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On the Power of Quantum Memory
Robert König, Ueli Maurer,Fellow, IEEE,and Renato Renner

Abstract— We address the question whether quantum memory
is more powerful than classical memory. In particular, we
consider a setting where information about a randomn-bit string
X is stored in s classical or quantum bits, for s < n, i.e., the
stored information is bound to be only partial. Later, a randomly
chosen predicate F about X has to be guessed using only
the stored information. The maximum probability of correct ly
guessingF (X) is then compared for the cases where the storage
device is classical or quantum mechanical, respectively. We show
that, despite the fact that the measurement of quantum bits can
depend arbitrarily on the predicate F , the quantum advantage
is negligible already for small values of the differencen− s. Our
setting generalizes the setting of Ambainis et al. who considered
the problem of guessing an arbitrary bit (i.e., one of then bits)
of X.

An implication for cryptography is that privacy amplificati on
by universal hashing remains essentially equally secure when
the adversary’s memory is allowed to be quantum rather than
only classical. Since privacy amplification is a main ingredient
of many quantum key distribution (QKD) protocols, our result
can be used to prove the security of QKD in a generic way.

Index Terms— Cryptography, privacy amplification, quantum
information theory, quantum key distribution, quantum mem ory,
security proofs, universal hashing.

I. I NTRODUCTION

It is a well-known fact that ins quantum bits one cannot
reliably store more thans classical bits of information.1 In
other words, the raw storage capacity (like the raw trans-
mission capacity) of a quantum bit is just one bit of infor-
mation. However, since quantum memory can be read by an
arbitrary measurement determined only at the time of reading
the memory, quantum memory can be expected to be more
powerful than classical memory in any context where a string
X of n > s bits of information is given (and hence can be
stored only partially) and it is determined only later which
information aboutX is of interest.2

The simplest setting one can consider is that one must
use the stored information to guessF (X) for a randomly
chosen predicateF : X → {0, 1}. Ambainis, Nayak, Ta-
Shma, and Vazirani [4], [5] were the first to study such
a setting for the special case whereX is an n-bit string
and F (X) is an actual bit (i.e., one of then bits) of X .
Because in the quantum case one can let the measurement
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1This is a direct consequence of the Holevo bound [1] stating that the
accessible information contained in a quantum state cannotbe larger than its
von Neumann entropy. This assertion is also a consequence ofthe general
results proven in this paper (cf. Section IV-C).

2A typical example of such a setting is the bounded-storage model [2], [3].

of the stored quantum bits depend arbitrarily onF , while in
the classical case one can only read the stored information,
quantum memory is potentially more powerful. However, we
prove that having information aboutX stored ins quantum
instead ofs classical bits is essentially useless for guessing
F (X), even for optimal quantum storage and measurement
strategies. This is in accordance with the results in [4], [5]
as well as with recent results on communication complexity
(see e.g., [6]) where the power of classical and quantum
communication is compared.

In a cryptographic context, our results can be applied to
the security analysis of cryptographic primitives in a context
where an adversary might hold quantum information. An
important example isprivacy amplification introduced by
Bennett, Brassard, and Robert [7] (see also [8]) which is a
protocol between two parties, Alice and Bob. The goal is to
turn a commonn-bit stringX , about which an adversary Eve
has some partial information, into a highly securek-bit key
K. This can be achieved as follows: Alice and Bob publicly
agree on a functionG : {0, 1}n → {0, 1}k chosen from
a two-universal class of hash functions3 and then compute
K = G(X).4 It has been shown that, if Eve’s information
aboutX consists of no more thans classical bits, the final
key is secure as long ask < n− s.5

Similar to the previously described setting, it seems to
be a potential advantage for the adversary to have available
s quantum instead ofs classical bits of information about
X because she later learns the functionG and can let her
measurement of thes quantum bits depend onG. This may
allow her to obtain more information about the final keyK.
We prove that this is not the case, i.e., privacy amplification
remains equally secure against adversaries holding quantum
information.

This has interesting implications for quantum key distribu-
tion (QKD): In a QKD protocol, Alice and Bob first exchange
quantum information (e.g., polarized photons) to generatea
raw keyX which is only partially secure, i.e., Eve has some
quantum informationρ aboutX . In a second (purely classical)
phase, Alice and Bob apply privacy amplification to generate
the final secret keyK. Our result on the security of privacy
amplification thus reduces the problem of proving the security
of a QKD protocol to the problem of finding a bound on the
number of qubits needed to (reliably) store Eve’s information
ρ. In [10], this fact has been exploited to show the security
of a generic QKD protocol which, in particular, implies the
security of many known protocols such as BB84 [11]. This
simplifies and generalizes6 known security proofs (see e.g.,

3See Section II-A for a definition of two-universality.
4Equivalently, they can use an extractor [9].
5More precisely, her information is exponentially small inn − s − k.
6Most known security proofs are restricted to one specific QKDprotocol.
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[12]) which are based on completely different techniques. It
also generalizes a proof by Ben-Or [13] which is based on
a similar idea using results from communication complexity
theory [14].

The paper is organized as follows. In Section III, we
introduce a general framework for modeling and quantifying
knowledge and storage devices. The framework is then used in
Section IV to state and prove bounds on the success probability
when guessing a binary predicateF of X given information
aboutX stored in a quantum storage device (Section IV-B).
These are then compared to the situation where the information
about X is purely classical (Section IV-C). In Section V,
the results are extended to non-binary functions which then
allows for proving the security of privacy amplification against
quantum adversaries (Section V-B).

