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Abstract—In this work, we study coding over a class of two-user broad-
cast channels (BCs) with additive white Gaussian noise and multiplicative
fading known at the receivers only. Joint decoding of low-density parity-
check (LDPC) codes is analyzed. The message update rule at the mapping
node linking the users’ codes is derived and is found to exhibit an inter-
esting soft interference cancellation property. High performance codes are
found using the differential evolution optimization technique and extrinsic
information transfer analysis adapted to our multiuser setting. The opti-
mized codes have rates very close to the boundary of the achievable region
for binary constrained input for both faded and unfaded channels. Simula-
tion results for moderate block lengths show that our codes operate within
less than 1 dB of their respective threshold.

Index Terms—Broadcast channels (BCs), extrinsic information transfer
(EXIT) charts, fading channels, interference cancellation, low-density
parity-check (LDPC) codes, sum–product algorithm.

I. INTRODUCTION

The information-theoretic capacity region of a general broadcast
channel [1] (BC) is still unknown 30 years after Cover’s original
problem formulation (see [2] and references therein for an excellent
survey on BCs.) Even for those channels whose ultimate Shannon
limit is known, such as degraded [3] and more-capable channels [4],
it is unclear whether capacity can be attained by any known class of
codes.

In this work, we restrict our attention to two-user BCs with ergodic
fading and additive white Gaussian noise. We assume that the fading
processes are known at the receivers but unknown at the transmitter.
It is well known that superposition coding and stripping at the best
receiver is optimal in the unfaded case. However, Tuninetti et al. [5]
showed that, as opposed to the degraded case, stripping at the best re-
ceiver might incur performance degradation in the presence of fading.
Instead, the superimposed codewords must be decoded jointly, like in
multiple-access channels (MACs) [3]. Notice that superposition is ac-
tually sufficient to achieve the degraded message set region [4]. The
optimality of superposition coding and joint decoding has been con-
jectured in [5] but it is as yet unproven. This correspondence does not
pursue the capacity region solution, instead it aims at finding code pairs
that perform close to the Shannon limit when the codewords are super-
imposed at the transmitter and jointly decoded at one of the receivers.

In our search for good codes, we concentrate on low-density
parity-check (LDPC) codes [6]. We are encouraged by recent results
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showing that LDPC codes achieve capacity for binary erasure channels
[7]. Moreover, LDPC codes are conjectured [8] to achieve capacity
for a broad class of “nonstandard” channels if the binary code is
appropriately interfaced with the channel. McEliece’s conjecture [8]
has been numerically verified for several channel models. We list in
the following some of those channel models although, because of
space limitation, we just cite the works close to our own.
LDPC codes were shown to achieve reliable transmission at an

signal-to-noise ratio (SNR) extremely close to the Shannon limit for
memoryless binary-input unfaded Gaussian channels [9]. In [10], it
was shown that irregular LDPC codes perform very well on fully
interleaved single-user Rayleigh-fading Gaussian channels. In [11],
the authors showed that joint decoding of LDPC codes can achieve
all points on the dominate face of the capacity region of two-user
single-antenna unfaded multiple-access Gaussian channels without
the need of time sharing and/or of rate splitting. LDPC codes are
further shown to perform well on fading multiple-antenna single-user
Gaussian channels [12] and on fading multiple-antenna Gaussian BCs
[13]; in both cases, the fading matrix is assumed to be known at the
transmitter side as well.
In this work, we investigate the capability of superimposed LDPC

codes when transmitted over single-antenna fading BCs. As opposed to
single-user and multiple-access settings, the design of codes for two-
user BCs must attain two competing goals. On the one hand, one of the
two codes must be good for single-user decoding (when treating the
other code as noise) on the worst channel and, on the other hand, both
codes must be good for joint decoding on the best channel.
In deriving a multiple-user version of the message-passing decoding

algorithm we discover an interesting property of joint decoding on
factor graphs. We show that the node linking the users’ codes acts as a
soft interference canceller. The update rule at such a node amounts to
stripping from the received signal the contribution of the other user’s
codeword as soon as its reliability is sufficiently high, i.e., without re-
quiring complete decoding of one of the codewords.
In order to design the degree distributions of “good” LDPC codes,

we first derive the stability condition by extending the approach of [9].
We show that three conditions must be met by the candidate degree
distributions in order to ensure vanishing bit-error rate (BER).
We then extend the extrinsic information transfer (EXIT) analysis

