. It is shown that through the use of channel state, with
an arbitrarily small power, it is possible to achieve an AST that is lower bounded by the spreading gain of the network.

This result has implications for the reachback problem in large sensor networks.
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I. INTRODUCTION

The rapid increase in the demand for data rate over wireless channels has led to a rethinking of the
traditional network architecture and design principles. Cross layer design, where information is exchanged
between layers is being explored as an alternative to the traditional design paradigm [1]. In this context,
allowing interaction between MAC and PHY layers seems natural, especially for mobile wireless communi-
cation where the channel quality is changing with time. As illustrated in Figure 1, users might experience
different channel conditions and this knowledge can be used to control the access to medium and improve
the throughput of the network. The source of asymmetry between users might be due to various param-

eters like propagation channel gain, distance from the base station, and transmit power capabilities etc.

There is a recent line of work showing that the knowledge of channel can crucially change the resource
allocation problem for multi-access fading channels [2], [3], [4], [5], [6]. In fact, it has been shown that the
strategy that maximizes the information theoretic sum capacity is the one that allows at most the user
with the best channel state to transmit [2], [3], [4]. This is currently being referred to as opportunistic
communications. The strategy implies that the performance of the network is dictated by peak channel
state rather than the average. Hence, the performance of the system improves with number of users. This

effect was termed multi-user diversity. In fact, in a later work Viswanath et al.[7] have shown that it is
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Fig. 1: Cellular Uplink
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beneficial to artificially induce fluctuations in the channel state in order to obtain multi-user diversity on
the downlink. Further work on inducing fluctuations in the channel state in downlink has been considered
in [8]. Throughput optimal scheduling for downlink over time-varying channels by a central controller
has been considered in [9], [10] All these strategies require the knowledge of the channel states of all the
users in the network. While this assumption might be reasonable for channel allocation on the downlink,
a similar assumption on the uplink is not easy to justify.

Resource allocation on the uplink, specifically power control, with each user having access to his chan-
nel state alone was considered by Telatar and Shamai in [11]. It was shown that the loss due to the
decentralized strategy in information theoretic capacity is minimal. Viswanath et al. [12] have shown the
asymptotic optimality of a decentralized power control scheme for a multi-access fading channel that uses
CDMA with an optimal receiver. The effect of decentralized power control on the sum capacity of CDMA
with linear receivers and single user decoders was studied by Shamai and Verdu in [13].

Most papers that consider the effect of channel state information on centralized or decentralized resource
allocation are information theoretic in nature. Information theoretic studies assume that data is always
present at each user and this makes the analysis of network throughput, delay and buffer overflow with
bursty sources difficult [14], [15]. The field of random access protocols is an approach to the multi-access
problem that explicitly takes into account the burstiness of sources. In this paper, we will consider the use
of decentralized channel state information for the design of random access protocols in the MAC layer.

As has been noted in [14], [15], the field of random access is built upon simplistic models for the physical
layer. Random access protocols like traditional ALOHA, splitting algorithms and CSMA have all been
developed assuming that the physical layer behaves like a collision channel. To conduct a meaningful study
of the use CSI in random access, it is necessary to develop models that can first incorporate the channel
states of the transmitting users and second abstract the increasing sophistication of the underlying signal

processing algorithms. One such model is the multipacket reception (MPR) model introduced by Ghez
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et al. [16], [17]. It is possible to model the simultaneous reception of multiple packets using this model
but the level of abstraction does not allow for the incorporation of the channel state information of the
transmitting users. As a result, the version of ALOHA proposed in [16], [17] is symmetric with respect
to the users. Random access protocols that are built upon the multi packet reception model have been
proposed by Zhao and Tong [18], [19]. Again, there is no concept of channel state in these protocols.
Random access for general reception models have also been considered in [20], [21]. However, both these
papers do not consider the use of channel state information.

The contents and contributions of this paper can be broadly separated into two parts. In the first
part, we focus on deriving a general theory of random access with channel state information. Our main
contributions in this part can be summarized as follows :

o We introduce a model for the physical layer where the reception is allowed to depend on the channel
states of the transmitting users and it is also possible to model the simultaneous reception of multiple
packets. Any parameter that influences the reception could be chosen as channel state. Examples include
propagation channel gain, position of the mobile with respect to the base station etc. This model can be
considered as a generalization of the multi-packet reception model proposed by Ghez et al.in [16], [17].
Similar generalizations have also been considered in [20], [21].

o A variant to the classical Slotted ALOHA protocol where the knowledge of channel state is utilized
to vary the transmission probability is used as the random access protocol. The function that maps the
channel state information to the probability of transmission is termed the transmission control scheme.

o Maximum stable throughput [22] is used as a figure of merit to compare different transmission control
schemes. We assume a network with finite number of users and infinite buffers and derive the expression of
maximum stable throughput of the network as a function of the reception model, CSI distribution and the
transmission control used. The notion of asymptotic stable throughput (AST) defined as the maximum
stable throughput of the network as the number of users of go to infinity is introduced. This metric is
important because it is relevant to large networks, and it is also amenable to derive “good” transmission
control algorithms.

e Two types of transmission control schemes are studied namely population independent transmission
control (PITC) and population dependent transmission control (PDTC). Population independent trans-
mission control does not use the size of the network. Such a strategy is attractive when nodes are added
and eliminated from the network from time to time because it is not necessary to keep track of the size of
the network. We derive expressions for AST with population independent transmission and characterize
what can be achieved by varying the transmission probability as a function of channel state but not the
size of the network. In contrast, population dependent transmission control, as the name suggests, refers
to transmission control schemes that are a function of the size of the network. We introduce a particular
PDTC scheme, evaluate its AST and show that it can be used to obtain significant gains. For either

type of control, the effect of using a transmission control sequence is shown to be equivalent to changing
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the probability distribution of the channel state. Thus, the problem is one of identifying the good target
distributions for various reception models.

In the second part we apply the results of the general theory to CDMA networks and demonstrate the
effectiveness of the proposed strategies. We focus on the application of results to CDMA networks that
use either a Linear Minimum Mean Square Error (LMMSE) multi-user receiver or a Matched Filter. This
context provides us with two particular reception models for which the theory can be applied. For this
application, we assume that the propagation channel gain is used as the channel state and it is assumed
that the channel undergoes Rayleigh fading. Our main contributions in this part are as follows :

o We characterize the gain in AST through population independent transmission control. It is shown that
the gain possible through this technique is quite limited.

o For population dependent transmission control, we identify the class of distributions that are good
target distributions and construct transmission control schemes that can achieve this target distribution.
o We show that if we use an MMSE multi-user detector as the receiver, with an arbitrarily small power,
it is possible to obtain an AST that is lower bounded by the spreading gain of the system.

The final comment above is important for the uplink of networks that have a large number of nodes but
each is equipped with a small power. The regime of large number of nodes and small power is relevant to
sensor networks. Thus the theory that we have derived finds an important application in the reachback
problem in sensor networks. For us, reachback refers to the data gathering phase of the operation of
sensor networks. Typically, hundreds and thousands of sensors, each with limited transmission power
capabilities, are deployed in order to collect some information and this information has to be relayed back
through some collecting agent like the airplane that is shown in Figure 2. Thus, our results for CDMA

networks have an important implication on the design of the protocol stack for sensor networks.

/‘J
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Fig. 2: Reachback in Sensor Networks
figure

Almost all other related work in collision resolution is in the analysis and design of the Slotted ALOHA

protocol for the capture model, a specific model that can be represented with the proposed general
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reception model. The performance of Slotted ALOHA for uplink in fading channels both with and without
capture has been previously explored in [23], [24], [25], [26] and the references there in. But these papers
did not assume that the users have access to their channel state information. Design of retransmission
probability was considered in [27], [28], [29]. An important concern in these papers was to make the
protocol fair to all the users. In [30] Liu and Polydoros study the design of retransmission probabilities
to maximize the throughput, but it was assumed that the design was done by a central controller who
has access to channel state of all the users. In this paper, the retransmission probabilities are designed in
a distributed way since each user has access only to his CSI. The Slotted ALOHA scheme where mobiles
have knowledge of the uplink SNR was considered in [31], [32]. In [31], Qin and Berry used this knowledge
to vary the power of transmission but the transmission probability was kept fixed. It was shown that with
the choice considered, the throughput increases with the number of users. The reception model considered
was a collision model. In [32], the design of transmission probability was chosen in a heuristic fashion and
it was not optimized. In [33], Chockalingam et al. studied the design of slotted ALOHA for correlated
Rayleigh fading channel. It was not assumed that the mobiles have access to the channel state but it was
shown that the correlation in the fading channel can exploited to improve the throughput of ALOHA.
Stability analysis for capture model was considered in [34] by Sant and Sharma. It was not assumed that
the nodes have access to their channel state information. The retransmission probabilities of different
users was therefore kept fixed. Characterization of stability region for Slotted ALOHA in networks with
multiple-antennas (without the use of CSI) has been considered in [21].

The rest of the paper is organized as follows. In Section II, we describe the system model in detail. In
Section ITI, we derive the expression for the maximum stable throughput of the system under consideration.
In Section IV, we introduce the notion of asymptotic stable throughput (AST) and derive the expressions
for AST for various types of transmission. In Section V, the theory is applied to CDMA networks. In
Section VI, we list our concluding remarks and describe some interesting directions for related future

research. The proofs of all the theorems and propositions have been included in the Appendix.

