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On the Capacity of Large Gaussian Relay Networks
Michael Gastpar, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—The capacity of a particular large Gaussian relay
network is determined in the limit as the number of relays tends
to infinity. Upper bounds are derived from cut-set arguments,
and lower bounds follow from an argument involving uncoded
transmission. It is shown that in cases of interest, upper and lower
bounds coincide in the limit as the number of relays tends to
infinity. Hence, this paper provides a new example where a simple
cut-set upper bound is achievable, and one more example where
uncoded transmission achieves optimal performance. The findings
are illustrated by geometric interpretations.

The techniques developed in this paper are then applied to a
sensor network situation. This is a network joint source–channel
coding problem, and it is well known that the source–channel
separation theorem does not extend to this case. The present paper
extends this insight by providing an example where separating
source from channel coding does not only lead to suboptimal
performance—it leads to an exponential penalty in performance
scaling behavior (as a function of the number of nodes). Finally,
the techniques developed in this paper are extended to include cer-
tain models of ad hoc wireless networks, where a capacity scaling
law can be established: When all nodes act purely as relays for a
single source–destination pair, capacity grows with the logarithm
of the number of nodes.

Index Terms—Capacity, CEO problem, joint source–channel
coding, network, relay, sensor network, separation theorem,
uncoded transmission.

I. INTRODUCTION

THE relay channel (both with a single relay and with
multiple relays) has been introduced by van der Meulen

in his Ph.D. dissertation [3] and in [4]. Key results for the
single-relay channel have been found by Cover and El Gamal
[5]. Their capacity results are restricted to the so-called de-
graded relay channel. This restriction is considerably stronger
than the common notion of degradedness in the case of broad-
cast channels introduced in [6]. For example, it is considered
to be a weak model for the wireless relay channel. In extension
of the single-relay channel, various relay network models
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Fig. 1. The considered Gaussian relay network.

have been studied in the literature, some of the most recent
examples being [7]–[14]. However, capacity results are rare, a
few examples appearing in [15], [16], [12].

The simple Gaussian relay network studied in this paper is
illustrated in Fig. 1. The corresponding single-relay channel,
i.e., the system of Fig. 1 with , is not a degraded relay
channel according to [5]. Its capacity is unknown to date. In
this paper, we derive upper and lower bounds to the capacity of
the system depicted in Fig. 1. While capacity is not known for
any finite , we show in this paper that for cases of interest,
our upper and lower bounds coincide in the limit as the number
of relays tends to infinity, yielding an asymptotic capacity
result.

After precisely defining the considered relay network in Sec-
tion II, we derive two upper bounds to the capacity in Section III.
These bounds can be seen as special cases of the cut-set bound
presented in [17, Theorem 14.10.1]. They can also be under-
stood as the capacities corresponding to two idealizations of the
considered system: the first upper bound is the capacity of a
multiple-antenna system with one transmit and receive
antennas, and the second upper bound is the capacity of a mul-
tiple-antenna system with transmit and one receive an-
tenna.

In Section IV, we determine a lower bound to the capacity of
the relay network of Fig. 1. More precisely, we analyze a par-
ticular communication strategy for the relay channel in which
the relays use uncoded forwarding as a strategy. This should be
expected to be suboptimal in general.

Then, in Section V, we show that upper and lower bounds co-
incide as the number of relays tends to infinity, at least under
certain conditions. We illustrate these conditions by a number
of examples.

In Section VI, the results of this paper are applied to a simple
sensor network scenario. Here, the relevant tradeoff is between
the power used by the sensors and the fidelity (or distortion) at
which the interested party can reconstruct the object of interest.
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While, in general, the optimal such tradeoff is not known to date,
we show that for one particular sensor network situation, the
arguments developed in this paper lead to a definite result.

Section VII provides a new example of the fact that the
source–channel separation paradigm does not extend to
networks. In fact, the considered example sharpens this funda-
mental insight: separate source and channel coding is shown to
lead to an exponentially suboptimal performance scaling be-
havior, as a function of the number of nodes. This example
follows from the comparison of the result of Section VI with
the CEO problem [18], [19].

In Section VIII, the results of this paper are extended to wire-
less ad hoc networks, operated in relay mode. To this end, the
simple relay network model considered in this paper is slightly
extended, and it is shown that our results permit to bound ca-
pacity to within a factor of two. A slightly different interpreta-
tion of this result was discussed in [1].

II. DEFINITIONS AND NOTATIONS

The -terminal network depicted in Fig. 1 has a
source terminal, relay terminals, and a destination terminal.
A message at the source terminal is encoded into a codeword

of length whose components are complex numbers
that satisfy a power constraint

(1)

The relays are the square boxes in Fig. 1. At time , relay
observes a noisy version of the input at time

(2)

where is a sequence (in , for ) of inde-
pendent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian random variables of mean zero and variance

. Moreover, we also assume that and are independent
for all . The coefficients , , are ar-
bitrary fixed, complex-valued constants, assumed to be known
throughout the network. Hence, the assumption that all noise
processes are of the same variance is without loss of gen-
erality: different noise variances can be taken care of by ap-
propriately adjusting the coefficients . Using the sequence
of observations , the relay produces suitable out-
puts that must satisfy two constraints. First, they
can only depend in a causal fashion upon the relay’s observa-
tions, that is,

(3)

Second, they must satisfy a power constraint. We consider
power constraints of the form

(4)

This means that our model allows power allocation between the
relays. The destination observes the sum of the signals trans-
mitted by the source and the relays, and additive white noise

(5)

where is a sequence of i.i.d. circularly symmetric complex
Gaussian random variables of mean zero and variance .1 The
coefficients , , are arbitrary fixed, complex-
valued constants, assumed to be known throughout the network.
Without loss of generality, we assume that is real valued.