[14] to determine the convergence property of the candidate LDPC en-
semble. We model the extrinsic channel [15] to the node linking the
users’ codes as a binary erasure channel (BEC) in order to quantify, in
closed form, the amount of information transferred from one user code
to the other.
Finally, we optimize the degree distribution based on the differential

evolution algorithm [16]. For the optimized codes, we further analyze
the BER performance for finite block length.
The remainder of the correspondence is organized as follows. In

Section II, we describe the model for the two-user fading Gaussian BC,
we describe an achievable region when the codes are restricted to be
binary, we derive the multiple-user version of the message-passing de-
codingalgorithmfordecodingLDPCcodes, andweshowthat there exist
nodes in the graph that perform interference cancellation; in Section III,
we derive the stability condition, we derive the transfer function of
the node linking the users’ codes, we describe the code optimization
technique, and we comment on the found codes and their finite-length
performance. Finally, in Section IV,wepoint out our conclusions.

0018-9448/$20.00 © 2005 IEEE
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II. THE TWO-USER FADING GAUSSIAN BCS

In the followingwe shall indicatewithNR(���;KKK) (resp.,NC(���;KKK))
a vector of real-valued (resp., proper complex-valued) Gaussian
random variables with mean ��� and covariance matrix KKK , with
I(X; Y ) the mutual information between X and Y , with PX the
distribution function of X , and with �fAg the indicator function of
the event A.

A. Channel Model

We focus on the downlink of wireless systems with delay constraints
much larger than the fading coherence time and no feedback channel
available. We model the channel as a two-user discrete-time complex-
valued memoryless fading Gaussian BC with perfect receiver state in-
formation whose outputs are

Y =(AX +Ny; A)

Z =(BX +Nz ; B): (1)

The processesA andB are ergodic, instantaneously known at the corre-
sponding receivers, but unknown at the transmitter. The additive noise
Nu at the receiver u 2 fy; zg is a proper complex white Gaussian
random variable, with zero mean and varianceN0. The transmit signal
X is subject to the power constraint [jXj2] � P . Without loss of gen-
erality, we assume that the single-user capacity of the user-Y channel
is larger than the single-user capacity of the user-Z channel, that is,
CA(�) � CB(�), � = P=N0, where

CA(�) = A log2 1 + jAj2� (2)

and is achieved by X � NC(0; P ).
It easy to verify that the channel in (1) is not degraded [3] for a gen-

eral distribution on (A;B). Although the capacity region is unknown,
it was shown [5] that

�2[0;1]

Rz � CB(�)� CB(��)

Ry +Rz � CB(�)� CB(��) + CA(��)

Ry +Rz � CA(�)

(3)

is achievable by

X = U
p
�P + V (1� �)P (4)

for U and V independent and identically distributed (i.i.d.) NC(0; 1).
The region in (3) admits the following interpretation. The transmitter
independently encodes the user-Z message into the codeword V and
the user-Y message into the codeword U . A fraction � of the available
power P is assigned to the codeword U and the remaining fraction
(1 � �) to the codeword V . The actual signal sent over the channel
is the superposition of U and V . User-Z decodes its codeword V by
treating the codeword U as “noise” while user-Y jointly decodes its
own message U and the other user’s message V , like in a degraded
message set setting.

B. Encoding

Herewe are interested in the performance achievable by binary linear
codes instead of by Gaussian codes.