II. PRELIMINARIES

A. Notation

Let F(X → Y) be the set of functions with domainX
and rangeY. The setF(X → {0, 1}) of binary functions
with domainX , in the following calledpredicateson X , is
denoted asFXbin. Similarly,FXbal := {f ∈ FXbin : |f−1({0})| =
|f−1({1})|} is the set ofbalanced predicateson X .

Throughout this paper, random variables are denoted by cap-
ital letters (e.g.,X), their range by corresponding calligraphic
letters (X ), and the values they take on by lower case letters
(x). The event that two random variablesX andY take on the
same value is denoted asX = Y . In contrast, we writeX ≡ Y
if two random variablesX andY are identical (i.e., ifX = Y
always holds). TheexpectationEx←PX

[f(x)] of a functionf
on the random variableX is given by

∑

x∈X PX(x) f(x).
For a channelC from S to W and a random variableS on

S, we denote byCS the output ofC on inputS, i.e., if the
channel is defined by the conditional distributionsPW |S=s for
s ∈ S, the joint probability distribution ofCS andS is given
by PCSS(w, s) = P (s)PCS |S=s(w) for all (w, s) ∈ W × S.

A random functionG from X to Y is a random variable
taking values from the setF(X → Y) of functions mapping
elements fromX to Y. The set of random functions fromX to
Y is denoted asR(X → Y). If G ∈ R(X → Y) is uniformly
distributed overF(X → Y), it is called auniform random
functionfromX to Y. Similarly, a(uniform) random predicate
F on X is a random function with (uniform) distribution over
the setFXbin, and a(uniform) balanced random predicateis
(uniformly) distributed over the setFXbal. In the sequel, we
will only use random functions which are independent of all
other (previously defined) random variables.

A random functionG from X to Y is called7 two-universal
if Pg←PG

[g(x) = g(x′)] ≤ 1/|Y| holds for any distinctx, x′ ∈
X . In particular,G is two-universal if, for any distinctx, x′ ∈
X , the random variablesG(x) andG(x′) are independent and
uniformly distributed. For instance, a uniform random function
from X to Y is two-universal. Non-trivial examples where

7In the literature, two-universality is usually defined for families G of
functions: A familyG is called two-universal if the random functionG with
uniform distribution overG is two-universal. For our purposes, however, our
more general definition is more convenient.

the distribution ofG is over a smaller set of function (thus
requiring less randomness) can, e.g., be found in [15] and [16].

B. Distance from Uniform

The variational distancebetween two distributionsP and
P ′ over an alphabetZ is defined as

δ(P, P ′) :=
1

2

∑

z∈Z

∣

∣P (z) − P ′(z)
∣

∣ .

The variational distanceδ(P, P̄ ) of a distributionP from
the uniform distributionP̄ (over the same alphabetZ) is of
particular interest in cryptographic applications. We will use
the abbreviationd(P ) for this quantity and refer to it as the
distance ofP from uniform. For the distance of the distribution
of a random variableZ from uniform, we also writed(Z)
instead of d(PZ), and, more generally, for any eventE ,
d(Z|E) := d(PZ|E ). Note thatd is a convex function, i.e.,
for two probability distributionsP andP ′, andq, q′ ∈ [0, 1]
with q+ q′ = 1, we haved(q P + q′ P ′) ≤ q d(P ) + q′ d(P ′).

The distanced(Z) of a random variableZ from uniform
has a natural interpretation: It equals the probability that Z
deviates from a uniformly distributed random variableZ̄, in
the following sense.

Lemma 1:For any probability distributionPZ on Z there
exists a channelPZ̄|Z such thatPZ̄ is the uniform distribution
on Z andP(z,z̄)←PZZ̄

[z = z̄] = 1 − d(Z).
For two random variablesZ andW , the(expected) distance

of Z from uniform givenW is defined (cf. [2]) as the
expectation of the distance ofZ from uniform conditioned on
W , i.e.,d(Z|W ) := Ew←PW

[d(PZ|W=w)]. It follows directly
from the convexity ofd that d(Z|W ) ≥ d(Z), and, more
generally, for an additional random variableV and an event
E , d(Z|WV, E) ≥ d(Z|V, E).

III. M ODELING KNOWLEDGE AND STORAGE

A. Knowledge and Guessing

Let Z be a random variable and letA be an entity
with knowledge described by a random variableW (jointly
distributed with Z according to some distributionPZW ).
Intuitively, one would say thatA knows nothingabout Z
if Z is uniformly distributed givenA’s knowledgeW , i.e.,
PZW ≡ PZ × PW wherePZ is the uniform distribution. The
following straightforward generalization of Lemma 1 suggests
that the distanced(Z|W ) of Z from uniform givenW can be
interpreted as the probability of deviating from this situation.

Lemma 2:For any probability distributionPWZ onW×Z
there exists a channelPZ̄|WZ such thatPZ̄ is the uniform
distribution onZ, PZ̄W ≡ PZ̄ × PW , and P(z,z̄)←PZZ̄

[z =
z̄] = 1 − d(Z|W ).

This is of particular interest in cryptography, where, for
instance,A is an adversary with knowledgeW and where
one wants to useZ as a key. Typically, a cryptosystem based
on a key Z̄ is secure whenZ̄ is uniformly distributed and
independent ofA’s knowledge. The lemma implies that, with
probability 1 − d(Z|W ), Z is equal to such a perfect keȳZ.
This means that any statement which is true for an ideal setting
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whereZ̄ is used as a key automatically holds, with probability
at least1 − d(Z|W ), for a real setting whereZ is the key.