Based on the observed sequence , the destination
terminal forms an estimate of the original message . Sup-
pose that has bits. The capacity is the supremum of
rates at which the estimate can be made to sat-
isfy for any positive , for a suitably large .

The significance and values of the coefficients and is
left open at present. As stated above, we assume these coeffi-
cients to be fixed2 and known throughout the network for the
scope of the present paper. The coefficients and may
represent the path loss of the signal and hence be related to the
geometry of the network as

and (6)

for , where is the distance from the source to
relay and is the distance from relay to the destination.

For notational convenience, we define the following func-
tions:

(7)

(8)

(9)

Recall that the function denotes the total available relay
power. All of our results can be stated in terms of these auxiliary
functions.

III. UPPER BOUNDS TO CAPACITY

An upper bound to the capacity of the network of Fig. 1 can
be found from the cut-set theorem that appears in [17, Theorem
14.10.1]. For the purpose of this paper, we consider a weaker
version of this theorem in which a single cut through the network
is chosen, and the mutual information is maximized across that
cut. To formalize this, consider a network with nodes,
and let the nodes be numbered from to , as illustrated in
Fig. 2. Also, denote the rate at which node transmits to node

1The assumption that the variance ofW is the same as the variances ofW ,
m = 1; 2; . . . ;M , is without loss of generality: the coefficients � and �
can always be selected accordingly.

2Another interesting case is when � and � represent fading effects and
hence, may be modeled as random variables. A version of this problem is studied
in [20].
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Fig. 2. Illustration of two natural cuts through the considered Gaussian relay
network.

by . To obtain an upper bound on achievable rate allocations
, , the network is “cut,” i.e., the

nodes are partitioned into two subsets, and . The following
corollary to [17, Theorem 14.10.1] must be satisfied.

Corollary 1 (Weak Cut-Set Bound): The achievable rates
, , must satisfy, for any parti-

tioning of the network into two sets and

(10)

where the maximization is over all that satisfy the
power constraints.

Proof: This corollary follows straightforwardly from [17,
Theorem 14.10.1], but there is also a direct way of proving it,
namely by a “genie argument.” To see this, suppose that all the
terminals in can cooperate arbitrarily, and all the terminals in

can also cooperate arbitrarily. The resulting system cannot
have smaller capacity than the original one simply because the
original one is one way to implement the arbitrary cooperation.
Hence, if we maximize the rate in the resulting system, this
must lead to an upper bound to the rates in the original system.
However, the resulting system is simply a point-to-point (vector)
channel whose capacity is given by

(11)

which concludes the proof.

Remark 1 (Feedback): Since in the present paper, the coef-
ficients , , and , , are
assumed to be fixed (rather than time varying or random) and
known throughout the network, the point-to-point channels re-
sulting from cutting as in Corollary 1 are memoryless channels.
Therefore, the bound of Corollary 1 applies also when feedback
is available. This follows directly from the proof. The capacity
of the relay network is upper-bounded by the capacity of a mem-
oryless point-to-point channel. Feedback cannot increase the ca-
pacity of such a channel (see, e.g., [17, pp. 217 and 256]).

Note that under different assumptions, feedback may alter ca-
pacity. For example, suppose that the coefficients and
are time varying and not known at the transmitters. Then, feed-
back may permit to learn the coefficients and enable higher rates

through “water-pouring” in time, see [21]. Similarly, in the case
of nonergodic (quasi-static) fading, where and are drawn
once and for all, feedback can help, making it possible for the
transmitter to prevent outage.

In order to evaluate the bound of Corollary 1, we need the
capacity formula for Gaussian vector channels, i.e., channels
defined by (see [22])

(12)

where is a fixed and known matrix, is a
vector of i.i.d. circularly symmetric complex Gaussian random
variables of mean zero and unit variance, and the transmitted
signal is constrained in its total power to

(13)

The capacity of this channel can be characterized as follows.

Lemma 2 (MIMO Capacity [22]): The capacity of the vector
channel specified by (12)–(13) is given by

(14)

where , , are the eigenvalues of the
matrix , and is chosen such that

(15)

Corollary 1 and Lemma 2 permit to derive and evaluate
simple upper bounds to the capacity of the relay network. From
Fig. 1, it is clear that our relay network model consists of a
broadcast section and a multiple-access section. Hence, there
are two natural cuts to consider first, the “broadcast cut” and the
“multiple-access cut.” One way to visualize this is suggested
in Fig. 2: the black dots represent the terminals, i.e., the source
and the destination, plus the relay nodes.

For the broadcast cut, the mutual information expression to
be maximized is

(16)

subject to the constraints

and (17)

Under the assumption that the receiver knows the coefficients
, we find

(18)
where

(19)

Hence, whether or not the receiver knows the coefficients ,
the capacity of the relay network can be bounded by

(20)

The right-hand side can be evaluated using Lemma 2. In partic-
ular, the channel at hand has a scalar input and a vector output,
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hence, the matrix in Lemma 2 consists of only one row,
namely, , and thus, has only one singular value,
given by . Hence, is found to be

(21)

Let us also comment on the tightness of this bound. It was es-
sentially found under the additional hypothesis that the relays
do not send anything, but that they are the multiple antennae of
the destination. However, under the hypothesis that the relays do
not send anything, it is easy to find the true capacity from the
source to the destination: . Hence, the bound
should not be expected to be tight.

The second cut for which we evaluate Corollary 1 is the mul-
tiple-access cut, as drawn in Fig. 2. This gives the bound

(22)

where the maximization is over all that satisfy

and (23)

To obtain a simple expression for the bound, we relax the power
constraint to

(24)

Clearly, the maximum in the problem specified by (22) and (23)
cannot be larger than in the problem specified by (22) and (24).
To evaluate the latter, we can again use Lemma 2. In particular,
the channel at hand has a vector input and a scalar output, hence,
the matrix in Lemma 2 consists of only one column, namely,

, and thus, has only one singular value, given
by . With this, we find

(25)

The capacity must be smaller than either one of these two
bounds. Hence, we have proved the following proposition.

