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Stability and Capacity of Regular Wireless Networks
Gökhan Mergen, Student Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—We study the stability and capacity problems in reg-
ular wireless networks. In the first part of the paper, we provide a
general approach to characterizing the capacity region of arbitrary
networks, find an outer bound to the capacity region in terms of the
transport capacity, and discuss connections between the capacity
formulation and the stability of node buffers. In the second part
of the paper, we obtain closed-form expressions for the capacity
of Manhattan (two-dimensional grid) and ring networks (circular
array of nodes). We also find the optimal (i.e., capacity-achieving)
medium access and routing policies. Our objective in analyzing
regular networks is to provide insights and design guidelines for
general networks. The knowledge of the exact capacity enables
us to quantify the loss incurred by suboptimal protocols such as
slotted ALOHA medium access and random-walk-based routing.
Optimal connectivity and the effects of link fading on network ca-
pacity are also investigated.

Index Terms—Capacity, multipacket reception, optimal con-
nectivity, regular topology, scheduling, slotted ALOHA, stability,
transport capacity, wireless networks.

I. INTRODUCTION

THE network capacity problem deals with finding the
fundamental limits on achievable communication rates in

wireless networks. Computing the network capacity requires an
optimization with respect to medium access and routing poli-
cies. For general networks, this task is typically prohibitive due
to the excessive dimensionality of the problem. As a result, one
has to contend with certain asymptotics and order computations
(e.g., [1], [2]).

In this paper, we aim to provide an exception to this rule.
Namely, we analyze certain regular networks for which we can
compute the capacity explicitly. We obtain analytical expres-
sions for the capacity, and find the leading coefficient besides
the scaling law. The knowledge of the coefficient enables us
to make comparisons between various design choices that af-
fect the coefficient but not the scaling law. For example, we
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Fig. 1. Examples of regular networks. (a) Manhattan. (b) Manhattan with
fading links. (c) Ring.

quantify the loss incurred by suboptimal protocols and the ef-
fects of increasing connectivity. We also find the optimal (i.e.,
capacity-achieving) medium access and routing policies.

Before analyzing the capacity of regular networks, we
provide a characterization of the capacity region of arbitrary
networks. This characterization shows that every rate in the
capacity region can be achieved by a class of policies that do
randomized medium access and routing. Our formulation also
suggests a natural outer bound on the capacity region in terms
of the transport capacity of the network. To be able to consider
regular networks, we extend the original definition of transport
capacity [1] to networks with time-varying topology and ar-
bitrary distance metric. The generalized transport capacity is
used extensively in proving upper bounds on the capacity of
regular networks.

The capacity formulation assumes that there are always
packets waiting to be delivered at the source nodes. However,
in reality, data packets arrive randomly in time, and the node
buffers should be kept stable for proper network operation.
Using a general network model with time-varying topology, we
find a mild condition on the reception channel under which the
proposed randomized policies stabilize the node buffers for all
arrival rates in the capacity region.

The Manhattan network is a two-dimensional grid with size
(Fig. 1). Every node has four neighbors, and the

nodes on the edge are connected to the nodes on the opposite
edge forming a torus. We use the multipacket reception (MPR)
channel model [3], which has been previously considered as an
abstraction for code-division multiple access (CDMA) and mul-
tiple-antenna uplink. It is first shown that the capacity of the
Manhattan network is

where the coefficient (given in Section IV) depends only on
the channel reception capability.1 In case nodes can simultane-
ously receive multiple packets, increases but the form of
does not change.

1When f and g are functions of N , we say that f(N) = O(g(N)) if there
exists a scalar C such that jf(N)j < Cg(N) for all N .

0018-9448/$20.00 © 2005 IEEE



MERGEN AND TONG: STABILITY AND CAPACITY OF REGULAR WIRELESS NETWORKS 1939

Even though the capacity can be achieved by optimal medium
access and routing, it is important to quantify the loss due to
suboptimal, yet more practical, control policies. We analyze two
extremes: a simple medium-access method (slotted ALOHA)
and a simple routing protocol based on random walk. We show
that the maximum achievable rate with slotted ALOHA medium
access and optimal routing is

where the coefficient (given in Section IV-B) is smaller
than . On the other hand, the achievable rate with optimal
medium access and random-walk-based routing is shown to be

. These results suggest that the medium-access
method in general does not change the order of the capacity, but
the routing does change the order, and a poor routing protocol
can significantly degrade the performance of large networks.

We next consider the case where the links in the Manhattan
network are subject to time-varying fading (Fig. 1(b)). We use
the collision channel model with a simple model for fading;
links become ON or OFF randomly in each slot with probabil-
ities , respectively. In case the control policy does not
know the link states before making transmission decisions, we
say that the policy is without link-state information (LSI). The
capacity without LSI is shown to be

where the coefficient is given in Section V. We develop
bounds on the capacity with LSI (denoted by #). Namely, we
show that the ratio # satisfies

#

Furthermore, the bounds are tight in two extremes, i.e., #

converges to in the limit . Similarly, #

converges to in the limit . These bounds
quantify the gain due to the knowledge of link state information.

Finally, we look at the optimal network-connectivity prob-
lem. Gupta and Kumar [1], and Gallager and Bertsekas ([4, p.
350]) discussed the tradeoff between throughput and connec-
tivity, and argued that minimizing transmission radius while
keeping the network connected leads to the highest throughput.
Our analysis points out two cases where choosing minimal con-
nectivity is not optimal. In the Manhattan network, we show that
increasing connectivity from minimal to two-hop yields 54%
capacity increase if the nodes are capable of receiving eight or
more packets simultaneously. Simultaneous receptions are par-
ticularly relevant for networks with spread spectrum and/or mul-
tiple antennas; in such systems, we expect performance gains
from nonminimal connectivity. On the other hand, in ring net-
works (Fig. 1(c)), the capacity is shown to double by using
higher connectivity. The capacity increase in the ring is not
because of multipacket receptions, but because of the linear
topology. These examples show that minimal connectivity is not
always optimal, and there are potential benefits of higher con-
nectivity depending on the channel usage and network topology.