In a single-user case, if the input alphabet is constrained to be binary,
then the largest achievable mutual information is

JA(�) = A[J(jAj2�)] (5)

where the function J(x) is defined for x � 0 as

J(x) = N�N (0;1) 1� log2 1 + e�2N
p
2x�4x (6)

and is achieved by X 2 f�pPg with equal probability. In the
low-SNR regime, i.e., � ! 0, binary coding does not incur significant
performance degradation with respect to the optimal coding since
CA(�)� JA(�) = O(�2) for every fading distribution [17]. We say

that an ensemble of binary codes approaches the Shannon limit of a
Gaussian fading channel, in the limit for infinite block length, if for a
transmit SNR> � the average ensemble BER converges to zero and
the code rate converges to JA(�). Simulations show that optimized
ensembles of LDPC codes do approach the Shannon limit, in the above
defined sense, of a wide class of Gaussian channels.
As for the single-user case, we expect no significant loss in perfor-

mance from the use of binary codes in the low SNR regime [17]. We as-
sume that encoding and decoding are performed as for theGaussian dis-
tribution, however, (U; V ) is chosen equally likely in f0; 1g � f0; 1g.
In this case, the achievable region is given by (3) but with C(�) in
(2) replaced by J(�) in (5). Figs. 1 and 2 show the Gaussian region
(dotted line) and the binary region (solid line) for the unfaded case and
theRayleigh-fading case, respectively. For large SNR, the two regions
can be far apart.
In the following we assume that the input pair (U; V ) is generated

by two independent LDPC codes mapping blocks of ku = nRu i.i.d.
equally likely bits into length-n codewords cccu = (cu;1; . . . ; cu;n) for
u 2 fy; zg. The variable (resp., check) node degree distribution is
specified by the polynomial �u(x) =

i
�u;ix

i�1 (resp., �u(x) =

i
�u;ix

i�1), u 2 fy; zg, where the nonnegative coefficients �u;i
(resp., �u;i) represent the fraction of edges emanating from a variable
(resp., check) node of degree i. The code design rate is

Ru = 1�
1

0

�u(x)dx=
1

0

�u(x)dx:

C. Decoding

Decoding proceeds according to the maximum a posteriori proba-
bility (MAP) rule at both receivers in order to minimize the probability
of coded bit error. Let hhhu;j be the jth column of the parity-check ma-
trix of of the user-u code

xxx =
p
�P (1� 2cccy) + (1� �)P (1� 2cccz)

be the transmitted signal (the superposition of the two codewords cccy
and cccz ), and yyy and zzz be, respectively, the vector of the user-Y and of
the user-Z channel outputs. The MAP estimate of the bit cy;i at the
user-Y receiver is

cy;i = arg max
b2f0;1g

Pr[cy;i = bjyyy] (7)

wherePr[cy;i = bjyyy] is the conditionalmarginal of the joint probability

Pr[cccy; cccz ; yyy] =
ccc ;ccc :c =b u=y;z

n�k

j=1

�fccc hhh =0g

�
n

i=1

e
�

�fx =
p
�P (1�2c )+

p
(1��)P (1�2c )g: (8)

The decoding of the bit cz;i at the user-Z decoder is completely analo-
gous and obtained by exchanging in (7) the subscripts “z” for “y” and
the output pairs (zi; Bi) for (yi; Ai). Fig. 3 shows the portion of the
factor graph representing the joint probability in (7) relative to the ith
pair of coded bits (cy;i; cz;i). The transmit symbol xi (double circle) is
related to the coded bit ci (single circle) via themapper (double square),
which represents the codeword superposition. The coded bits are re-
lated to each other via the check nodes (single square) that represent
the code parity-check equations. The symbol �u;i;j (resp., �u;i;j ) in-
dicates the log-likelihood ratio (LLR) messages to (resp., from) the ith
variable node from (resp., to) the jth check node. The variable nodes
are numbered from 1 to n while the check nodes from 0 to n� k, with
the convention that 0 indicates the mapping node.
As in the single-user case, the MAP decoding rule is approximated

by the sum–product algorithm [18] applied locally at each node of the
graph in Fig. 3 and by iteratively exchanging messages, in the form of
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Fig. 1. Achievable regions and rates of the LDPC codes found for the unfaded BC with 2jAj2P=N0 =5.059 dB and 2jBj2P=N0 =3.871 dB.

