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Abstract

In recent years there has been much interest in the analysis of time series using a discrete

wavelet transform (DWT) based upon a Daubechies (1992) wavelet filter. Part of this inter-

est has been sparked by the fact that the DWT approximately decorrelates certain stochastic

processes, including stationary fractionally differenced (FD) processes with long memory charac-

teristics and certain nonstationary processes such as fractional Brownian motion. In this paper

we show that, as the width of the wavelet filter used to form the DWT increases, the covariance

between wavelet coefficients associated with different scales decreases to zero for a wide class

of stochastic processes. These processes are Gaussian with a spectral density function (SDF)

that is the product of the SDF for a (not necessarily stationary) FD process multiplied by any

bounded function that can serve as an SDF on its own. We demonstrate that this asymptotic

theory provides a reasonable approximation to the between-scale covariance properties of wavelet

coefficients based upon filter widths in common use. Our main result is one important piece of

an overall strategy for establishing asymptotic results for certain wavelet-based statistics.

1 Introduction

The discrete wavelet transform (DWT) as formulated by Mallat (1989) and Daubechies (1992) is an

increasingly popular tool for the statistical analysis of time series (see, e.g., Ogden, 1997; Carmona,

Hwang, and Torrésani, 1998; Vidakovic, 1998; Percival and Walden, 2000 and references therein).

The DWT maps a time series into a set of wavelet coefficients. Each coefficient is associated with a

particular scale, which is a measure of the amount of data that effectively determines the coefficient.

Two distinct wavelet coefficients can be either ‘within-scale’ (i.e., both are associated with the same

scale) or ‘between-scale’ (i.e., each has a distinct scale).
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One reason for the popularity of the DWT is that it acts as a decorrelating (or ‘whitening’)

transform for certain stochastic processes; i.e., any two distinct within-scale or between-scale co-

efficients are approximately uncorrelated. Flandrin (1992) showed that the within-scale wavelet

coefficients for fractional Brownian motion (FBM) constitute a stationary process and derived ex-

pressions for the covariances of both within-scale and between-scale coefficients. He found that, for

the Haar transform and for ordinary Brownian motion, within-scale wavelet coefficients are uncorre-

lated, while between-scale coefficients are correlated, with the correlation decaying as the separation

between the scales increases. Tewfik and Kim (1992) found that wavelet coefficients for FBM are in

general correlated, but that the correlation dies down hyperbolically at a rate dictated by the num-

ber of vanishing moments associated with the wavelet. Dijkerman and Mazumdar (1994) showed

that correlations in the wavelet coefficients for FBM decay exponentially fast between scales and

hyperbolically fast within scales. They illustrated that the covariances of distinct wavelet coeffi-

cients are small in magnitude. Masry (1993) investigated the statistical properties of the wavelet

coefficients of processes with stationary increments (of which FBM is an example). In particular he

obtained expressions for the spectral density function (SDF) of within-scale wavelet coefficients and

the cross SDF of between-scale coefficients. McCoy and Walden (1996) demonstrated similar results

for fractionally differenced (FD) processes, and Vannucci and Corradi (1999) extended the theory

of Tewfik and Kim (1992) to these processes (they also introduced a method of calculating the

covariances between wavelet coefficients based upon a two dimensional wavelet transform). Jensen

(2000) provided the theory for the class of autoregressive fractionally integrated moving average

(ARFIMA) processes, of which the FD processes are a specific example. Johnstone and Silverman

(1997) and Johnstone (1999) demonstrated the approximate decorrelation property when the Meyer

wavelet is used to analyze a process with long range dependence. They used these results to develop

wavelet shrinkage techniques for signal estimation in the presence of long range dependence.

In this paper we demonstrate that, for a quite general class of stochastic processes, the covariance

of between-scale wavelet coefficients decreases to zero as the width of the wavelet filter associated

with the DWT increases (the filter width dictates how much of the time series is used to form

each wavelet coefficient: as the width increases, more and more of the series is used to form each

coefficient). This result applies even to processes for which the DWT does not yield approximately

uncorrelated within-scale coefficients. The theory we present here hence both complements and
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generalizes the results given in the literature cited above.

The remainder of this paper is organized as follows. Prior to stating our main result as Theo-

rem 5.1 in §5, we give some background material on processes with stationary backward differences

in §2, on fractionally differenced processes in §3 and on wavelet coefficients of stochastic processes in

§4. We present a practical demonstration in §6 that this asymptotic result is a good approximation

for wavelet filters used in practice. We conclude with a brief discussion in §7 of how our theorem

can be used to establish certain consistency results for wavelet-based statistical analysis and how it

compares to a well-known decorrelation result in spectral analysis.