II. SYSTEM MODEL

We consider a network where n users are communicating with a base station over a common channel.
Each user has a buffer of infinite length for the incoming packets until they are sent successfully to the
base station. Time is slotted into intervals equal to the time required to transmit a packet. We make the
slot time equal to one time unit and slot ¢ is assumed to occupy the time [t,t + 1). We denote by X,(,f)
the number of incoming packets to user m during time slot ¢. The packet arrival process for different Xﬁ)

form=1,---,n and t € N is assumed to be independent and identically distributed as well. The arrival
A

process has a finite mean 2 (so that the cumulative input rate is A) and finite variance. The above model

for the arrival process is the same as that in [22] for a symmetric system.

h

The channel between the m'™ user and the base station during slot ¢ is parametrized by 755’. It is
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assumed that the quantities 'y,(,? for m =1,---,n and t € N are independent and identically distributed
with probability distribution F'(vy). Further, we assume that the user m has access to the uplink CSI 77(,2)
at time ¢.

We define a general reception model that is given by a set of n functions. The k" function assigns
probabilities to all the possible outcomes conditioned on the event that k users transmitted and that
their channel states are given by v = (v1,---,7%). Assuming that k users transmitted, we let ©; =

(‘91(91)7""01(916)) be a binary k-tuple that represents the outcome of a slot. The bit 0,(61) equal to one

represents the success of user 1 and so on. The k" function ®*) (vyq,---,~x;©;) is the probability of
outcome O when k users whose CSI is given by & = (71, -,7k) transmit. That is,
®®) (yy, -, yp; Or) = Pr{Oy|k users transmit, v = (y1,---,7x)}. (1)

Define W) (y;,--- ;) as the expected number of packets successfully demodulated when the CSI of the

transmitting users is (1, -+, 7k), that is,
A e i
TE) (g, ) = ZE{G,(:)Uc users transmit, ¥ = (y1,---,vk)}- (2)
i=1

Given a distribution function F'(+), define Cy (F'(-)) as the expected number of packets received conditioned

on k users transmit and their CSI is distributed i.i.d according to F(-). That is

k
Ce(F() 2 STE{0 |k users tx}. (3)

i=1
Note that this model allows the reception of multiple packets simultaneously. Special cases of this reception
model are the classical collision model, capture model and Multi-packet reception model [16].

We impose some constraints on the reception model that hold for many practical scenarios. For each
k, we assume that if we permute the CSI (y1,--,v) and apply the same permutation to the bits of Oy,
the value of ®()(-) does not change. That is, we assume long term symmetry among the users. This
condition has been relaxed in the reception model considered in [20], [21]. Further, we assume that for
any given (y1,---,7k), adding an extra user decreases the probability of packets success for each of the &k

users. That is, for all 4 > 0,---,vg4+1 > 0, for all 1 <14 <k,

Zgl(:)cp(k)(,h’...,%;@k) > Z 9,(31@(“1)(71,---,7k+1;®k+1)- (4)
Oy Ok+1

The parameter 'yr(,? can be used to model various parameters that influence the reception. Examples

include physical channel gain, position of the mobile etc. In some cases, it is possible to abstract the
reception of an uplink using multiple antennas into the above model.
In the ALOHA protocol analyzed in [22], if the user m has a packet to transmit, he transmits it with a

probability p,,. We consider a more general random access scheme where the probability of transmission
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for each user is allowed to be a function of his CSI 75,?

. The function is called the transmission control
scheme and is denoted by s(-). Thus we assume that in slot ¢, if user m has a packet then it is transmitted
with probability equal to s(v. (t )) At the end of slot ¢, the base station broadcasts the indexes of those
users whose packets it was able to demodulate successfully. The type of ALOHA protocol considered in
this paper, where the new arrivals are not transmitted immediately, is known as ALOHA with delayed
first transmission. This is in contrast to ALOHA with immediate first transmission where new arrivals

are transmitted in the slot immediately following their arrival.

III. MAXIMUM STABLE THROUGHPUT

In this section we derive the expression for maximum stable throughput as a function of the CSI
distribution, reception model and the transmission control. The system is defined to be stable if for each
node the queue size does not go to infinity . In other words, given a positive number 0 < € < 1, there
exists a buffer size such that the probability of buffer over flow is less than €. It should be obvious that
stability is one of the important requirements for a network. The requirement of stability can be said to
impose a mild requirement on delay.

We now define the notion of maximum stable throughput in a formal manner. Let the n-tuple N®) =
(Nl(t), NQ(t), e ,N,(f)) be the length of the buffers at each node at the beginning of slot t. We say that the

system is stable for a particular arrival process, if for x € Ni, there exists a H(x) such that

ymP4N®<x}:H@) lim H(x) =1, (5)
— 00

X—00
where N} is the set of non-negative integers. This notion of stability is also used in [22]. We will see that
the stability of the system can be characterized by A, the cumulative mean of the arrival process alone.
This will allow us to define maximum stable throughput as the supremum of all cumulative input rates
A for which the system is stable. The following theorem gives the expression for the maximum stable
throughput of the system in terms of the transmission control, reception model and the underlying CSI
distribution.

Theorem 1: Given F(v) the distribution function of the CSI, the transmission control s(y) and the

reception functions {®*)(-)}7_,  the maximum stable throughput is given by

é (Z) ( /Ooo s(’Y)dF(’Y)>"_ (/OOQ,,_/OOOS(%)...S(%)

O (1, ) dF () - dF () . (6)
If p, 2 [ sdF #0, then
w60 =3 () (1= p)" OG0 ¢
k=1
where the distribution function G(-)
G,(-) = M' (8)

Ps
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Proof : Refer to the appendix

It should first be noted that p, that is defined above is the unconditional probability of transmission
and the distribution G(+) is the distribution of CSI conditioned on the event that a user transmits, that
is it is the a posteriori distribution of the channel state. The expression in (7) can then be given the
following intuitive interpretation. Suppose that all the users in the systems had backlogged (which is in
some sense the worst scenario), then the expression for A,(s(-)) gives the expected number of packets
leaving the system. It is intuitively reasonable that the maximum stable throughput should depend on
F(y) only through G4(-) because this is the distribution of channel state that the base station “sees” ; the
underlying distribution of CSI is not relevant. The power of using a transmission control is that it allows
us to manipulate the a posteriori CSI distribution G4(-). Thus, we would like to steer the underlying
distribution to “good” a posteriori distributions by the use of the transmission control. The problem
however is more complicated because the transmission control also affects the probability of transmission
ps- Thus, it is possible that transmission controls that lead to good a posteriori distributions might lead
to an extremely low probability of transmission. It is this coupling that makes it difficult to find optimal
transmission controls for various reception models. In the following section, we will consider the SNR
threshold model as an example for which it is possible to obtain the optimal transmission control. The
optimal transmission control for a simplified capture model was considered in [35]. Obtaining the optimal
transmission control for the general capture model and other reception models is interesting and useful

but is also hard.

A. An Ezxample

In this section, we apply the results derived in the previous section for the SNR, threshold model and
obtain the maximum stable throughput. We then optimize the transmission control by maximizing this
stable throughput. These results also shed light on how a transmission control can be used to increase
the stable throughput of the system.

The SNR of the uplink is taken as the channel state parameter and the reception model is defined as
follows. We assume that a user is successfully demodulated if no other user transmits, and if his SNR is

larger than a given threshold ~y. The reception model for this is given by

1 v>%
0 v<v

M (y:1) = 9)

The function ) (v;0) is of course equal to 1 — ®'(v;1). For k > 2, &*)(...) is identically equal to zero.
This model is similar to the collision channel except that it also takes into account the channel state of
the transmitting user.

Given a transmission control s(v), the maximum stable throughput is given by

Mie) =n (1= [ s(v)dF(v))nl ( / " sre)) . (10)

0
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The optimal transmission control is then obtained as
s*() = argmg)xkn(S(-))- (11)
(-

We then have the following theorem.

Theorem 2: Denote p,, = P{y > 70}. The optimal transmission control is

. 0 v <Y
() = o , (12)
min (— 1) Y2
0

np~

and the corresponding maximum stable throughput is

75" () = nin (1.5, ) (1 min (%p)) (13

Proof : Refer to the appendix.

The transmission control is a step function and we find that, as expected, if v < 7, the mobiles do not
transmit. If v > ~p, the probability of transmission is chosen such that the average number of transmitting
users in each slot is equal to one. In order to understand the role of transmission control, we illustrate
the a priori and a posteriori distributions of CSI in Fig. 3. We see that the a posteriori distribution starts
from v = 70 which means that the base station believes that the channel states below 79 do not occur.
We would like to finally note that the optimal transmission control is not unique.

Figure 4 illustrates the variation of average delay with total input rate under the SNR threshold model.
The threshold 7o was set at -5 dB. For the conventional transmission control, when a station has a packet
to transmit it transmits the packet with a probability % It can be seen that the optimal transmission

control has a higher maximum stable throughput and also a lower delay at every load.
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An interesting problem that we have not considered is the selection of 79 and how the various physical

layer parameters and the signal processing algorithms influence its choice.

IV. ASYMPTOTIC STABLE THROUGHPUT

In this section we define the notion of asymptotic stable throughput (AST) of a network and consider
the problem of designing transmission controls that are optimal with respect to the asymptotic stable
throughput. We consider two types of transmission control : the population dependent transmission
control (PDTC) where the transmission control depends on the total number of users in the network, and
the simpler population independent transmission control (PITC) where the transmission control is not
allowed to be a function of total number of users in the network.

We know that given the number of users in the network n, reception model ®*)(.), the CSI distribution
F(v), and the transmission control s(-) such that ps > 0, the maximum stable throughput for the network

is given by

26 =3 (}) = p) OG0 (1)

k=1
The asymptotic stable throughput (AST) is defined as the maximum stable throughput as the number of
users in the network goes to infinity. Such a metric is of value for “large” networks, and it is possible to

obtain transmission controls that are asymptotically good based on this metric. This enables us to design
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transmission controls for those reception models for which it is difficult to find the transmission controls
that are optimal with respect to the maximum stable throughput. The formal definition of AST is as
below.