Fig. 2. Achievable regions and rates of the LDPC codes found for the Rayleigh fading BC with 2 [jAj2 ]P=N0 = 3:098 dBand 2 [jBj2]P=N0 =
0:915 dB.

LLRs, among the nodes. A possible schedule for the messages is as
follows. At each iteration, messages are exchanged between variable
nodes and check nodes on the subgraph of each user (on the left and
on the right of the mapper node in Fig. 3) according to the standard
message passing algorithm as described in [7]. However, before the
next iteration on the user subgraphs begins, messages are exchanged
through the mapper node. In particular, it can be shown that the LLR
sent to the mapper is

�u;i;0 =
c>0

�u;i;c (9)

while the LLR sent by the mapper is

�u;i;0 = 2mi

p

u;i � 2

p

y;i
z;if(2mi

p

a;i + �a;i;0; 2

p

y;i
z;i)

(10)

where a 6= u 2 fy; zg,mi = Refyi= N0=2e
�j 6 A g is the output

of the user-Y matched filter, 
u;i = �u2P jAij2=N0 is the instanta-
neous received SNRof user-u at the user-Y receiver for�y = 1��z =
� 2 [0; 1], and where

f(x; t)
1

t
log

cosh ((x+ t)=2)

cosh ((x� t)=2)
: (11)

The algorithm terminates after `max iterations by outputting as bit
estimate

ĉu;i = � �u;i;0 +
j>0

�u;i;j < 0 : (12)

Notice that the first iteration on each user subgraph uses as “message
from the channel” (10) computed for �a;i;0 = 0. Only when one of
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Fig. 3. Section of the factor graph referring to the ith pair of coded bits.

the users is allotted zero power the message in (10) reduces to a scaled
version of the matched filter output 2mi

p

u;i, as in the single-user

case, and does not change with the iterations.
At the user-Z decoder, the mapper node message is computed as in

(10) but with (yi; Ai) replaced by (zi; Bi).

D. The Mapper Node as an Interference Canceller

The flow of information through the mapper represented by (10) im-
plies that a message referring to a particular user bit is influenced by the
“reliability” of the other user bits. Because the bitwise MAP decoder
in (7) is inherently a single-user decoder, the presence of the user-Z
codeword in the received signal is never beneficial. We therefore ex-
pect that the mapper node somehow performs the cancellation of the
interference due to the other user codeword to enhance the reliability
of the LLR messages.

The interpretation of the expression in (10) as soft-interference can-
cellation comes from the observation that the function in (11) is odd for
any value of the parameter t and, for jxj � 1, it can be approximated
as f(x; t) � sign(x). Indeed, f(x; t) acts as a weighting function for
the binary phase-shift keying (BPSK) symbol estimate “sign(x)”: if
jxj � 1 then f(jxj; t) � 0 since in this case, the estimate is unreliable;
on the contrary, if jxj � 1 then f(jxj; t) � 1 since with high prob-
ability “sign(x)” is the correct estimate.1 Notice that “signf�z;i;0 +
2mi

p

z;ig” is the best hard estimate of the user-Z transmitted symbol

in a single-user perspective when the node is given the channel obser-
vation mi and the sum of all the messages from the check nodes rep-
resented by �z;i;0 (recall the decision rule in (12).)

The mapper node viewed as an interference canceller explains why
joint decoding of superimposed LDPC codes achieves “a general point
in the two-user Gaussian MAC capacity without time sharing or rate
splitting” [11]. In fact, with iterative decoding, the complexity of de-
coding a generic rate point of the dominant face is no more than the
complexity of decoding any of the vertices, which can be achieved by
subsequent single-user decoding and stripping. However, an optimal
maximum-likelihood (ML) decoder performs one hard codeword can-
cellation per user while an iterative message-passing decoder performs
ongoing soft bit cancellation. Although different from the theoretically
optimal ML decoding with stripping, we shall next show that the itera-
tive message-passing decoding achieves rate points extremely close to
the achievable region of [5].

