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Abstract

We describe estimators χn(X0,X1, . . . ,Xn), which when applied
to an unknown stationary process taking values from a countable al-
phabet X , converge almost surely to k in case the process is a k-th
order Markov chain and to infinity otherwise.
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1 Introduction

When faced with an unknown stationary and ergodic stochastic process
X1, X2, . . . , Xn, . . . one may try to determine various properties of this pro-
cess from the successive observations up to time n. For example, one might
try to estimate the entropy of the process. Several schemes of the form
gn(X1, . . . , Xn) are known which will converge almost surely to the entropy
of the process {Xn} cf. Bailey [1], Csiszár and Shields [2], Csiszár [3], Orn-
stein and Weiss [8], [7], [9], Kontoyiannis, Algoet, Suhov and Wyner [6]
and Ziv [10]. However, if one just wants to determine whether or not the
process has positive entropy (often associated with the popular notion of
chaos) then there is no sequence of two valued functions en(X1, . . . , Xn) ∈
{ZERO, POSITIVE} with the property that almost surely, en stabilize at
ZERO for all zero entropy processes and at POSITIV E for all positive
entropy processes. (While this result does not appear explicitly in Ornstein
amd Weiss [7], it can be readily established using a very simple variant of
the construction given there in § 4.)

A similar situation obtains in testing for membership in the class of k-th
order Markov chains. One can estimate the order of a Markov chain by e.g
the method of Csiszár and Shields [2] or Csiszár [3]. They show that the
minimum description length Markov estimator will converge almost surely
to the correct order if the alphabet size is bounded a priori. Without this
assumption they show that this is no longer true. To accomplish their goals
they study the large scale typicality of Markov sample paths. A further
negative result is that of Bailey [1] who showed that no two valued test
exists for testing mixing Markov vs. not mixing Markov.

We will present a more direct estimator for the order of a Markov chain
which also uses the fact that there are universal rates for the convergence
of empirical k-block distributions in this class. Our approach enables us to
dispense with the assumption that the alphabet size is bounded, indeed it
may even be infinite, as long as there is a finite memory. In addition we will
show that if the process is not a Markov chain then the estimate for the order
will tend to infinity. This is in complete analogy with the entropy estimation
that we mentioned earlier.
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2 The Order Estimator

Let {Xn}
∞
n=−∞ be a stationary and ergodic time series taking values from a

discrete (finite or countably infinite) alphabet X . (Note that all stationary
time series {Xn}

∞
n=0 can be thought to be a two sided time series, that is,

{Xn}
∞
n=−∞. ) For notational convenience, let Xn

m = (Xm, . . . , Xn), where
m ≤ n. Note that if m > n then Xn

m is the empty string.
Let p(x0

−k) and p(y|x0
−k) denote the distribution P (X0

−k = x0
−k) and the

conditional distribution P (X1 = y|X0
−k = x0

−k), respectively.
A discrete alphabet stationary time series is said to be a Markov chain if for
some K ≥ 0, for all y ∈ X , i ≥ 1 and z0−K−i+1 ∈ XK+i, if p(z0−K−i+1) > 0
then

p(y|z0−K+1) = p(y|z0−K−i+1).

The order of a Markov chain is the smallest such K.

In order to estimate the order we need to define some explicit statistics.

For k ≥ 0 let Sk denote the support of the distribution of X0
−k as

Sk = {x0
−k ∈ X k+1 : p(x0

−k) > 0}.

Define
∆k = sup

1≤i

sup
(z0

−k−i+1
,x)∈Sk+i

∣

∣

∣p(x|z0−k+1)− p(x|z0−k−i+1)
∣

∣

∣ .

We will divide the data segment Xn
0 into two parts: X

⌈n
2
⌉−1

0 and Xn
⌈n
2
⌉. Let

S
(1)
n,k denote the set of strings with length k+1 which appear at all in X

⌈n
2
⌉−1

0 .
That is,

S
(1)
n,k = {x0

−k ∈ X k+1 : ∃k ≤ t ≤ ⌈
n

2
⌉ − 1 : X t

t−k = x0
−k}.

For a fixed 0 < γ < 1 let S
(2)
n,k denote the set of strings with length k + 1

which appear more than n1−γ times in Xn
⌈n
2
⌉. That is,

S
(2)
n,k = {x0

−k ∈ X k+1 : #{⌈
n

2
⌉+ k ≤ t ≤ n : X t

t−k = x0
−k} > n1−γ}.

Let
Sn
k = S

(1)
n,k

⋂

S
(2)
n,k.
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For notational convenience, let C(x|z0−k+1 : [n1, n2]) denote the empirical
conditional probability of X1 = x given X0

−k+1 = z0−k+1 from the samples
(Xn1, . . . , Xn2), that is,

C(x|z0−k+1 : [n1, n2]) =
#{n1 + k ≤ t ≤ n2 : X

t
t−k = (z0−k+1, x)}

#{n1 + k − 1 ≤ t ≤ n2 − 1 : X t
t−k+1 = z0−k+1}

where 0/0 is defined as 0.
We define the empirical version of ∆k as follows:

∆̂n
k = max

1≤i≤n
max

(z0
−k−i+1

,x)∈Sn
k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

.

Observe, that by ergodicity, for any fixed k,

lim inf
n→∞

∆̂n
k ≥ ∆k almost surely. (1)

We define an estimate χn for the order from samples Xn
0 as follows. Let

0 < β < 1−γ

2
be arbitrary. Set χ0 = 0, and for n ≥ 1 let χn be the smallest

0 ≤ kn < n such that ∆̂n
kn

≤ n−β.

