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Abstract—Interleaving codewords is an important method not
only for combatting burst errors, but also for distributed data re-
trieval. This paper introduces the concept of multicluster inter-
leaving (MCI), a generalization of traditional interleaving prob-
lems. MCI problems for paths and cycles are studied. The following
problem is solved: how to interleave integers on a path or cycle such
that any ( 2) nonoverlapping clusters of order 2 in the
path or cycle have at least three distinct integers. We then present
a scheme using a “hierarchical-chain structure” to solve the fol-
lowing more general problem for paths: how to interleave integers
on a path such that any ( 2) nonoverlapping clusters of
order ( 2) in the path have at least +1 distinct integers. It
is shown that the scheme solves the second interleaving problem for
paths that are asymptotically as long as the longest path on which
an MCI exists, and clearly, for shorter paths as well.

Index Terms—Burst error, cluster, cycle, file placement, inter-
leaving, multicluster interleaving (MCI), path.

I. INTRODUCTION

I NTERLEAVING codewords is an important method for
both combatting burst errors and distributed data retrieval.

Every interleaving scheme can be interpreted as labeling a
graph’s vertices with integers, and traditional interleaving
problems all focus on local properties of the labeling. Specif-
ically, if we define a cluster to be a connected subgraph of
certain characteristics (such as size, shape, etc., depending
on the specific definition of the interleaving problem), then
traditional interleaving problems require that in every single
cluster, the number of different integers exceeds a threshold, or
every integer appears less than a certain number of times, etc.

Applications of interleaving in burst-error correction are
well known. The most familiar example is the interleaving
of codewords on a path, which has the form “

,” for combatting one-dimensional burst errors
of length up to . This one-dimensional interleaving is gener-
alized to higher dimensions in [3]–[5] and [7], where integers
are used to label the vertices of a two-dimensional or higher di-
mensional array in such a way that in every connected subgraph
of order of the array, each integer appears at most times.
( and here are parameters. The order of a graph is defined
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as the number of vertices in that graph.) More work on such a
generalized interleaving scheme includes [10], [12], [15]–[17],
where the underlying graphs on which integers are interleaved
include tori, arrays, and circulant graphs. In [1]–[3], codewords
are interleaved on arrays to correct burst errors of rectangular
shapes, circular shapes, or arbitrary connected shapes.

Applications of interleaving in distributed data retrieval, al-
though maybe less well known, are just as broad. Data streaming
and broadcast schemes using erasure-correcting codes have re-
ceived extensive interest in both academia and industry, where
interleaved components of a codeword are transmitted in se-
quence, and every client can listen to this data flow for a while
until enough codeword components are received for recovering
the information [6], [11]. (An example is shown in Fig. 1(a),
where a codeword of seven components is broadcast repeatedly.
We assume that the codeword can tolerate two erasures. There-
fore, every client only needs to receive five different compo-
nents. In this example, the codeword components can be under-
stood as interleaved on a path or a cycle.) Interleaving is also
studied in the scenario of file retrieval in networks, where a file
is encoded into a codeword, and components of the codeword
are interleavingly placed on a network, such that every node in
the network can retrieve enough distinct codeword components
from its proximity for recovering the file [9], [13]. (An example
is shown in Fig. 1(b), where the codeword again has length and
can tolerate two erasures. We assume that all edges have length

. Then every network node can retrieve five distinct codeword
components from its proximity of radius for recovering the
file.)

This paper introduces the concept of multicluster interleaving
(MCI). In general, an MCI problem is concerned with labeling
the vertices of a given graph in such a way that for any clus-
ters, the integers in them are sufficiently diversified (by certain
criteria). Traditional interleaving problems correspond to the
case . So MCI is a natural extension of the traditional
concept of interleaving.

We focus on MCI on paths and cycles. In this paper, we study
the following problem.

Definition 1: Let be a path (or cycle) of
vertices. Let , , , and be positive integers such that

and . A cluster is defined to be a con-
nected subgraph of order of the path (or cycle). Assign one
integer in the set to each vertex. Such an assign-
ment is called a multicluster interleaving (MCI) if and only if
every nonoverlapping clusters have no less than distinct
integers.

The above MCI problem is fully characterized by the five
parameters— , , , , —and the graph . We
note that throughout this paper, the parameters , , , , ,
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Fig. 1. Examples of interleaving for data retrieval.

and the graph will always have the meanings as
defined in Definition 1.

The following is an example of the MCI problem.

Example 1: A cycle of vertices is shown in Fig. 2.
The parameters are , , , and . An
interleaving is shown in the figure, where the integer on every
vertex is the integer assigned to it. It can be verified that any 2
nonoverlapping clusters of order have at least 5 distinct inte-
gers. For example, the two clusters in dashed circles have inte-
gers “ ” and “ ,” respectively, so they together have 5
distinct integers: . So the interleaving is an MCI on
the cycle.

If we remove an edge in the cycle, then it will become a path.
Clearly, if all other parameters remain the same, the interleaving
shown in Fig. 2 will be an MCI on the path.

MCI has applications in distributed data storage in networks
and data retrieval by clients that are capable of accessing mul-
tiple parts of the network. The MCI problem defined in Defi-
nition 1 has the following interpretation. The integers used
to label the vertices in the path/cycle represent the compo-
nents in a codeword. is the minimum number of components
needed for decoding the codeword. (In other words, the code-
word can correct erasures.) An interleaving of the inte-
gers represents the placement of the codeword components on
the path/cycle. For each client that wants to retrieve data from
the path/cycle, we assume it can access nonoverlapping clus-

Fig. 2. An example of MCI.

ters; and we assume different clients can access different sets
of clusters. (By imposing the restriction that the clusters a
client can access must be nonoverlapping, we ensure that each
client can access no less than vertices.) Then when the in-
terleaving is an MCI, every client can retrieve enough data for
decoding the codeword.