Definition 1: Given the distribution function of CSI F'(y), the transmission control sequence s, () and

the reception functions {®*)(-)}£2,, the asymptotic stable throughput is defined as

Ao ({52()} _hmmfz( ) 1—ps, )" Fpf Cr(Gs, (). (15)
For what follows, we impose the followmg techmcal restrictions on the kind of reception models
{®@®)(-)}22, considered :
A1 For any distribution function F(v), limg_ o C (F(*)) 2 Coo(F(+)) exists.

This restriction is quite mild and in fact holds for most reception models considered.

A. Population Independent Transmission Control

We first consider the scenario where the transmission control sequence is such that it does not depend
on n. That is s,(y) = s(v),V¥n. This kind of transmission control is termed Population Independent
Transmission Control (PITC). Such transmission controls are interesting because they are simpler to
implement and they can be expected to be robust to the size of the network. In cases where nodes may
enter and leave the network it is easier to use a PITC because it is not necessary to keep track of the size
of the network.

The asymptotic stable throughput with PITC becomes
2 _ k .
Ao (- hnrggfz ( ) (1 po)"*pECu(Ga (). (16)

The asymptotic stable throughput can be given a simpler characterization as follows.
Proposition 1: Given the transmission control, s(-), the asymptotic stable throughput is given by
lim Cy(Gs())- (17)
k— o0
Proof : The proof follows from [17].
In contrast, the AST for population independent transmission control that does not depend on the channel
state is given by

lim Cy(F(")). (18)

k—o0
Thus the effect of the transmission control for PITC is equivalent to changing the underlying CSI dis-
tribution. It is therefore important to determine the set of probability distributions that can be reached
through PITC from F(v). Given F(v), it is easy to see that the set of distributions that can be reached
through PITC is given by

(19)

Ar 2 {G(’y) :3s(-) €S s.t/ooo s(7)dF(y) > 0,G(vy) = M—dm},

I s(v)dF(v)
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where

SE{s(1):0<s(7) <1, V). (20)

Thus we have the following proposition.

Proposition 2: The supremum of all possible stable throughput by optimizing the transmission control
function is given by,

sup Ao (s(-)) = oo Jim G (G())- (21)

In what follows we derive the properties of the distributions in Ax and try to ascertain how large this
set is. We first list some simple properties of the functions G(y) € Ap.
P1 G(v) is a distribution function.
P2 pup(A) =0 implies ug(A4) =0 (Notation : G < F).
P3 There exist a positive constant C' < oo such that the Radon-Nikodym derivation g—g < C for all v.
We now show that in fact the above three properties characterize the set Ap, namely if there exists a
function G(-) satisfying the properties above then it belongs to Ap. Given G(-) and F'(-) satisfying the

properties given above, define the transmission control as

1dG

s(y) = CdF’ (22)

It is easy to see that the a posteriori CSI distribution with this transmission control is equal to G(y) and
therefore G(-) € Ap.

Thus, if the underlying channel state distribution is F'(), it is possible to steer the conditional distribu-
tion of the channel state to any G(v) that satisfies the properties listed above by choosing the transmission

control as

_dG 1
~ dF sup %87

s(7) (23)

It is important to determine how limiting the restriction to the set Ap is. As we shall see later, this
restriction has an important bearing on the maximum achievable AST with PITC for many reception
models and state distributions F(v).

B. Population Dependent Transmission Control

We now consider the more general case when the transmission control is allowed to be a function of
number of users in the network. As discussed previously, given a sequence of transmission controls s, (7),

the asymptotic stable throughput is defined as
A = Tim i ~ (n _ n—k, k .
M@Mm—mggxgupw P Ch(Gan (). (24)

We will first derive the AST for transmission control sequences that do not use channel state informa-

tion and then introduce a simple population dependent transmission control sequence that can improve
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significantly over this AST. The results in [17] can be directly used to show that if we use a transmission

control s,(y) = min (£,1), we achieve an AST equal to

k

" Y G OHF() 2 f(a,F). (25)

k=1

The following proposition says that in fact the control above achieves all possible AST, and it is not
possible to do better using a more complicated transmission control.

Proposition 3: If the sequence of transmission control s,(7) is chosen to be independent of v but as
a function of n alone, then the maximum possible AST is given by sup, f(z, F), where F(y) is the
distribution of ~.
Proof : The proof follows directly from [17].

It is possible to construct a simple sequence of transmission controls that improves significantly upon the
AST obtained above. Let T'(-) be a distribution function such that T'(-) < F(-). From the Radon-Nikodym

theorem, there exists a non-negative function g—; such that

_ [ dT

A)= | —=dF. 2
wrd)= [ G (26)
The sequence of transmission controls is chosen as
. (zdl
$n(7y) = min (ﬁﬁ’ 1) . (27)

The following proposition characterizes the achievable throughput.

Proposition 4: With the sequence of transmission controls chosen as
z dT
=min{ =—-—,1 28
sa() =min (£55.1). (28)

the asymptotic stable throughput is given by

Xk

S EAODE RS 2 Cr(T () = f(2,T). (29)
Proof : Refer to the Appendix. =
By comparing Proposition 3 with Proposition 4, it can be seen that the effect of the chosen transmission
control sequence is to effectively change the CSI distribution from F(v) to T'(y). From Propositions 4 and
1, we can see that the advantage of using population dependent transmission control is two-fold. Firstly,
the set of distributions that can be reached is larger than the set Ar because we do not need the target
distribution to obey P3 listed above. Secondly, the performance is no longer limited by Coo(T'(-)) but is
given by sup,, f(z,T). It can be shown using techniques in [17] that the function f(z,T') has the property
that

lim f(z,T) = Coo(T())- (30)

T—>00

This implies that sup,, f(z,T) > C(T(")).
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The intuition behind choosing the particular sequence of transmission controls is that firstly we have

ps,, — 0 while nps, — x and secondly we have the a posteriori distribution
G, (7) = T(v) point wise. (31)

The first condition ensures that the number of transmission attempts in any given slot converges to
a Poisson random variable with mean z, and the second condition ensures that the a posteriori CSI
distribution converges to T'(7y).

It can be seen that through a judicious choice of transmission control sequence, it is possible to achieve

an AST of

(o9} k
« e\ T
Ai= sup e E ﬁCk (T()= sup f(z,T). (32)
z,T(-)KF(-) k=1 " z,T()KF(+)

The quantity A} is in some sense the capacity associated with the reception model, CSI distribution F(-),
and the protocol proposed. For a given reception model, it is important to characterize A} and find
distributions T'(-) that achieve an AST that is close to AX.

For a given reception model and CSI distribution F'(7), choosing a target distribution that guarantees
improvement is in general not easy. This is due to the reason that the AST is equal to sup,, f(z, F') which
in turn depends on all of Cr(F(-)). However, it is at times easy to characterize the value of f(z,F) as
z — oo and this offers us a way of comparing different distributions. As mentioned previously, for any
F() [17]

lim f(z,F)=Cx(F()). (33)

r—0o0
Hence, if for a distribution function F(-), we find a distribution 7'(-) such that C (T'(-)) > sup, f(z, F),
then improvement is guaranteed by using a transmission control that changes the distribution to T'(-).

However, it is important to note that Coo (T'(+)) > Coo (F'(+)) does not in general guarantee improvement.

V. APPLICATION TO CDMA NETWORKS

In this section, we apply the results derived in the previous section to the uplink of CDMA networks.
This application illustrates the theory and also demonstrates the magnitude of gains possible through the
use of CSI.

In order to apply the theory, we need to first select the parameter that will used as the channel state.
The choice of the channel state parameter might be influenced by issues like potential gain and ease of
estimation. Once the channel state parameter is fixed, the distribution of the channel state information
should be determined. Then a reception model as described in Section IT should be developed for the
physical layer processing.

For the purposes of the current application, we will choose the propagation channel gain as the channel
state information. The possible models for the CSI and the distributions that arise due to these models

are delineated as part of the section below on channel model. We analyze the CDMA network under two
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receiver structures ; one where the receiver uses a Matched Filter and the other where the receiver uses
a linear MMSE multi-user receiver. The two structures give rise to two different reception models. The
results for the linear MMSE multi-user receiver are presented in considerable detail and the corresponding
results for the matched filter are stated in brief because they are conceptually similar to the ones for the
LMMSE multi-user receiver. For each reception model, the program is to first analyze the performance
possible without transmission control. Since the use of transmission control essentially changes the un-
derlying CSI distribution, the objective then is to find distributions that improve over the existing CSI
distributions. In this connection, we will show that distributions with roll-off (q.v. (36)) form “good”
target distributions for population dependent transmission control and that it is possible to obtain large

gains by using transmission controls that steer the underlying CSI distribution to this distribution.

A. Channel Model

The propagation channel gain from each user to the base station is selected as the channel state. Since
we require that each user has access to his channel state, we imagine a time division duplex (TDD) system
where the base station is transmitting a pilot tone.

If the received power is modeled as

Pr = KR?Pr, (34)
where K is a constant, R is Rayleigh distributed and the channel state is given by v = Pg, then the
underlying CSI distribution is exponential. This corresponds to the case when a slow power control is
being employed. This model is also reasonable for modeling the propagation channel gain in the reachback
problem because all the nodes are typically at the same distance from the collecting station and undergo
the same propagation loss and shadow fading. Thus the underlying CSI distribution for the reachback
problem can be assumed to be exponential.