Network capacity problems have been studied in several con-
texts. The early works focused on the computation of achievable
rates with distributed protocols such as ALOHA (e.g., [5], [6],
[4, p. 346]) and time-division multiple access (TDMA) (e.g.,
[7], [8]). Silvester and Kleinrock analyzed the capacities of reg-
ular networks with the slotted ALOHA protocol in [5], [6]. Our
analysis of regular networks extend Silvester and Kleinrock’s
results in several directions considering centralized control as
well as slotted ALOHA.

Gupta and Kumar [1] initiated a formal capacity analysis of
random and arbitrary networks. Unlike most of the prior studies
which started with a graph model having transmission powers
fixed, Gupta and Kumar considered a joint optimization of trans-
mission powers and schedules. They showed the fundamental
result that the maximum per-node throughput scales roughly
as . For the regular networks in this paper, we provide
the capacity coefficients besides the scaling law. These coef-
ficients, which are not apparent in [1], reveal considerable in-
sights into the design of medium-access (MAC) and optimal
node connectivity.

More recently, a number of other works [2], [9]–[17] studied
the capacity of wireless networks from various viewpoints.
Toumpis and Goldsmith [9], [10] modeled the communication
channel using deterministic rate matrices, and defined the
notion of capacity region. They also analyzed the capacity
regions of networks considering adaptive modulation and rates
depending on the channel and interference conditions. Unlike
Toumpis and Goldsmith, we also consider randomness in
receptions. However, we do not consider rate adaptation.

The organization of the paper is as follows. In the next sec-
tion, the network model and the multipacket reception channel
are introduced. In Section III, we characterize the capacity re-
gion of arbitrary networks, and discuss its connections with
the transport capacity and network stability. In Section IV, we
compute the capacity of Manhattan networks and find capacity-
achieving MAC and routing policies. The maximum achiev-
able rate with slotted ALOHA is also computed. In Section V,
the capacity with fading is analyzed. In Section VI, optimal
connectivity in Manhattan and ring networks is investigated.
Section VII concludes the paper.

II. NETWORK MODEL

We consider networks represented with an undirected graph
such that two nodes and can communicate directly only if
they are connected with an edge. The graph models are tradi-
tionally used with the collision channel assumption [18]. That
is, two nodes can communicate directly if they are within a dis-
tance , and transmission from node to node is successful
if there is no other transmitter within distance to node (see
Fig. 2).

In wireless networks with CDMA and/or multiple antennas,
the collision channel assumptions do not hold. That is because
the nodes might be capable of receiving multiple packets simul-
taneously, and there may be unexpected reception errors due to
channel time variation. To be able to consider such networks, we
use the graph models with MPR [3], [19]. Suppose that nodes
cannot transmit and receive at the same time. Each node can
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Fig. 2. Nodes and transmission ranges in a planar network are shown on the
left. The right figure shows the corresponding graph.

transmit at most one packet at a time. In each slot, a node can
correctly receive a fraction of the number of transmissions in its
neighborhood. The reception probabilities are given by the re-
ceiver MPR matrix . The entries of the MPR matrix are given
by

packets are received packets

are transmitted in the neighborhood

The receiver MPR matrix is defined by

...
...

...
. . .

(1)

Given the transmitting nodes in the network, the successful re-
ception events at different receivers are assumed independent.
Each transmitter around a given receiver has equal chance for
getting successfully received.

The MPR matrix, in general, depends on the channel char-
acteristics, the type of modulation used, and the multiuser de-
tection/equalization method receivers apply. A variety of phys-
ical layers have been modeled using MPR and its variants (e.g.,
CDMA [20]–[22] and multiple antenna uplink [23], [24]). Some
simple examples of MPR are the collision channel and the

-collision channel

...
...

...
...

. . .
...

...
...

...
. . .

As a generalization of and , we define the -collision
channel in which simultaneous reception of less than or
equal to packets is possible; if more then packets are
transmitted, then none of them are correctly received.

A motivation for considering the -collision channel
comes from the CDMA with matched filter. In the common
SINR (signal-to-interference-plus-noise ratio) threshold model
for CDMA [25], a transmitter is considered successful if its
power divided by the noise plus interference exceeds a certain
threshold. If the transmission and reception powers of the nodes
are identical, then the SINR threshold model is equivalent to the

-collision channel for some proportional to the spreading

gain. The has also been previously considered in [20],
[26], [27].

III. CAPACITY REGION OF ARBITRARY NETWORKS

In this section, we provide a characterization of the capacity
region of arbitrary networks. We also provide connections of
the capacity region with the notion of transport capacity and
the stability of node buffers in a network with random packet
arrivals.

Let be an undirected graph2 with nodes
and the set of links . Suppose that every node

holds infinitely many packets waiting to be delivered. Node
wishes to communicate with node with rate [packets/slot].
A rate vector is called achievable if there exists
a scheduling policy that can guarantee those rates, i.e.,

almost surely, where denotes the number of packets with
source and destination delivered in slot . The closure of the
set of achievable rate vectors is called the capacity region of the
network.

A. Characterization of the Capacity Region

In this paper, we will be interested in a particular class of
scheduling policies that do randomized routing and medium ac-
cess. These will be called randomized time-division (RTD) poli-
cies for reasons that will become apparent. Three mechanisms
used in RTD policies are the following.

i) Routing: Let denote the set of all noncyclic paths
from node to node . The routing in RTD policies is
done such that every packet to be delivered from source

to destination is assigned a random route ac-
cording to a certain probability distribution .

ii) Medium Access: Each schedule is denoted by a subset
of the set . We call a schedule admissible if no trans-
mitter is repeated twice. The set of admissible schedules
is denoted by . RTD policies control the transmissions
such that a random schedule is chosen in each slot ac-
cording to a probability distribution .

iii) Queuing Discipline: If a node is scheduled to transmit
over link , a route (such that ) is chosen
randomly with probability

(2)

If the scheduled node has any packet with route , it is
transmitted; otherwise, the node can transmit any other
packet in its queue. Equation (2) assures fairness, since
each route passing through link is allocated bandwidth
proportional to its traffic rate .