MCI on paths and cycles appears to have natural applications
in data streaming and broadcast [8]. Imagine that the compo-
nents of a codeword interleaved the same way are transmitted
asynchronously in several channels. Then, a client can simul-
taneously listen to multiple channels in order to get data faster,
which is equivalent to retrieving data from multiple clusters. An-
other possible application is data storage on disks [14], where
we assume multiple heads can read different parts of a disk in
parallel to accelerate input/output (I/O) speed.

The MCI problem for paths and cycles can be divided into
smaller problems based on the values of the parameters. The
key results of this paper are as follows.

• The family of problems with the constraints that
and are solved for both paths and cycles. We show
that when and , an MCI exists on a path if
and only if the number of vertices in the path is no greater
than , and an MCI exists on
a cycle if and only if the number of vertices in the cycle is
no greater than . Structural proper-
ties of MCIs in this case are analyzed, and algorithms are
presented which can output MCIs on paths and cycles as
long as the MCIs exist.

• The family of problems with the constraint that
are studied for paths. A scheme using a “hierarchical-
chain” structure is presented for constructing MCIs. It
is shown that the scheme solves the MCI problem for
paths that are asymptotically as long as the longest path on
which MCIs exist, and clearly, for shorter paths as well.

The rest of the paper is organized as follows. In Section II,
we derive an upper bound for the orders of paths and cycles
on which MCIs exist. We then prove a tighter upper bound for
paths for the case of and . In Section III, we
present an optimal construction for MCI on paths for the case
of and , which meets the upper bound presented
in Section II. In Section IV, we study the MCI problem for paths
when . In Section V, we extend our results from paths
to cycles. In Section VI, we conclude this paper.
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II. UPPER BOUNDS

While traditional one-dimensional interleaving exists on in-
finitely long paths, that is no longer true for MCI. If ,
then to get an MCI, every integer can be assigned to only one
vertex of the path/cycle, which means that MCI exists only for
paths/cycles of order or less. When has smaller values,
MCI exists for longer paths/cycles. The following proposition
presents an upper bound for the orders of paths/cycles.

Proposition 1: If an MCI exists on a path (or cycle) of
vertices, then

Proof of Proposition 1: Let be a path (or
cycle) of vertices with an MCI on it. contains at most
nonoverlapping clusters. Let be an arbitrary
set of distinct integers. Then since the interleaving on is an
MCI, among those nonoverlapping clusters, at most

of them are assigned only integers in . can be one of
possible sets. So

and hence,

Note that for the same set of parameters , , , and , if
MCI exists on a path of vertices, then it also exists on
any path of vertices. That is because given an MCI on
a path, by removing vertices from the ends of the path, we can
get MCIs on shorter paths. However, such an argument does not
necessarily hold for cycles.

The upper bound of Proposition 1 is in fact loose. For ex-
ample, when and , a simple exhaustive
search will show that an MCI exists on a path (or a cycle) if and
only if the path (respectively, cycle) is of order (respectively,

) or less. However, Proposition 1 gives an upper bound which
is

In the remainder of this section, we shall prove a tighter upper
bound for paths for the case of and , stated as
the following theorem. Later study will show that this bound is
exact.

Theorem 1: When and , if there exists an MCI
on a path of vertices, then .

Theorem 1 will be established by proving the following three
lemmas. Before starting the formal analysis, we first define
some notations that will be used throughout this paper. Let

be a path. We denote the vertices in the path
by . For , the two vertices

adjacent to are and . A connected subgraph of
induced by vertices is denoted by

. If a set of integers are interleaved on , then
denotes the integer assigned to vertex .

The following lemma reveals a structural property of MCI.

Lemma 1: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a path of
vertices. Then in any MCI on a path of vertices, no two
adjacent vertices are assigned the same integer.

Proof of Lemma 1: Let be a path of ver-
tices with an MCI on it, and assume two adjacent vertices of
are assigned the same integer. We will prove that an MCI exists
on a path of more than vertices, which is a contradiction.

Without loss of generality (WLOG), one of the following four
cases must be true (because we can always get one of the four
cases by permuting the names of the integers and by reversing
the indices of the vertices):

Case 1: There exist four consecutive vertices in —
—such that ,

, or .
Case 2: There exist consecutive vertices in —

—such that ,
,

or .
Case 3: , .
Case 4: and

, where .

We analyze the four cases one by one.

Case 1: In this case, we insert a vertex between and
, and get a new path of vertices. Call

this new path , and assign the integer “ ” to .
Consider any nonoverlapping clusters in . If
none of those clusters contains , then clearly
they are also nonoverlapping clusters in the path

, and, therefore, have been assigned at least
distinct integers. If the clusters contain all the

three vertices , , and , then they also con-
tain either or —therefore, they have been as-
signed at least distinct integers: “ ” or
“ .” WLOG, the only remaining possibility is
that one of the clusters contains and while
none of them contains . Note that among the
clusters, the of them which do not contain

are also clusters in the path , and they
together with are nonoverlapping
clusters in and, therefore, are assigned at least

distinct integers. Since ,
the original clusters including must
also have been assigned at least distinct in-
tegers. So has vertices and has an MCI
on it, which is a contradiction.

Case 2: In this case, we insert a vertex between
and , and insert a vertex between
and , and get a new path of vertices.
Call this new path , assign the integer “ ” to ,
and assign the integer “ ” to . Consider any
nonoverlapping clusters in . If the clusters
contain neither nor , then clearly they are
also nonoverlapping clusters in the path , and,
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therefore, are assigned at least distinct
integers. If the clusters contain both and ,
then they also contain at least one vertex in the set

, and therefore are
assigned at least these three integers: “ ,“ “ ,” and
“ .” WLOG, the only remaining possibility is that
the clusters contain but not . (Note that
the cluster containing is assigned integers “ ”
and “ .”) When that possibility is true, if the
clusters contain , then they are assigned at
least three distinct integers—” ” or “ .”
If the clusters do not contain , then they
do not contain either—then we divide the

clusters into two groups and , where
is the set of clusters none of which contains any
vertex in , and is
the complement set of . Say there are clusters in

. Then, if the cluster containing also contains
(respectively, ), there exists a set of

clusters in the path that only contain vertices
in (respectively,

), such that the
clusters in are nonoverlapping in . Those

clusters in are assigned at least
distinct integers since the interleaving on is an
MCI; and they are assigned no more distinct in-
tegers than the original clusters in are,
because and
either or is in the same cluster containing

. So the clusters in are assigned at
least distinct integers. So has
vertices and has an MCI on it, which is again a
contradiction.