Another possible model for received power at the base station is
Pgr = R’K e Kr~*Pr, (35)

where R is Rician or Rayleigh distributed, £ is Gaussian distributed, with zero mean and standard
deviation v, and Pr is the constant transmitted power, r is the distance from base station and « is
the propagation constant that typically lies between 2 and 6. In this case the CSI distribution is a
complicated function of the distribution of r, the distance from the base station. A particular property
of this distribution that turns out to be very crucial is the way in which the tail of the distribution rolls
off. Given a distribution function G(-), define § to be the roll-off of G(-), if there exists a ¢ such that
0 < ¢ < oo and [36]

Jim (1=G)’ = (36)

If there exists a positive constant a such that the CDF of the distance r of a station satisfies

lim F.(x)z™% = ¢, (37)

z—0
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where ¢, is a positive constant. Then it can then be shown that [36] the distribution of the received power
Pr above has a roll-off § = & . This model corresponds to the case when there is no power control.

Different possible distributions for r are the so called uniform distribution where
P{r<z}=2> 0<z<1, (38)
the quasi-uniform distribution for which the density of r is given by
fr(z) = pe= "t 0<z<o0, (39)
and bell-shaped distribution.

B. Linear MMSE Multi-user Receiver

In this section, we study the case when the receiver uses a LMMSE multi-user receiver. We start by
describing the reception model to be used and then apply the results to the this reception model.

We assume that each user is assigned a particular signature waveform that is used to modulate the
data. Each packet starts with sufficient training symbols that the receiver can use to form an equalizer.
The packet is assumed to be successfully demodulated if the signal to interference ratio after the LMMSE
multi-user receiver is greater than 3. (The parameter 8 is a function of modulation, code, and quality
of service required for the application.) For the LMMSE receiver structure, the signal to interference
ration (SIR) for each user is a complicated function of the received power and signature sequences of
the transmitting users. However, if the signature sequences are random, the size of the network and the
spreading gain are large, the SIR can be approximated as a simple function of the received powers [37].
Due to the heuristics in [37], we will use the following reception model for the LMMSE multi-user detector.

Given that K users transmit, P; is the power received from user ¢, user ¢ goes through if

Vi
> B. (40)
1 K i
0% + § Lkm1kti Bt

This condition can be used to completely specify the reception model as defined in Section II. The above

condition can be rewritten as

2 K
ﬂN—.U + ﬂ < N. (41)
Vi et Vi Bk

This shows that the effective interference from other users is limited to at most 1. This is the advantage
of using an MMSE multi-user detector over a matched filter. In deriving this condition, it is assumed in
[37] that the receiver employs a true MMSE filter or equivalently that the receivers knows the spreading
sequences of the transmitting users. This assumption is not a contradiction to the fact that we are
considering a random access protocol because we assume that each packet starts with training and these
training symbols are used to obtain a least squares equalizer and if we have sufficient number of training
symbols present we can ensure that the least squares equalizer converges to the true LMMSE equalizer

derived under the assumption that the receiver knows exactly who the transmitting users are.
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B.1 Population Independent Transmission Control

For population independent transmission control, the AST is without the use of CSI is Cr (F'(+)) and
the AST with CSI is C(G(+)) where G(-) € Ap. We first assume that the underlying CSI distribution
F(-) is exponential and we evaluate C for the exponential distribution.

Proposition 5: Let F(-) =1 — e P and the noise variance be equal to o2, then

lim Ci(F(-)) =0. (42)
k—o0
Proof : Refer to the appendix
Thus the AST for exponential distribution is equal to zero. The following proposition gives the AST for
the set of distributions that can be reached from the exponential distribution.

Proposition 6: Let F(-) =1 — ¢”Pr and the noise variance be equal to 02, and G(-) € Ap, then

lim Ci(G(-)) =0. (43)
k—o0
Proof : Refer to the Appendix.

This proposition implies that it is not possible to improve the asymptotic throughput with population
independent transmission control if the underlying distribution is exponential. Hence the set Ap is not
“large enough” to improve the throughput.

We now consider the case when the distribution of the received power has a roll-off 4. This corresponds

to the case when there is no power control.

Proposition 7: If F(-) has a roll-off 4, then

Nsinmd 4 o(N,§) 0<d<1

lim Cr(G(-)) =< # (44)
k—o0 0 d>1,
where e(N, §) satisfies
. sinmd1—46
N eV:0) = == S5 (#3)

Proof : Refer to the appendix.

N sinwd

Thus for large N, we can neglect the quantity e(V,d) and assume that AST is L

. We conjecture

that for any finite N
1

For all the arguments that follow, we assume that the AST is given by é—V;Si‘;g”;.

mg,mxe(N, d) = e(N,0) (46)

When the distribution of the received power has a roll-off, the asymptotic throughput is therefore not
equal to zero. In order to determine if the use of CSI can increase the asymptotic stable throughput, we
consider the asymptotic stable throughput of the distributions in the set Ag.

Proposition 8: Let F(v) be a distribution function with roll-off §, G(-) € Ar and G(-) has a roll-off §’
then §' > 4. Further, for all §’ > §, there exists a G(-) € Ar such that the roll-off of G() is ¢§'.

Proof : Refer to the appendix.
If % < 1 (which is typical), then the asymptotic throughput is a decreasing function of § and if % > 1
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the asymptotic throughput reaches a maximum for some value of § that lies between 0 and 1. This fact
together with Proposition 8 has the following implications on possible improvements in AST. If % <1 the
asymptotic stable throughput cannot be improved by steering to distributions with a roll-off. However if
% > 1, it can be shown quite easily that for a d, the asymptotic stable throughput can be improved by
population independent transmission control if

(1 - ta7rr1(in5 %) < log % (47)

To illustrate for example, if % > €2 and 0 < 0.5 then improvement is possible.

Thus, for the reception model under consideration, if the transmission control is not allowed to use the
size of the network, improvement in AST is not possible for most cases. As shown below, this will change

quite significantly when the transmission control is allowed to use the size of the network.

B.2 Population Dependent Transmission Control

We now consider the use of channel state information for PDTC when the underlying distribution is

exponential. As shown in Proposition 3, the AST obtained without the use of CSI is given by

> Lk

[(@,F) = 3 ZrCu(F()). (48)

k=0
Figure 5 illustrates the AST for LMMSE when the underlying CSI distribution is exponential and CSI
is not used for transmission control. The transmit power is 4 dB over noise, spreading gain N = 16
and 8 = 4dB. The x-axis is the design variable z, the average number of transmissions in each slot.
We see that it is possible to achieve an AST of approximately 2.6 packet per slot without using CSI by
setting x to be approximately equal to 15 transmissions per slot. We should now find distributions 7T'(-)
such that T < F and f(z,T) > 2.6 for some z. If T(-) is a distribution with a roll-off, Proposition 7
gives the value of f(oco,T), and we see that there are many distributions for which f(oco,T) > 2.6. This
implies that for these distributions, there do exist y such that f(y,T) improves over sup, f(z, F). We
select distributions with roll-off 0.5 and 0.3 as the target distributions and Fig 6 plots f(z,T') for each
of them. The solid line in Figure 6 illustrates the AST when the underlying channel state is distributed
exponentially with mean 4 dB. The dotted lines are the AST for distributions with a roll-off. We see that
it is in fact possible to obtain significant gains over the maximum AST that can obtained without the use
of CSI. From Proposition 4, a transmission control that can be used to steer the underlying exponential

distribution to a distribution with roll-off is given by
. e"Prx
sn(7y) = min (mﬁa 1> Ly>n05 (49)

where 7o is any fixed constant.
From Figure 6, it can also be seen that for a given AST, the mean number of transmissions required

is smaller for the roll-off distributions compared to those required for the exponential distribution. This

November 11, 2002 DRAFT



figure

figure

November 11, 2002

Asymptotic Stable Throughput

12

10

CDMA Network MMSE N = 16, § = 4 dB, Tx. Power = 4 dB

3 T T

25

Asymptotic Stable Throughput
[
o
T

Fig. 6: AST with and

without CSI for PDTC

05 4
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
X
Fig. 5: AST with PDTC that does not use CSI
CDMA Network MMSE N = 16, 3 = 4 dB, Tx Power = 4 dB
T T T T T
| - - - -
7
;
/
/
| - / -
/
/ B T T T T - - - - -
/ e
/ 7
r I 7 -
/
oy
/o
/ /
/
L / % -
I/
/
/
// — Exp
L./ - -06=05 i
1 —-6=03
VA
/
/
1 1 1 1 1 L
0 10 20 30 40 50 60 70

80

20

DRAFT



21

implies that utilizing a transmission control that uses CSI decreases the required average number of
transmissions in a slot. This has implications on network wide power savings.

We now consider the importance of the use of CSI at low transmit power. Even for arbitrarily small
power Pr, the distributions with roll-off are dominated by the underlying exponential CSI distribution.
This implies that it is possible to steer to the roll-off distributions from an exponential distribution with
an arbitrarily small mean. From Proposition 7, when 8 > 1 (typical) it is possible to achieve an AST of
N using distributions with a roll-off (corresponds to § — 0). Thus, even if the CSI is exponential with an
arbitrarily small mean it is possible to achieve an AST of N using CSI. However, without the use of CSI
the maximum achievable AST goes to zero. The following theorem summarizes the importance of CSI for
the reception model under consideration at small powers.

Theorem 8: Assume > 1 and F(y) =1— eiPLT, then
limof(z,F) =0. (50)

Pr—
However, for any given Pr, the maximum achievable AST with CSI satisfies

NS/\:SN—F%. (51)
Proof : Refer to the appendix.
The theorem above implies that channel state information can be used to achieve large asymptotic through-
puts even in cases where each node is equipped with small power. This result is of relevance for the reach-
back problem because sensors are typically deployed in large numbers but each is capable of transmitting
at a low power. However, with the use of the CSI, it is possible for the nodes to employ transmission
control and achieve a large throughput.
As a final note, we would like to point out that the distributions that can be used to improve the AST

beyond N and achieve the capacity A} are not known.