2 Processes with Stationary Backward Differences

The decorrelation result we provide in section 5 applies to a particular class of stochastic processes

with stationary backward differences. Such processes are introduced in Yaglom (1958) and discussed

in detail in Chapter 4 of Yaglom (1987). Notable time series methods for such processes (in the

context of long range dependence) can be found in Hurvich and Ray (1995), Beran et al. (1998), and

Velasco (1999). Let {Xt, t ∈ Z} denote a stochastic process, where Z is the set of all integers. We

say that this process has stationary backward differences of integer order d ≥ 0 if

Yt =

d∑

k=0

(
d

k

)
(−1)kXt−k

is a stationary process with mean µY , autocovariance sequence (ACVS) {sY,τ , τ ∈ Z} and spectral

density function (SDF) SY (·) satisfying
∫ 1/2

−1/2
SY (f)e

i2πfτ df = sY,τ . (1)

If {Xt} is itself a stationary process with SDF SX(·), then the theory of linear time-invariant filters

(see, e.g., Chapter 5 of Percival and Walden, 1993) dictates that the SDF of {Yt} is

SY (f) = Dd(f)SX(f), (2)

where D(·) is the squared gain function for a first order (i.e., d = 1) backward difference filter. By

definition, the squared gain function is the squared modulus of the transfer function for the filter.
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In turn, the transfer function is the discrete Fourier transform of the sequence defining the filter,

which in this case is a0 = 1, a1 = −1 and al = 0 otherwise. Hence

D(f) =
∣∣∣

∞∑

l=−∞
ale

−i2πfl
∣∣∣
2
=
∣∣∣1− e−i2πf

∣∣∣
2
= 4 sin2(πf).

If {Xt} is not a stationary process, we can use Equation (2) to define an SDF for it via the equation

SX(f) ≡ SY (f)/Dd(f) (3)

(Yaglom, 1958).

3 Fractionally Differenced Processes

A simple example of a process with stationary backward differences is obtained by letting SY (·) in
Equation (3) be the SDF for a white noise process with variance σ2

ε ; i.e., SY (f) = σ2
ε . In this case,

the process {Xt} has an SDF is given by

SX(f) = σ2
ε /Dd(f) = σ2

ε /|4 sin2(πf)|d.

The dth order backward difference for {Xt} is a white noise process. A generalization of this example

is to replace the nonnegative integer d with any real-valued number δ:

SX(f) = σ2
ε /|4 sin2(πf)|δ , |f | ≤ 1/2. (4)

The above can be taken as the definition for a fractionally differenced (FD) process. This process has

two parameters, namely, δ and σ2
ε , which are commonly called the FD parameter and the innovations

variance in the literature. This process was originally proposed by Granger and Joyeux (1980) and

Hosking (1981) and has become popular in recent years, mainly due to its tractable mathematical

properties. When δ > 0, an FD process exhibits ‘long memory’ dependence; when δ = 0, the process

reduces to white noise; and, when δ < 0, the process is said to be anti-persistent. An FD process is

stationary when δ < 1/2, with an ACVS {sX,τ , τ ∈ Z} that can be readily computed at lag τ = 0

using

sX,0 = σ2
ε

Γ(1− 2δ)

Γ2(1− δ)
(5)
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and at positive lags using the recursion

sX,τ = sX,τ−1
τ + δ − 1

τ − δ
, τ = 1, 2, . . . (6)

(for negative lags τ , recall that sX,−τ = sX,τ ). When δ ≥ 1/2, an FD process has stationary

backward differences of order d = bδ+1/2c (here bxc refers to the greatest integer less than or equal

to x).

Further examples of processes with stationary backward differences can be obtained by consid-

ering a stochastic process {Xt} whose SDF can be expressed as

SX(f) = B(f)/|4 sin2(πf)|δ, (7)

where B(·) is a bounded function that is the SDF for some stationary process; i.e., SX(·) is the

product of two SDFs, one for an FD process, and another that is bounded. By letting B(f) = σ2
ε

the above reduces to an FD process. Another choice is to let

B(f) = σ2
ε ·
|1−∑q

k=1 θke
−i2πfk|2

|1−
∑p

k=1 φke−i2πfk |2,
which is bounded if {φk} is chosen suitably. This leads to the class of autoregressive, fractionally

integrated, moving average (ARFIMA) processes, which by definition possess an SDF given by

SX(f) =
σ2
ε

|4 sin2(πf)|δ ·
|1−∑q

k=1 θke
−i2πfk|2

|1−∑p
k=1 φke−i2πfk |2 , |f | ≤ 1/2, (8)

where {θk} and {φk} are parameters associated with, respectively, the moving average and autore-

gressive parts of the process. FD processes can be considered to be a subclass of ARFIMA processes.

Beran (1994), Samorodnitsky and Taqqu (1994), and Section 13.2 of Brockwell and Davis (1991)

discusses further properties of FD and ARFIMA processes. For a survery of methods of analysis for

these processes see Adler et al. (1998), Rangarajan and Ding (2003) and Doukhan et al. (2003).

4 Wavelet Coefficients of Stochastic Processes

Let {h1,l, l = 0, . . . , L−1} denote a Daubechies wavelet filter of necessarily even width L (Daubechies

(1992)). We presume that h1,0 6= 0, h1,L−1 6= 0, and h1,l = 0 for l < 0 or l ≥ L. By definition, this

filter has a squared gain function given by

H1,L(f) ≡ 2 sinL(πf)

L/2−1∑

l=0

(L/2−1+l
l

)
cos2l(πf). (9)
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Let g1,l = (−1)l+1h1,L−1−l define the associated scaling filter, for which the squared gain function

is given by G1,L(f) ≡ H1,L(1/2 − f). By Daubechies’ construction, we have

G1,L(f) +H1,L(f) = 2 for all f . (10)

The wavelet filter is an approximation to an ideal high-pass filter with a passband given by |f | ∈
[1/4, 1/2], whereas the scaling filter approximates an ideal low-pass filter with passband |f | ∈ [0, 1/4].