The distance from uniformd(Z|W ) is also a measure for
the maximum success probabilityPguess(Z|W ) of an entityA
knowingW when trying to guessZ,

Pguess(Z|W ) := max
C

P
(w,z)←PWZ

[Cw = z] ,

where the maximum is over all channelsC from W to Z.8

The following lemma is an immediate consequence of the
simple fact that the best strategy for guessingZ givenW = w
is to choose a valuêz maximizing the probabilityPZ|W (ẑ|w).

Lemma 3:Let W and Z be random variables. Then
Pguess(Z|W ) ≤ 1

|Z| + d(Z|W ) where equality holds ifZ is
binary.

B. Selectable Knowledge

The characterization of knowledge about a random variable
Z held by an entityA in terms of a random variableW is
sufficient whenever this knowledge is fully accessible, e.g.,
written down on a sheet of paper or stored in a classical storage
device. However, in a more general contextA might have an
option as to which information she can obtain. For example,
if her information aboutZ is encoded into the stateρ of a
quantum system, she may selectone arbitrary measurement
to “read it out”. Formally, every measurement corresponds to
a channelW from the state space of the quantum system to
the set of possible measurement outcomes. The situation is
thus completely characterized by the set of measurements (that
is, channels)W and the joint distribution ofZ and ρ. This
setting is discussed in detail in Section III-D. Another (more
artificial) example might be a storage unit which can hold two
bitsS ≡ B1B2, but which allows only to read outoneof these
bits, i.e.,A can read either the valueB1 orB2. In this case, the
situation is described by the joint distribution ofZ andS and
the set of channels{p1, p2}, where channelpi maps(b1, b2)
to bi for i = 1, 2. To model these situations, it is useful to
introduce the following notion.

Definition 4: A selectable channelW on S with rangeW
is a set of channels fromS to W .

Consider now a setting as described above, i.e., there is a
system which is in a state described by a random variableS
on S, and an entityA has access toS by means of a channel
W from a setW. In the following, we say that an entityA
has selectable knowledgeWS , meaning thatA can learn the
value of exactlyone arbitrarily chosen random variableWS

with W ∈ W. The knowledge ofA about a random variable
Z can then be quantified by a natural generalization of the
distance measure introduced above.

Definition 5: Let S andZ be random variables and letW

be a selectable channel on the range ofS. The distance ofZ
from uniform givenWS , is

d(Z|WS) := max
W∈W

d(Z|WS) .

The significance of this generalized definition ofdistance
from uniform, e.g., in cryptography, is implied by a straight-
forward extension of Lemma 2.

8Recall thatCW denotes the output of the channelC on inputW .

Lemma 6:Let S andZ be random variables and letW be
a selectable channel on the range ofS. Then for any choice
of an elementW of W, there exists a random variablēZ
defined by a channelPZ̄|WSZ , such thatPZ̄ is the uniform
distribution onZ, PWS Z̄ ≡ PWS

× PZ̄ , andP(z,z̄)←PZ̄Z
[z̄ =

z] ≥ 1 − d(Z|WS).
Similarly, Lemma 3 can be generalized to obtain a bound

for the maximum success probability of an entityA with
selectable knowledgeWS when guessingZ,

Pguess(Z|WS) := max
W∈W

Pguess(Z|WS) .

Lemma 7:Let S andZ be random variables and letW be
a selectable channel on the range ofS. ThenPguess(Z|WS) ≤
1
|Z| + d(Z|WS), where equality holds ifZ is binary.

Consider now a situation where the information aboutZ of
an entityA is described by both some selectable knowledge
WS , and, additionally, a random variableU which she can use
to choose an element fromW. More precisely, she applies
some channelC = PW |U from U to W to the random
variableU and then chooses to learnWS for the resulting
W ≡ CU ∈ W. We will then be interested in the maximal
distance ofZ from uniform resulting from an optimal strategy
used by A. Such an optimal strategy consists simply of
(deterministically) choosing someW ∈ W which maximizes
Ew←PWS

[d(PZ|WS=w,U=u)], givenU = u. We thus introduce
the following quantity.

Definition 8: Let S, U andZ be random variables and let
W be a selectable channel on the range ofS. Thedistance of
Z from uniform givenWS andU is defined as

d(Z|WS ;U) := E
u←PU

[

max
W∈W

d(Z|WS , U = u)
]

. (1)

It is easy to see that

d(Z|WS ;U) = d(Z|V(S,U))

for some selectable channelV onS×U which models the fact
thatA can choose an arbitrary strategy. In particular, Lemma 6
and Lemma 7 still hold whenWS is replaced byWS ;U ,
wherePguess(Z|WS ;U) is defined as the maximal probability
of A when guessingZ in the situation described above.

It is a direct consequence of the properties of the variational
distance that knowledge of an additional random variableU
can only increase the distance from uniform given selectable
knowledge.

Lemma 9:Let S, U andZ be random variables and letW

be a selectable channel on the domain ofS. Then

d(Z|WS ;U) ≥ d(Z|WS) .

C. Storage Devices

A (physical) storage device is a physical system where the
information it contains is determined by its physical state
s. Information is stored in the device by choosing a state
s from its state spaceS. A storage device might provide
different mechanisms to read out this information, each of
them resulting in some (generally only partial) information
about its states. However, any possible strategy of accessing
the stored information can be described as a channel mapping
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the memory state to a random variableW . We thus define a
storage devicewith state spaceS and rangeW as a selectable
channelp from S to W .

As an example, consider the (artificial) storage device
mentioned above which allows to store two bits, but where
only one of them can be read out. Formally, this storage device
is a selectable channelp = {p1, p2} from the state space
S = {0, 1}×{0, 1} to the set{0, 1} wherepm is the channel
mapping(b1, b2) to bm, for m ∈ {1, 2}.