C. Maiched Filter

In this section, we list the results that correspond to the matched filter reception model. We do not
give detailed comments in this part, because the results are conceptually similar the ones obtained for the
LMMSE reception model.

The reception model is as follows : given that K users transmit, P; is the power received from user i,
user ¢ goes through if and only if the corresponding SINR is greater than § that is,

P,
02 + Yy i P

This criterion follows from the heuristics [37] for networks with large N. It can be seen that criterion is

> 8. (52)

quite similar to the capture model and is most popular one for CDMA networks with matched filter.
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C.1 Population Independent Transmission Control

We will now characterize the AST with PITC with and without using CSI when the underlying distri-
bution is exponential.
Proposition 9: If F(v) is the distribution function of an exponential random variable with mean Pr,
then
lim Cy(F(-)) =0 (53)
k—o0
Proof : Refer to the appendix
Proposition 10: If F(v) is the distribution function of an exponential random variable with mean «,
and G(-) € Ap then
lim Cx(G(-)) =0 (54)
k— o0
Proof : Refer to the appendix.
The above propositions implies that if the received power is distributed exponentially, then PITC does
not improve the AST.
We now consider the case when the received power has a distribution with a roll-off. The following
proposition follows from a straight forward application of the result in [36].

Proposition 11: If G(-) has a roll-off §, then

s
ﬂ) dnmd <6<l
i ) =4 (3) 5 =
koo 0 5> 1.
We see that in this case it is possible to obtain non-zero asymptotic throughput with constant transmission

(55)

control. In order to determine if the use of CSI can increase the asymptotic stable throughput, we consider
the asymptotic stable throughput of the distributions in the set Ap. From Proposition 8, we have that
if we start with a distribution with a roll-off, we can go to distributions that have a larger roll-off but
we cannot go to distributions with a smaller roll-off. This fact has the following implications on the
possible improvements in AST. If % < 1, then the asymptotic throughput is a decreasing function of
4, therefore the asymptotic stable throughput cannot be improved if by steering to distributions with a
roll-off. However, if % > 1 (typical) the asymptotic throughput reaches a maximum for some value of §
that lies between 0 and 1. Hence it is possible that decreasing J increases the throughput. It can be shown

quite easily that for a & the asymptotic stable throughput can be improved by population independent

(1 g 1) < log % (56)

transmission control if

" tanmd 0
To illustrate for example, if % > €2 and 6 < 0.5 then improvement is possible. Figure 7 shows the
variation of asymptotic throughput with § for N = 20 and § = 4dB. It can be seen that significant gains

are possible if we start with a § is less than 0.5.
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C.2 Population Dependent Transmission Control

We now consider the use of channel state information for PDTC. As shown in Proposition 3, the AST
obtained without the use of CSI is given by

X .k

@ F)=e™ Y ZOF()). (57)

k=0
Figure 8 illustrates the AST for matched filter when the underlying CSI distribution is exponential. The
transmit power is 4 dB over noise, spreading gain N = 16 and 8 = 4dB. The x-axis is the design variable
xz. We see that it is possible to achieve an AST of approximately 1 packet per slot without using CSI
by setting z to be approximately equal to 7 transmissions per slot. We would like to find if there exist
distributions T'(-) such that, for some z, f(z,T) > 1 and T <« F. If T(-) is a distribution with a roll-off,
Proposition 11 gives the value of f(oo,T'), and we see that there exists a distribution with a roll-off for
which f(co,T) > 1. Fig 9 plots f(z,T) for distributions with a roll-off 0.5 and 0.3. We see that it is in
fact possible to improve over the AST that was possible without CSI. From Proposition 4, we know that

a transmission control that can be used to steer to a distribution with roll-off is given by
. (e"Prx
sn(7) = min (Wﬁ, 1) Ly>q0; (58)
where 7y is any fixed constant.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we studied the use of decentralized channel state information for random access. To

perform this study, we first proposed a reception model for the physical layer that takes into account the
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channel states of the transmitting users. A variant of Slotted ALOHA where the transmit probability is a
function of the channel state was used for random access. We then obtained expressions for the maximum
stable throughput of the network as a function of the transmission control used and the reception model.
Determining optimal transmission controls for a reception model is in general a hard problem.

We then considered the regime of large networks and introduced the notion of asymptotic stable through-
put (AST). Asymptotic stable throughput is the maximum stable throughput of the network as the number
of users goes to infinity. Population independent transmission control (transmission control is not a func-
tion of the size of the network) was considered and the AST was derived for it. It was shown that the
effect of transmission control is to effectively change the underlying CSI distribution and the set of distri-
butions that can be reached through PITC was characterized. Population dependent transmission control
(transmission control is a function of the size of the network) was then studied. If transmission control is

not used, then the maximum possible AST is given by

ok
supe™ Y -Ci(F (), (59)
€ k=1

where F'(-) is the CSI distribution. We showed that if the transmission control sequence is chosen as
. (dT z
sal) =min (G 2.1). (60)

where F' is the underlying distribution, 7" is a target distribution that is dominated by F, n is the size of
the network, and x is a design variable which is equal to the average number of attempts per slot then

the AST is given by
ok
_z z
3 OO, (61)
=1

The problem then is one of identifying the right target distributions to use for a given reception model.

The theory was then applied to the uplink of CDMA networks with LMMSE multi-user detectors and
Matched Filter receivers. In either case, propagation channel gain was used as the channel state. Two
different models leading to two different distributions were considered for the propagation channel gain.
It was shown that if the channel state distribution is exponential, there is no gain to be got from PITC.
However, with PDTC if the target distribution is chosen as a distribution with a roll-off, it is possible to
obtain significant gains. For the LMMSE receiver, it was shown that if the nodes do not use CSI then
the AST tends goes to zero as transmit power decreases but with the use of CSI the achievable AST is
lower bounded by the spreading gain of the network. This outcome has important implications for the
reachback problem in sensor networks where the number of nodes is large but each is equipped with small
transmit power capabilities.

We now discuss some possible further research directions that arise from this study. The theory can
be applied to a variety of reception models with different channel state parameters. In this paper, we

have primarily considered the case when the propagation channel gain is chosen as the channel state.
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Other possibilities include position of the mobile etc. This leads to interesting problems in development of
reception models for different signal processing and physical layer architectures assuming different channel
state parameters. Once the reception model has been developed, then it is important to determine good
target distributions and then evaluate the possible gains from transmission control.

The results presented in this paper are mostly asymptotic in nature and there are different transmission
control algorithms that give the same AST. But, these different choices might have different performance
in terms of convergence to the asymptotic value. We feel that convergence will depend on how “different”
the target distribution is from the current distribution. Hence, more work needs to be performed to
characterize the rate of convergence. We suspect that this will have a bearing on the delay of the network.

For the LMMSE and Matched Filter reception model, we have only characterized the AST for two
types of probability distributions (exponential and roll-off distributions). An interesting direction is to
determine the AST for other distributions and the related problem of the capacity of both reception
models is open.

For the case of CDMA networks, it is interesting to compare the strategy of transmission control
with the strategy of power control. Both of them require only decentralized channel state information.
The comparison between the two strategies is currently under investigation. It should be noted that
transmission control is in general easier to implement than power control because power control might
require a large dynamic range for the power amplifier.

In this paper, we have assumed that the distribution of the channel state is the same across users and
that the reception model is invariant to permutation of channel states. The reception model considered in
this paper thus cannot capture long run asymmetry in the users of the network. Addressing the problem
after relaxing these assumptions is definitely interesting. We have assumed that the channel state is
independent from slot and slot and we have restricted ourselves to stationary policies. Other important
models which we believe might lead to interesting results are when the channel state is independent
from user to user but correlated in time and we are allowed to use non-stationary policies. The model
where the channel state is correlated between users is also quite interesting and might lead to different
solutions. The results in this paper are quite surprising because we have demonstrated that channel state
information can be used to improve the performance of the network even when it is i.i.d and the users are
restricted to stationary policies. However, we conjecture that our results go through if the channel states
are independent from user to user and ergodic and the user is restricted to stationary policies. In this
case the proofs might be more involved because the theory of Markov Chains cannot be used to analyze

the queue lengths.
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APPENDIX
I. PROOF OF THEOREM 1

The time evolution of the random variable N is given by
(t+1) _ ar(®) (O)y+ (®)
N; =7 =Y;) T+ XY, (62)

where Yj(t) is equal to one if node j successfully transmits a packet during slot ¢ and is equal to zero
otherwise and X ](t) is the number of newly arrived packets in slot ¢. Since the channel is independent from
slot to slot and the transmission probability depends only on the current channel state, the n-dimensional
process N() is a Markov chain. We assume that the arrival process and the reception model are such
that the Markov chain is aperiodic and irreducible. This is a mild requirement that is satisfied for most
non trivial arrival processes and reception models. The stability of the system, which is equivalent to the
existence of a limiting distribution for the Markov Chain is therefore also equivalent to the ergodicity of
the Markov chain.

In order to show the stability of this Markov chain we borrow the techniques that were used in [22].
We state a key lemma from [22] that will used to obtain a sufficient condition for stability.