III. PERFORMANCE ANALYSIS

The BER performance of the iterative message-passing decoding al-
gorithm is exactly evaluated, in the limit for large block length n, by
using the density evolution technique or can be visualized by using the

1The expression in (10), and its interpretation as soft bit interference canceller,
generalizes to theK-user broadcast channel case, to theK-user multiple-access
case, and to certain multilevel modulations such asM -PAM and square QAM.

extrinsic information transfer (EXIT) chart method. The former ana-
lytically tracks the evolution of the probability mass function of a ran-
domly chosen message as the decoding progresses [7], [9], while the
latter graphically tracks the evolution of a single parameter related to
the density function [14].
Our goal is to find degree distributions (�; �) which result in codes

with vanishing BER as the block length and the number of iterations
increase. We analyze the average performance of the LDPC (n; �; �)
ensemble for n!1 and we restrict attention to the cycle-free case as
done in the single-user case [7]. In fact, the performance of each code in
the ensemble converges to the average ensemble performance exponen-
tially fast in the block length n, and each code is cycle free with prob-
ability (1�O(1=n)). The proof of those facts follows the same steps,
with some obvious modifications,2 as their single-user counterparts.

A. The Stability Condition

As in [7], we shall assume that the graph representing the joint prob-
ability in (7) is cycle free and that �(`�1)

u , the density of the incoming
message at a variable node from a check node at the (`�1)th iteration,
conditioned on having transmitted the zero bit, is of the form

�(`�1)
u = 1� �(`�1)u �+1(x) + �(`�1)u �0(x) (13)

where �a(x) indicates a mass point at x = a and where �(`�1)u 2
[0; 1]. After a complete iteration, the density of the LLR message has
evolved to

�(`)
u = 1� �(`)u �+1(x) + �(`)u �0(x) 
Qu(x) (14)

where 
 denotes the convolution and where

�(`)u =1� �u 1� �u �(`�1)u (15)

Qu(x) = 1� �(`�1)a �a(�
(`�1)
a ) Q(C)

u (x)

+ �(`�1)a �a(�
(`�1)
a )Q(I)

u (x); u 6= a (16)
i.e., �(`)u in (15) is the probability that the LLR message at the `th it-
eration is zero, Q(C)

u and Q(I)
u are the densities of the message from

the mapper when the reliability of the “interfering” user bit is, respec-
tively, infinite and zero, conditioned on the user-u bit being zero. The
density in (16) depends on the fading and on the channel noise through
matched filter output, i.e., throughQ(C)

u (x) andQ(I)
u (x). Moreover, in

the evaluation of (14), only the user of interest is assumed to have sent
the all-zero codeword while the other user is assumed to have trans-
mitted a typical codeword composed with an equal number of zeros
and ones, this fact is used in the evaluation of Q(I)

u (x) (Q(C)
u (x) is a

Gaussian density as in the single-user case).
The iterative decoding process is said to converge if the bit-error

probability vanishes for `(max) ! 1. Since, by our convention, the
channel seen by user-Y is better then the channel seen by user-Z ,
user-Y can recover its message and the message intended for user-Z .

2The proof of the cycle-free convergence for the entire graph hinges on seeing
the two sets of variable nodes as coincident.
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Fig. 4. Mapper transfer function from user-Y to user-Z for three different models of the extrinsic channel. User-Y decoder for an unfaded BC with
2jAj2P=N0 = 5:059 dBand � = 0:35resulting in I(Xy;Y ) = 0:274, I(Xy;Y jXz) = 0:523, I(Xz;Y ) = 0:483and I(Xz;Y jXy) = 0:735.

The stability condition is readily obtained by imposing that �(`�1)
u � 1

for both u = y and u = z. It then follows similarly to [9] that the prob-
ability of error decreases if

1

�0u(0)�0u(1)
> Q(C)

u (t)e�t=2dt = A e� (17)

where 
u = 2jAj2�uP=N0. Hence, the stability condition at the de-
coder of the best user decouples into two independent “single-user”
stability conditions, as for the MAC [11].