Case 3: In this case, we insert a vertex between and
, and assign the integer “ ” to . The rest of the

analysis is very similar to that for Case 1.
Case 4: In this case, we insert a vertex between and ,

and insert a vertex between and , assign
the integer “ ” to , and assign the integer “ ” to

. The rest of the analysis is very similar to that for
Case 2.

So a contradiction exists in all the four cases. Therefore, this
lemma is proved.

The next two lemmas derive upper bounds for paths, respec-
tively, for the case “ ” and the case “ .”

Lemma 2: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a path of
vertices. Then .

Proof of Lemma 2: Let be a path of
vertices. Assume there is an MCI on . By Lemma 1, no
two adjacent vertices in are assigned the same integer. We
color the vertices in with three colors—red, yellow, and
green—through the following three steps.

Step 1) for , if , then
color with the red color;

Fig. 3. In this example, N = 4, K = 3, m = 3, L = 2. An oracle tells us
that n = 23. Let G = (V;E) be the path shown in the figure, which has
23 vertices and an MCI on it. Then the vertices of G will be colored to be red,
yellow, and green as shown.

Step 2) for , color with the yellow
color if is not colored red and there exists

such that these four conditions are satisfied:
1) , 2) is not colored red, 3)

, 4) the vertices between and
—that is, —are all colored

red;
Step 3) for , if is neither colored red nor

colored yellow, then color with the green color.

Clearly, each vertex of is assigned exactly one of the three
colors. (See Fig. 3 for an example.)

If we arbitrarily pick two different integers—say “ ” and
“ ”—from the set , then we get a pair (or

, equivalently). There are totally such unordered

pairs. We partition those pairs into four groups “ ,” “ ,”
“ ,” and “ ” in the following way.

1) A pair belongs to group if and only if the following
two conditions are satisfied: i) at least one green vertex is
assigned the integer “ ” and at least one green vertex is
assigned the integer “ ,” ii) for any two green vertices that
are assigned integers “ ” and “ ,” respectively, there is at
least one green vertex between them.

2) A pair belongs to group if and only if the following
two conditions are satisfied: i) at least one green vertex is
assigned the integer “ ” and at least one green vertex is
assigned the integer “ ,” ii) there exist two green vertices
that are assigned integers “ ” and “ ,” respectively, such
that there is no green vertex between them.

3) A pair belongs to group if and only if one of the
following two conditions is satisfied: i) at least one green
vertex is assigned the integer “ ” and no green vertex is
assigned the integer “ ,” ii) at least one green vertex is
assigned the integer “ ” and no green vertex is assigned
the integer “ .”

4) A pair belongs to group if and only if no green
vertex is assigned the integer “ ” or “ .”

(See Fig. 4 for an example.)
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Fig. 4. Let us continue the example in Fig. 3. Then groups A, B, C , D are as
shown here.

Fig. 5. Let us continue the example in Fig. 3. Then the setE(i; j) that an edge
belongs to is labeled beside that edge. The value of each z(i; j) is shown in the
figure.

For any , let denote the fol-
lowing subset of edges of : an edge of is in if and
only if one endpoint of the edge is assigned the integer “ ” and
the other endpoint of the edge is assigned the integer “ .” Let

denote the number of edges in . (See Fig. 5 for an
example.) In the following, we derive upper bounds for .

For any pair in group or group , .
This is because otherwise there would exist nonoverlapping
clusters in each of which is assigned only integers “ ” and “ ,”
which would contradict the assumption that the interleaving on

is an MCI. (See Fig. 6 for an example.)
Now consider a pair in group .

for the same reason as in the previous case. In the following,
we will prove that by using a contradiction.
Assume . Then in order to avoid the existence of

nonoverlapping clusters in that are assigned only integers
“ ” and “ ,” the edges in must be
consecutive in the path , which means, WLOG, that there are

consecutive vertices
whose assigned integers are in the form of

(See Fig. 7 for an example.)
According to the definition of “group ,” there exist a green

vertex and a green vertex , such that is assigned the
integer “ ,” is assigned the integer “ ,” and there is no green
vertex between them. Therefore, every vertex between and

is either red or yellow. There are two possible cases.

Case 1: . Then the path is interleaved as in
Fig. 8(a). We use to denote all the
yellow vertices between and . (The other ver-
tices between and are all red.)

By the definition of “yellow vertices,” we can see
that

Since the vertices between and are all red,
and the two vertices adjacent to any red vertex
must be assigned the same integer, we can see that

. Since there is an edge
between (which is assigned the integer “ ”)
and (which is assigned the integer “ ”),
must be in the set .
However, it is simple to see that every vertex in
the set that is assigned
the integer “ ” must be red—so should be red
instead of green—therefore, a contradiction exists.

Case 2: . Then the path is interleaved as in
Fig. 8(b). We use to denote all the
yellow vertices between and . (The other ver-
tices between and are all red.)