Proposition 3: The capacity of the Gaussian relay network
of Fig. 1 is upper-bounded by

(26)

Tighter bounds can be obtained by evaluating [17, Theorem
14.10.1]. For the single-relay channel, the corresponding upper
bound is [17, Theorem 14.7.1]. For the scope of this paper, how-
ever, we will only use the upper bound given by Proposition 3.

IV. LOWER BOUND TO CAPACITY

Lower bounds to capacity are found by analyzing transmis-
sion strategies. Such transmission strategies are usually set up in
the following way. A sequence (in ) of codes containing
codewords of length is proposed, and it is shown that the error
probability goes to zero as . This means that the capacity
of the considered channel is at least . The art consists in
cleverly choosing the codewords.

However, whenever the separation theorem applies (e.g., for
stationary ergodic point-to-point channels), there is an alterna-
tive approach that also leads to lower bounds on capacity. We

select any source (with any distortion measure). Then, we pro-
pose a transmission strategy for that source across the channel at
hand (i.e., a joint source–channel code). Finally, we evaluate the
performance of that communication strategy; that is, we com-
pute the achieved distortion . By the separation theorem [23,
Theorem 21]

(27)

where denotes the rate-distortion function of the source
with respect to the selected distortion measure (see, e.g., [17,
Theorem 13.2.1]). In other words, the capacity of the channel
cannot be smaller than the rate necessary to encode the source
at distortion . Clearly, the art consists in selecting the right
source with the right distortion measure to get the best lower
bound.3 The drawback of this approach is that we have to know
the rate-distortion function of that source with respect to the
selected distortion measure, or at least a lower bound to this
function.

In this paper, we use this approach to determine a lower bound
to the capacity of the relay network. We start by fixing the func-
tions according to which the relays operate. These functions
must be chosen to satisfy the power and causality constraints.
Once they are fixed, the relay network is turned into a point-to-
point channel. Clearly, the capacity of this point-to-point
channel cannot be larger than the capacity of the relay net-
work. The goal is to determine the capacity of this point-to-
point channel.

In particular, for the Gaussian relay network of Fig. 1, we pro-
pose the following joint source–channel coding problem. Sup-
pose that an i.i.d. Gaussian source of variance is transmitted
without coding on the broadcast section of the relay channel.
The relays simply delay the input by one time unit (to satisfy
the causality condition), and scale it (up or down) to their power
level. This coding technique is certainly suboptimal, but its com-
plexity is the absolute minimum. Moreover, we will see later that
this coding technique is sufficient to achieve the right scaling be-
havior in the number of relays for a large class of Gaussian
relay networks of the type depicted in Fig. 1.

The goal is, therefore, to determine the distortion achieved
by the suggested coding scheme when the source is zero-mean
i.i.d. Gaussian of variance . The input of relay at time is

(28)

The strategy of the relay is simply to scale this received value
to meet its own power constraint , and to transmit this result
onwards. Hence, the output of relay at time is

(29)

where is an appropriately chosen phase. There is a power
allocation that permits to incur the following distortion.

Proposition 4: The achievable distortion for the transmis-
sion of an i.i.d. Gaussian source (i.e., a sequence of i.i.d.

3Note that with this insight, it becomes a simple matter to prove the lower
bound R � log (1 + P=� ) to the capacity of the standard additive white
Gaussian noise channel, i.e., Fig. 1 with M = 0: Simply analyze the per-
formance of uncoded transmission of an i.i.d. Gaussian source with respect to
mean-squared error. See also [24].
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Gaussian random variables of mean zero and variance )
across the Gaussian relay network of Fig. 1 with relays, and
where the source node has power no larger than (see (1)) and
the sum power of the relays does not exceed (see (4)) is
no larger than , where is given by

(30)

where , and .
Proof: The proof is given in the Appendix.

As discussed earlier, this implies a lower bound to capacity
through the separation theorem. For the case at hand, the fol-
lowing statement can be made.

Corollary 5: The capacity of the Gaussian relay network of
Fig. 1 with relays and where the source node has power no
larger than (see (1)) and the sum power of the relay nodes
does not exceed (see (4)) is at least

(31)

with given by (30).
Proof: By the separation theorem [23, Theorem 21], any

stationary ergodic point-to-point communication system satis-
fies , where is the distortion achieved by that com-
munication system.

Remark 2: The lower bound of Corollary 5 can be improved
upon easily in at least two ways. First, fixing the relay operation
as in (29), the resulting scenario is an intersymbol interference
channel whose capacity could be determined via known tools.
Second, the relay operation could be generalized to any (not nec-
essarily linear) function of all the past received symbols. For the
purpose of this paper, the lower bound of Corollary 5 turns out
to be sufficient. Moreover, this bound has applications beyond
the capacity problem, as illustrated in Sections VI and VII.

The transmission strategy leading to Corollary 5 is rather
simple, yet it is a genuine “network strategy” in a sense that we
now clarify. In the first step (the broadcasting from the source
node to the relays), a “code” is used that permits every relay to
understand the message at its particular level of fidelity. An ac-
tual code, to be decoded without error at the relays, could not
possibly achieve this (unless the channels from the source to the
relays all are identical). The reason for this is that a relay with a
better channel would have to receive a code of higher rate than
the rest. However, this higher rate would appear as noise to the
relays with worse channels. This effect is also well known in
the single-source broadcast problem, and is reflected by the fact
that the separation theorem does not extend to such a topology.
In fact, when a single Gaussian source is transmitted across a
Gaussian broadcast channel to multiple destinations, each of
which desires to reconstruct that source to within the smallest
mean-squared error, then it is easy to see that uncoded trans-
mission is optimal, while any approach based on capacity-ap-
proaching codes is not. (See also [24], [25].) In the second step

(the multiple accessing from the relays to the destination), coop-
erative transmission is used to boost transmit power: the signals
transmitted by the relays are all correlated.