At the user-Z receiver only the user-Z codeword is reliably decoded.
The stability condition, obtained by imposing �(`�1)

z � 1 and �(`�1)
y �

1 is
1

�0z(0)�0z(1)
> Q(I)

z (t)e�t=2dt

= N;B e� �

� cosh(2N
p

y) + cosh(2

p

y
z)

2
(18)

where (18) is the Bhattacharyya constant [9] of the channel
fZjs(z) � s

p

z +

p

yX + NR(0; 1) for X 2 f�1g equally

likely, N � NR(0; 1), and 
u = 2jBj2�uP=N0. We notice that (18)
is well approximated in the high-SNR regime by the lower bound
( cosh (

p
x) + � is a convex-[ function for � � 1=2)

B e� � cosh(2
p

y) + cosh(2

p

y
z)

2

and by B [e
�

] in the low-SNR regime. It is worth noticing that
the mean values in (17) and in (18) are computed with respect to two

different fading statistics as the channels seen by the two users are, in
general, different.

B. EXIT Chart Analysis

Following [12], we view the variable nodes as being repetition codes
with respect to their edges, the check nodes as being single-parity check
codes with respect to their edges, and the overall LDPC code as a con-
catenation of those codes. The performance of such a concatenated
scheme can be analyzed using the EXIT chart method.
Let G�(x; y) be the polynomial

G�(x; y)
i

�iJ (i� 1)J�1(x) + J�1(y) (19)

defined for (x; y) 2 [0; 1]� [0; 1] and for J(x) in (6). For u 2 fy; zg,
let Im;u, Iv;u, and Ic;u denote the mutual information between bitXu

of user-u and, respectively, the message from the mapper to a variable
node, the message from a variable node to a check node, and the mes-
sage from a check node to a variable node. By using the “Gaussian ap-
proximation” for incoming messages [12], and the “duality property”
[15], the different mutual informations relate to each other as

Iv;u =G� (Ic;u; Im;u) (20)

Ic;u =1�G� (1� Iv;u; 0): (21)

In a single-user setting, Im;u equals the mutual information between
a coded bit and the corresponding channel output, that is, Im;u =
I(X;Y ). In this case, subject to the approximations inherent in EXIT
chart methods, reliable decoding is possible if

1�G� (1�G� (x; Im;u); 0) > x (22)

for all x 2 [0; 1). In a multiuser setting, Im;u depends on the channel
output and on the reliability of the other user’s bits. We shall therefore
extend the idea of (22) to track the evolution of the mutual information
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TABLE I
DEGREE DISTRIBUTION PAIRS FOR THE USER-Z CODE FOR AN UNFADED CHANNEL WITH 2jBj2P=N0 = 3:871 dB

TOGETHER WITH THE ASSOCIATED DESIGN RATES AND RECEIVE SNR IN DECIBELS

relative to the bits of both users by finding an appropriate expression
for Im;u.

The mutual information between a bitXz and the messageM from
a user-Z variable node to the mapper, derived similarly to (20), is

Iz!m = G� (Ic;z; Ic;z): (23)

The mutual information between a bit Xy and a message from the
mapper, a function of the channel output Y , and the messageM from
the other user, can be evaluated as

Im;y = I(Xy;Y jM) = 1� [log2(1 + e�T )] (24)

where T is a random variable distributed as the message from the
mapper in (10), for � = M , given that Xy = 1 and that M is the
bit Xz observed through a Gaussian channel with SNR J�1(Iz!m)
for Iz!m as in (23). Fig. 4 shows the mapper node transfer function
Im;z versus Ic;y for the codes in Tables I and II with � = 0:35 (we
plot Im;z versus Ic;y , instead of Im;y versus Ic;z , to highlight cases
were the BEC and the additive white Gaussian noise modeled extrinsic
channel give notably different results.) From Fig. 4 we notice that Im;z

is almost a linear function, i.e., Im;z � �z;Y (Ic;y) for �u;Y (Ic;a) (the
first subscript indicates the user and the second the channel)