2The set L consists of ordered node pairs (i; j). A graph (N ;L) is called
undirected if (i; j) 2 L implies (j; i) 2 L.
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Remark: An RTD policy is specified by the probability dis-
tributions , and a set of target
rates . We use the term “randomized time-divi-
sion,” because the RTD policies essentially apply a randomized
version of TDMA.

Next, we will find the set of achievable rates with the RTD
policies. Let denote the probability of successful trans-
mission over link given that schedule is applied.
This probability is equal to zero if or if is scheduled to
transmit as well (recall that nodes cannot transmit and receive
simultaneously). Otherwise

(3)

where is the total number of transmitters around node in
schedule (this number includes both the transmissions in-
tended for and the transmissions that are not). To see (3), re-
call that is the probability that out of transmitters are
successful. Node belongs to the set of successful transmitters
with probability , since every size- subset is equally likely
to succeed. Summation of yields (3). Here, it is im-
portant to note that the itself has a physical meaning; it is
the expected number of successful receptions at a node hearing

packets.
The next theorem characterizes the capacity region of the net-

work. It also asserts that RTD policies are sufficient to achieve
every rate in the capacity region.

Theorem 1: A rate vector is achieved by an
RTD policy if

(4)

i.e., if the aggregate traffic over link is less than the throughput
over link for all . For given rate vector , if
there does not exist an RTD policy satisfying (4), then this rate
cannot be achieved by any policy. Hence, the capacity region is
equal to the union of all satisfying (4) with
some RTD policy.

Proof: The proof is omitted for brevity. See [28] for the
proof of an extended version of the theorem for a general recep-
tion model where the reception probabilities are not necessarily
symmetric, and the network topology is possibly time varying.

B. Transport Capacity

In this subsection, we extend the original definition of trans-
port capacity [1] to networks with probabilistic receptions. This
extension allows us to handle the transport capacity in a more
general setting where the distance metric is not Euclidean.

Let denote the distance between two nodes and .
Equivalently, the notation will be used for . The
distance metric is assumed to satisfy the triangle inequality, i.e.,

Finding whether a rate vector is achievable requires checking
the existence of medium access and routing probabilities satis-
fying (4). This task is generally very challenging for large net-

works. The next proposition provides a necessary condition for
achievability which is relatively easier to check.

Proposition 1: If rate vector is in the ca-
pacity region, then

(5)

Remark: The proposition is easier to understand if one views
as the work (i.e., the rate–distance product)

needed to achieve rate vector . We call the right-hand
side of (5) as the transport capacity of the network, i.e., the
maximum rate–distance product achieved by any schedule.
Equation (5) provides a simple outer bound to the capacity
region.

Proof: Let be achievable with some and
. Then

(6)

(7)

where (6) follows from the triangle inequality, and (7) is because
of achievability.

The above proposition holds for any distance metric satis-
fying the triangle inequality. The conventional definition of
metric imposes the additional constraints of nonnegativity and
symmetry of (e.g., [29]). As is obvious from the proof,
these constraints are not needed for the above result.

Definition: Rate is called uniformly achievable if the
rate vector is achievable. The net-
work capacity, denoted by , is defined as the maximum uni-
formly achievable rate multiplied by . This can be viewed
as the maximum per-node throughput.

The following theorem provides an upper bound to the net-
work capacity in terms of transport capacity.

Theorem 2: The network capacity satisfies

(8)

where is the average distance between two arbitrarily selected
nodes, i.e.,

Proof: Substitute in (5). After rearranging (5),
observe that is less than the right-hand side of (8) for
all . Notice that this result requires to be positive.
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The MPR model can be generalized in two ways. First, one
can consider asymmetric reception probabilities, which is the
case in reality, since different users have different channel
strengths. Second, the reception probabilities may change over
time if the network topology and/or user channel strengths
are time varying. A general network model with asymmetric
and time-varying reception probabilities is introduced in
Appendix A. Interestingly, Theorems 1 and 2 can be general-
ized to the general model with minor changes. The network
capacity with time-varying reception probabilities is shown
to be upper-bounded by the transport capacity averaged over
different network states.

C. Stability of Node Buffers

In the capacity analysis, it is assumed that there are always
packets to be delivered at the source nodes. However, in reality,
the data packets arrive randomly in time, and for proper network
operation the node buffers should be kept stable. In this section,
we argue that the achievability in a backlogged network implies
the stability of node buffers provided that the reception channel
satisfies a mild condition.

Consider a network with graph . Suppose that
packets with source and destination arrive at node according
to an ergodic and stationary process with rate . Arrival pro-
cesses for different are assumed independent. Each node has
an infinite buffer to hold packets, and the network starts opera-
tion with empty buffers.

The question we are interested in is: Is there a scheduling
policy stabilizing the node buffers for given arrival processes
with rate vector ?

Definition: Let be the number of packets in node ’s
buffer at time . The buffer of node is called stable if

(9)

The network is called stable if all node buffers are stable; other-
wise, it is unstable. The stability region is the closure of the set
of arrival rates for which the network can be
stabilized with a scheduling policy.

This notion of stability admits the following heuristic inter-
pretation. Supposing is the buffer capacity of the node, one
can view as the asymptotic buffer
overflow probability of the th queue. This queue is called stable
if its asymptotic buffer overflow probability goes to zero as
the buffer size goes to infinity. Equation (9) was first used
by Tsybakov and Bakirov in the context of stability of slotted
ALOHA. Depending on the network model, other stability no-
tions are also used in the literature (e.g., [30]–[34]).

Next, we will provide the condition for achievability to imply
stability. Let be a subset of links in a schedule . Let
be the probability of the event that all links in are successful
given that the schedule is used. For all satisfying

, we require the channel to satisfy

(10)

i.e., the probability of success should decrease when there are
more transmissions. This condition is naturally satisfied in
practical communication systems. However, it is not met by

some MPR matrices, and needs to be specified for mathemat-
ical precision.

Theorem 3: The network capacity and the stability regions
are identical if the reception probabilities satisfy (10). In partic-
ular, let be a rate vector for which the achiev-
ability condition (4) is satisfied by an RTD policy with strict
inequalities. Then, the RTD policy also stabilizes the network
with arrival rate .