We note that there are multiple wavelet filters that share the same squared gain function. These

filters have distinct transfer functions, which can be expressed as H1,L(f) = H1/2
1,L(f) exp(iθ1,L(f)),

where θ1,L(·) denotes the phase function. By requiring the phase function to satisfy certain criteria,

Daubechies (1992) defined two widely used families of wavelet filters, namely, the extremal phase

filters and the least asymmetric filters. In what follows, we denote the member of width L from

these two families as, respectively, the D(L) and LA(L) wavelet filters.

Let {Xt, t ∈ Z} denote a stochastic process. With V0,t ≡ Xt, we can recursively use the equations

Wj,t ≡
L−1∑

l=0

h1,lVj−1,2t+1−l and Vj,t ≡
L−1∑

l=0

g1,lVj−1,2t+1−l, j = 1, 2, . . . ,

to define the jth level wavelet coefficients {Wj,t} and scaling coefficients {Vj,t}. The former are

associated with changes in averages over a scale of 2j−1 and with times spaced 2j units apart; the

latter, with averages over a scale of 2j having the same spacing in time. With Lj ≡ (2j−1)(L−1)+1,

equivalent definitions for these stochastic processes are

Wj,t ≡
Lj−1∑

l=0

hj,lX2j(t+1)−1−l and Vj,t ≡
Lj−1∑

l=0

gj,lX2j(t+1)−1−l , (11)

where {hj,l, l = 0, . . . , Lj − 1} and {gj,l, l = 0, . . . , Lj − 1} are jth level wavelet and scaling filters

having transfer functions given by, respectively,

Hj,L(f) ≡ H1,L(2
j−1f)

j−2∏

k=0

G1,L(2
kf) and Gj,L(f) ≡

j−1∏

k=0

G1,L(2
kf) (12)

(see, e.g., Percival and Walden, 2000). The corresponding squared gain functions are given by

Hj,L(f) ≡ |Hj,L(f)|2 = H1,L(2
j−1f)

j−2∏

k=0

G1,L(2
kf) and Gj,L(f) ≡ |Gj,L(f)|2 =

j−1∏

k=0

G1,L(2
kf). (13)

The following technical lemma is needed in the proof of Theorem 5.1 and in carrying out the

calculations reported in §6 (all proofs are in the appendix). The lemma is useful by itself since it
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provides an integral expression for calculating the covariance between two wavelet coefficients on

possibly different scales, expressed in terms of transfer functions for the wavelet filters at each scale,

and the SDF of the {Xt} process. The integral can be computed easily in terms of a cross product of

the autocovariance for the differenced process, {Yt}, with the cumulative sum of the wavelet filters

at both wavelet scales. In Equation (14) below, the asterisk denotes complex conjugation.

Lemma 4.1 Let {Xt} be a stochastic process with dth order stationary backward differences {Yt}.
Let SX(·) denote the SDF for {Xt}, and let {sY,τ} denote the ACVS for {Yt}. As defined by

Equation (11), let {Wj,t} and {Wj′,t} be the level j and j ′ wavelet coefficients for {Xt} based upon

a wavelet filter {h1,l} of width L ≥ 2d with transfer function H1,L(·). For all possible levels j and j ′

and all t and t′, we have

cov {Wj,t,Wj′,t′} =

∫ 1/2

−1/2
Hj,L(f)H

∗
j′,L(f)SX(f)e−i2πf(2j (t+1)−2j′ (t′+1)) df (14)

=

Lj−d−1∑

l=0

Lj′−d−1∑

l′=0

b
(d)
j,l b

(d)
j′,l′ sY,2j(t+1)−2j′ (t′+1)+l′−l, (15)

where Hj,L(·) is the transfer function defined in Equation (12) for the jth level wavelet filter {hj,l},
while {b(d)j,k} is the dth order cumulative summation of {hj,l}; i.e., with b

(0)
j,l ≡ hj,l, we have, for

k = 1, . . . , d,

b
(k)
j,l =

l∑

m=0

b
(k−1)
j,m , l = 0, . . . , Lj − k − 1.

5 Decorrelation of Wavelet Coefficients Between Scales

We now state our main result, which in effect says that the wavelet coefficients on different scales

for a quite general class of stochastic processes are asymptotically uncorrelated as the wavelet filter

width L increases.

Theorem 5.1 Let {Xt} be a stochastic process possessing an SDF that can be expressed as SX(f) =

B(f)/|4 sin2(πf)|δ, where B(·) is a bounded function that is the SDF for some stationary process.

As defined by Equation (11), let {Wj,t} and {Wj′,t} be the level j and j ′ wavelet coefficients for

{Xt} based upon a wavelet filter {h1,l} of width L with transfer function H1,L(·). Then for j 6= j ′,

cov {Wj,t,Wj′,t′} → 0 at rate L−1/4 as L→∞.
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This (possibly conservative) rate of decorrelation is indicated by the proof of the theorem. The

following heuristic argument says that the above theorem is plausible. Let

HI(f) ≡





0, |f | < 1/4;

1, f = 1/4; and

2, 1/4 < |f | ≤ 1/2,

and define HI(·) outside of the interval [−1/2, 1/2] so that it is a periodic function with unit period

corresponding to the squared gain function for an ideal high-pass filter. Lai (1995) shows that

H1,L(f) → HI(f) as L → ∞. By making use of Equations (10) and (13), we can argue that

Hj,L(·) converges to the squared gain function for a ideal band-pass filter with pass-band given

by |f | ∈ [2−(j+1), 2−j ]. For j = 1, 2, . . ., these ideal squared gain functions disjointly partition

the frequency interval [−1/2, 1/2]. The spectral representation theorem for zero mean stationary

processes states that

Xt =

∫ 1/2

−1/2
ei2πft dZ(f),

where {Z(f)} is a process with orthogonal increments (Cramér, 1942). For large L, we thus have

Wj,t ≈
∫

|f |∈[2−(j+1),2−j ]
Hj,L(f)e

i2πft dZ(f).