THEOREM. If the stationary and ergodic time series {Xn} taking values

from a discrete alphabet happens to be a Markov chain with any finite order

then χn equals to the order eventually almost surely, and if it is not Markov

with any finite order then χn → ∞ almost surely.

Application: Let M > 0 be arbitrary. The goal is to decide if the discrete
alphabet stationary and ergodic time series is a Markov chain with order
less than M or not. One may use χn and say YES if χn < M and say NO
otherwise. By the Theorem, eventually, the answer will be correct.

3 Proof of the Theorem

Proof: If the process is a Markov chain, it is immediate that for all k greater
than or equal the order, ∆k = 0. For k less than the order ∆k > 0. If the
process is not a Markov chain with any finite order then ∆k > 0 for all k.
Thus by (1) if the process is not Markov then χn → ∞ and if it is Markov
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then χn is greater or equal the order eventually almost surely. We have to
show that χn is less or equal the order eventually almost surely provided that
the process is a Markov chain.
Assume that the process is a Markov chain with order k. Let n ≥ k. We will
estimate the probability of the undesirable event as follows:

P (∆̂n
k > n−β|X

⌈n
2
⌉

0 ) ≤
n
∑

i=1

P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

> n−β|X
⌈n
2
⌉

0 ).

We can estimate each probability in the sum as the sum of two terms:

P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

> n−β |X
⌈n
2
⌉

0 )

≤ P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− p(x|z0−k+1)

∣

∣

∣

∣

> 0.5n−β|X
⌈n
2
⌉

0 )

+ P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

p(x|z0−k+1)− C(x|z0−k−i+1 : [⌈
n

2
⌉, n])

∣

∣

∣

∣

> 0.5n−β|X
⌈n
2
⌉

0 ).

We overestimate these probabilities. For any m ≥ 0 and x0
−m define σm

i (x0
−m)

as the time of the i-th ocurrence of the string x0
−m in the data segment Xn

⌈n
2
⌉,

that is, let σm
0 (x0

−m) = ⌈n
2
⌉+m− 1 and for i ≥ 1 define

σm
i (x

0
−m) = min{t > σm

i−1(x
0
−m) : X

t
t−m = x0

−m}.

Now

P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

> n−β|X
⌈n
2
⌉

0 )

≤ P ( max
(z0

−k+1
,x)∈S

(1)
n,k

sup
j>n1−γ

∣

∣

∣

∣

∣

∣

1

j

j
∑

r=1

1{X
σ
k−1
r (z0

−k+1
)
=x} − p(x|z0−k+1)

∣

∣

∣

∣

∣

∣

> 0.5n−β|X
⌈n
2
⌉

0 )

+ P ( max
(z0

−k−i+1
,x)∈S

(1)
n,k+i

sup
j>n1−γ

∣

∣

∣

∣

∣

∣

1

j

j
∑

r=1

1{X
σ
k+i−1
r (z0

−k−i+1
)
=x} − p(x|z0−k+1)

∣

∣

∣

∣

∣

∣

> 0.5n−β|X
⌈n
2
⌉

0 )
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Since both S
(1)
n,k and S

(1)
n,k+i depend solely on X

⌈n
2
⌉

0 we get

P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

> n−β|X
⌈n
2
⌉

0 )

≤
∑

(z0
−k+1

,x)∈S
(1)
n,k

∞
∑

j=⌈n1−γ⌉

P (

∣

∣

∣

∣

∣

∣

1

j

j
∑

r=1

1{X
σ
k−1
r (z0

−k+1
)
=x} − p(x|z0−k+1)

∣

∣

∣

∣

∣

∣

> 0.5n−β|X
⌈n
2
⌉

0 )

+
∑

(z0
−k−i+1

,x)∈S
(1)
n,k+i

∞
∑

j=⌈n1−γ⌉

P (

∣

∣

∣

∣

∣

∣

1

j

j
∑

r=1

1{X
σ
k+i−1
r (z0

−k−i+1
)
=x}

−p(x|z0−k+1)
∣

∣

∣ > 0.5n−β|X
⌈n
2
⌉

0 ).

Each of these represents the deviation of an empirical count from its mean.
The variables in question are independent since whenever the block z0−k+1

occurs the next term is chosen using the same distribution p(x|z0−k+1). Thus
by Hoeffding’s inequality (cf. Hoeffding [5] or Theorem 8.1 of Devroye et.
al. [4]) for sums of bounded independent random variables and since the

cardinality of both S
(1)
n,k and S

(1)
n,k+i is not greater than (n+ 2)/2, we have

P ( max
(z0

−k−i+1
,x)∈Sn

k+i

∣

∣

∣

∣

C(x|z0−k+1 : [⌈
n

2
⌉, n])− C(x|z0−k−i+1 : [⌈

n

2
⌉, n])

∣

∣

∣

∣

> n−β|X
⌈n
2
⌉

0 )

≤ 2
n+ 2

2

∞
∑

j=⌈n1−γ⌉

2e−2n−2βj .

Thus
P (∆̂n

k > n−β |X
⌈n
2
⌉

0 ) ≤ n(n+ 2)4e−2n−2β+1−γ

.

Integrating both sides we get

P (∆̂n
k > n−β) ≤ n(n + 2)4e−2n−2β+1−γ

.

The right hand side is summable provided 2β+ γ < 1 and the Borel-Cantelli
Lemma yields that P (∆̂n

k ≤ n−β eventually) = 1. Thus χn ≤ k eventually
almost surely provided the process is Markov with order k. The proof of the
Theorem is complete.
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