Proof: See [28]. In the proof, we first show network sta-
bility with an RTD policy under the assumption that all nodes
are backlogged. Then, inequality (10) is used to show that the
queue lengths in the backlogged network stochastically domi-
nates the queue lengths in normal network. Hence, the stability
of backlogged network implies the stability of normal network.
Reference [28] also gives a counter example showing that the
stability and the capacity regions are not necessarily the same
when condition (10) does not hold.

See Appendix A, for an extension of Theorem 3 to net-
works with time-varying topology and asymmetric reception
probabilities.

IV. CAPACITY OF MANHATTAN NETWORKS

In this section, we find the capacity of regular networks. Be-
fore going into the details, we first outline our methodology.
Theorem 2 is our main tool for upper-bounding the capacities
of regular networks. In order to apply Theorem 2, we will com-
pute the average path length and the transport capacity. After
finding an appropriate upper bound on the network capacity,
we will show that the upper bound is achieved exactly, or ap-
proximately with an error of order (or, with an error

in ring networks). Specifically, we will find routing
and scheduling probabilities such that the corresponding RTD
policy achieves the upper bound. The basic idea behind optimal
routing in regular networks is to use the shortest paths while bal-
ancing the routing load. On the other hand, we will see that the
optimal MAC problem is equivalent to packing the maximum
number of transmissions into a regular lattice.

A node in the Manhattan network is determined by two co-
ordinates . We
define the distance between two nodes and as
the minimum number of hops to reach from one node to another,
i.e.,

(11)

where and . Recall that the
nodes on one edge of the Manhattan network are connected to
the nodes on the opposite edge; because of this property, the dis-
tance metric is defined as (11) instead of

. A simple calculation yields the following proposition.

Proposition 2: In the Manhattan network with nodes, the
average distance between two nodes is given by

odd

even
(12)

Proof: See Appendix B.
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TABLE I
e VERSUS �

The following lemma will be used to show the achievability
of the capacity of Manhattan networks.

Lemma 1: In the Manhattan network with uniform traffic ,
there exists routing probabilities such that the traffic over
any link is .

Proof: See Appendix C.

Lemma 1 is a load-balancing property; it guarantees the ex-
istence of a routing protocol that distributes the traffic load over
the links uniformly. In its proof, we show that every symmetric,
shortest path routing satisfies the desired property. Because of
using the shortest paths, the quantity in Lemma 1 is the min-
imum load that has to be put over the links to achieve .

The next theorem characterizes the capacity of Manhattan
networks.

Theorem 4: (Capacity of Manhattan Networks): Let be the
capacity of a Manhattan network with nodes each with MPR
matrix . Define

The following relations hold:

Furthermore, if is divisible by , then , where

(13)

and is given in Table I.
Proof: First, we will argue that

(14)

for every transmission set . The distance between two neigh-
boring nodes is , and the previous inequality proves as
a result of Theorem 2.

To see (14), we will classify the nodes in the network ac-
cording to the transmission set . Every node either transmits a
packet or stays in the reception mode. Every node in the recep-
tion mode receives two types of packets: the packets intended
for the receiver and the packets intended for other nodes. Let

be the set of all nodes that do not transmit, receive packets
for itself, and receive packets transmitted for other nodes
(see Fig. 3). Define as the number nodes in .
Note that can be nonzero only for , since
nodes can receive packets from at most four other nodes. Every
node in the network can transmit one packet at a time and for
every receiver in set there exists other transmitters in the
network. The must satisfy

since the total number of nodes in the network is .

Fig. 3. Figures illustrate the definition of A . In (a), the node in the center
receives two packets intended for itself, and two packets intended for other
nodes; therefore, it is an element of the set A . The node in the center in (b)
receives two packets for itself, and one packet intended for some other node; it
is in A . In (c), the node in the center is not an element of any A , since it
is transmitting.

Each transmission to a node hearing packets becomes suc-
cessful with probability (recall (3)). Therefore,

(15)

Consider the optimization problem

maximize

subject to

(16)

where the maximization is with respect to real-valued . In
the original problem, the can only take integer values. Since
we relax this constraint (and some others), the solution of the
above optimization yields an upper bound on (15).

Equation (16) is a linear programming problem, and its so-
lution is well known to be at one of the extreme points of the
constraint set. Since the constraint set is a simplex, the solution
is attained at one of its corners

if
otherwise

for some . When we substitute the possible
candidates for in (16), it is seen that

(17)

The inequality before (17) is true because is an in-
creasing function of . Thus, (14) holds and is an upper
bound to the network capacity.

Next, we will show that is achievable. For this,
we will use the following medium access policy, which will
be called the -MPR scheduling. The used to achieve

is defined in (13). In -MPR scheduling, the network
is tiled using the -MPR pattern (see Fig. 4) and its shifted/ro-
tated versions. Every scheduled receiver receives packets in-
tended for itself. The network is tiled perfectly with the -MPR
patterns if and only if is divisible by (Table I).
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Fig. 4. Different scheduling patterns for � -MPR, � 2 f1; 2; 3; 4g. Dashed
lines are the links, and the arrows are scheduled packet transmissions.
(a) 1-MPR 4 � 4 nodes, (b) 2-MPR 3 � 3 nodes, (c) 3-MPR 4 � 4 nodes,
(d) 4-MPR 5 � 5 nodes.

Fig. 5. Eight phases of the 1-MPR scheduling in a network with 16 nodes.
In each slot, the medium access protocol applies a randomly selected phase with
1=8 probability.

To demonstrate the use of -MPR scheduling, suppose that
and is divisible by . In this case, -MPR pattern and

its shifted/rotated versions (Fig. 5) can tile all of the network. We
call each shifted/rotated version of -MPR pattern as a phase of

-MPR scheduling. For medium access, we assign proba-
bility to each phase. With this assignment of probabilities every
node gets a chance to transmit to each neighbors with proba-
bility . Each transmission becomes successful with proba-
bility . As a result, links can deliver throughput over
each direction. Supposing that -MPR scheduling is used to-
gether with the routing protocol provided by Lemma 1, all rates

satisfying

(18)

are uniformly achievable. This shows that is
uniformly achievable.