We can see that . Since there is an edge
between (which is assigned the integer “ ”) and
(which is assigned the integer “ ”), both and are in
the set . Since every vertex in the
set that is assigned the integer “ ”
must be red, and since the color of is green, it is simple
to see that all the vertices in the set
that are assigned the integer “ ” must be red (because oth-
erwise would have to be yellow). Then since the color
of is red, the vertex exists and it must have been
assigned the integer “ ”—and that contradicts
the statement that all the edges in are in the subgraph

.
Therefore, a contradiction always exists when

. So for any pair in group , .
Now consider a pair in group . By the definition

of “group ,” no green vertex is assigned the integer “ ” or
“ .” Let denote the set of vertices that
are assigned the integer “ ,” where . If

, by the way vertices are colored, it is
simple to see that cannot be yellow—so must be red.
Then similarly, must be red, too. Therefore, all
the vertices that are assigned the integer “ ” are of the color red.
Similarly, all the vertices that are assigned the integer “ ” are
of the color red. Assume there is an edge whose two endpoints
are assigned the integer “ ” and the integer “ ,” respectively.
Then since the two vertices adjacent to any red vertex must
be assigned the same integer, there exists an infinitely long
subgraph of the path to which the assigned integers are in
the form of “ ,” which is certainly impossible.
Therefore, a contradiction exists. So for any pair in group

, .
Let denote the number of distinct integers assigned to green

vertices, and let denote the set of those distinct integers. It
is simple to see that exactly pairs are in group or
group , where and —and among them at least

pairs are in group . It is also simple to see that exactly
pairs are in group and exactly pairs are in
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Fig. 6. In this example, K = 3, m = 3, L = 2. Two paths are shown, respectively, in (a) and (b), each of which has more than 2m� 2 = 4 edges in the set
E(1; 2). Then both of them contain m = 3 nonoverlapping clusters (as shown in dashed circles) that are assigned only two distinct integers, which proves that
the interleaving on them cannot be MCI.

Fig. 7. In this example, K = 3, m = 3, L = 2, z(1;2) = 2m � 2 = 4.
Then for a path with an MCI on it, the four edges whose endpoints are labeled
by “1” and “2” have to be consecutive, as shown in the figure.

group . By using the upper bounds we have derived for ,
we see that the number of edges in is at most s

whose maximum value (at integer solutions) is achieved when
—and that maximum value is

. So , the number of vertices in , is at most
.

Lemma 3: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a path of
vertices. Then .

Proof of Lemma 3: Let be a path of vertices
that has an MCI on it. We need to show that

If no two adjacent vertices of are assigned the same integer,
then with the same argument as in the proof of Lemma 2, it can
be shown that .

Now assume two adjacent vertices of are assigned the same
integer. Clearly, we can find nonoverlapping clusters in ,
such that and at least one of the clusters contains
two vertices that are assigned the same integer. Among those

nonoverlapping clusters, let , , , , , and , respectively,
denote the number of clusters that are assigned only the integer
“ ,” only the integer “ ,” only the integer “ ,” both the integers
“ ” and “ ,” both the integers “ ” and “ ,” and both the inte-
gers “ ” and “ .” Since the interleaving on is an MCI, any

nonoverlapping clusters are assigned at least distinct
integers. Therefore, , ,

. So and

hence, . Since
, , and , we get

Therefore this lemma is proved.

With Lemmas 2 and 3 proved, we see that Theorem 1 be-
comes a natural conclusion.

III. OPTIMAL CONSTRUCTION FOR MCI ON PATHS WITH

CONSTRAINTS AND

In this section, we present a construction for MCI on paths
whose orders attain the upper bound of Theorem 1, therefore
proving the exactness of that bound. The construction is shown
as the following algorithm.

Algorithm 1: MCI on the longest path with constraints
and

Input: Parameters , , and , where , ,
and . A path of

vertices.
Output: An MCI on .
Algorithm:

Let be a graph with parallel edges. The vertex
set of , , is . For any two vertices and

, there are edges between them if
or , and there are

edges between them otherwise. There is no loop in .
(Therefore has exactly edges.)

Find a walk in , , that satisfies the
following two requirements: 1) the walk starts with and ends
with —namely, and —and passes
every edge in exactly once; 2) for any two vertices of , the
walk passes all the edges between them consecutively.

For , assign the integer “ ” to the vertex in
, and we get an MCI on .

Here is an example of the above algorithm.

Example 2: Assume is a path of ver-
tices, and the parameters are , , , and

. Therefore . Algo-
rithm 1 constructs a graph , which is shown in
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Fig. 8. (a) Case 1: k < k . (b) Case 2: k < k .

Fig. 9. (a) The graph H = (V ;E ). (b) MCI on the path G = (V;E).

Fig. 9(a). The walk in , , can be
easily found. For example, we can let the walk be

Corresponding to that walk, we get the interleaving on as
shown in Fig. 9(b). It can be easily verified that the interleaving
is indeed an MCI.

Theorem 2: Algorithm 1 correctly outputs an MCI on the
path .

Proof of Theorem 2: The interleaving on that Algorithm
1 outputs corresponds to a walk in the graph .
The vertices of correspond to the integers interleaved
on . It is not difficult to realize that the walk in satisfying its
two requirements indeed exists. For any two vertices and
in , there are at most edges between them, which are
passed consecutively by the walk. So has at most edges
whose endpoints are assigned the integers and , and those
edges are consecutive in . So has at most nonover-
lapping clusters that are assigned only integers and . Now it
is simple to see that the interleaving on is an MCI.

Algorithm 1 is optimal in the sense that it produces MCI for
the longest path on which MCI exists. It is clear that the algo-
rithm can be modified easily to produce MCI for shorter paths as
well—the method is to find shorter walks in the auxiliary graph

. We skip the details for simplicity. By Theo-
rems 1 and 2, we find the exact condition for MCI’s existence
when and , as presented in the following theorem.

Fig. 10. Illustrations of three operations on paths.

Theorem 3: When and , there exists an MCI on
a path of vertices if and only if .

IV. MCI ON PATHS WITH CONSTRAINTS

In this section, we study the MCI problem for paths with a
more general constraint: .

We define three operations on paths—”remove a vertex,”
“insert a vertex,” and “combine two paths.” Let be a
path of vertices: . By “removing the
vertex ” from , we get a new path

. By “inserting a vertex ”
in front of the vertex in , we get a new path

. Let be a path of vertices:
. Assume for , is assigned the

integer ; and assume for , is assigned the
integer . Also, let be a positive integer between and

, and assume for , .
Then by saying “combining with such that the last
vertices of overlap the first vertices of ,” we mean to
construct a path of vertices whose assigned integers
are in the form of

which is the same as

The following are examples of the three operations.