�u;Y (Ic;a) = Ia!mI(Xu; Y jXa) + (1� Ia!m)I(Xu;Y ) (25)

as ifM was the output of a BEC with erasure probability 1� Iy!m.3

However, the expression in (25) does not seem to be in general a firm
bound, in the sense of the BEC being the “least informative channel”
[19], [20] for the mapper node. From numerical evaluations it turns
out that (25) is a very good approximation of (24) for a wide range

3SinceM is a noisy observation of X only, we have

I(Xy;Y jM) 2 [I(Xy;Y ); I(Xy;Y jXz)]:

of SNRs, i.e., failing only when the two SNRs are significantly dif-
ferent. Hence, in our EXIT chart analysis, we shall use (25) as the
mapper node transfer function. Notice that (25) depends on the phys-
ical channel (fading) only through I(Xu;Y jXa) and I(Xu;Y ).
By putting together (20), (21), and (25), we conclude that the mul-

tiuser equivalent of (22) for joint decoding at the user-Y receiver is that
x
(`+1)
y ! 1 as ` ! 1 where

x(`+1)y =1�G� 1�G� x`y; �y;Y (x
`
z) ; 0 (26a)

x(`+1)z =1�G� 1�G� x`z; �z;Y (x
`
y) ; 0 (26b)

while the condition for single-user decoding at the user-Z receiver is
(22) for u = z and Im;u = �z;Z(0) = I(Xz;Z). Figs. 5 and 6 show
(26a) and (26b) versus x`y; x

`
z . It is interesting to notice that x(`+1)y

need not be always above x(`)y to assure convergence. In a way, at the
beginning of the decoding process at the user-Y receiver, the user-Y
code operates at an SNR below its threshold. Only when part of the
interference from the user-Z code has been removed the user-Y code
operates at an SNR which allows the decoding process to progress and
eventually successfully converge.

C. Code Optimization

We simplify the code search by first finding a “good” user-Z code
and then optimizing the user-Y code, given the found user-Z code. Our
optimization algorithm is as follows.We enforce our candidate codes to
fulfill the conditions in (17) and (18). For a fixed degree distribution, we
use the EXIT chart method to determine the (approximate) threshold
of the corresponding LDPC ensembles by verifying conditions (26)
and (22) for a fixed channel. Then, by using the differential evolution
algorithm [9], [10], we modify the found degree distributions and we
check whether the new ones have a higher rate while ensuring that (26)
and (22) are still satisfied. We then iteratively repeat this process.
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Fig. 5. Evolution of the user-Z mutual information I
(`)
z;cas function of I

(`�1)
z;c and I

(`�1)
y;c for the codes in Tables I and II for � = 0:35. Also represented for

comparison the plane I
(`)
z;c = I

(`�1)
z;c .

Fig. 6. Evolution of the user-Y mutual information I
(`)
y;cas function of I

(`�1)
z;c and I

(`�1)
y;c for the codes in Tables I and II for � = 0:35. Also represented for

comparison the plane I
(`)
y;c = I

(`�1)
y;c .

D. Numerical Results

Using the above mentioned code search procedure, we found LDPC
codes with (approximate) SNR thresholds close to their Shannon lim-
itfor both unfaded and Rayleigh-fading channels. For each channel, we

considered several values of � 2 [0; 1] each corresponding to a dif-
ferent power share and hence resulting in a different rate point. Ta-
bles I and II show, respectively, the degree distributions for the user-Z
codes and the user-Y codes for an unfaded channel with jBj2P=N0 =
3.871 dB and jAj2P=N0 = 5.059 dB. Tables III and IV show the de-
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TABLE II
DEGREE DISTRIBUTIONS PAIRS FOR THE USER-Y CODE FOR AN UNFADED CHANNEL WITH 2jAj2P=N0 = 5:059 dB

AND THE CORRESPONDING DESIGN RATES AND RECEIVE SNR WHEN PAIRED WITH THE

CODES IN TABLE I

TABLE III
DEGREE DISTRIBUTION PAIRS FOR THE USER-Z CODE FOR A RAYLEIGH FADING CHANNEL WITH 2 [jBj2]P=N0 = 0:915 dB

TOGETHER WITH THE ASSOCIATED DESIGN RATES AND RECEIVE SNR IN DECIBELS

gree distributions for a Rayleigh-fading channel with [jBj2]P=N0 =
0.915 dB and [jAj2]P=N0 = 3.098 dB. Figs. 2 and 3 show the achiev-
able rate regions for binary input and the optimized code rate pairs. The
code rate pairs are very close to the boundary of the achievable region
for both channel models.