Using identical arguments, it can be seen that
is achieved uniformly by -MPR scheduling whenever is
divisible by . In case is not divisible by , all the net-
work except a small portion can be tiled. In general, the number
of nodes which can be scheduled with -MPR is .
Again, by using shifted/rotated versions of the -MPR

(19)

traffic can be supported over each link. The factor
in (19) is negative, and it decreases the link capacities. There-
fore, is not achievable in general, but can be
achieved. The achievability part of the theorem follows.

Remark: Note that -MPR is the schedule that maximizes
the total number of successful transmissions in the network if

divides . In -MPR, there are receivers in
the network each receiving packets. Thus, the total number of
successful transmissions is . This quantity divided
by is shown to upper-bound the in (17). Hence, -MPR
maximizes and, equivalently, maximizes the total number of
successful transmissions in the network.

A. Random Routing

In large networks, topology discovery may not be feasible,
and nodes may not be able to use shortest routes. Similarly,
during network initialization nodes spend some time discov-
ering the network and may not be able to use the optimal
routes. Gossiping [35], flooding, and random-walk-based
routing [36] are alternatives that do not require the nodes to
know the whole network topology. In random-walk-based
routing, the packets are relayed at each consecutive hop to
a randomly chosen neighbor with uniform probabilities. If
the network is connected, every packet eventually reaches its
destination, although the delivery may take a long time. In the
proof showing the achievability of we used the shortest path
routing, which gives an average path length proportional
to . In [37], [38], it is shown that the average path length
with random walk is of the order . Using an argument
similar to the one in Theorem 4, it is easily seen that the
maximum achievable rate with random-walk-based routing
is , whereas the capacity scales as .
Similarly, each flooding requires transmissions, resulting in

throughput scaling. These results show that the cost
of lacking (or not using) topology information can be very high
in large networks.

B. Capacity With Slotted ALOHA

In a distributed wireless network, topology-specific sched-
uling may not be implementable in practice. On the other hand,
it is important to quantify the performance loss due to subop-
timal, but easily implementable MAC protocols such as slotted
ALOHA. In the next theorem we will give the highest rate
achievable with the slotted ALOHA. We consider the capacity
setup where every node has infinitely many packets waiting
in its queue to be delivered to the other nodes. Every node
randomly and independently makes a transmission decision in
each slot; a node chooses to transmit a packet with transmission
probability , the neighbor to be transmitted is chosen with
uniform probabilities.

Theorem 5: (Capacity With Slotted ALOHA): The maximum
uniformly achievable rate with slotted ALOHA is given by

, where

Proof: With transmission probability , each node
receives
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TABLE II
CAPACITY VERSUS SLOTTED ALOHA CAPACITY

intended packets for itself on the average. To see this, observe
that each node stays in reception mode with probability .
A node in the reception mode receives

packets successfully on the average. The intended packets con-
stitute only one quarter of receptions.

Each node transmits packets successfully on the av-
erage, since the number of successful receptions is always equal
to the number of successful transmissions. This means that each
link supports throughput. If the nodes use the routing
protocol provided by Lemma 1, it is seen that all satisfying

(20)

are uniformly achievable. Maximizing the right-hand side
of (20) with respect to yields the achievability part of the
theorem.

To see the converse, observe that the total traffic generated in
the network must be less than the total throughput of the net-
work, i.e.,

for fixed . This provides a bound on the maximum uniformly
achievable rate regardless of what routing protocol is used. Op-
timization over gives the converse.

Omitting an additional factor, rewrite and
as

The preceding expressions show that the scaling law is
and the per-node throughput goes to zero both

with optimal scheduling and slotted ALOHA. This is similar
to the capacity law observed in [1]. The main reason behind
this fact is the uniform traffic which gives average path length

. Another factor affecting the capacity is the per-
formance of the MAC protocol, which affects the coefficient but
not the scaling law. As a numerical example, consider the MPR
matrix for -collision channel, . For
and are given in Table II. It is seen that having the best
MPR channel gives only 1.6 times improvement in over
the conventional collision channel . On the other hand, in
the collision channel (first column in Table II), using optimal

scheduling instead of slotted ALOHA provides about 6 times
improvement.

V. MANHATTAN NETWORKS WITH FADING LINKS

Suppose that each link in the Manhattan network is ON with
probability and OFF with probability . (Here, we mean
undirected links; the links and are always in the same
state.) Assume that the network policy does not know which
links are ON or OFF, and the nodes transmit their packets without
knowing if their link is ON or OFF. This will be called a network
without LSI.

Suppose that node transmits to node . If the link is
ON, and if is the only transmitter in ’s neighborhood whose
link with is ON, then the transmission is successful; it is un-
successful otherwise. This channel can be expressed using the
MPR matrix

Here, the entry is the probability that neighbors transmit
and one of them gets through, which is the case only if one link
is ON and the rest are OFF; the probability of this event is

.
For this channel, Theorem 4 gives the network capacity as

Theorem 4 also gives a way to schedule packets optimally. The
value of

(21)

determines which -MPR pattern (Fig. 4) to use as a function of
the severity of fading. From (21), it is apparent that one should
use higher ’s when is smaller. Using higher for small can
be interpreted as multiuser diversity. For instance when is very
small, in the neighborhood of the receiver there is a very small
probability that there is more than a single-link ON. Therefore,

-MPR scheduling (namely, “all neighbors transmit to the node
in the center” strategy) does not lead to frequent collisions and
increases the probability of successful transmission. The rates
achievable with -MPR scheduling, , are shown
in Fig. 6.

It is an interesting question to ask what would be the improve-
ment due to having and exploiting the LSI. The optimal policy
again follows a similar idea in case of LSI: given the fading
configuration, find and use the transmission schedule that max-
imizes the number of successful transmissions. However, it is
very hard to compute the achievable rates for this case, since
there are numerous fading configurations. The following the-
orem gives bounds on the capacity with LSI.
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Fig. 6. (�(1� p) )=(� + 1)2p versus p. The upper envelope of the curves is � �
p
N . When p is small, the 4-MPR gives the highest throughput and 1-MPR

gives the lowest.