Example 3: Let be the path shown in Fig. 10(a). By
removing the vertex from , we get the path shown in
Fig. 10(b). By inserting a vertex in front of the vertex in

(or equivalently, behind the vertex in , or between the
vertex and in ), we get the path shown in Fig. 10(c).
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Let be the path shown in Fig. 10(d). By combining with
such that the last two vertices of overlap the first two ver-

tices of , we get the path shown in Fig. 10(e).

Now we present an algorithm which computes an MCI on a
path while . Being different from Algorithm 1, in
this algorithm the order of the path is not preset. Instead, the
algorithm tries to find a long path on which MCI exists (the
longer, the better), and computes an MCI for it. Thus, the output
of this algorithm not only provides an MCI solution, but also
gives a lower bound for the maximum order of the path on which
MCI exists.

Algorithm 2: MCI on a path with the constraint
Input: Parameters , , and , where

and .
Output: An MCI on a path .
Algorithm:
1. If , then let be a path of

vertices, and use Algorithm 1 to find an MCI on .
Output and the MCI on it, then exit. (So Step 2 and
Step 3 will be executed only if .)

2. for to do
Find a path (the longer, the better) that satisfies the fol-
lowing three conditions:

(1) Each vertex of is assigned an integer in
, namely, there is an interleaving of the

integers in on ;
(2) Any nonoverlapping connected subgraphs of ,

each of which is of order , are assigned at least
distinct integers;

(3) If , then for to , the th last vertex
of is assigned the same integer as the th
vertex of .

To find the path , (recursively) call Algorithm 2 in the fol-
lowing way: when calling Algorithm 2, replace the inputs of the
algorithm— , , , and —respectively, with , , ,
and ; then let the output of Algorithm 2 (which is a path
with an interleaving on it) be the path .
Scan the vertices in backward (from the last vertex to the
first vertex), and insert a new vertex after every vertices
in . (In other words, if the vertices in are ,
then after inserting vertices into in the way described above,
we get a new path of

vertices; and if we look at the new path in the reverse
order—from the last vertex to the first vertex—then the
path is of the form , a new vertex,

, a new vertex,
, a new vertex,

). In this new path, every cluster of order contains exactly
one newly inserted vertex.)
Assign the integer “ ” to every newly inserted vertex in the new
path, and denote this new path by “ .”

3. Obtain a new path by combining the paths

in the following way: combine with , com-
bine with , and combine with
such that the last vertices of overlap the first
vertices of , the last vertices of overlap the
first vertices of , and the last vertices
of overlap the first vertices of . (In other
words, if we denote the number of vertices in by , for

, then the new path we get has

vertices.) Let this new path be . Output and the
interleaving (which is an MCI) on it, then exit.
The following is an example of Algorithm 2.

Example 4: In this example, the input parameters for Algo-
rithm 2 are , , , and . That is, we use
Algorithm 2 to compute a path that is the longer the better and
interleaves 6 integers on it, such that in the path, any 2 nonover-
lapping clusters are assigned at least 4 distinct integers.

Algorithm 2 first computes a path that satisfies the fol-
lowing two conditions: 1) each vertex of is assigned an in-
teger in ; 2) any nonoverlapping connected sub-
graphs of of order are assigned at least
distinct integers. To compute , Algorithm 2 calls itself in a re-
cursive way, by setting the inputs of the algorithm— , , ,
and —to be and ; during that call, it uses Algorithm 1
to compute . There is more than one possible outcome of Al-
gorithm 1; WLOG, let us assume the output here is that is
assigned integers in the form of . The path is
shown in Fig. 11(a).

Algorithm 2 then scans backward, inserts a new vertex
into after every vertices, and assigns the
integer “ ” to every newly inserted vertex. As a result,
we get a path whose assigned integers are in the form of

. We call this new path . is shown
in Fig. 11(b).

Algorithm 2 then computes a path that satisfies the fol-
lowing three conditions: 1) each vertex of is assigned an in-
teger in ; 2) any nonoverlapping connected
subgraphs of of order are assigned at least
distinct integers; 3) the last vertex of is assigned the same
integer as the second vertex of (which is the integer “ ”),
and the second last vertex of is assigned the same integer as
the first vertex of (which is the integer “ ”).

Algorithm 2 computes by once again calling itself. Algo-
rithm 2 can use the following method to find a path that satisfies
all the above three conditions. First, use Algorithm 1 to find a
path that satisfies the first two conditions, which is easy, and
call this path . All the integers assigned to are in the set

; and from Algorithm 1, it is simple to see that the last
two vertices in are assigned two different integers. (Note that
the first two vertices in are also assigned two different inte-
gers.) So by permuting the names of the integers assigned to ,
we can get a path that satisfies not only the first two conditions
but also the third condition. Call this path . There is more
than one possible result of . WLOG, we assume the integers
assigned to are in the form of
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Fig. 11. An example of Algorithm 2.

is shown in Fig. 11(c). Then Algorithm 2 inserts vertices into
and gets a new path , whose assigned integers are in the

form of

is shown in Fig. 11(d).

Next, Algorithm 2 computes a path , by calling itself again.
WLOG, we assume the integers assigned to are in the form
of

is shown in Fig. 11(e). Then Algorithm 2 inserts vertices into
and gets a new path , whose assigned integers are in the

form of

is shown in Fig. 11(f).
Finally, Algorithm 2 combines , , and such that the

last vertices of overlap the first two vertices of
, and the last vertices of overlap the first two

vertices of . As a result, we get a path of 48
vertices which is assigned the integers
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Fig. 12. Algorithm 2 has four input parameters: N , K , m, and L. Let us use “Algorithm2(a; b; c; d)” to denote the path output by Algorithm 2 when N = a,
K = b,m = c, andL = d. The final output of Algorithm 2—Algorithm2(N;L+1;m; L)—is obtained by combining the pathsA ;A ; . . . ; A , while
A (for i = N;N � 1; . . . ; L+1) is obtained by inserting vertices into the path B . B is an output of Algorithm 2 as well, which is a path with an interleaving
of i � 1 different integers; specifically, B is Algorithm2(i� 1; L;m;L� 1). So from this figure, we can see the recursive structure of Algorithm 2, and the
“hierarchical-chain structure” of its output.

is shown in Fig. 11(g). This is the output of Algorithm 2. It
can be verified that the interleaving on is indeed an MCI.