V. SCALING BEHAVIOR AND ASYMPTOTIC CAPACITY

In this section, we compare the upper bounds derived in Sec-
tion III to the lower bound found in Section IV. We split the main
result of this paper into two parts. In Theorem 6 below, we char-
acterize the asymptotic difference between the lower bound
and the upper bound that follows from the broadcast cut .
Thereafter, in Theorem 8, we characterize the asymptotic dif-
ference between and the upper bound that follows from the
multiple-access cut .

Theorem 6 (Broadcast Cut): The capacity of the Gaussian
relay network of Fig. 1, where the source node has power
no larger than (see (1)) and the sum power of the relay
nodes does not exceed (see (4)), is bounded between

. Since is a nondecreasing function of
, . If moreover

(32)

then

(33)

The constant takes the following values.

i) If , then

(34)

which means that when , then .
ii) In general

Proof: The proof is given in the Appendix .

Theorem 6 gives general conditions for the convergence of
and . The following is a simple concrete illustration.

Example 1 (No Attenuation, Increasing Total Relay Power):
To illustrate the conditions of Theorem 6, we now study the

concrete example where for all , and the
power constraint on the relays is for some con-
stant and some . Hence, and

(35)

This implies (using )

(36)
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since by assumption. Hence, in Theorem 6, we have
, which yields

(37)

which means that the capacity of this network behaves asymp-
totically like

(38)

In this example, Theorem 6 is asymptotically tight, i.e., it leads
to a capacity result.

Example 1 is the simplest possible (nontrivial) case of a net-
work according to Fig. 1. In spite of this fact, the example gen-
eralizes in a straightforward manner to cover a large class of
interesting cases: whenever the total available power increases
and the attenuation coefficients are lower and upper bounded
(strictly larger than zero, strictly smaller than infinity), then The-
orem 6 yields a capacity result. We formulate this in the shape
of the following corollary.

Corollary 7 (Bounded Attenuation Coefficients): In the set-
up of Theorem 6, suppose that the attenuation coefficients are
strictly bounded, and , for all ,
and that the power constraint is , with and

some constant. Then

(39)

i.e., in this case, the capacity behaves asymptotically like

(40)

Proof: Since the attenuation coefficients are strictly
bounded, we can upper-bound and lower-
bound , and hence,

(41)

Since by assumption, this implies that in Theorem 6,
. By the same token

(42)

and hence, . But then, Theorem 6 asserts the claim.

The main point of Corollary 7 is to illustrate that there
is a meaningful and interesting parameter range for which
our arguments establish capacity (in the limit as ).
Moreover, it also shows that in a scaling sense, as be-
comes large, an optimal relay “recoding” strategy is simply
uncoded forwarding. To make a stronger point, it is unclear
if there is a different strategy than the one considered here
(and its ramifications along Remark 2) that also achieves the
optimum capacity scaling behavior. In particular, consider the
simple “point-to-point coding” scheme used, e.g., in [26]: all
transmissions are point-to-point and receivers consider any
interfering signal purely as noise. For the ad hoc wireless
network scenario considered there, it has been shown in [27]
that such a simple strategy does achieve the optimum capacity
scaling behavior. For the feedback scenario considered here,

it is immediately clear that this coding strategy will perform
suboptimally; in fact, its performance will not improve with

: the bottleneck is the source node. Under the point-to-point
coding restriction, the source node can only transmit to one
relay in any given time slot, and hence, the resulting rate is
bounded by , where is the power of the source
node. Hence, for the Gaussian relay network as considered here,
going beyond point-to-point coding significantly changes the
asymptotic behavior. This conclusion is certainly of interest in
the interpretation of the result of [26]: it suggests the possibility
that the asymptotic behavior of capacity does change when the
point-to-point coding restriction is removed.

We now proceed to the examination of the asymptotic differ-
ence between the upper bound stemming from the multiple-ac-
cess cut ((25)) and the achievable rate . The main result is the
following theorem, which is the analog of Theorem 6.

Theorem 8 (Multiple-Access Cut): The capacity of the
Gaussian relay network of Fig. 1 where the source node has
power no larger than (see (1)) and the sum power of the
relay nodes does not exceed (see (4)), is bounded between

. Since , , and are nonde-
creasing functions of

and

If moreover

and

(43)

then

(44)

The constant takes the following values.

i) If , then

(45)

Note that the bound is tight if the argument of the loga-
rithm is .

ii) In general

Proof: The proof is given in the Appendix.
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Example 1, continued 1: Consider again the setup of Ex-
ample 1. Theorem 8 is of no value here: bounding ,
we find

(46)

which does not converge as tends to infinity. In other words,
the multiple-access cut leads to a very loose upper bound to
capacity in this example.

Example 2 (No Attenuation, Constant Total Relay Power):
Like in Example 1, suppose that , for

all . However, the power constraint for the present example
is , where is some constant. As in Example 1,

and

(47)

First, consider Theorem 6. To evaluate the conditions, note
that

(48)

Hence, in Theorem 6, we have , but ,
which yields

(49)

Hence, is asymptotically only a constant additive term away
from ; and thus, it also grows like . Since the capacity
lies between , we conclude that grows like

as well. Let us also briefly discuss the difference
. It is seen that this difference decreases with , but increases

with . This is due to the fact that for our decoding scheme, the
original signal of power is an interferer at the destination.