The pass-bands for wavelet coefficients do not intersect, and hence the fact that {Z(f)} has uncor-

related increments implies that Wj,t and Wj′,t′ are uncorrelated when j 6= j ′.

6 Examples of the Decorrelation Property

Here we demonstrate that the asymptotic result stated in Theorem 5.1 is in fact a good approxima-

tion for wavelet filters used in practice. Figure 1 shows plots of the maximum absolute correlation

between Wj,t and Wj′,t′ for a fixed pair (j, j ′) of levels satisfying 1 ≤ j < j ′ ≤ 4 as t and t′ range

over all possible integers. The process from which the wavelet coefficients are formed is an FD

process with δ = 0.4, and the wavelet filters are either the D(L) (pluses) or LA(L) filters (circles)

of widths L = 2, 4, . . . , 20 (the case L = 2 for both families corresponds to the Haar wavelet filter,

and the LA(4) and LA(6) filters are the same as the the D(4) and D(6) filters). This particular FD

process is cited in Percival and Walden (2000) as an example of one for which the DWT acts as

a decent within-scale prewhitening transform. The plots in the figure indicate that the maximum
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absolute between-scale correlation decreases as L increases in keeping with Theorem 5.1. Whereas

the maximum correlation for the Haar wavelet (L = 2) can be as high as 0.2 (j = 2, j ′ = 4), this

correlation decreases to at most 0.03 (j = 3, j ′ = 4) when we use a filter of width L = 20. This

example also illustrates that, for larger |j − j ′|, we get faster decorrelation as L→∞.

Figure 2 shows a second example, now for an autoregressive process of unit order given by

Xt = −0.9Xt−1 + εt, where {εt} is a zero mean Gaussian white noise process. This process is cited

in Percival and Walden (2000) as an example of one for which the wavelet coefficients within unit

scale are not approximately white noise. Again we can see the between-scale correlations decrease as

we increase L, but this decrease need not be monotonic (j = 2 and 3). Thus, even though the DWT

might not be an adequate within-scale decorrelator for a particular process, we can still achieve

decent between-scale decorrelation by increasing L, again in keeping with Theorem 5.1.

We note one pathological process (not typical of time series seen in practical applications) for

which the covariance between scales decreases to zero with increasing L, but the correlation between

certain scales does not. Consider a Gaussian white noise process that is bandlimited to the frequency

range (−1/8, 1/8); i.e., the SDF is identically zero for |f | ∈ [1/8, 1/2]. The conditions for Theorem

5.1 hold, so the covariance between wavelet coefficients on levels 1 and 2 does decrease to zero;

however, a plot similar to those in Figures 1 and 2 indicates correlations close to unity for all L

considered. The reason for the high correlation is that, because there is no power in the nominal

pass-bands associated with levels 1 and 2, both sets of wavelet coefficients essentially depend on

leakage from the same frequency range (−1/8, 1/8) and hence are coupled together.

7 Implications for Time Series Analysis

In this paper we have established that, for a quite general class of stochastic processes, the covariance

of between-scale wavelet coefficients decreases as we increase the width L of the wavelet filter. It

is not possible to establish a similar general result for showithin-scale wavelet coefficients. In fact

increasing L can actually lead to an increase in the covariance of these coefficients, a fact that is

documented in Percival and Walden (2000). The statistical implication and utilty of these facts is

that, in order to study the exact asymptotic properties of certain wavelet-based statistics, we can let
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L get large in order to obtain approximately uncorrelated between-scale coefficients, but we are then

faced with the problem of modeling the within-scale covariance structure (this same difficulty arises

in the context of wavelet thresholding, where the use of block thresholding techniques also requires

an understanding of the within-scale structure; see, e.g., Cai and Silverman, 2001). In previous work

(Craigmile et al., 2000; Craigmile et al., 2004), we have found that, for processes for which the DWT

does a reasonable job of decorrelating within scales (e.g., an FD process), we can model the remaining

within-scale covariance quite well using an autoregressive (AR) process of order p = 1 or 2. Now a

wide class of stationary processes can be approximated arbitrarily well using an AR(p) process of

high enough order. This suggests that an overall approach to a useful asymptotic theory for statistics

based on wavelet coefficients is to let L → ∞ and p → ∞. This decorrelation result gives some

asymptotic justification for wavelet-based cross validation (Nason, 1996), wavelet-based least square

estimation methods (Abry et al., 1993; Abry et al., 1995; Veitch and Abry, 1999; Bardet et al., 2000),

and wavelet-based bootstrapping methods (Sabatini, 1999; Percival et al., 2000). This is because,

for large enough L we can consider the different wavelet scales to be approximately uncorrelated,

and in the Gaussian case we can resample from each wavelet scale (almost) independently of other

scales. The result also gives guidance on designing wavelet-based methods for the simulation of

Gaussian processes (e.g., Percival and Walden, 2000, Section 9.4).