The path output by Algorithm 2 is a chain of the subpaths
. The interleavings on those paths use

more and more integers, and those subpaths are of increasing
orders. In that sense, they form a “hierarchy.” Each subpath
is derived from a path , and is a chain of some shorter
subpaths; then, each of the subpaths that constitute is derived
through the chaining of some even shorter subpaths, and so on.
That is another “hierarchy.” Therefore, we say that the path
output by Algorithm 2 has a “hierarchical-chain structure.”
(See Fig. 12 for an illustration.)

The complexity of Algorithm 2 is dominated by the total
number of vertices generated during the running of Algorithm
2. That number is greater than the order of the final output path

(except when ), because when Algorithm
2 is combining paths, there are overlapping vertices. However,
we can show that the total number of vertices generated is less
than twice the order of . A proof of this claim is
presented in Appendix I.

In the following we prove the correctness of Algorithm 2.

Theorem 4: Algorithm 2 is correct.
Proof of Theorem 4: We will prove this theorem by induc-

tion. If , then Algorithm 2 uses Algorithm 1 to compute
the MCI—so the result is clearly correct. Also, we notice that
for any MCI output by Algorithm 1, any two adjacent vertices
are assigned different integers. We use those two facts as the
base case.

Let be an integer such that . Let us assume the
following statement is true: if we replace the inputs of Algorithm
2—parameters , , , and —with any other set of valid
inputs and such that , Algorithm
2 will correctly output an MCI on a path; and in that MCI, any

consecutive vertices are assigned different integers. (That is
our induction assumption.)

Now let us replace the inputs of Algorithm 2—parame-
ters , , , and —with a set of valid inputs

and . Then Algorithm 2 needs to compute
(in its Step 2) paths: . For

, is (recursively) computed by calling
Algorithm 2. The interleaving on is in fact an MCI where the
order of each cluster is —so by the induction assumption,
Algorithm 2 will correctly output the interleaving on . is
assigned the integers in ; and by the induction
assumption, any consecutive vertices in are assigned

different integers.
The path is constructed by inserting vertices into

such that any consecutive vertices in contain exactly
one newly inserted vertex, and all the newly inserted vertices
are assigned the integer “ .” So any consecutive vertices
in are assigned different integers. Therefore, it is always
feasible to adjust the interleaving on to make the last
vertices of be assigned the same integers as the first
vertices of . Noticing that the last vertices of are
assigned the same integers as the last vertices of , we
see that and can be successfully combined with
overlapping vertices by Algorithm 2. Similarly, for

, and can be successfully combined by Algorithm
2; and for , any consecutive vertices in are
assigned different integers.

Algorithm 2 uses to denote the path got by combining
. For our discussion here, and

should, respectively, be replaced by and . Clearly, any
consecutive vertices in are also consecutive vertices in

for some , therefore are assigned
different integers. And for any nonoverlapping connected
subgraphs of order in , either all of them are contained in

for some , or one of them is contained
in and another of them is contained in for some

In the former case, by re-
moving those vertices that are assigned the integer “ ” in those

subgraphs, we get nonoverlapping connected subgraphs
in each of which contains vertices, which in total
are assigned at least different integers not including “ ”—so
the subgraphs in (which are also in ) are assigned at
least different integers. In the latter case, WLOG, let us
say . Then the subgraph in is assigned different
integers not including “ ,” and the subgraph in is assigned
an integer “ ”—so the subgraphs in are assigned at least
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different integers in total. Therefore, the interleaving
on is an MCI (with parameters and ). So the
induction assumption also holds when .

Algorithm 2 computes the result for the original problem by
recursively calling itself. By the above induction, every inter-
mediate time Algorithm 2 is called, the output is correct. So the
final output of Algorithm 2 is also correct.

The maximum order of a path for which MCI exists increases
when —the number of interleaved integers—increases. The
performance of Algorithm 2 can be evaluated by the difference
between the order of the path output by Algorithm 2 and the
maximum order of a path for which MCI exists. We are inter-
ested in how the difference behaves when increases.

Theorem 5: Fix the values of , , and , where
and , and let be a variable .

Then the longest path for which MCI exists has

vertices. And the path output by Algorithm 2 also has

vertices.
Proof of Theorem 5: Let be a path of ver-

tices with an MCI on it. Then by Proposition 1

So

When , Algorithm 2 outputs a path of
vertices. When , to get the output, Algorithm

2 needs to construct the paths ; and for
, is got by inserting vertices into the path .

is again an output of Algorithm 2, which is assigned
distinct integers, and in which a considered “cluster” is of order

. Let us use to denote the number of vertices
in the path output by Algorithm 2, and use to denote
the number of vertices in the path . Then based on the above
observed relations, we get the following three equations:

1) ;
2) when

3) when

(Note that is the number of vertices in
the path .)

By solving the above equations, we get

as claimed.

TABLE I
COMPARISON BETWEEN THE ORDER OF THE PATH OUTPUT BY ALGORITHM 2

AND AN UPPER BOUND, AND THEIR RELATIVE DIFFERENCE

Theorem 5 shows that the path output by Algorithm 2 is
asymptotically as long as the longest path for which MCI ex-
ists. Additionally, the orders of those two paths have the same
highest degree term (in ).