In order to apply Theorem 8 to this example, we first have to
determine and in (43), as follows:

(50)

and

Since they are both finite, Theorem 8 does apply to this example.
We evaluate moreover and , and hence, the value
of the bound supplied by Theorem 8 is determined by (45). With

, we find

This bound is always weaker than (49). To verify this, note that
in the present example, the broadcast bound is asymptot-
ically always smaller than the multiple-access bound ,
which follows immediately from a comparison of (20) and (25)

(51)

Example 3: In this example, we study the scenario where
and . We can bound ,

, and . Moreover, suppose
a constant total power . Then

(52)

which diverges, and hence, Theorem 6 does not apply.
As for Theorem 8, we find

(53)

which tends to zero (and hence, ), and

(54)

which converges. This means that in this example, Theorem 8
yields a tighter bound than Theorem 6. In fact, evaluating (45),
we find

(55)

It is also clear from this expression that a capacity result is ob-
tained if it is possible to slightly alter and in such a way
as to make

(while keeping all the limits fixed as in this example).

Another example is given in Section VIII-C for a simple sce-
nario inspired by wireless networks. There, the values of
and are randomly chosen according to an appropriate distri-
bution, and Fig. 6 compares the presented inner bound to the
outer bounds and .

VI. APPLICATION: GAUSSIAN SENSOR NETWORK

The topology of our network model, Fig. 1, also resembles
a particular sensor network situation: in that case, the sequence

is the physical phenomenon to be measured,
are due to the fact that the phenomenon cannot be measured
directly as well as due to measurement noise, and the relays
are the sensors themselves. For the sensor network situation,
we take . This is illustrated in Fig. 3. The goal is for
a central unit to learn about the physical phenomenon .
More precisely, its goal is to provide a reconstruction
such that

(56)

is minimized. The sensors communicate to the central unit
over a common wireless channel, and their transmitted powers
have to satisfy a sum power constraint. This is clearly a
source–channel communication problem; the relevant tradeoff
is between the total power of the sensors and the fidelity at
which the central unit can reconstruct the sequence .

The optimal such tradeoff is not known to date. Note that the
separation paradigm does not extend to this case: compressing
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Fig. 3. The considered sensor network: The data collection point (DCP) needs
to reconstruct X , i.e., the underlying source (SRC).

the sources (using the concepts of Slepian and Wolf [28], and
their extension to the case of lossy compression [29]) and
transmitting the source codewords using a capacity-achieving
code on the multiple-access channel is a suboptimal strategy.
A simple illustration of this can be found in [17, p. 448]. We
address this problem in Section VII.

The results of this paper permit to determine the optimal
tradeoff for the following scenario. Suppose that is a
sequence of i.i.d. circular complex Gaussian random variables
of variance . Sensor measures

where is i.i.d. circular complex Gaussian noise of vari-
ance . Sensor is allowed to get to know the entire sequence

before transmitting a sequence

at average power

There are sensors, and their total power is constrained to be

(57)

The final destination receives

(58)

where is i.i.d. circular complex Gaussian noise of vari-
ance . The final destination is allowed to get to know the en-
tire sequence before producing the sequence of estimates

.

Corollary 9: For the sensor network model described in this
section, if the conditions of Theorem 6 are satisfied with
and , then the optimum distortion satisfies

(59)

and the minimum is achieved when the sensors use a simple
scaling, , and the final destination uses

.

Remark 3: The encoding functions are much more
general here than in the capacity consideration for the relay
channel: there is no causality constraint like (3) in the consid-
ered sensor network model. This means that there are more
degrees of freedom in choosing the encoding functions
in the present scenario. Nevertheless, our result says that the
optimum (asymptotically as ) can be achieved without
exploiting these additional degrees of freedom, by simple
causal encoding functions respecting the constraint (3). More
explicitly, in this example, the global optimum can be achieved
by real-time processing.

Remark 4: Extensions of this result, involving multiple un-
derlying sources, multiple data collection points and fading ef-
fects, and addressing the tradeoff between the total sensor power
and the achievable distortion more explicitly, have been pre-
sented in [30]–[32], [20]. In particular, it is shown that (57) is
not a necessary condition for the result to hold.

Proof: Suppose that the physical phenomenon itself
uses optimal coding. This is clearly an idealization, and hence
leads to a lower bound to the distortion. For a given source, the
achievable end-to-end distortion certainly cannot be smaller
than the rate-distortion function of the source, evaluated at
the capacity upper bound . This is immediate since the
multiple-antenna idealization of the multiple-relay channel is
a simple stationary ergodic point-to-point channel, hence the
separation theorem applies. The distortion for this idealized
system can be calculated as

(60)

where denotes the distortion-rate function of the i.i.d.
circularly complex Gaussian source. An achievable distortion

has been found in Proposition 4. Now consider the quotient
, which, using the distortion-rate function

, can be expressed as

(61)

The convergence of the latter is established in the proof of The-
orem 6. Hence, as tends to infinity, the smallest achievable
distortion behaves like the .

VII. APPLICATION: THE CEO PROBLEM

The problem studied in Section VI resembles the CEO
problem, proposed and solved in [18]. This problem is illus-
trated in Fig. 4: agents (or sensors) observe each a different
noisy copy of one and the same underlying source sequence

, just like in our model. However, the agents’ task
is different: in the CEO problem, agent is allotted bits
per source sample, and must use them so as to enable the
CEO (or data collection point) to provide the best possible
estimate of the underlying source sequence, in the
sense of (56). The problem is to determine, for a given rate
budget , the smallest achievable distortion. The
compression must be performed in a distributed fashion: agent

must encode its observation sequence without
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Fig. 4. Illustration of the CEO source coding problem, quoted from [18],
[19], [33]:M agents have to keep their C.E.O. up to date about the underlying
source X .

knowing what the other agents observed. A central decoder
receives all codewords, and produces an estimate sequence

, incurring a distortion of

(62)

In [19], [33], it is established that

is characterized, in the limit as , by

(63)

which is [33, eq. (6)], adapted to the case of a circularly complex
Gaussian source.