It is of interest to contrast our basic result to a similar one arising in spectral analysis. Suppose

we observe a time series that is a realization of {Xt : t ∈ Z} belonging to the class of processes

given in Theorem 5.1; i.e., {Xt} is a stochastic process with an SDF that can be expressed as

SX(f) = B(f)/|4 sin2(πf)|δ, where B(·) is a bounded function that is the SDF for some stationary

process. The most popular estimator of the SDF is the periodogram, which is based upon the

squared magnitude of the coefficients of the discrete Fourier transform (DFT):

Ŝ(p)(fk) =
1

N

∣∣∣∣∣

N−1∑

t=0

Xt e
−2πfkt

∣∣∣∣∣

2

,

where fk = k/N denotes the kth Fourier frequency, k = 0, . . . , bN/2c. Consider two sequences

of Fourier frequencies fj and fk such that fj → f and fk → f ′ as N → ∞, where f and f ′ are

fixed frequencies such that 0 < f < f ′ < 1/2. Under these conditions, results in Beran (1994) and

Yajima (1989) indicate that Ŝ(p)(fj) and Ŝ(p)(fk) are asymptotically uncorrelated as N →∞ when

δ ∈ [−1/2, 1/2). This result is similar to between-scale decorrelation of wavelet coefficients, but there
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are some key differences. First, asymptotic between-scale decorrelation is in terms of filter width

L rather than sample size N and is a reasonable approximation for filter widths used in practice.

By contrast, even for very large N , the periodogram can suffer from severe bias, which invalidates

basic properties suggested by the asymptotic theory. Second, the theory for wavelet coefficients is

applicable when δ ≥ 1/2, which is not the case for the theory stated above for spectral analysis.

In general, the differencing operations that are embedded in the Daubechies wavelet filters make

it an easy matter for the DWT to handle nonstationary processes with stationary increments (i.e.,

δ ≥ 1/2) in a tractable manner. This stems from the fact that, if L is properly matched to the

order of differencing required to reduce the process to stationarity, the resulting wavelet coefficients

can be described as a portion of a zero mean stationary process. The situation is quite different for

DFT coefficients. Because the DFT does not have embedded differencing operations and because all

DFT coefficients involve the entire time series and can thus be adversely influenced by mismatches

between the beginning and end of the series, the DFT coefficients cannot be so easily described.

We close with a practical note. We have cast our theoretical development in terms of stochastic

processes defined over all integers. In practical applications, we must deal with a time series that can

be regarded as one realization of a finite portionX0, . . . , XN−1 of such a process. In the most common

implementation of the algorithm, the DWT of a time series involves a number of coefficients that are

circularly filtered, i.e., that combine together values from the beginning and end of the time series.

Other implementations of the DWT involve the use of reflection boundary conditions or boundary

wavelets. Regardless of the implementation chosen, these ‘boundary’ wavelet coefficients can have

markedly different statistical properties from those extracted from the corresponding theoretical

stochastic process. As L increases, the number of boundary coefficients on each scale increases. Use

of these boundary coefficients can result in biases in certain wavelet-based statistics. Clearly, before

increasing L, there is a need to carefully study how the benefit from a decrease in the between-scale

covariances is impacted by having fewer nonboundary coefficients to work with (this is a common

problem is most statistical applications when one filters data).
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8 Proofs

Proposition 8.1 is needed in the proof of Lemma 4.1.

Proposition 8.1 Let {hj,l} be the jth level wavelet filter of width Lj ≡ (2j − 1)(L− 1) + 1 formed

using the Daubechies unit level wavelet filter {h1,l} of width L. For any 0 ≤ d ≤ L/2, we can write

hj,l =

d∑

k=0

(
d

k

)
(−1)kb(d)j,l−k, (16)

where the filter {b(d)j,l } is defined to be the dth successive cumulative summation of {hj,l} and is of

width Lj − d.

Proof of Proposition 8.1 Equation (16) holds trivially when d = 0 because b
(d)
j,l = hj,l in this

case. Suppose now that it holds for some 0 ≤ d < L/2. We claim that it must hold for d + 1 also.

To establish the claim, we must show that, given (16), we have

hj,l =

d+1∑

k=0

(
d+ 1

k

)
(−1)kb(d+1)

j,l−k = (1−B)d+1b
(d+1)
j,l ,

where B is the backward shift operator (i.e., Bb
(d+1)
j,l = b

(d+1)
j,l−1 and Bkb

(d+1)
j,l = b

(d+1)
j,l−k for any

nonnegative integer k). Starting with the definition of b
(1)
j,l and using Equation (16), we have

b
(1)
j,l ≡

l∑

m=−∞
hj,m =

d∑

k=0

(
d

k

)
(−1)k

l∑

m=−∞
b
(d)
j,m−k =

d∑

k=0

(
d

k

)
(−1)k

l−k∑

m=−∞
b
(d)
j,m

= (1−B)d
l∑

m=−∞
b
(d)
j,m = (1−B)db

(d+1)
j,l

12



because {b(d+1)
j,l } is the cumulative sum of {b(d)j,l }. Hence

hj,l =

l∑

m=−∞
hj,m −

l−1∑

m=−∞
hj,m = b

(1)
j,l − b

(1)
j,l−1 = (1−B)b

(1)
j,l = (1−B)d+1b

(d+1)
j,l ,

as required.

To complete the proof of the proposition, we need to show that {b(d)
j,l } has width Lj−d, for which

we will also use an argument by induction. Since b
(0)
j,l = hj,l, the result holds trivially for d = 0.