The most trivial case is a classical storage device for storing
s bits and allowing to read out alls bits without errors.
Obviously, its states can take one of2s possible values.
Moreover, any accessing strategy corresponds to a channel
with input s. Formally, a classical s-bit storage deviceis
defined as the selectable channelC2s

containing all channels
taking inputs from the set{0, 1}s. (In Section III-D, we will
give an analogous definition for quantum storage devices.)
Note that for a random variableZ and a random variableS
on {0, 1}s, d(Z|C2s

S ) = d(Z|S). Thus we omit to mention
the selectable channel if it is clear from the context, e.g.,we
write d(Z|S;U) instead ofd(Z|C2s

S ;U).

D. Quantum Storage

An s-qubit storage device is a quantum system of dimension
d = 2s where information is stored by encoding it into the state
of the system. This information can (partially) be read out by
measuring the system’s state with respect to some (arbitrarily
chosen) measurement basis. Each pure state of ad-dimensional
quantum system corresponds to a normalized vector|ψ〉 in a
d-dimensional Hilbert spaceHd. Equivalently, the set of pure
states can be identified with the setP(Hd) := {|ψ〉〈ψ| : |ψ〉 ∈
Hd, |〈ψ|ψ〉| = 1} where |ψ〉〈ψ| is the projection operator in
Hd along the vector|ψ〉. The set of all possible states of
the quantum system is then given by the set of mixed states
S(Hd), which is the convex hull ofP(Hd).

It is well known from quantum information theory that the
most general strategy to access the information contained in
a quantum system is to perform a positive operator-valued
measurement (POVM), which gives a classical measurement
outcomeW . Any possible measurement is specified by a
family {Ew}w∈W of nonnegative operators onHd satisfy-
ing

∑

w∈W Ew = idHd
. If the system is in stateρ, the

probability of obtaining the (classical) measurement outcome
w ∈ W when applying measurement{Ew}w∈W is given by
p{Ew}(w|ρ) := tr(Ewρ).

In the framework presented in the previous section, ad-
dimensional quantum storage deviceQd is thus defined as the
set of channelsp{Ew} describing all possible POVMs{Ew}
on ad-dimensional quantum state, i.e.,

Qd := {p{Ew} : {Ew} ∈ POVM(Hd)} .

A general way of describing this setting is to define the
stateS of the storage device by a family of quantum states
{ρx}x∈X ⊂ S(Hd), whereρx is the conditional state of the
system givenX = x, that isS ≡ ρX . Similar to the notation
introduced for classical storage devicesC2s

, we will also write
ρX instead ofQd

ρX
.

According to Definition 5, the distanced(Z|ρX) of a
random variableZ from uniform givenρX can be written
as

d(Z|ρX) = max
{Ew}

d(Z|W )

where the maximum is taken over all POVMs{Ew} and
whereW is the measurement outcome of{Ew} applied to
the quantum state, i.e.,PW |X=x(w) = tr(Ewρx). Similarly,
for an additional random variableU ,

d(Z|ρX ;U) = E
u←PU

[

max
{Eu

w}
d(Z|W,U = u)

]

where, for eachu, {Eu
w} is a POVM and whereW is defined

by PW |X=x,U=u(w) = tr(Eu
wρx).

IV. QUANTUM KNOWLEDGE ABOUT PREDICATES

A. The Quantum Binary Decision Problem

We begin this section by stating a few known results
about the so-called quantum binary decision problem, which
are central to the proof of our main statements concerning
quantum knowledge.

Let ρ0, ρ1 ∈ S(H) be arbitrary (mixed) states of a quantum
mechanical systemH, and suppose that the system is prepared
either in the stateρ = ρ0 or in ρ = ρ1 with a priori
probabilitiesq and 1 − q, respectively. Thequantum binary
decision problemis the problem of deciding between these
two possibilities by an appropriate measurement. Any deci-
sion strategy can be summarized by a binary valued POVM
{E0, E1}, where the hypothesisHi : ρ = ρi is chosen
whenever the outcome isi ∈ {0, 1}. For a fixed strategy
{E0, E1}, the probability of choosingHi, when the actual
state isρj , is given byP[Hi|ρ = ρj ] = tr(Eiρj), i, j ∈ {0, 1}.
Thus the expected probability of success for this strategy
equals

P̄ {E0,E1}
q (ρ0, ρ1) := q tr(E0ρ0) + (1 − q) tr(E1ρ1) .

The maximum achievable expected success probability in the
binary decision problem is the quantity

P̄max
q (ρ0, ρ1) := sup

{E0,E1}∈POVM

P̄ {E0,E1}
q (ρ0, ρ1) .

The following theorem is due to Helstrom [17]. We state it
using the notation of Fuchs [18] who also gave a simple proof
of it.

Theorem 10:Let ρ0, ρ1 ∈ S(Hd) be two states, letq ∈
[0, 1], and let {µi}d

i=1 be the eigenvalues of the Hermitian
operatorΛ := q ρ0−(1−q) ρ1. Then the maximum achievable
expected success probability in the quantum binary decision
problem is

P̄max
q (ρ0, ρ1) =

1

2
+

1

2

d
∑

i=1

|µi| .
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B. Bounds on Quantum Knowledge

LetX be a random variable and letF be a randomly chosen
predicate onX . The goal of this section is to derive a bound
on the distance ofF (X) from uniform given knowledge about
X stored in a quantum storage device.

Such knowledge is modeled by a family of quantum states
{ρx}x∈X , where ρx is the state of the quantum system
conditioned on the event thatX = x. An explicit expression
for the corresponding quantity can be obtained using a result
on the quantum binary decision problem (cf. Section IV-A).