The goal of this section is to reconsider the CEO problem
as in Fig. 4, but with the abstract communication channels
(“bit pipes” of rates ) replaced by a “physical”
channel model, hence extending the source coding problem
into a joint source–channel coding problem. Let us consider
the standard additive white Gaussian noise multiple-access
channel, as defined in [17, p. 378], under a sum power con-
straint on the participating nodes, as in (4), and let the total
power function be . This is, of course, the
channel model used in the system of Fig. 3, with , for

.
Clearly, one tempting strategy to tackle the resulting joint

source–channel communication problem consists in letting the
agents compress their observation using the optimal code for the
CEO problem, and then using the multiple-access channel at the
highest possible rates (i.e., capacity) to communicate the source
codewords down to the CEO. To evaluate this performance, we
can simply use (63), and it remains to evaluate how large
can be made on the channel model at hand. The capacity region
of the additive white Gaussian noise multiple-access channel is
well known (see, e.g., [17, p. 378] and the references therein),
but the additional twist here is that the source codewords may
be dependent since they are drawn from a common source se-
quence . The capacity of multiple-access channels
when the messages are allowed to be “somewhat” dependent is
not generally known [34], but if they can be arbitrarily depen-
dent, then the multiple-access channel becomes a point-to-point
channel with an input vector of length , and the capacity of

such a “multiple-antenna” channel is well known (see [22] and
the references therein)

(64)

see also (25). Clearly, the total rate available to the agents in our
example to communicate their source codewords cannot exceed
(64), and hence, for any such strategy, the resulting distortion
cannot be smaller than

(65)

The question is whether this is the optimum performance, or
whether a smaller distortion can be achieved under the same
constraints.

To answer this question, we can use Corollary 9, determining
optimum performance. Evaluating the corollary for the case at
hand, the coefficients are and , for

. Hence, and .
In the current consideration, , and hence,
and . Therefore, the asymptotic behavior (as )
of the distortion achieved by the uncoded strategy is found from
Corollary 9 as

(66)

Recall that this scheme satisfies an additional property of
causality and real-time processing, as described in Corollary 9.

The comparison of (65) with (66) confirms the well-known
fact that separate source and channel coding is generally sub-
optimal in networks, see, e.g., [17, p. 448] and [25]. But the
comparison of (65) with (66) also provides a new insight: sep-
arate source and channel codes are not only suboptimal, they
may scale exponentially worse (as a function of the number of
nodes ) than the optimum scheme. More precisely, for a fixed
target distortion , denote the number of nodes required by the
optimum scheme by , and the number of nodes required
by the separation-based scheme by . Then, comparing (65)
with (66), we find (using the concavity of the square root)

(67)

i.e., is exponentially larger than .

VIII. EXTENSION: WIRELESS NETWORKS

It is clear that the network of Fig. 1 does not well model a
wireless situation. Rather, we now consider the following ex-
tended network model. Relay does not only receive the trans-
mission from the source node, but also the transmissions from
all other relay nodes. We replace (2) by

(68)

The network model considered by Gupta and Kumar in [26]
is of that kind. Their network is discussed in more detail in
Section VIII-B. The upper bound formulated in Proposition 3
applies unchanged: the cut-set idealization still yields upper
bounds to capacity. The lower bound, however, is changed
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since there are many more interfering terms at the input of the
relays, as a comparison of (2) with (68) reveals. One way to
obtain a simple lower bound is to apply the same strategy, but
to split it into two time slots: in the first time slot, the source
sends to the relays, in the second time slot, the relays send to
the destination. That is, a factor of two in rate is lost due to this
time-multiplexing. Apart from that, the same rate is achievable
as for the network specified by (2).4 That is, our arguments
permit to determine capacity up to a factor of two. One such
result is summarized in the following corollary.

Corollary 10: For the wireless relay network model defined
by (68) and (5), where the source node has power no larger than

(see (1)) and the sum power of the relay nodes does not exceed
(see (4)), suppose that the conditions of Theorem 6 are

satisfied with and , i.e.,

and

Then, the achievable rate and the upper bound satisfy

(69)

i.e., the true capacity of the considered relay network is
bounded by as .

Proof: The scheme used to prove Proposition 4 is oper-
ated in every other time slot: in odd time slots, the source out-
puts a new source value; in even time slots, the relays forward
an appropriately scaled version of the signal they received in
the preceding odd time slot. Hence, the links that are added in
(68) over (2) are of no relevance to this scheme. In other words,
the distortion of Proposition 4 is still achieved (but only in
every other time slot). By Corollary 5, this implies that the rate

is achievable. Moreover, the outer bound re-
mains unaffected when (2) is replaced by (68) since none of
the additional links in (68) cross the broadcast cut illustrated in
Fig. 2. Hence, Theorem 6 can be applied to the difference be-
tween and , establishing the corollary.

Clearly, Corollary 10 can be extended by taking into account
the remaining cases covered by Theorem 6 as well as the ones
covered by Theorem 8. We do not discuss this explicitly here.

Instead, the result of Corollary 10 is illustrated for two special
classes of networks. For networks similar to the ones studied in
[26], where the nodes are arbitrarily placed except for a certain
dead zone, and for networks that are forced to employ frequency
duplex: the source transmits on a different frequency band than
the relays.5

A. Arbitrary Node Placement With a Dead Zone

Consider the following network, illustrated in Fig. 5:
nodes are placed arbitrarily in a disk of unit area, and

the coefficients characterize the path losses, i.e.,

(70)

4Again, in line with Remark 2, note that the considered scheme can be fine-
tuned in many ways. For the scaling-law perspective taken in this paper, this
seems to lead to only marginal improvements and is therefore omitted.