Assume now that {b(d)j,l } has width Lj − d for some 0 ≤ d < L/2. Since {b(d+1)
j,l } is the cumulative

sum of {b(d)j,l }, it follows that the former has width Lj − d− 1 if we can show that

b
(d+1)
j,Lj−d−1 =

Lj−d−1∑

m=0

b
(d)
j,m = B

(d)
j (0) = 0,

where B
(d)
j (·) is the transfer function for {b(d)j,l }. From the solution to Exercise [304], Percival and

Walden (2000), the transfer function for {hj,l} can be written as Hj,L(f) = DL/2(f)Aj(f), where

D(f) = 1 − e−i2πf is the transfer function for the first order difference filter, while Aj(·) is a

continuous periodic function. Equation (16) says that we also have Hj,L(f) = Dd(f)B
(d)
j (f). Since

D(f) 6= 0 except at f = 0, we must have B
(d)
j (f) = DL/2−d(f)Aj(f) for all f 6= 0. By continuity,

B
(d)
j (0) = lim

f→0
B

(d)
j (f) = lim

f→0
DL/2−d(f) · lim

f→0
Aj(f) = DL/2−d(0)Aj(0) = 0

because L/2 > d, and hence DL/2−d(0) = 0. ¤

Proof of Lemma 4.1 The case d = 0 follows from Exercise [348a] of Percival and Walden (2000),

so we assume d ≥ 1. For convenience, define
(d
k

)
= 0 when k < 0 or k > d so that summations over k

below can be taken to range over all integers. It follows from the definition for Wj,t in Equation (11)

and from Proposition 8.1 that

Wj,t =
∑

l

[
∑

k

(
d

k

)
(−1)kb(d)j,l−k

]
X2j(t+1)−1−l

=
∑

l

[
∑

k

(
d

l − k

)
(−1)l−kb

(d)
j,k

]
X2j (t+1)−1−l

=
∑

k

[
∑

l

(
d

l − k

)
(−1)l−kX2j(t+1)−1−l

]
b
(d)
j,k

=
∑

k

[
∑

l

(
d

l

)
(−1)lX2j(t+1)−1−l−k

]
b
(d)
j,k =

∑

k

b
(d)
j,kY2j(t+1)−1−k ,

13



from which Equation (15) follows using the basic result

cov
{∑

j

cjUj ,
∑

k

dkVk

}
=
∑

j

∑

k

cjdk cov {Uj , Vk}.

As before, let B
(d)
j (·) and D(·) denote the transfer functions for, respectively, {b(d)

j,l } and the first

order backward difference filter, and note that D(f) = D(f)D∗(f). Starting from Equation (15)

and making use of Equations (1) and (3), we have

cov {Wj,t,Wj′,t′} =

Lj−d−1∑

l=0

Lj′−d−1∑

l′=0

b
(d)
j,l b

(d)
j′,l′

∫ 1/2

−1/2
SY (f)e

i2πf(2j (t+1)−2j′ (t′+1)+l′−l) df

=

∫ 1/2

−1/2




Lj−d−1∑

l=0

b
(d)
j,l e

−i2πfl






Lj′−d−1∑

l′=0

b
(d)
j′,l′e

−i2πfl′




∗

×SX(f)ei2πf(2j (t+1)−2j′ (t′+1)) df

=

∫ 1/2

−1/2
B

(d)
j (f)[B

(d)
j′ (f)]

∗SY (f)e
i2πf(2j′ (t′+1)−2j(t+1)) df

=

∫ 1/2

−1/2
Dd(f)B

(d)
j (f)[Dd(f)B

(d)
j′ (f)]

∗SY (f)

Dd(f)
ei2πf(2j′ (t′+1)−2j (t+1)) df

=

∫ 1/2

−1/2
Hj,L(f)H

∗
j′,L(f)SX(f)ei2πf(2j′ (t′+1)−2j(t+1)) df,

which is Equation (14). ¤

In preparation for our proof of Theorem 5.1, we state and prove some preliminary results.

Proposition 8.2 For f ∈ [0, 1/2], the squared gain function for the scaling filter {g1,l} can be

expressed as

G1,L(f) =
2
∫ π
2πf sin

L−1(y) dy

B(L/2, 1/2)
,

where B(·, ·) is the beta function; i.e.,

B(x, y) = 2

∫ π/2

0
sin2x−1(t) cos2y−1(t) dt.

Proof of Proposition 8.2 It follows directly from Equation (5.70), p. 168, Strang and Nguyen

(1996), that the Meyer form for G1,L(·) yields

G1,L(f) = 2− 2
∫ 2πf
0 sinL−1(y) dy∫ π
0 sinL−1(y) dy

.

14



Thus

G1,L(f) = 2

(∫ π
0 sinL−1(y) dy −

∫ 2πf
0 sinL−1(y) dy∫ π

0 sinL−1(y) dy

)
=

∫ π
2πf sin

L−1(y) dy
∫ π/2
0 sinL−1(y) dy

=
2
∫ π
2πf sin

L−1(y) dy

B(L/2, 1/2)
,

where, in the next to last step, we have made use of the fact that sinL−1(y) is symmetric about

y = π/2. ¤

Lemma 8.3 π/2− arcsin(
√
z) ≤ (π/2)(1 − z)1/2 for z ∈ [0, 1].

Proof of Lemma 8.3 Let f(z) = π/2− arcsin(
√
z)− (π/2)(1 − z)1/2. Then

f ′(z) = − 1

2
√
z(1− z2)

+
π

4
√

(1− z)
=

π
√
z(1 + z)− 2

4
√
z(1− z)(1 + z)

.