Lemma 11:Let X be a random variable with rangeX and
let F be a random predicate onX . Let {ρx}x∈X ⊂ S(Hd) be
a family of quantum states on ad-dimensional Hilbert space.
Then

d(F (X)|ρX ;F ) =
1

2
E

f←PF

[

d
∑

j=1

|µf
j |

]

,

where{µf
j }d

j=1 are the eigenvalues of the Hermitian operator

Λf :=
∑

x:f(x)=0

PX(x)ρx−
∑

x:f(x)=1

PX(x)ρx , for f ∈ FXbin.

Proof: It suffices to show that

d(f(X)|ρX) =
1

2

d
∑

j=1

|µf
j | (2)

for every f ∈ FXbin. Let thus f be fixed and assume for
simplicity thatPf(X)(0) > 0 andPf(X)(1) > 0 (otherwise,
(2) is trivially satisfied).

Let z ∈ {0, 1}. Conditioned on the event thatf(X) = z, the
stateρ equalsρx with probabilityPX|f(X)(x|z). This situation
can equivalently be described by saying that the system is in
the mixed stateσf

z ∈ S(Hd), where

σf
z =

∑

x:f(x)=z

PX|f(X)(x|z)ρx .

The problem of guessingf(X) thus corresponds exactly to the
quantum binary decision problem described in Section IV-A,
i.e.,

Pguess(f(X)|ρ) = P̄max
Pf(X)(0)

(σf
0 , σ

f
1 ) =

1

2
+

1

2

d
∑

j=1

|µf
j |

where the second equality follows from Theorem 10. Finally,
sincef(X) is binary, equation (2) follows from Lemma 7.

The expression for the distance ofF (X) from uniform
provided by Lemma 11 is generally difficult to evaluate. The
following theorem gives a much simpler upper bound for this
quantity.9

Theorem 12:LetX be a random variable with rangeX and
let F be a random predicate onX . Let further{ρx}x∈X ⊂

9The main idea in the proof of Theorem 12 is to replace occurrences of
density operators by their squares. The resulting expressions correspond to
classical collision probabilities, as used in the well-known classical analysis
of privacy amplification. The application of Jensen’s inequality corresponds
to the transition from the variational to the Euclidean distance. In this sense,
this proof can be seen as a generalization of the classical derivation.

S(Hd) be a family of states on ad-dimensional Hilbert space.
Then

d(F (X)|ρX ;F ) ≤ 1

2
d

1
2

√

∑

x,x′∈X
PX(x)PX(x′)λx,x′tr(ρxρx′)

whereλx,x′ := 2 Pf←PF
[f(x) = f(x′)] − 1, for x, x′ ∈ X .

Proof: We set out from the equation

d(F (X)|ρX ;F ) =
1

2
E

f←PF

[

d
∑

j=1

|µf
j |

]

provided by Lemma 11. Note that, for anyf ∈ FXbin,

d
∑

j=1

|µf
j | ≤ d

1
2

√

√

√

√

d
∑

j=1

|µf
j |2 = d

1
2

√

tr(Λ2
f ) ,

where the inequality is Jensen’s inequality (applied to the
convex mappingx 7→ x2) and where the equality is a
consequence of Schur’s (in)equality (cf. Lemma 20), which
can be applied becauseΛf is Hermitian and thus also normal.
We conclude that

d(F (X)|ρX ;F ) ≤ 1

2
d

1
2 E

f←PF

[

√

tr(Λ2
f )

]

≤ 1

2
d

1
2

√

E
f←PF

[tr(Λ2
f )] ,

(3)

where Jensen’s inequality is applied once again.
By the definition ofΛf in Lemma 11, we have

tr(Λ2
f ) =

∑

x,x′∈X
f(x)=f(x′)

PX(x)PX (x′)tr(ρxρx′)

−
∑

x,x′∈X
f(x) 6=f(x′)

PX(x)PX(x′)tr(ρxρx′)

=
∑

x,x′∈X
(2δf(x),f(x′) − 1)PX(x)PX(x′)tr(ρxρx′) ,

where δy,y′ is the Kronecker delta10. The assertion then
follows by taking the expectation of this expression overF
and combining the result with (3).

If F is two-universal, the quantity on the right hand side
of Theorem 12 can be bounded by an expression which is
independent of the particular storage function.

Corollary 13: Let X be a random variable with rangeX
and letF be a two-universal random predicate onX . Then for
every family{ρx}x∈X ⊂ S(Hd) of states on ad-dimensional
Hilbert space

d(F (X)|ρX ;F ) ≤ 1

2
d

1
2

√

∑

x∈X
P 2

X(x) .

Proof: SinceF is two-universal, the valuesλx,x′ (as de-
fined in Theorem 12) cannot be positive for any distinctx, x′ ∈
X . Sincetr(ρxρx′) ≥ 0, we conclude thatλx,x′ tr(ρxρx′) ≤ 0
for x 6= x′. Moreover,λx,x = 1 and tr(ρxρx) ≤ 1, for any
x ∈ X . Combining these facts, the assertion follows directly
from the upper bound given by Theorem 12.

10δy,y′ equals1 if y = y′ and0 otherwise.
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Note that the expression under the square root is simply
the collision probabilityPC(X) of X . Hence, with the Rényi
entropyR(X) = − log2 PC(X), the above inequality can be
rewritten as

d(F (X)|ρX ;F ) ≤ 1

2
2−

R(X)−s

2 , (4)

wheres is the number of qubits in whichX is stored, i.e.,
{ρx}x∈X ⊂ S(H2s).