We conclude with some numerical results. In Table I, the
order of the path output by Algorithm 2— —is compared with
the upper bound of Proposition 1— —for four different
sets of parameters and , with throughout. The
“relative difference” in Table I is defined as

Theorem 5 shows that this relative difference approaches as
.

V. MCI ON CYCLES

In this section, we extend our results on MCI from paths to
cycles, for the case of “ and .” The analysis for the
two kinds of graphs bears similarity; but the “circular” structure
of the cycle leads to certain differences sometimes.

Let be a cycle. The following notations will
be used throughout this section. We denote the vertices in

by . For , the two
vertices adjacent to are and . Vertex and are
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adjacent to each other. A connected subgraph of induced by
vertices is denoted by . If a set
of integers are interleaved on , then denotes the integer
assigned to vertex .

Lemma 4: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a cycle of
vertices. Then in any MCI on a cycle of vertices, no two
adjacent vertices are assigned the same integer.

The proof of Lemma 4 is skipped because it is very similar to
that of Lemma 1.

Lemma 5: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a cycle of
vertices. Then .

Proof of Lemma 5: This lemma can be proved in the same
way as the proof for Lemma 2, except for a few small differ-
ences. For simplicity, we just point out those differences here,
and skip the rest of the proof.

The first difference is that due to the “circular” topology of
the cycle , the specific way to color the vertices of with
the red, yellow, and green colors should be modified to be the
following: “Step 1) for , if the two vertices adja-
cent to are assigned the same integer, then we color with
the red color; Step 2) for , we color with the
yellow color if is not colored red and there exists such that
these four conditions are satisfied: 1) , 2) is not col-
ored red, (3) , 3) the following vertices between

and — (note that if a lower index ex-
ceeds , it is subtracted by , so that the lower index is
always between and )—are all colored red; Step 3) for

, if is neither colored red nor colored yellow,
then we color with the green color.”

The second difference is that compared to paths, for cycles
there are two extra cases to consider in the proof:

Case 1: all the vertices in the cycle are red. If that is true,
then must have been assigned only two distinct
integers, which implies that contains less than

vertices
(since we assume the interleaving on is an MCI);

Case 2: there is no green vertex in , and all the yellow ver-
tices are assigned the same integer—say it is integer
“ .” If that is true, then the integers on must look
like the following:

For any , there are at most
edges in whose endpoints are assigned

and , respectively (because the interleaving on
is an MCI). So the order of (which equals the

number of edges in ) is at most

Lemma 6: Let the values of , , , and be fixed, where
, , , and . Let denote the

maximum value of such that an MCI exists on a cycle of
vertices. Then .

Proof of Lemma 6: Let be a cycle of
vertices that has an MCI on it. We need to show that

. It is simple to see that is assigned
distinct integers. If in the MCI on , no two adjacent vertices

are assigned the same integer, then with the same argument as
in the proof of Lemma 5, it can be shown that

. Now assume there are two adjacent vertices
in that are assigned the same integer. Then there are three
possible cases.

Case 1: is even.
Case 2: is odd, and there are at least two nonoverlap-

ping clusters in each of which is assigned only
one distinct integer.

Case 3: is odd, and there do not exist two nonoverlap-
ping clusters in each of which is assigned only
one distinct integer.

We consider the three cases one by one.
Case 1: is even. In this case, clearly we can find

nonoverlapping clusters such that at least one of
them is assigned only one integer. Among those

nonoverlapping clusters, let , , , , , and
, respectively, denote the number of clusters that

are assigned only integer “ ,” only integer “ ,” only
integer “ ,” both integers “ ” and “ ,” both integers
“ ” and “ ,” and both integers “ ” and “ .” Since the
interleaving is an MCI, clearly ,

, . So
. Hence,

Since and
, we get

Case 2: is odd, and there are at least two nonover-
lapping clusters in each of which is assigned
only one distinct integer. In this case, clearly we
can find nonoverlapping clusters among
which there are at least two clusters each of which
is assigned only one distinct integer. Among those

nonoverlapping clusters, let , , , , ,
and , respectively, denote the number of clusters
that are assigned only integer “ ,” only integer
“ ,” only integer “ ,” both integers “ ” and “ ,”
both integers “ ” and “ ,” and both integers “ ”
and “ .” Since the interleaving is an MCI, clearly,

, ,
. So

Hence,

Since and
, we get
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Case 3: is odd, and there do not exist two nonoverlap-
ping clusters in each of which is assigned only
one distinct integer. Let , , , , , and , re-
spectively, denote the number of edges in whose
two endpoints are both assigned integer “ ,” are
both assigned integer “ ,” are both assigned integer
“ ,” are assigned integers “ ” and “ ,” are assigned
integers “ ” and “ ,” are assigned integers “ ” and
“ .” (Then .)
It is simple to see that among , , and , two of
them equal , and the other one is either or . So
WLOG, we consider the following two subcases.

Subcase 3.1: , and . In this
case, , because otherwise there will
be nonoverlapping clusters in that are as-
signed only integers “ ” and “ .” Similarly,

. Also clearly, . If
and , then since there do not exist

nonoverlapping clusters in that are assigned
only one or two distinct integers, the MCI on
can only take the form described as follows. In

, there are consecutive edges each
of which has integers “ ” and “ ” assigned to its
endpoints, which form a segment in the cycle
that begins with a vertex assigned the integer “ ”
and ends with a vertex assigned the integer “ .”
That segment is followed by an edge whose two
endpoints both are assigned the integer “ ,” then
followed by consecutive edges each
of which has the integers “ ” and “ ” assigned
to its endpoints, and finally followed by con-
secutive edges each of which has the integers “ ”
and “ ” assigned to its endpoints, finishing the
loop of edges in the cycle . Then it is simple
to see that cannot be even, which implies that

here. So in any case, we have

So

Hence, .

Subcase 3.2: , and . In this
case, with arguments similar to those in Subcase
3.1, we get , , and

. So

So it has been proved that in any case

In the following, we present an algorithm for generating
MCIs on cycles. A distinct feature of this algorithm is that it
needs to treat the cases “ is even” and “ is odd” somehow

differently. Note that a Eulerian walk in a graph is a closed
walk that passes every edge of the graph exactly once.