We now solve f ′(z) = 0 with respect to z ∈ [0, 1]. Since the denominator is nonnegative and finite,

we need only examine the numerator f ′
(n)(z) ≡ π

√
z(1 + z)− 2. Algebraic manipulations show that

the condition f ′(n)(z) = 0 is equivalent to z2 + z − (2/π)2 = 0. The roots of f ′(n)(z) are given by

z = −1

2
±
√

1 + 16/π2

2
.

Thus

f ′(n)(z) =

(
z − −1 +

√
1 + 16/π2

2

)(
z − −1−

√
1 + 16/π2

2

)
.

For z ∈ [0, 1], f ′(n)(z) has a turning point at z = (−1 +
√

1 + 16/π2)/2
.
= 0.309. We have f ′(z) is

negative below the turning point, and positive above it, implying that f(z) is decreasing below the

turning point, and increasing above it. Now f(0) = π/2−0−π/2 = 0 and f(1) = π/2−π/2−0 = 0,

yielding the desired result. ¤

Theorem 8.4
∫ 1/2
0 H1,L(f)G1,L(f) df → 0 as L→∞.

Proof of Theorem 8.4 We have

∫ 1/2

0
H1,L(f)G1,L(f) df =

∫ 1/2

0
G1,L(1/2 − f)G1,L(f) df = 2

∫ 1/4

0
G1,L(1/2− f)G1,L(f) df

≤ 4

∫ 1/4

0
G1,L(1/2− f) df

15



by symmetry of G1,L(f) about f = 1/4 and by using the fact (from Equation (10)) that G1,L(f) ≤ 2

for all f . To prove the result we need only show that the final integral above goes to zero as L→∞.

From proposition 8.2

∫ 1/4

0
G1,L(1/2 − f) df =

2

B(L/2, 1/2)

∫ 1/4

0

∫ π

2π(1/2−f)
sinL−1(y) dy df.

Now consider the numerator. Using the change of variable u = 2πf , we have

∫ 1/4

0

∫ π

2π(1/2−f)
sinL−1(y) dy df =

1

2π

∫ π/2

0

∫ π

π−u
sinL−1(y) dy du =

1

2π

∫ π/2

0

∫ u

0
sinL−1(y) dy du

by the symmetry of sinL−1(y) about y = π/2. We now make the change of variable z = sin2(y).

Then dz = 2 sin(y) cos(y) dy = 2
√
z(1− z) dy and the above expression is equal to

1

2π

∫ π/2

0

∫ sin2(u)

0

z(L−1)/2

2
√
z(1− z)

dz du =
1

4π

∫ π/2

0

∫ sin2(u)

0
zL/2−1(1− z)−1/2 dz du

=
1

4π

∫ π/2

0

∫ 1

0
zL/2−1(1− z)−1/2I[z<sin2(u)] dz du

=
1

4π

∫ π/2

0

∫ 1

0
zL/2−1(1− z)−1/2I[arcsin(

√
z)<u] dz du

=
1

4π

∫ 1

0
zL/2−1(1− z)−1/2

∫ π/2

arcsin(
√
z)
du dz

=
1

4π

∫ 1

0
zL/2−1(1− z)−1/2

(π
2
− arcsin(

√
z)
)
dz

≤ 1

4π

∫ 1

0
zL/2−1(1− z)−1/2

(π
2

)
(1− z)1/2 dz

=
1

8

∫ 1

0
zL/2−1 dz = (4L)−1,

where, in the next to last line, we have made use of Lemma 8.3. Thus

∫ 1/4

0
G1,L(1/2 − f) df ≤ 1

2L ·B(L/2, 1/2)
=

Γ(L/2 + 1/2)

2L · Γ(L/2)Γ(1/2) =
Γ(L/2 + 1/2)

4Γ(L/2 + 1)
√
π
.

Using Stirling’s formula Γ(x+ 1) ∼
√
2πxx+1/2e−x, we have

Γ (L/2− 1/2 + 1) ∼
√
2π[(L− 1)/2]L/2e−L/2+1/2 and Γ(L/2 + 1) ∼

√
2π(L/2)L/2+1/2e−L/2,

from which it follows that

Γ(L/2 + 1/2)

4Γ(L/2 + 1)
√
π
∼ [(L− 1)/2]L/2

(L/2)(L+1)/24e1/2
√
π

=
(1− 1/L)L/2

(L/2)1/24e1/2
√
π
.
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Now

log([1− 1/L]L/2) =
L

2
log(1− 1/L) ∼ L

2
· 1
L

=
1

2
,

so (1− 1/L)L/2 → exp(1/2) as L→∞. Hence

(1− 1/L)L/2

(L/2)1/24e1/2
√
π

= O(1/L1/2),

which goes to zero as L→∞. ¤

Corollary 8.5 Suppose that j ≥ 1. As L→∞
∫ 1/2

0
H1,L(2

j−1f)G1,L(2
j−1f) df → 0.

Proof of Corollary 8.5 Let u = 2j−1f . Then

2−j+1

∫ 2j−2

0
H1,L(u)G1,L(u) du = 2−j+1

2j−1−1∑

j=0

∫ 1/2

0
H1,L(u)G1,L(u) du.

by the periodicity and evenness of H(·) and G(·). The result follows by Theorem 8.4. ¤

Proof of Theorem 5.1 Without loss of generality, assume that j < j ′. Using Equation (14) and

the fact that |eix| = 1 for all x, it follows that

|cov {Wj,t,Wj′,t′}| ≤
∫ 1/2

−1/2

∣∣Hj,L(f)H
∗
j′,L(f)

∣∣SX(f) df

= 2

∫ 1/2

0

[
Hj,L(f)Hj′,L(f)S

2
X(f)

]1/2
df.