Theorem 6: (Capacity of Manhattan Networks With LSI):
Let # be the capacity of the Manhattan network with LSI.
Then

#
(22)

Moreover
#

and
#

(23)

Proof: We will first discuss the extreme cases
These two regimes are easier to understand, since there are
simple strategies with performance close to the optimal.

If , then very few links are ON, and the optimal strategy
is transmitting over almost every ON link. We describe a strategy
that will be called all ONs scheduled next. Let and be two
nodes in the network (Fig. 7). In every slot, schedule a transmis-
sion over link if and only if the link is ON, and all of
the other six links connecting and to their respective neigh-
bors are OFF. Choose the direction of transmission randomly;
to with probability , and to with probability . With
this scheduling, the traffic that can be carried in each direction is

(this is the probability that the link is scheduled in
a direction). Using symmetric, shortest path routing, we see that
rates below are uniformly achievable. Fur-
thermore, rates above are not uniformly achiev-
able. This is true, since there are a total of undirected links
in the network and the expected number of ON links is .
Therefore, the transport capacity averaged over the link states
is upper-bounded by . Theorem 2 can be extended to net-
works with multiple states by replacing the transport capacity
by the average transport capacity (see Appendix A). Therefore,

# follows.

Fig. 7. Scheduling example with LSI.

We have just shown that

# (24)

When all sides are divided by

we get

#

The left-hand side of (23) follows when we take the limit
.

“All ONs scheduled” strategy almost achieves the capacity
with LSI, which is # for . However, without
LSI, the optimal strategy is -MPR scheduling which uses only

of the available links (this fact can be seen by counting
the number of used links in Fig. 4(d)). As a result, the “all
ONs scheduled” strategy achieves times the throughput of

-MPR scheduling.
Next, we will look at the regime . Note that the capacity

with LSI is always less than the capacity without fading, i.e.,
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Fig. 8. (a) The neighbors of the two-hop connected Manhattan network are shown. Consider the node in the center (marked with �). It has total 12 neighbors, four
of them are one-hop neighbors (marked with 1), and eight are two-hop neighbors (marked with 2). (b) 8-MPR scheduling in a Manhattan network with two-hop
connectivity. The network is divided into groups of 13 nodes. In each group, the node in the center is the receiver, the receiver’s two-hop neighbors are transmitters,
and the one-hop neighbors of each receiver stay idle.

# . Moreover, the capacity with LSI is greater than
capacity without LSI, #. Hence, the following holds:

#

for . Divide all sides by
#

Taking the limit gives the right-hand side of
(23). One conclusion is that if then almost all links are
always ON, and with LSI using -MPR is almost optimal. The
results for also suggest that the knowledge of LSI
is more valuable when is small. For high values of , LSI is
less important; one can simply use -MPR scheduling.

Next, we will upper-bound the transport capacity for an ar-
bitrary . Let be the schedule maximizing the number of
successful receptions for a given connectivity graph .
Let denote the probability of having graph under
the assumption of independent and identically distributed (i.i.d.)
ON/OFF links. Without loss of generality, assume that each link

in schedule is successful. Hence, the transport capacity av-
eraged over the set of states is equal to

Observe that is equal to

where the factor comes from the fact that each successfully
transmitted packet is counted twice; once at the transmitter, once
at the receiver. So, we can write the average transport capacity
as

or for some

or for some

The final sum ( or for some ) is the
expected number of successfully transmitted or received packets
by node . Since every node has four neighbors, this expectation

is less than or equal to , which is the probability that
at least one out of four links is ON. Thus, we have proved the
following upper bound:

Since the average transport capacity divided by upper-
bounds the network capacity, we have # .
When we divide by

# #

The last quantity is upper-bounded by ,
which is achieved at . Therefore, (22) follows.

VI. OTHER REGULAR TOPOLOGIES AND

OPTIMAL CONNECTIVITY

Consider a Manhattan network with two-hop connectivity,
i.e., every node is connected to neighbors two hops or one hop
away (there are 12 such neighbors, see Fig. 8(a)). Consider the
scheduling pattern in Fig. 8(b). This pattern can be used under
the assumption that the nodes can perfectly receive eight packets
simultaneously (i.e., the MPR matrix is —this channel can be
viewed as an abstraction for CDMA with high spreading gain).
When we tile the network with such a pattern, approximately

of the nodes are transmitters and the nodes are re-
ceivers. Each transmitted packet moves two distance units, and
the expected progress (rate–distance product) with this sched-
uling is

This quantity is higher than the expected progress with the
-MPR pattern in a one-hop connected network (i.e., the net-

work considered in previous sections). In -MPR scheduling,
approximately of the nodes are scheduled as receivers and
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Fig. 9. (a) A ring network with eight nodes. The circumference is of unit length, and the distance between any two neighbors is 1=8 units. (b) 1-RING scheduling
in a ring with eight nodes. (c) 4-RING scheduling in a ring with 25 nodes.

each receiver gets four packets moving a single distance unit.
Hence, the expected progress with -MPR scheduling is

Here, we see that multipacket receptions, which is the case in
CDMA, cannot be exploited sufficiently if the connectivity is
not high enough. In the next theorem, we argue that the increase
in expected progress translates to increased achievable rates.

Theorem 7: (Capacity of the Two-Hop Connected Network):
Let - be the capacity of a two-hop connected

Manhattan network with MPR matrix . Then

- (25)

The lower bound is about 54% higher than

the capacity of a one-hop connected Manhattan network
with .3

Proof: The achievability of the lower bound is essen-
tially the same as the achievability of in one-hop connected
Manhattan networks. The differences and similarities are the
following. In a two-hop connected network, it is advantageous
for packets to move two hops per transmission rather than
one hop. The routing protocol achieving the lower bound uses
this idea; packets keep jumping two hops until they reach to
the destination, or to a one-hop neighbor of the destination
after which they have a single hop to go. The traffic load over
links can be balanced in a way similar to Lemma 1. Moreover,
in a large network, the traffic for the one-hop neighbors is
negligible compared to traffic for the two-hop neighbors. In
a load-balanced network, the -MPR pattern and its shifted
versions achieve the lower bound.