Lemma 1: Assume that £(t) and x(t), t € N are two random sequences with values from the set

{0,1,2,---}, while A is some event associated with them. If for any z,t, k, s

Pr{x(t) > z|x(t) = 5,x(0) =k} < Pr{x(t) > z|x(t) = s + 1,x(0) = k} (63)
Pr{{(t) > z|{(t) = 5,£(0) =k, A} < Pr{x(t) > z|x(t) = s, x(0) = k} (64)

then
Pr{{(t) > 2|£(0) = k, A} < Pr{x(t) > z|x(0) = k}. (65)

This lemma says that the stability of x(t) implies the stability of £(¢). The properties listed in the lemma
are commonly notated as x(t) stochastically dominates £(¢) [38], [39], [40]. Given the random sequence
N;(t), the key is to identify a sequence that stochastically dominates N;(t) and whose stability is easy to
analyze. As in [22], we define a one-dimensional Markov chain Qg.t) which is the fully loaded version of

N ;t). That is, Qg.t) is a Markov chain and

Pr{Q*) =kQ'¥ =5} = PNV =kN® =5, NP > 0,i=1,---,n,i # j}.
(66)
In order that we use stochastic dominance to analyze N®), we need to first show that the random
sequence defined above satisfies the properties listed in Lemma 1.

Lemma 2: The Markov Chain @);(t) stochastically dominates N;(t).
Proof : Refer to the appendix.
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For the fully loaded system an application of Pakes’ Lemma[41], which gives a sufficient condition on
drift D; 2 E{Q;(t+1) —Q;(t)|Q;(t) =i}, can be used to obtain a sufficient condition for stability. For
the sake of completeness, we state Pakes’ lemma below.

Lemma 3: Suppose that the drift D; < oo for all ¢, and that for some scalar 6 > 0 and integer ¢ > 0 we
have D; < —4, for all 4 > i. Then the Markov chain has a stationary distribution.

It is easy to see that the drift D; for the fully loaded system is independent of i and is given by

p, = 2 _,; ("2 (- /Ooos(v)dm))n_l_k ([ [ st stman)

3 0L @ (1, i1 O )AF (1) -+ dF (1) (67)

Or41

- %(A—i(’,ﬁ) (1= [ snare) ([ [ s st
O (1, )P () - dF(w)) ) - (68)

The second equality follows from the symmetry of the reception model that was assumed in Section II.
The above equation gives a sufficient condition for the stability of Q;(¢), which due to Lemma 2 is also a
sufficient condition for the stability of N(t).

We obtain necessary conditions for stability in a straight forward way by following the arguments in
[22]. We now state a key result that is proved in [22] in a slightly more general form.

Lemma 4: Let Markov chain N(t) defined over Z[ possess the following property of bounded homo-
geneity with respect to its states : for any s € Z and r € Z%, such that for every i, either s; =r; = 0 or

s; > 0,7; > 0 and for any k € Z%, we have
Pr{N(t+1) =s+k|N(¢t) =s} = Pr{N(t + 1) =r + k|N(¢) =r}. (69)

Then for j = 1,---,n, E{Q;(t + 1) — Q;(¢)|Q;(t) > 0} > 0 implies that N;(t) — oo as t — oo with
probability 1 for all j.
It is easy to see that the bounded homogeneity property holds for the Markov chain under consideration.

Thus the lemma above implies that the following condition is necessary for stability :

<> (3) (1—/0°°s<~x)dF<w))n_k ([ [ stwestm
k=1
OO (1, ) dF () - dF(w)) . (70)

Thus the theorem about maximum stable throughput follows. O

II. PROOF OF LEMMA 2

We need that for all ¢, s, k, z,

Pr{Q" > 2|Q{ =5, =k} < Pr{Q" > 2(Q{" =5 +1,Q” = k}.
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In other words, the probability that the buffer goes above a certain level in slot (¢ + 1) is larger if the
queue has more packets in slot ¢. It is obvious that this is indeed the case. The other property to be

shown is
Pr{N;tH) > $|N;t) =5, NO =k} < Pr{QYH) > $|Q§-t) = s,Qg-O) =k;},

where k = (k1,-- -, k,). In other words, the tendency of the buffer of the fully loaded system to exceed a
level z is higher than that of the original system. In order to show this, we first observe that the evolution

of the j*" buffer in the original system and the fully loaded system is given by

N o (s YOy 4 X0
J

QY = (s— 2z + xV. (71)

Hence, in order to show (71), it is only necessary that we show that the probability of success is higher in

the original system,or
® _ ® _ (0 _ ® _ ) _ o _
Pr{Y;” =1|N;" =s,N;" =k} > Pr{Z;7 =1|Q;" =s5,Q; =k} (72)

If U;t) is the number of nodes competing with node j to send packets in time slot ¢ (the nodes with

non-empty queues), we note that

n—1
Pr{y = 1N =5, NO =k} = Zpr{U]@:k}

Pr{Y“’ UND =5, N =k, U = k), (73)
f
where as
Pr{Z =110 = 5,0\ =k} = Pr{y}? = 1IN}V =5, NV =k,U" =n —1}.
N ~ )
(74)

We show that the probability of success f}, is a decreasing function of k which will then imply (72) because
of (73) and (74). We have the following formula for f :

fe = i (7)(1 -p)*! /000"‘/00o s(y) -+ s() Y 01
1=0

O141

B (4, 1413 0141)dF (1) - - - dF (yi41),

where
p= / s(7)dF (7). (75)

Equivalently, f; is the coefficient of z*
1+ (1 =p)x)* (), (76)
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where h(z) = ho + 1z + hoz® 4 - -+ and

hy =/0 /0 s(m1) - s(vig1) Z 01(21(}(l+1)(71;'";'71+1;®l+1)dF('Yl)"'dF('Yl+1)- (77)

O141
Therefore, fr — fry1 is the coefficient of z*+1 in
(1+ (1 —p)a)* (zh(x)) — (1 + (1 = p)a)**" h(x) (78)
= (1+ (1 -p)2)" (prh(z) - h(z)). (79)
The difference fy— fr41 is a function of the coefficients of z, - - -, %! in (pzh(z) — h(z)) , whichwewillshowareallpositive.

The coefficient of z7,j = 1,---,(k + 1) is given by

/ / s(m) )Ze( )(I)(J)( 1,05 05)dF (1) - - - dF () / /

s(71) - s(vj+1) Z 50,80 (1, -+ 454130141 )dF (1) - - dF (y141).

Oj+1
Due to the condition (4) on the reception functions ®*)(-), the coefficients of 27 for j = 1,---, (k+1) are
greater than zero which implies that fi > fr41. Hence the Markov chain @;(t) stochastically dominates
N;(t). O
III. PROOF OF THEOREM 2

Let A(u) be defined as

M ={st: 02500 <1, [T sarty =} (30)
For s() € A(u), we have
Mn(s() =1 = ([~ sare)) (81)
Yo
We note that f 7)dF(y) < py,. This leads to the following upper bound on the maximum stable
throughput.
1—w)™ lu. <
A(s() < 4 T b ()
n(l — u)"_lpw0 U > Py

If pyy > %, maximizing the upper bound by varying u between 0 and 1, we find that for all s(-),
1
An(s()) < (1= 1), (s3)

Hence choosing the transmission control as

November 11, 2002 DRAFT



31

achieves the maximum and is hence optimal. If p,, < %, then the above choice is not valid since ﬁ >1

If p,, < %, we find that the upper bound is maximized at u = p,, and

An(5(:)) <11 = Pyg)" ™ Prg- (85)
Hence for p,, < %, choosing the optimal choice for the transmission control is given by

0 <
s*(y) = T (86)
1 v>2v

IV. PROOF OF PROPOSITION 4

For convenience, we define the function H,,(s,(-)) as

Hy(sn(-) 2 i <k> (1 —/sndF)n k/ /sn )+ 5 T (91, )

dF(m) -~ dF (). (87)

We assume that given a distribution function 7'(-) that is dominated by F'(-), the sequence of transmis-

sion controls is chosen as t,,(T, z, ), where

x dT
tn(T,z, ) =min 222 1.
(T, z,7) mm(ndF ) (88)

We claim that for this choice of transmission control sequence,

lim inf H,, (t, = —wz o Ck (89)

n—oo

Due to the assumption Al, we have
o zh
e T OT0) < oo, (90)

which implies that for all € > 0, 3M such that

© k
> SO <e (01)
k=M+1

Therefore for n > M, we have

L N

k=M+1
T (1, ) AP () - dF (0 (92)
n k
<Y o T (93)
k=M+1
< LCuT0) (94)
k=M+1
< €. (95)
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The second inequality follows because for all y

z dT
n(@, T,v) < ——.
tn(z,T,7) I

Hence

M n—k

ctn (2, Ty ) 8 H (-, ) dF () -+ dF () + €.

For each k we have

() ()i

TE) (g1, ) dF (1) - - dF (k)

1 1 ok n! .
=% (1 - E/“t"dF) o | [T e T
TE (1, -, y)dF () -+ dF ()

Since nty(z,T,7) 1 sg—g(y) for all v, we have using monotone convergence theorem

. dT
711320 nty(z,T,v)dF = x d—FdF

Similarly, we also have

lim nktn(l'JTa ’71) o 't"(wJTJ ’Yk)lIl(k) (’Yl’ o 5’yk)dF(’yl) o dF(’Yk)

=t [ [W B )T ) T ()
= 2 Cy(T()

Define f,(y) as

We know that

32

(98)

(99)
(100)

(101)

(102)

(103)

In fact for any A > 0, the sequence of functions f,(y) converges uniformly to e~ ¥ over the range [0, A].