5A simplified version of these capacity results was presented at the 2001
IMA “Hot Topics” Workshop on Wireless Networks, August 8–10, 2001, Min-
neapolis, MN, and appeared in [1].

Fig. 5. A wireless relay network model, based on [26].

where is the Euclidean distance between nodes and ,
and is the path loss exponent.6 These networks are sometimes
called dense networks since, as the number of nodes tends to
infinity, the distance between adjacent nodes vanishes.

In [26], the nodes are partitioned into pairs (uniformly at
random), each pair consisting of a source and a destination,
and the goal of the analysis is to characterize the maximum
throughput per pair. The analysis presented in [26] is limited
to the case where all transmissions are carried out in a point-to-
point fashion, considering simultaneous transmissions purely as
noise.7 In contrast to this, our argument considers the traffic sce-
nario where two special nodes are selected, namely, a source
and a destination, and all other nodes serve purely as relays (see
Fig. 5), and all possible coding schemes are allowed, not only
those satisfying the point-to-point coding hypothesis mentioned
above.

To apply Corollary 10 to the network of Fig. 5, we have to
compute the values of and . To make a simple, but precise
statement, suppose that there is a “dead zone” of radius
around the source node: inside this zone, no other node can be
placed.8 This is suggested in Fig. 5 by the solid circle around
the source node. The dead-zone radius may depend on
the number of nodes in the network. In particular, in inter-
esting cases, it should decrease as the number of nodes is in-
creased. Notice that the remaining area of the network is uncon-
strained—the relay nodes can be placed as close to each other
as desired. For this setup, we can prove the following capacity
bound.

Corollary 11: For the wireless relay network model defined
by (68) and (5), suppose that the nodes are placed arbitrarily
inside a disk of unit area, but outside of a dead zone of radius

around the source node. Suppose that the coefficients

6In [26], this exponent is denoted by �.
7More general results beyond this restriction on the coding scheme were re-

cently presented in [27]. However, those results do not seem to apply to dense
networks; rather, they impose a lower bound on the distance between any two
nodes.

8A more restrictive dead zone assumption, namely, a fixed zone around every
node in the network (and hence not leading to dense networks), has recently
been studied in [27].
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and depend on the distance between nodes according to (70),
that the source node has power no larger than (see (1)), and
the sum power of the relay nodes does not exceed (see
(4)). If

(71)

then, the following asymptotic capacity result holds:

(72)

implying that the capacity of the wireless relay network is
bounded by as , where

(73)

Remark 5: At fixed sum power , (71) characterizes the
fastest rate at which the radius of the dead zone around the
source node may decrease such that the arguments developed
in this paper suffice to establish a point-wise convergence in the
sense that (72) holds for arbitrary node placements. If the dead
zone radius is to decrease faster than (71), then the arguments
developed in this paper may still be used to establish weaker
convergence results. For example, for many probability distri-
butions for the node locations, (72) can be used to determine the
behavior of the expected value of capacity even in cases where
(71) is violated.

Proof: With reference to Corollary 10, we merely have
to establish that the coefficients and satisfy the condi-
tions of Theorem 6. Since the largest distance in the network is

, we have that . This implies that
, and hence, . Moreover, since by the same

token, , we find

(74)

(75)

By the dead zone assumption, , and hence,

(76)

This permits to bound as follows:

(77)

showing that (71) implies that , as required in Corol-
lary 10.

Corollary 11 is true for all node placements that respect the
dead zone assumption. Suppose, for example, that the total
power available to the nodes is for some constant

. Then, for our arguments to establish capacity, the dead-zone
radius cannot decrease faster than

(78)

Let us assume this, and that the node placement is random9 ac-
cording to some law that respects the dead zone. For any fixed

9This is understood in a quasi-static sense. At the beginning of time, the node
placements are drawn from a distribution, but they then stay fixed for the rest of
the experiment.

node placement, Corollary 11 provides upper and lower bounds
on capacity. Hence, in expectation (taken over all node place-
ments), the expected capacity of the wireless relay net-
work is bounded as , where

Without evaluating this integral explicitly, we can use the fact
that to bound the expected ca-
pacity as

(79)

revealing the “scaling law” of the (expected) capacity of the
considered wireless network under the “relay” traffic pattern,
in Knuth’s notation (cf. the “scaling laws” in [27])

(80)

or, more explicitly, , for some
constant .

B. Frequency Duplex

As a second application to wireless networks, suppose now
that the source transmits on a frequency band different from the
relay transmitters’ frequency bands. This implies that the relay
receiver does not incur the interference terms present in (68).
Rather, the latter is replaced by (2). Let us further assume that
the destination can only receive on the relay transmitters’ fre-
quency band.10 This frequency duplex situation is represented by
Fig. 1, with . Hence, the highest rate that can be achieved
by any such frequency-duplex scheme, denoted as , can
be characterized by Theorems 6 and 8, whenever they apply.

Let us reconsider the geometry described in Section VIII-B.
Corollary 11 still applies, the only change being that the achiev-
able rate is now given by , since the source node trans-
mits in every time slot. In particular, Corollary 11 implies that
whenever the dead-zone radius satisfies (71),

, where

(81)

To gain insight, let us now investigate how fast these two bounds
converge.

Example 4: Consider the geometry of Section VIII-B, i.e.,
consider a network inside a disk of unit area centered at the
origin of a Cartesian coordinate system, where the coefficients

and depend on the Euclidean distances between nodes
according to (70). Suppose the source node is located at coor-
dinates and the destination node at . Let the
source node have power . The locations of the re-
lays are chosen uniformly (outside the dead zone of fixed radius

10If the destination can also listen on the source transmitter’s frequency bands,
this can at most change the capacity by an additive constant, and is thus not
scaling-law relevant. To keep considerations simple, we therefore omit this pos-
sibility.
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Fig. 6. Numerical evaluation of upper (see (21)) and lower (see (31)) bounds
versus the number of nodes in the network generated according to Example
4. For a single experiment (dashed lines), and averaged over 100 experiments
(solid lines).