Next, we will prove the upper bound. Consider a transmission
schedule . Let be a node hearing transmissions from its
-hop neighbors, , intended for itself. Let be the

number of all such nodes in . Observe that must lie in

(this is under the assumption that every transmitter is successful;
otherwise, we can eliminate some unnecessary transmissions

3The lower bound is achievable for every CCC ;M � 8.

from without affecting the successful ones). must
satisfy

(26)

since the total number of nodes is less than . Further, observe
that

(27)

Maximizing (27) under the constraint (26), and being non-
negative and real gives

We get the upper bound by invoking Theorem 2.

The previous theorem bounds the capacity for a given
MPR matrix. Namely, it addresses the question “Given the
physical layer, what is the best MAC/routing/connectivity?”
For example, this question is relevant to CDMA networks,
where multipacket reception already exists. To find the ulti-
mate network capacity, one ought to optimize with respect to
the physical layer as well. However, we do not attempt this
optimization in this paper.

Next, we will consider ring networks. Assume that the nodes
are uniformly placed on a ring with unit circumference (see
Fig. 9). The distance between node and node is given by

, where . We will consider
the following simple reception model which is an extension of
the collision channel: If is a set of
transmitter–receiver pairs then the transmission from to is
successful if 4

for all

The rationale behind this model is that each transmitter uses
just sufficient power to reach its destination ; this transmission
causes interference to all nodes within neighborhood of
the transmitter, and negligible interference to the nodes outside.
Transmission from to is successful only if is sufficiently
far apart from every other transmitter.

4The results in this section can be generalized with minor changes to the
model d(i ; j ) > (1 + �)d(i ; j ) for some � > 0.
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Lemma 2: Suppose that each transmission is repre-
sented with an arrow from to with length . Then, the
arrows corresponding to two successful transmissions do not
intersect.

Proof: The proof is by contradiction. Consider two suc-
cessful transmissions . If were between and

, then could not be successful. Similarly, if were
between and , and were outside, then the arrow
would either go over (which makes unsuccessful),
or would go over . In the latter case, to make suc-
cessful must be at least apart from . However, if

is placed that far apart, then the interference from makes
unsuccessful.

Remark: The total lengths of the arrows cannot exceed the
circumference of the ring. Therefore, Lemma 2 implies that the
transport capacity of the ring is upper-bounded by .

Next, we will see how the transport capacity of the ring can be
approached. Two cases will be considered: one-hop connected
ring (nodes are restricted to communicate with their nearest two
neighbors) and the ring without constraint. An important obser-
vation is that in the one-hop connected ring we can use a one-di-
mensional analogue of -MPR scheduling; see the so-called

-RING scheduling in Fig. 9(b). The -RING pattern can be
used to cover all ring, and it uses half of the space available.
That is, when the number of nodes is even, half of the nodes
get a chance to transmit and the distance of each transmission is

. Therefore, the expected progress (rate–distance product)
is . Similarly, the expected progress of -RING scheduling
for odd can be obtained as .

In the ring without constraint there are other possibilities for
communication. In particular, consider the so-called -RING
scheduling in which every packet jumps hops (see the -RING
example in Fig. 9(c)). In -RING, the transmitter–receiver pairs
are given by

where the list is truncated at the point where either a transmitter
or a receiver index goes above . If the -RING pattern
perfectly covers the network (i.e., is divisible by ), then

transmissions, each over -hops, are scheduled. This
means the expected progress of -RING is . For gen-
eral -RING may not cover the network, but the expected
progress is .

From these observations, we see that the expected progress is
an increasing function of , and the -RING scheduling gives
the minimum expected progress. In the limit , we get

. Since the transport capacity cannot be larger
than , we see that the -RING patterns achieve the transport
capacity in the limit. The following theorem gives analogous
results for the network capacity.

Theorem 8: (Capacity of the Ring): The capacity of one-hop
connected ring is

- (28)

On the other hand, the capacity of the unconstrained ring
satisfies

(29)

for every . Therefore, the capacity of the uncon-
strained ring is double that of the minimally connected ring.

Proof: -RING scheduling and its shifted versions
achieve (28). The general -RING, achieves the lower
bound in (29). The routing uses shortest paths; packets hop
hops until they reach the neighborhood of their destination.
The shortest path routing, as before, balances the traffic. Fur-
ther, for large , it can be seen that only a negligible fraction
of the traffic is diverted to neighbors less than hops away (for
such packets RING scheduling is used). The main ideas
are the same as the ones in Theorems 4 and 7, and we will not
go through the details to avoid repetition.

The average path length in the ring satisfies .
Furthermore

We will do this computation only for odd ; the other case is
almost identical.

In the unconstrained ring, the transport capacity is upper-
bounded by as argued after Lemma 2. Therefore, the capacity
is by Theorem 2. Since , we get the upper
bound .

In the minimally connected ring, we need to prove that the
transport capacity is upper-bounded by under
the restriction that nodes can only talk to immediate neighbors;
this can be easily done using a technique identical to the ones in
Theorems 4 and 7. The upper bound for - follows.

VII. CONCLUSION

In this paper, we first characterized the capacity region of ar-
bitrary networks, and provided general scheduling policies that
achieve every rate inside the capacity region. We then gave an
upper bound on the network capacity in terms of the transport
capacity, and argued that the stability region of the network is
identical to capacity region under a mild assumption on the re-
ception channel. We then obtained a closed-form expression for
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the capacity of Manhattan networks and analyzed the impact of
link fading, link state information and the topology information
on achievable rates. We also compared a suboptimal scheme that
uses ALOHA as its medium access to the optimal policy that
jointly optimizes medium access and routing. We finally exam-
ined the effect of nonminimal connectivity on the capacity of
Manhattan and ring networks.