We notice that codes with higher maximum variable node degree
have lower SNR thresholds, as remarked in [9]. Intuition would indeed
agree that codes whose bits are involved inmore parity-check equations
offer greater reliability. Our code search shows that, similarly to what
[21], has been observed for erasure channels Gaussian channels [9],
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TABLE IV
DEGREE DISTRIBUTIONS PAIRS FOR THE USER-Y CODE FOR THE RAYLEIGH FADING CHANNEL WITH 2 [jAj2]P=N0 = 3:098 dBAND THE

CORRESPONDING DESIGN RATES AND RECEIVE SNR WHEN PAIRED WITH THE CODES IN TABLE III

Fig. 7. User-Y BER (over systematic bits only) for joint decoding of the codes in Tables I and II for � = 0:35and finite block length.

and uncorrelated Rayleigh-fading Gaussian channels [10], the opti-
mized degree distributions have only a few nonzero terms. The variable
node degrees tend to be concentrated around the maximum allowable
degree, the degree two, and a few other degrees in between. The check
node degrees are concentrated around a single degree whose value de-
pends on the average receive SNR. Also, the overall form of the degree
distributions are similar for the unfaded and the fading case.

The concentration theorem [7] ensures that for sufficiently large
block length almost every code in the ensemble will have vanishing
probability of error, if the receive SNR is above the ensemble threshold.

This condition was enforced in our code search. However, we are
also interested in the code performance for finite block lengths. Fig. 7
shows the BER performance of the codes in Table I and in Table II with
block length n = 103, 5 � 103 and n = 104. The degree distributions
were optimized for an unfaded channel with 2jBj2P=N0 = 3.871 dB,
2jAj2P=N0 = 5.059 dB, and � = 0:35. We notice that the threshold
effect is already quite pronounced at a block length of n = 104.
One of the anonymous reviewers pointed out that the poor perfor-

mance of the n = 103 ensemble is likely due to unavoidable length-4
cycles. Here our goal is to show the effectiveness of LDPC codes on
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general fading BCs and not to design optimized finite-length codes,
for which criteria other than the asymptotic performance must be
considered.

IV. CONCLUSION

In this work we studied the performance of LDPC codes on two-user
Gaussian BCs with fading.

In applying the sum–product update rule to deriving the joint mes-
sage-passing decoding algorithm, we found that the message update
rule at the mapping node linking the users’ codes is equivalent to soft
interference cancellation. Interestingly, a low-complexity implemen-
tation of the optimal update rule at the mapper is equivalent to hard
interference cancellation.

We showed that good degree distribution pairs can be found to ap-
proach the Shannon limit for binary constrained input BCs. We com-
puted the stability condition that the pair of codes must satisfy in order
to ensure vanishing probability of error for large block length and infi-
nite iterations by using the expression based on the Bhattacharyya dis-
tance between the two channel transition probabilities. We show that
the overall stability condition is actually composed of three conditions:
two for reliable joint decoding at the best receiver and one for reliable
single-user decoding at the worst receiver. We enforced these condi-
tions when optimizing the degree distributions by using a combination
of the EXIT chart method and the differential evolution algorithm.

We also extended the EXIT chart method to account for the informa-
tion coming from the other user’s code. We propose an approximation
of the mapper node transfer function based on the assumption of the
extrinsic channel being a BEC. By simulation, we verified that this ap-
proximation is very tight for a wide range of SNRs in the Gaussian
channel case.

We finally showed by simulations that the optimized codes can op-
erate at about 1 dB from their threshold for finite block length.
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