), and their total power is . Let the noise
variances be . Fig. 6 shows the corresponding bounds

and against the number of nodes for one realization
of the node locations, and averaged over 100 trials. The figure
clearly illustrates the typical behavior of capacity, and
it shows the convergence of the upper and lower bounds estab-
lished in this paper.

IX. CONCLUSION

For the Gaussian relay network of Fig. 1, capacity is not
known to date, not even for . In this paper, we determined
the asymptotic capacity in the limit as the number of relays
tends to infinity. For many interesting relay networks, our paper
gives an exact asymptotic capacity result, most notably for all
cases where the fading coefficients are strictly larger than zero
and strictly smaller than infinity. For the lower bound that leads
to our capacity result, the relays simply use uncoded forwarding.
This can be seen as an extension of [24].

Beyond the exact capacity results, we show for a larger class
of Gaussian relay networks that the typical scaling behavior of
capacity is , where is the number of relay nodes. This is
demonstrated even for network models beyond Fig. 1, including
certain wireless scenarios. In contrast to this, the point-to-point
coding hypothesis of [26] only leads to a constant rate, indepen-
dent of the number of relays. This shows that at least in certain
situations, going beyond point-to-point coding (and into gen-
uine “network strategies”) can alter the scaling behavior of the
capacity of wireless networks.

Finally, we also demonstrate how our results can be applied
to sensor networks. There, the tradeoff is between sensor power
and reconstruction fidelity, and is generally unknown to date.
For a particular sensor network situation, we determine the op-
timal tradeoff using the arguments developed in this paper. We
also demonstrate that this optimal tradeoff cannot be achieved
by separate source and channel code design, illustrating the
known fact that the source–channel separation principle does
not extend to such sensor networks, and, in fact, furnishing new
insight to the effect that source–channel separation can lead

to a substantially (exponentially, that is) suboptimal scaling
behavior of performance as the network becomes large.

The bounding techniques developed in this paper can also
be applied to more complex situations, such as a general wire-
less network with collaborating users. A simple extension of
the work presented here is for the individual data sources to
take turns. In its time (and/or frequency) slot, each source uses
the network as a relay network. The respective performance
can be lower-bounded using the techniques developed in this
paper. Another scenario involves channel fading effects, and un-
known parameters in the network. Here, the key insight is that
the strategy developed to prove lower bounds has some degree
of natural robustness to such effects. In particular, such robust-
ness can be easily and conveniently exploited in the sensor net-
work context described in Section VI.

APPENDIX

Proof of Proposition 4: At time , the relay receives

(82)

and transmits in the next time slot

(83)

where is the imaginary unit (the square root of ),
an appropriately chosen phase, and an appropriately

chosen nonnegative real constant. Note that this recoding coef-
ficient makes the expected power of relay equal to . The
received random variable at time is, therefore,

(84)

where is defined as

(85)

Suppose that we use as the estimate of . Then

(86)

Recall that is real by assumption, hence, . The
optimal single-letter decoding function can be found by taking
the derivative of (86) with respect to and setting this derivative
equal to zero. This yields
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where denotes the complex conjugate of . The minimum
achievable distortion becomes

The next goal is to find suitable ’s, i.e., to find a good
power allocation between the relays. To this end, we may
rewrite using vector notation. Define the two vectors

and . Then

(87)

Minimizing this expression over all vectors under the given
power constraint does not seem to have a simple solution. How-
ever, a good (but generally suboptimal) solution is found by re-
calling that

(88)

and that the maximum is achieved when , for a scalar .
For the purposes of this paper, this relay coding strategy is

sufficient. That is, we pick the recoding function given by (83)
such that

for (89)

which makes the phase in (83)

(90)

and the power of relay

(91)

where must be chosen to satisfy the power constraint
, i.e., can be determined as

(92)

To simplify the expression for the distortion, we first point out
that

Using this in (87), the distortion can be expressed as

(93)

Introducing in from above yields the claimed result.

Remark 6 (Optimal (Multiple-Letter) Decoding): In Remark
2, we outlined how the considered coding scheme could be
improved. Similarly, the decoding considered in the proof of
Proposition 4 can also be improved. In fact, the two transmis-
sion steps of our coding scheme take place simultaneously.
This acts like a convolutional code. Hence, the optimum
decoder must consider all outputs simultaneously; it
cannot operate on a single-letter basis. This does not seem
to lead to simple expressions for the achieved distortion, and
asymptotically, the improvement of the optimal decoder over
the single-letter decoder should not be expected to be large: for
many cases, the interfering term in (84) does not
influence the asymptotic behavior.

Proof of Theorem 6: Recall

(94)

We compare this to . Let us write out as follows:

(95)

Using (92), we can replace . Let us then
multiply both numerator and denominator by to obtain

(96)

Next, we argue that under the stated assumptions, each sum-
mand both in the numerator as well as in the denominator of
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in (96) converges. By assumption, , and hence,
. This implies the following:

Similarly

(97)

(98)

which also implies that

Finally

(99)

leading to the following relationship:

(100)

which concludes the proof.

Proof of Theorem 8: Recall that

(101)

We now compare this to . Let us write out as follows:

Using (92), we can replace . Let us then
multiply both numerator and denominator by to
obtain

Dividing both the numerator and the denominator by
yields the desired form. By assumption

and

(102)

Under these assumptions, we find that

(103)

Finally

(104)

which concludes the proof.
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