This implies that if the sequence x,, = =, where z < A, then

lim fo(z,) =e %,

n—0o00
Hence, taking the limit of (98), we have
z* x\n—k M i z*
fm i (1=0) T aa I (1-7) = oo,
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Therefore -~
lim inf H, (¢, Z mk_
=1

n—oo

V. PROOF OF PROPOSITION 5

IfG()=1- e_P:’T, it is easy to see that

[ee] 2 k ) .
Cr1(G(-) = kl;’;l/o Pr{/BNa +Zﬂ5% <N}eﬁdry

k+1/°° Bi _x
< Pr < N e Prdy.
- ProJ {Zﬁ%+7 4

i=1

33

(106)

(107)

(108)

We obtain an upper bound on the inner probability using Chernoff’s bound as follows. Given a h > 0, we

have

IN

{Z Bvﬁzz g }

k

fofo-£22)

Nk __hBn
et fon (5575

We let h =1 and define p(y) as the characteristic function

[Et! L A G o en(— L
E{QXP(_571+7>}_PT/0 ep( ﬁ71+7)ep( PT)d%'

Therefore,

Cenn (@) < EFDET [ e

Pr
We now show that there exists ¢ > 0 such that

lim (1 —p(y)) >,

Y—00

which will imply that there exists v* such that v > +* implies

C
p(y) <1——.
v

We have

1 o0
=) = [ (1w (-2

vV

The inequality follows because

November 11, 2002
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Pr dry.

)) expl= 2Ly

o | L (- Ly
2Pr Jo v+ bBmn Pr

(109)

(110)

(111)

(112)

(113)

(114)
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Using monotone convergence theorem, we have

. 1 el
lim y(1—p(7) > == / im M exp(— L ydy
0 Pr

~y—00 2Pr Y=oy +
_ BPr
= =5 (115)
We therefore have
]. k+1 o0 k 7PL
wOn(@) < 5= [t Fray
1 v k Y 1 & c k Y
< = k+1 e Prd +—/ k+1 (1——) e Prdy.
< g GrveTEn o [ e (122 y
(116)

The first integral goes to zero as k — oo, since u(vy) 1 1 as v = oo which implies that there exists an r < 1
such that for 0 < v < ~* implies u(y) < r. The second integral can be shown to go to zero by dominated

convergence theorem since

k
(k+1) (1—5) <y VE (117)
and
/ Vef%Tdv < 00. (118)
o
We therefore have that
lim Cr4+1(G(})) =0. (119)
k—o0

VI. PROOF OF PROPOSITION 6

The proof of this proposition is similar to the previous one. Let F(y) =1 — e Pr and G()eAp. If

5(7y) is the transmission control used then

k+1 /°° BNo? I~ By 2
Cr+1(G(- = Pr + < N }s(y)e Prd 120
@) = | { - ;mﬂ (e Ty (120
k+1 / Bi -
< s(y)e” Prdry. 121
— psPr Jo {Z B+ ) 4 (121)
We obtain an upper bound on the inner probability using Chernoff’s bound as follows. Given a h > 0,
we have
k
Bi hBvi
< exp | hIV —
{Zb’%+7 - P Zﬂ%+7
hpn ) }
ANk
e""E* Sexp | — 122
{ P ( By +y (122)
We let h =1 and define p(y) as the characteristic function
Bn ) } 1 / * ( Bn > "
Edexp | — = exp | — S exp(——=)d;- 123
{ p( B+ poPr Jo TP\ 1y ) S R R ) (123)
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As before, we show below that there exists ¢ > 0 such that

lim (1 —p(y)) > ¢, (124)

’Y—}OO

which will imply that there exists v* such that v > v* implies

c
py) <1——. (125)
Y
We have
1 i B )) 2!
1-— = l—exp|— s exp(——=—)d
A=) = o [T (1= e (<522 ) ) st exp- Ty
1 * Bym gl
s exp(——=—)d.
2p, Pr /0 v+ By S eR(mp i
The inequality follows because
1—e—zzg 0<z<1 (126)
Using monotone convergence theorem, we have
. 1 o Bm M
| > 1 _r
veo = 2p,Pp /0 1500y + B s(n) exp( P:r’)d71
! (127)

It is easy to see that 0 < E{y;} < o0.

We therefore have

OG0 < —

/Ooo 1 ()s(v)e” Pr dy

psPT
1 v k *° c\*
< k+1 s(yv)e Tdy + / kE+1 (1——) s(vy)e 7dry.
o, G DR [ ) (125 e ay

(128)

The first integral goes to zero as k — 0o, since p(y) 1 1 as v — oo which implies that there exists an r < 1
such that for 0 <y < ~* implies u(y) < r. The second integral can be shown to go to zero by dominated

convergence theorem since

k
(k+1) (1 - $> <y Vk (129)

and

/ 'ye_F:I_Td’y < oo. (130)

-

We therefore have that

lim Cr+1(G(+)) = 0. (131)

k—o0
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VII. PROOF OF PROPOSITION 7

From an extension of the arguments in [36], the asymptotic MMSE throughput for a distribution of
roll-off 4 is given by

[ 0 ﬂsf% ]
C(B,N,6) = / P> ——Ft—— <N|ds, (132)
0 i—1 BS; ° +s77 i
where {S;}32, are points of a homogeneous Poisson process of rate 1. We then have
oo e 1 1
C(B,N,6) = / P —— < 1| ds
0 =1 N+ NSX _%

> 1

> 1 <1

SN+ S)ss

ds (133)

N\° [
(G) [

B Jo
The second equality follows from a simple substitution. Note that

o 1
PIS—— <1 1 <1]. 134
[ZN+st_§ ) ] [ <Z ] 1

i=1 i=1t N+85/s e
We also have [42](page 346) that

1< <1| = lim e o (w)dw, (135)
[ FZIN_'_SJ -3 M—o0 M Jw
where -
sof \ A Jw
uP(w) =E lexp (Z T )] . (136)
i=1 N+ S/s73
Therefore
o= " am [ e 137
CE.N0) = [ tim [ s, (137)
It is easy to see that
N(T) ju T
p>*w) = E/| lim exp Z — (138)
Tme0 i=1 N+Si5 s
N(T) » T
= lmElep| Y —2&— (139)
T—o0 =1 N—}—Si‘; s”7F
= lim E [exp _ (140)
T—>ook§1 k! z:zl N+Ui%s—%
o0 Tk
. e 'Th .
= Tlggoz k@, T) (141)
= lim exp (Tp(w,T)-T) (142)
T—oo

where N(T') is the number of Poisson points in [0,T"), {U;}$2, are independent and uniformly distributed
between 0 and T and p(w,T) is the characteristic function of —11— The first and third equalities fol-

N+U s -3
low due to the properties of the Poisson process. The second equahty follows due to bounded convergence
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theorem. We have

1 [T Jw
T)=— ——— | du. 143
o) =1 [ o (25— ) au (143

PP = Jim exp ( /0 ! (exp (ﬁ) _ 1) du.) (144)
— exp (s /0 h (exp (Ni‘”p ) - 1) dp.) . (145)

Consider the inner integral. It turns out that

> jw Jjw s wO Jw
—1)dp=2N RA(1-62% 14
[ (e () 1) o= Tt ioona -2 ), (146

where Fi(a,b;z) is a confluent hyper-geometric function [43]. Therefore, the original integral can be

Therefore,

S

written as
BN, o) = (X i /oo lim /M 2sinw o (99N T (16,229 dwds  (147)
= —_— _— x —_— —_— | Qi
Y B) 2m )y Moo )_ ) w PPN sinmo * N
After a simple change of variables, this becomes
N sinmd 1 [ M sinw ) jw
F(Z,s)
We now consider some properties of the function
JwFi(1=6,2%22) & Fr(w) + jFi(w). (149)

that are crucial for the evaluation of the integral. The above function can also be written as [43]

/01 jwexp (%) (% _ 1>6dt. (150)

We therefore have

Frlw) = /1 n (“) (L 21) (151)
rRW) = A w sin P
w? [ 1-6 )

> —— [ 7°01 —t)°dt 152

A (1-1) (152)

= —kuw? (153)

where k is positive constant. The second inequality follows because sin(wt) < wt. It is also easy to see
that the function Fr(w) < 0 for all w. Further the Taylor series expansion of Fr(w) is given by

W1-b Wt 3-02-61-0
N 2 4IN3 3 2 1

Fr(w) = (154)

It follows that the function Fg(w) is even. Similarly the Taylor series expansion of Fr(w) is given by

W3 2—61—8 w5 4—63-62—-061-6
BW=v-smm— 71 tsv 1 3 2 1 (155)
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More importantly, we have Fr(w) = w + O(w®) as w — 0. It can also be seen that the function Fj(w) is
odd.
Let € > 0. In order to find C(8, N, d), we need to evaluate the following integral :

M—o0 -M

/000 lim ( B F(w,s)dw + _GEF(W,S)der/OOO /GM F(w,s)dw> ds (156)

Even though these integrals are difficult to evaluate, it turns out that the middle integral contains most

of the mass. So let € tend to zero and consider the middle integral which can be written as

e—0 e—0t—o0

o] € t €
lim / F(w,s)dwds = lim lim / F(w, s)dwds
0 —€ 0 J—e

t pe
= lim lim/ Re{F(w, s) }dwds
0 J—e

e—0t—o0

t [
= lim lim/ / Slnwexp(sFR(f,u)) cos(sFr(w))dwds
0 J—e

e—0t—o00 w
t €
= Z%tgrgoA /ﬁexp(sFR(w))cos(sFI(w))dwds. (157)

sin w
w

can be made as close

The last equality follows because € can be made as small as possible and hence

as possible to 1. Since Fr(w) < 0, an upper bound on the above integral is

lim lim /Ot /_i cos(sFy(w))dwds. (158)

e—0t—o00

Since Fg(w) > —kw?, where k > 0, a lower bound on the integral is

e—0t—o0

t €
lim lim / / exp(—ksw?) cos(sFy(w))dwds. (159)
0 —e€

due to the property of Fg(w) given in (153). We will show that both these integrals are equal to 7 and

thus the required integral would have been evaluated. Consider

t pe € t
lim lim / / cos(sFr(w))dwds lim lim / / cos(sFr(w))dsdw
e—0t—o0 0 J—¢ e—0t—00 —eJo

. ¢ sintFr(w)
= lim lim —_—
e—=0t—=o0 [_ . Fy (w)

Fr(Ot ¢ing 1

duw (160)

= lim lim ————db, (161)
e—0t—o0 FI(—G)t 6 g(%)
where
A _
9(w) = Fi(F; (). (162)

The last inequality follows after the substitution Fr(w)t = 6. For convenience we define the function f(w)
as

flw) = Fl(w). (163)

Since Fj(w) = 14 O(w?), we can choose € small enough such that the inverse function of Fy(w) is defined.