Algorithm 3: MCI on a cycle with constraints and
Input: A cycle of vertices. Parameters , , ,

and , where , , and .
Output: An MCI on .
Algorithm:
1. If , then there does not exist an

MCI on , so exit the algorithm.
2. If , arbitrarily select integers in the set ,

and assign one distinct integer to each vertex, then exit the
algorithm.

3. If and
is even, then define a set as

if and
is odd, then define a set as

Let be a graph with parallel edges that
satisfies these four requirements: 1) its vertex set is

; 2) there is no loop in , and all the edges
in are undirected; 3) there are edges in ; 4) for any two
vertices and , if the unordered pair belongs to the
set , then the number of edges between them is odd and is
no greater than ; otherwise, it is even and is no greater
than .
Find a Eulerian walk in , (and
finally back to ), that satisfies the following condition: for
any two vertices, the walk passes all the edges between them
consecutively.
For , assign the integer “ ” to the vertex in

, then exit the algorithm.

The following is an example of Algorithm 3.

Example 5: Assume is a cycle of ver-
tices, and the parameters are , , , and .
Therefore,

and

is odd. Hence, Step 3 of Algorithm 3 is used to com-
pute the interleaving, where the set is defined to be

. Then we can choose
the graph to be the one shown in Fig. 13(a).
We can then (easily) find the following Eulerian walk in :

(then back to ). Corresponding to that walk, we get the MCI
as shown in Fig. 13(b).

Theorem 6: Algorithm 3 correctly outputs an MCI on the
cycle .

The correctness of the preceding theorem should be clear
once the proof of Theorem 2 is understood. Now we can present
the necessary and sufficient condition for MCI to exist on cycles
when and .
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Fig. 13. (a) The graph H = (V ;E ). (b) MCI on the cycle G = (V;E).

Theorem 7: When and , there exists an MCI on
a cycle of vertices if and only if .

VI. CONCLUSION

In this paper, the MCI problem for paths and cycles is studied.
Compared to traditional interleaving schemes, MCI has the dis-
tinct feature that the diversity of integers is required in mul-
tiple—instead of single—clusters. It has potential applications
in data streaming, broadcast, and disk storage.

There exist many open problems in MCI. How to optimally
construct MCI without the constraint that is still
unknown. Also, in the MCI problem, the path/cycle can be re-
placed by more general graphs. Such extensions will help bring
MCI into practice. We hope the techniques presented here will
provide insights for further study.

APPENDIX I
ON THE COMPLEXITY OF ALGORITHM 2

When Algorithm 2 runs, it generates vertices in paths. We
define this more rigorously in what follows. Algorithm 2 has
three basic operations: 1) inserting vertices into an existing path
to get a longer path; 2) combining two paths with overlapping
vertices; 3) using Algorithm 1 to generate a path. For the first
operation, we say that those vertices inserted into the existing
path are newly generated vertices. For the second operation, we
say that no vertex is newly generated. For the third operation,
we say that all the vertices in the path output by Algorithm 1
are newly generated vertices. The complexity of Algorithm 2
is dominated by the total number of vertices generated while
Algorithm 2 runs.

In this appendix, we shall prove that while Algorithm 2 runs,
the total number of vertices generated is less than twice the order
of the final output path . The method is to prove the
following sufficient condition: “while Algorithm 2 is running,
if a vertex overlaps another vertex while the two paths they re-
spectively belong to are combined, those two vertices will not
overlap any more vertex later on.” (Namely, for any vertex in the

final output path , it is the overlapping of at most two
previously generated vertices.)

The recursive structure of Algorithm 2 is illustrated in Fig. 12.
Let us consider an arbitrary one of the recursions, whose cor-
responding input parameters are , , , —namely, the
output of this recursion is . (For the
definition of , please see Fig. 12.) The
output of this recursion is denoted by “ ” in the algorithm; and
if , during this recursion, a set of paths denoted by “ ”
and “ ” (for different values of ) will be created. Let us first
prove the following lemma.

Lemma 7: If , then contains at least vertices,
contains at least vertices, and contains at least
vertices.

Proof of Lemma 7: We use induction. When ,
is the output of another recursion—

. (Note that and .)
The path is computed
by calling Algorithm 1, so its order is

is created by inserting at least vertices into ,
so contains at least vertices. contains at
least as many vertices as . This serves as our base case.

Now assume the assertions of this lemma are true when
, and let us prove them for the case . When ,

is the output of another recursion—
; and by the induction assumption,

contains at least
vertices. So contains at least vertices.

is created by inserting at least vertices into ,
so contains at least vertices. contains at least as
many vertices as . That concludes this proof.

Now we can prove the “sufficient condition” mentioned in
the second paragraph of this appendix. Assume in one of the re-
cursions—whose corresponding input parameters are , ,

, —two paths and are combined; and let and
be two vertices—respectively, in and —that overlap

each other in that “combining” operation. In that recursion, for
any integer , contains at least vertices by Lemma 7;
and when two paths are combined, only vertices are over-
lapped. So and do not overlap any other vertex in that
recursion, and they are neither among the first vertices nor
among the last vertices of the path output by this recur-
sion (which is denoted by “ ” in the algorithm). Now assume
this recursion is called as a procedure by a second recursion.
The second recursion (whose input parameters are , , ,

) will insert vertices into the path output by the first re-
cursion (with one new vertex inserted after every vertices of
the path, scanning backward) to obtain a longer path—which
we shall denote by . So in the path , there is at least one
newly inserted vertex before and (which are now the same
vertex) and at least one newly inserted vertex behind them. So
and are neither among the first vertices nor among the
last vertices of . In the second recursion, the combining
of two paths will overlap only vertices. So and will not
overlap any other vertex in the second recursion. Similarly,
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and will not overlap any other vertex in future recursions.
That concludes our proof.
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