C. Comparing Classical and Quantum Storage Devices

Since orthogonal states of a quantum system can always be
perfectly distinguished, a random variableX can always be
stored and perfectly retrieved in a quantum storage device of
dimensiond as long as the size of the range ofX does not
exceedd. Hence, a classicals-bit storage deviceC2s

cannot
be more powerful than a storage deviceQ2s

consisting ofs
qubits. Formally, this can be stated as follows. For any random
variablesX andS on X and{0, 1}s, respectively, there is a
family of states{ρx}x∈X ⊂ S(H2s) such that

d(F (X)|SF ) ≤ d(F (X)|ρX ;F ) , for anyF ∈ R(X → Y).
(5)

The following lemma shows that, on the other hand, a
quantum storage device can indeed be more useful than a
corresponding classical storage device. However, we will see
later that this is only true for special cases, e.g., if the
difference between the numbern of bits to be stored and the
capacitys of the storage device is small.

Lemma 14:Let X be uniformly distributed over{0, 1}2

and letF be a uniform balanced predicate on{0, 1}2. Then
for any random variableS on {0, 1} defined by a channel
PS|X ,

d(F (X)|SF ) ≤ 1

4
.

Similarly, for every family{ρx}x∈{0,1}2 ⊂ S(H2) of quantum
states on a2-dimensional Hilbert space

d(F (X)|ρX ;F ) ≤ 1

2
√

3
≈ 0.289 ,

and there exists families{ρx}x∈{0,1}2 ⊂ S(H2) saturating this
bound.

Proof: By the convexity of the variational distance, it
suffices to consider random variablesS which depend in a
deterministic way onX , that is,S ≡ ϕc(X) for some function
ϕc : {0, 1}2 → {0, 1}. It can easily be verified (by an explicit
calculation) that

d(F (X)|ϕc(X)F ) ≤ 1

4

for any functionϕc from {0, 1}2 to {0, 1}, and that equality
holds for ϕc : (x1, x2) 7→ x1 · x2 (i.e., ϕc(x1, x2) = 1 if
and only if x1 = x2 = 1). This proves the first (classical)
statement of the lemma.

For the second (quantum) statement, for the same rea-
son as above, it suffices to consider pure states only. Let
{|ψx〉〈ψx|}x∈{0,1}2 ⊂ S(H2) be an arbitrary family of pure
quantum states. It follows from the linearity of the trace

and Lemma 21, applied to the Hermitian operatorA :=
∑

x∈X |ψx〉〈ψx|, that
∑

x,x′∈X
|〈ψx|ψx′〉|2 ≥ |X |2/d .

The boundd(F (X)||ψX〉〈ψX |;F ) ≤ 1/(2
√

3) can then be
obtained from Theorem 12 withPf←PF

[f(x) = f(x′)] = 1
3

for distinctx, x′ (implying λx,x′ = − 1
3 ).

It remains to be proven thatd(F (X)||ψX〉〈ψX |;F ) =
1/(2

√
3) for a family of states{|ψx〉〈ψx|}x∈{0,1}2 ⊂ S(H2).

Such states can be defined by setting|ψ00〉,|ψ01〉 |ψ10〉 and
|ψ11〉 to the vertices of a tetrahedron inP(H2) (or, more
precisely, in the Bloch sphere which corresponds toP(H2)).
The assertion then follows from a straightforward calculation.

Together with Lemma 7, Lemma 14 implies that the max-
imum probability of correctly guessing a randomly chosen
balanced predicateF about a random2-bit stringX is larger
if information aboutX can be stored in one qubit (Pq =
0.789) than if this information is stored in one classical bit
(Pc = 0.75). Note that this is in accordance with earlier results
showing that one individual qubit can be stronger than one
classical bit (see, e.g., [4]).

Surprisingly, this advantage of a quantum storage device
becomes negligible if the differencen− s between the length
n of the bitstringX and the numbers of bits/qubits of the
storage device becomes large. To see this, let us first state a
lower bound for the distance ofF (X) from uniform given the
knowledge stored in a classical storage device.

Lemma 15:Let X be uniformly distributed on{0, 1}n and
let F be a uniform random predicate on{0, 1}n. Then for any
s < n there exists a random variableS on {0, 1}s defined by
a channelPS|X such that

1

2
C(2n−s) ≤ d(F (X)|SF ) (6)

whereC(m) :=
(

m
m/2

)

2−m =
√

2
πm (1+O( 1

m )). In particular,

1√
2π

2−
n−s

2 (1 +O(2−(n−s))) ≤ d(F (X)|SF ) .

Proof: Let ϕ be a function from{0, 1}n to {0, 1}s

such that for anyw ∈ {0, 1}s, the setϕ−1({w}) := {x ∈
{0, 1}n : ϕ(x) = w} has size2n−s. We claim thatS ≡ ϕ(X)
satisfies (6).

For any fixedw ∈ {0, 1}s andf ∈ F{0,1}n

bin ,

d(f(X)|ϕ(X) = w) =
∣

∣ P
f←PF

[f(X) = 0|ϕ(X) = w] − 1
2

∣

∣

=
∣

∣

∣

kf

2n−s
− 1

2

∣

∣

∣
,

wherekf := |f−1({0}) ∩ ϕ−1({w})|. SinceF is uniformly
distributed on the setF{0,1}n

bin , we havePf←PF
[kf = k] =

(

2n−s

k

)

2−2n−s

for k ∈ {0, . . . , 2n−s}, hence

d(f(X)|ϕ(X) = w) =

2n−s

∑

k=0

∣

∣

∣

k

2n−s
− 1

2

∣

∣

∣

(

2n−s

k

)

2−2n−s

=
1

2
C(2n−s) ,
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where the last equality follows from equation (14) of
Lemma 22. Asw ∈ {0, 1}s was arbitrary, this concludes the
proof. (The approximation forC(m) can be obtained from
Lemma 23.)