The results for regular networks have ramifications for MAC
in arbitrary networks. In Manhattan networks with multipacket
receiving nodes, the -MPR patterns (Figs. 4 and 8(b)), namely
“neighboring nodes transmit into the center” strategy, was
shown to be optimal for medium access. The -MPR sched-
uling locally resembles an uplink especially for large. We
expect this type of scheduling to be useful in arbitrary networks
where multipacket reception is possible with multiple receive
antennas or spread spectrum. The -MPR scheduling and

-RING scheduling (Figs. 4 and 9), namely, “transmitters turn
each other their back and transmit” strategy, were shown to be
optimal in networks without multipacket reception. We expect
this idea to be useful in wireless networks with parts locally
resembling a one-dimensional topology. Examples include a
wireless local-area network (LAN) in a corridor, or a group of
nodes on a street or a highway.

There is an important open question related to the capacity
of arbitrary networks: Can the transport capacity upper bound
be used for determining the capacity of arbitrary networks? In
regular networks it is shown that the transport capacity provides
tight upper bounds on the capacity. This upper bound is not al-
ways achievable in arbitrary networks, however, it suggests a
general duality relation between the transport capacity and net-
work capacity. To see what we mean by duality, recall that the
transport capacity upper bound, inequality (8), is valid for all
distance metrics satisfying the triangle inequality. Hence, the
upper bound minimized over all distance metrics is still an upper
bound. But, how does the minimized upper bound compare with
the network capacity? Under what conditions is the minimized
upper bound achievable?5 These are some questions which seem
to deserve further attention.

APPENDIX

A. Extensions to a General Network Model With Asymmetric
and Time-Varying Reception Probabilities

In this appendix, we provide extensions of the capacity and
stability results in Section III for the following more general
network model.

i) Let be the set of possible network states. Assume that
the network state changes from slot to slot ac-
cording to a stationary and ergodic stochastic process.
Scheduling policies are assumed to have instantaneous
knowledge of the network state while making transmis-
sion decisions.

5We are grateful to an anonymous reviewer who pointed out that for a given
distance metric the upper bound is achievable if only if the traffic requirements
is such that the network can continuously operate according to the schedule(s)
that attain the maximum in (8).

ii) The reception probabilities are specified by a conditional
probability density function (pdf) , where

is the state and is the set of transmissions.
Here, is the probability that the set of suc-
cessful receptions is given that the network is
in state and the set of transmitters is . We have the
property for all .

iii) Define the set . Let be
the all possible subsets (i.e., the power set) of . In this
general model, the topological properties of the network
and transmission constraints are not described by a con-
nectivity graph, but they are embedded into the pdf .
That is, if a set of transmissions is physically im-
possible in state , then the set of successful receptions
is empty with probability one.

The strength of this model is its conciseness and generality.
As in information theory, all channel properties are specified by
a set of conditional pdfs . By substituting specific

, the MPR model and several other models can be obtained as
special cases [23], [24], [30], [39], [40].

The definition of RTD policies can be generalized to this
model by considering a set of conditional pdfs , one
for each state . If the network is in state , a random schedule

is chosen according to the pdf . The routing and
queuing disciplines are as before.

Let notation

denote the marginal probability of success for the set . The
following theorem generalizes Theorems 1–3.

Theorem 9:

i) A rate vector is achieved by an RTD
policy if

(30)
for all . The capacity region is equal to the union of
all achievable with some RTD policy.

ii) The network capacity satisfies

(31)

where the right-hand side is the transport capacity aver-
aged over different states.

iii) The stability and capacity regions are identical if

holds for every . If an RTD policy
satisfies (30) with strict inequalities for some

, then the network with arrival rate
is stabilized by the same RTD policy.

Proof: See [28].
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B. Proof of Proposition 2

The average distance a packet originating from node travels
is the same for all . As a result of this symmetry, we can com-
pute by averaging the distances between the node and
the other nodes in the network

The two cases follow from the last expression.

C. Proof of Lemma 1

For a given source–destination pair, there exist many routes
with the minimum path length. It is the objective of routing to
use the shortest distances while distributing the load uniformly.
In this part of the appendix, we show that all that specify
a symmetric and shortest path routing protocol satisfy

(32)

which suffices to prove the lemma. The following notations will
be used.

i) Let denote to number of links on a path . Routing
probabilities specify a shortest path routing pro-
tocol if implies .

ii) Let be the set of all with integer coordinates.
Let refer to the node with coordinates

where is
the usual modulo function. For , let denote
the translation of node . Similarly, refer to
the translations of link and path , respectively. We
call the routing probabilities translation invariant
if

is satisfied for all .
iii) Let the vertical reflection of node be

, the horizontal reflection be , and
the rotation be . Reflections and rotations
of links and paths are defined similarly, and are denoted
by where . Let denote the node
at the coordinate , i.e., origin node. We call trans-
lation-invariant routing probabilities symmetric if
for all

(33)

Example: Consider a source–destination pair . Let

and
if

otherwise.

The probabilities specify a symmetric, shortest path
routing protocol.

Denote the origin node with . Next, we will argue that if the
is translation invariant then for every link

(34)

where

(35)

The links in a Manhattan network are in four directions: up,
down, left, right. The number is the number of links in

which are in the same direction with . Definition (35) assures
that depends on the direction of but not on its location,
i.e., for every .

Equation (34) can be interpreted as follows. Suppose that the
network traffic is uniform and equal to for every source–des-
tination pair. The left-hand side of (34) is the routing load over
link . Equation (34) implies that the routing load on link de-
pends on the direction of , but not on its location (this is due to
translation invariance). Moreover, (34) suggests an alternative
way of computing the routing load over link : Fix the origin
as the source node, and add up the traffic from the origin to the
other nodes, passing through links in the same direction with .

To see (34), make a change of variables

The last equality is due to the translation invariance of the
routing.

From the definition of , it follows that for all

(36)

Therefore, if the routing is symmetric then

(37)

The first equality follows from (33) and (36). The second
equality is due to the fact that if we map every to
then we again obtain the set .
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Let be a link pointing up. Then, are vectors
pointing left, down, and right, respectively. If the routing is
symmetric, then (34) and (37) ensure that the traffic on links

are the same.
Let the routing probabilities specify a symmetric,

shortest path routing protocol. Next, we will show that
satisfies (32). It follows from definitions that

(38)

Therefore,

The first equality is due to (34). The second in due to (37). The
third one is due to (38). The fourth one is because
for each and . The last equality fol-
lows from the definition of and the symmetry of the network
topology.
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