It thus suffices to show that the second integral goes to zero as L→∞. Since Equation (10) implies

that 0 ≤ G1,L(f) ≤ 2 for all f , it follows from Equation (13) that

Hj,L(f)Hj′,L(f)S
2
X(f) =

[
H1,L(2

j−1f)

j−2∏

k=0

G1,L(2
kf)

][
H1,L(2

j′−1f)

j′−2∏

k=0

G1,L(2
kf)

]
S2
X(f)

≤ 2j+j′−3
[
H1,L(2

j−1f)G1,L(2
j−1f)

][
H1,L(2

j′−1f)S2
X(f)

]
,

where, in the first line above, we interpret the product within the first set of brackets to be unity

when j = 1. Using the above and the Cauchy–Schwarz inequality, we have

|cov {Wj,t,Wj′,t′}|2 ≤ 2j+j′−2

(∫ 1/2

0

[
H1/2

1,L(2
j−1f)G1/2

1,L (2
j−1f)

]
·
[
H1/2

1,L(2
j′−1f)SX(f)

]
df

)2

≤ 2j+j′−2

(∫ 1/2

0
H1,L(2

j−1f)G1,L(2
j−1f) df

)(∫ 1/2

0
H1,L(2

j′−1f)S2
X(f) df

)
.
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Corollary 8.5 indicates that the first integral in the last line goes to zero as L→∞, so the desired

results follows if we can show that
∫ 1/2

0
H1,L(2

j′−1f)S2
X(f) df =

∫ 1/2

0

H1,L(2
j′−1f)B2(f)

|4 sin2(πf)|2δ df ≤ C (17)

where C is a finite constant independent of L when L is large enough. Since B(·) is nonnegative

and bounded above by, say, C0, we have
∫ 1/2

0
H1,L(2

j′−1f)S2
X(f) df ≤ C2

0

∫ 1/2

0

H1,L(2
j′−1f)

|4 sin2(πf)|2δ df.

If δ ≤ 0, the right-hand side is bounded by 2−4δ+1C2
0 , so Equation (17) holds in this case. Suppose

δ > 0. The change of variable u = 2j
′−1f yields

∫ 1/2

0

H1,L(2
j′−1f)

|4 sin2(πf)|2δ df = 2−j′+1

∫ 2j′−2

0

H1,L(u)

|4 sin2(2−j′+1πu)|2δ du.

Now 1/|4 sin2(2−j′+1πu)|2δ is a decreasing function over the interval [0, 1/2], so its maximum value

over u ∈ [1/2, 2j
′−2] occurs at u = 1/2 and is equal to, say, C1. Hence

∫ 1/2

0
H1,L(2

j′−1f)S2
X(f) df ≤ 2−j′+1C2

0

(
2C1 +

∫ 1/2

0

H1,L(u)

|4 sin2(2−j′+1πu)|2δ du
)
,

so the desired result follows if
∫ 1/2

0

H1,L(u)

|4 sin2(2−j′+1πu)|2δ du ≤ C2

for some finite constant C2 independent of L when L is large enough. Making use of sin(2x) =

2 sin(x) cos(x) yields

sin(2−j′+1πu) =
sin(2−j′+2πu)

2 cos(2−j′+1πu)
and hence sin(2−j′+1πu) =

sin(πu)

2j′−1
∏j′−1

k=1 cos(2−kπu)
.

For u ∈ [0, 1/2], the product in the denominator is positive and bounded above by 2j′−1 and hence
∫ 1/2

0

H1,L(u)

|4 sin2(2−j′+1πu)|2δ du ≤ 24δ(j′−1)

∫ 1/2

0

H1,L(u)

|4 sin2(πu)|2δ du ≡ ν2
L,

where ν2
L is the unit level wavelet variance for an FD process with fractional difference parameter

2δ and is finite as along as L ≥ max{2b2δ + 1/2c, 2} ≡ L0 (Percival and Walden, 2000). Thus, for

all L ≥ L0,
∫ 1/2

0

H1,L(u)

|4 sin2(πu)|2δ du ≤
∫ 1/6

0

H1,L0(u)

|4 sin2(πu)|2δ du+
2

3
≡ C2

24δ(j′−1)
<∞,

where we have made use of the facts that (i) H1,L(f) monotonically decreases to zero as L increases

for all f ∈ (0, 1/6] (Lai, 1995); (ii) H1,L(u) ≤ 2; (iii) the maximum value of 1/|4 sin2(πu)|2δ over

u ∈ [1/6, 1/2] occurs at u = 1/6; and (iv) sin(π/6) = 1/2. ¤
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Figure 1: Maximum absolute correlation between wavelet coefficients Wj,t and Wj′,t′ for an FD

process with δ = 0.4. For 1 ≤ j < j ′ ≤ 4, the maximum correlation was determined over all possible

t and t′ for Daubechies least asymmetric filters (circles) and extremal phase filters (pluses) of widths

L = 2, 4, . . . , 18 and 20.
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Figure 2: As in Figure 1, but now for an AR(1) process with φ = −0.9.
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