Combining Lemma 15 with inequalities (4) and (5), we
conclude that the distance from uniform has the same asymp-
totic behavior for the classical and the quantum case: The
knowledge about the predicateF (X) decreases exponentially
in the differencen− s between the length of the bitstringX
and the sizes of the storage device.

More precisely, since, forn− s ≥ 1,

1

2
C(2n−s) ≥ 1

2
2−

n−(s−1)
2

it follows from Lemma 15 and (4) that there exists a random
variableS on {0, 1}s defined by a channelPS|X such that
d(F (X)|SF ) ≥ d(F (X)|ρX ;F ) for any family of states
{ρx}x∈{0,1}n ⊂ S(H2s−1 ). This means that storing informa-
tion aboutX in s classical bits instead ofs− 1 quantum bits
allows to predictF (X) with a lower error probability.

V. FROM THE BINARY TO THE NON-BINARY CASE

A. Relations Between Bounds on Knowledge

We start with a lemma bounding the distance of a random
variableX from uniform by the distance of a binary hash value
F (X) from uniform whereF is a randomly chosen balanced
predicate. This is related to the Vazirani XOR lemma (see
e.g., [19]), which gives a similar bound for the case whereF
is chosen randomly from the set of all linear functions.11

Lemma 16 (Hashing Lemma):LetX be a random variable
with range X and let F be a uniform balanced random
predicate onX . Then

d(X) ≤ 3

2

√

|X | d(F (X)|F ) .

Proof: For any probability distributionQ overX and any
f ∈ FXbal, let df (Q) := d(f(X ′)) be the distance between the
uniform distribution and the distribution off(X ′) whereX ′

is a random variable distributed according toQ. We have to
show that

d(Q) ≤ 3

2

√

|X | E
f←PF

[df (Q)] , (7)

for any distributionQ over X . Defining the coefficients
ax(Q) := Q(x)− 1

|X | , and the setsX+
Q := {x ∈ X : ax(Q) ≥

0} andX−Q := X − X+
Q , we obtain

d(Q) =
∑

x∈X+
Q

ax(Q) = −
∑

x∈X−
Q

ax(Q) (8)

and, for anyf ∈ FXbal andX 0
f := {x ∈ X : f(x) = 0},

df (Q) =
∣

∣

∑

x∈X 0
f

ax(Q)
∣

∣ , (9)

11 The following version of Vazirani’s XOR lemma is proved in [20]:

d(X) ≤
√

|X |
√

Eℓ←PL
[d(ℓ(X))2 ], wherePL is the uniform distribution

on the set of all non-zero linear functions fromX to {0, 1}.

respectively. Note that, sinced is convex,df is convex as
well and thus so is its expected valueEf←PF

[df (·)] (i.e., the
function defined byQ 7→ Ef←PF

[df (Q)]).
Let us first show that inequality (7) holds for distributionsQ̄

overX where the probabilities only take two possible values,
|Q̄(X )| ≤ 2, i.e., there exista+ ≥ 0 and a− ≤ 0 such that
ax(Q̄) = a+ for x ∈ X+

Q̄
and ax(Q̄) = a− for x ∈ X−

Q̄
.

Then the valuedf (Q̄) in (9) only depends on the number
k(f) := |X 0

f ∩ X+
Q̄
| of valuesx ∈ X+

Q̄
for which f(x) = 0.

To get some intuition, consider the case where|X+
Q̄
| =

1
2 |X |. Sincef is randomly chosen, the expected deviation of
k(f) from its average value14 |X | is proportional to

√

|X |.
Furthermore,df (Q̄) is proportional to this deviation anda+,
anda+ is proportional tod(Q̄) and inverse proportional to|X |.
Neglecting the constants, this already shows that (7) holdsin
this particular case.

Proving the exact statement (7) requires a little bit more
computation. For any predicatef ∈ FXbal, expression (9) reads

df (Q̄) =
∣

∣

∑

x∈X 0
f
∩X+

Q̄

a+ +
∑

x∈X 0
f
∩X−

Q̄

a−
∣

∣

=
∣

∣k(f) a+ + (
n

2
− k(f)) a−

∣

∣

wheren := |X |. With s := |X+
Q̄
|, expression (8) implies

a+ =
d(Q̄)

s
and a− = − d(Q̄)

n− s
,

and hence

df (Q̄) =
∣

∣d(Q̄)
(

k(f)(
1

s
+

1

n− s
) − n

2

1

n− s

)∣

∣

= d(Q̄)
∣

∣k(f) − s

2

∣

∣

n

s(n− s)
.

Consequently, forQ = Q̄, inequality (7) is equivalent to

1

|FXbal|
n

s(n− s)

∑

f∈FX
bal

|k(f) − s

2
| ≥ 2

3
√
n
.

Since the term in the sum overFXbal only depends onk(f),
the sum can be replaced by a sum overk, i.e., we have to
show that

1
(

n
n
2

)

n

s(n− s)

min(s, n
2 )

∑

k=max(0,s−n
2 )

(

s

k

) (

n− s
n
2 − k

)

|k − s

2
|

=
(n

2 !)2 s! (n− s)!n

n! s(n− s)
Sn,s ≥ 2

3
√
n

(10)

with

Sn,s =

min(s, n
2 )

∑

k=max(0,−n
2 +s)

|k − s
2 |

k! (s− k)! (n
2 − s+ k)! (n

2 − k)!
.