This also implies, from inverse function theorem [44], that the function F; ' is continuously differentiable.
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It is therefore simple to show that the function F; ! (w) = O(w) as w — 0. It is also easy to show that the
function Fj(F;'(w)) = 1+ O(w?) as w = 0. Thus f(w) = O(w) and g(w) = 1 + O(w?). For simplicity,

we define h(w) = ( y- It is easy to see that h(w) = 1+ O(w?). This implies that the above integral is in

g(w
fact equal to 7.

We now consider the lower bound which after interchange of integrals becomes

R W)
lim fim . exp(—ktw”) Fr(w) Ff(w)+k2w4dw
= lim lim exp(—kth)wdw
e—0t—oc0 f, FI(CU)
FI(G)t ]
= lim lim exp (—tf2 (9» sin 19 d. (164)
e—0t—00 Fr(—e)t t 0 g(?)

The last inequality follows after the substitution Fr(w)t = 6 and the function f(w) and g(w) are as defined
previously. We know that
and hence we consider the difference between the two integrals and bound the difference. Set Fr(e) = §

and note that by making e small § can be made as small as possible. Now
5t
/ sinf o (—tf2 (Q)) 2)d6 — / —smode
_st 0 t
5t
sin @ 5 (0 0
= — - - -)-1
L5 (o (o (5)) 00
5t st
— / —cosé
st —6t

{exp(—tﬂ(%))m%) -1,1 (h'( %) exp(—tf2(%))

=

I

I
Q
o
wn
BN

— LAY
(-t ) DI }da

7)

~

do

o exp(~2(4))h(%) ~ 1
+‘/ " Z

+ 9
¢l it ot
<G+l T e,
. /“ exp(—tf2(4)h(4) - 1
—ot

02
5t
02(5
S E+T+C36+4_/(;

2/ exp(=tf (DI (%)
ot

K ($)
0

WDFDF (D

de

exp(—tf*(§))h(§) — 1
02

do (166)
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exp(— tf2( )) (P -1

do

+4/
Vit

<2 20 4 eyd+ 04\/7 \/_ (167)

The second equality follows from integration by parts. The first inequality follows because h(omega) =
14+ O(w?) and exp (—tf%(£)) < 1.The second inequality follows because exp (—tf?(%)) < 1. The final
inequality follows because in 0 to v/8t, tf2( ) is small and hence exp(t f2( )) is close to 1 —¢ fQ(%))

The rest of the integral is given by

0o —e€ M
lim lim ( F(w, s)dw +/ F(w,s)dw) ds (168)
e—0t Jg M—oo -M €
It is easy to see that this is equal to
[e's} M
lim lim 2Re (F(w, s)) dwds (169)
e—0t Jo M—oo [

We now show that the integrals can be interchanged due to Fubini’s theorem. Consider

/0 /6 |Re (F(w, s))|dwds < /o /€ exp(sFr(w))dwds (170)
> 1
= /€ _—FR(w)dw (171)
> 1
= dw
| re@era .
< oo (173)

The last inequality follows because for w large the integral

[ (&) (21 a an

increases faster than w’. Hence, interchange of integrals is justified. Due to this, the rest of the integral

can now be written as

N sinwd N\’ 2  sinw -1
N, — ] =l 1
CONO =gt (B) ™ (135/ w RQ{FR(w) +jFI(w)}d°"> ()
Therefore, we need to evaluate
N si 2 > si 1
_651n7r5_ <Re{/ sin w . _ dw}) (176)
B m 0 w jwFi(1-6,2%)
This integral can be rewritten with a change of variables as
1 sinwéd 2 *° sin Nw 1
> d 1
B we (Re {/0 W JORi(1 = 8,2 jw) ‘”}) t

It is difficult to evaluate the inner integral and it is bounded as follows. Due to the properties of delta
functions, the limit of the integral as N — oo is given by

1
=5,2; jw) d“’} (178)
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which is equal to @. Therefore, we have shown that

N sinwd

N.§)= ——— N 1
C(/B) 76) 136 71'5 +e( ’5)5 ( 79)
where
. 1—4sinnd
Nm e(N.0) = S =5 (180)
We conjecture that for any finite N
1
rngxxe(N, 0) =e(N,0) = 3 (181)
We take the value of hyper-geometric function as § = 0. We have Fi(1,2,jw) = ej;w’l. Making this
substitution, we have
in N 1
—Re{ lim / b dw
T =0t Jigoo) W €Y —
:g lim / lsmed
T \ e—07t [€,00) 2 w
1
=3 (182)
O
VIII. PROOF OF PROPOSITION 8
Since F'(y) has roll-off 4, we have
lim Fe(y)y? =, (183)
y—00
where 0 < ¢ < co. Let G(-) € Ar and if G(-) has a roll-off smaller than §, this implies
lim G¢(y)7° = oo. (184)
y—>o0
Therefore,
- G(v) _
7ll)rr;o Fe(y) = 00. (185)
But, we also have that
o0
Fey f,y dF
Jy aF 187
< Cfear (187)
= C. (188)

The second inequality follows because G(-) € Ar and P3. The equation (188) is clearly in contradiction
with (185) which implies that the roll-off of G(-) cannot be smaller than 4.
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If §' > 6, we show that there exists a transmission control s(y) such that the roll-off of G4 (7y) is equal

to ¢'. Since the roll-off of F'(v) is equal to §, for all € > 0 there exists a v* such that v > ~v* implies that

C— €

c+te
< Fe(y) < . 189
Serm S (120
Choose s(vy) as
0 0<y<y”
=4 * (190)
min (17 ,Ysl——s) Y=
For v large enough, we have
1 [ee)
G'(y) = ~ / s(2)dF () (191)
ps J,
1 RO Y
= —s(z)F(z)] — — s'(z)F(x)dx (192)
pS o ps v
s(MF(y) 0" -9 /°° F(z)
= d 1
Ds * Ds Y g0 —0+1 v ( 93)
Using (189), the second term can be bounded as
X ec—e€ > F(x) ®c+te
——dx < / ——ardr < / ; (194)
[y 20" +1 Lz o+ Lz
Therefore, we have
cte /1 §-61
G¢ < —t —— 1
< (4T (195
and
c—e (1 -4 1
G° > —t+—— ). 1
2t (5 50 (190
Hence, the roll-off of G(vy) is §'. O
IX. PROOF OF PROPOSITION 9
It is easy to see the asymptotic throughput is given by
=
1 . f— 1 PP c( . 2 P
Jim OuFO) = Jim k[ [ FGES i B0t ) dF )
m o [ e
= khféopg—le T/e T e Td*/l---/e T e Pr dyp_1
_Bs? k
= e Pr lim —M
k—oo (14 £ )k-1
= 0. (197)
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Let G(-) € Ap, then there exists a transmission control s(-) such that [ sdF > 0 and G()

We therefore have

lim Cy(G() =

k—o00

IA

IfF(y)=1- eiﬁ, we have

Crr1(F(2))
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X. PrROOF OF PROPOSITION 10

_ J7 s@)ar()

[ sdF
1 L st [stue
im 5 s(y)e Prdyr--- | s(yk—1)e Ye—1
koo ([ s(y)e” Prdy)*
3 3 k—1
/S(v)e’WI (7 > (2%t ﬂ02)> dy
i=1
_ B2 Z
P, B
lim ke _; /s(’yl)e_;_ilre_NpT dyy -
oo ([ s(v)e Prdy)*
Cdk—1 BYe—1
/s(’y;c_l)e Pre NP1 dry_y
2 a+5) k=t
[ fse Ty
= lim k —
[ s(y)e” Prdy ke Js()e” Frdy
(198)
The second inequality follows because s() < 1 and the last equality follows because
_(H%)vd
P
[stpe P dy (199)
[ s(v)e Prdy
XI. PROOF OF THEOREM 3
k41 /°° BNo? < By _
= Pr + <N,e Prd 200
PrJo { gl ; B+ ! (200)
> No? _
< k+1/ Pr{’B g <N}e Pr dry
Pr - Jo v
B2
= (k+1e Pr. (201)

From (110) and (119), we have that for every € > 0 there exists a k* such that k& > k* implies that

Crs1(F()) <e. (202)

It is also easy to see that this k* does not depend on Pr. This is because of the interference limited

nature of the system. For k < k*, we use the upper bound on C(F(-)) due to the noise limited nature of

the system and for larger k£ we use the upper bound due to the interference limited nature of the system.

Therefore,
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Mogk o _as? = zk
< e”® Z er Pr 4+ ee”” o (203)
k=1 k=k*
ﬁaZ
< e Prk*+e. (204)
Hence, we have
lim sup f(z, F) =0. (205)
Pr—0 T

We have a lower bound of N on A} because for any given Pr, it is possible to use a control that changes
the CSI distribution to one with a roll-off as close to 0 as possible and achieve an AST of at least N. The

upper bound of N + % is easily obtained due to the reception model for MMSE. [
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