The termSn,s has different analytic solutions depending on
whethers is even or odd. Let us first assume thats is even.
Replacing the summation indexk by k̄ = k − s

2 and making
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use of the symmetry of the resulting terms with respect to the
sign of k̄, we get

Sn,s = 2

min( s
2 , n−s

2 )
∑

k̄=0

k̄

( s
2 + k̄)! ( s

2 − k̄)! (n−s
2 + k̄)! (n−s

2 − k̄)!

=
s(n− s)

2n ( s
2 !)2 (n−s

2 !)2
,

where the second equality follows from equation (15) of
Lemma 22 witha = s

2 and b = n−s
2 . A straightforward

calculation then shows that for fixedn the minimum of the
left hand side of the inequality in (10) is taken fors as close
as possible ton

2 , i.e., s = 2⌊n
4 ⌋ andn− s = 2⌈n

4 ⌉, that is

(n
2 !)2 s! (n− s)!n

n! s(n− s)
Sn,s ≥

n
2 !2 s! (n− s)!

2n! ( s
2 !)2 (n−s

2 !)2

≥
n
2 !2 (2⌊n

4 ⌋)! (2⌈n
4 ⌉)!

2n! (⌊n
4 ⌋!)2 (⌈n

4 ⌉!)2
.

Lemma 23 is then used to derive a lower bound for the term
on the right hand side of this inequality, leading to

(n
2 !)2 s! (n− s)!n

n! s(n− s)
Sn,s

≥
√

2

πn
e

2
6n+1+ 1

24⌊ n
4

⌋+1
+ 1

24⌈ n
4

⌉+1
− 1

12n
− 1

6⌊ n
4

⌋
− 1

6⌈ n
4

⌉ ≥ 2

3
√
n
,

where the last inequality holds forn ≥ 6.
Similarly, for s odd, applying equation (16) of Lemma 22

with a = s−1
2 andb = n−s−1

2 leads to

Sn,s = 2

min(a,b)
∑

k̄=0

|k̄ + 1
2 |

(a+ k̄ + 1)! (a− k̄)! (b + k̄ + 1)! (b− k̄)!

=
2

n ( s−1
2 !)2 (n−s−1

2 !)2
,

resulting in the same lower bound2
3
√

n
for the left hand side

of the inequality in (10) forn ≥ 8. Moreover, an explicit
calculation shows that (10) also holds forn = 2, n = 4, and
n = 6 which concludes the proof of inequality (7) forQ = Q̄
with |Q̄(X )| ≤ 2.

Let nowQ be an arbitrary distribution onX and letΓ be
the set of permutations onX with invariant setsX+

Q andX−Q ,
i.e., γ(X+

Q ) = X+
Q and γ(X−Q ) = X−Q , for γ ∈ Γ. Since

d(Q) = d(Q ◦ γ) for γ ∈ Γ, we find that

Q̄ :=
1

|Γ|
∑

γ∈Γ

Q ◦ γ

is a probability distribution satisfyingd(Q̄) = d(Q) and taking
identical probabilities for all elements inX+

Q as well as for
all elements inX−Q , i.e., |Q̄(X )| ≤ 2. Since inequality (7) is
already proven for distributions of this form, we conclude

d(Q) = d(Q̄) ≤ 3

2

√

|X | E
f←PF

[df (Q̄)]

≤ 3

2

√

|X | 1

|Γ|
∑

γ∈Γ

E
f←PF

[df (Q ◦ γ)] ,

where the second inequality is a consequence of the convexity
of Ef←PF

[df (·)]. Assertion (7) then follows fromdf (Q ◦
γ) = df◦γ−1(Q), for all f ∈ FXbal, γ ∈ Γ, and the fact
that F ◦ γ−1 is a uniform balanced random predicate, i.e.,
Ef←PF

[df◦γ−1(Q)] = Ef←PF
[df (Q)].

In order to apply the hashing lemma to generalize the
results of the previous section to the non-binary case, we
need a relation between binary random functions (i.e., random
predicates) and non-binary random functions.

Lemma 17:LetG be a two-universal random function from
X to Y and letF be a uniform balanced random predicate on
Y. Then the random predicateH := F ◦G is two-universal.

Proof: For any distinctx, x′ ∈ X ,

P
h←PH

[h(x) = h(x′)] = P
g←PG

[g(x) = g(x′)]

+(1− P
g←PG

[g(x) = g(x′)]) P
f←PF

g←PG|G(x)6=G(x′)

[f(g(x)) = f(g(x′))] .

Note thatPf←PF ,g←PG|G(x)6=G(x′)
[f(g(x)) = f(g(x′))] is the

collision probability of the uniform balanced random predicate
F , Pf←PF

[f(y) = f(y′)] (for distinct y, y′ ∈ Y), which can
easily be computed,

P
f←PF

[f(y) = f(y′)] =
|Y| − 2

2 (|Y| − 1)
.

SinceG is two-universal, i.e.,Pg←PG
[g(x) = g(x′)] ≤ 1

|Y| ,
we have

P
h←PH

[h(x) = h(x′)]

= P
g←PG

[g(x) = g(x′)]
(

1 − P
f←PF

[f(y) = f(y′)]
)

+ P
f←PF

[f(y) = f(y′)]

≤ 1

|Y| +
(

1 − 1

|Y|
)

P
f←PF

[f(y) = f(y′)]

=
1

|Y| +
(

1 − 1

|Y|
) |Y| − 2

2 (|Y| − 1)
=

1

2
,

i.e., the random predicateH is two-universal.
Combining Lemma 16 and Lemma 17 leads to a relation

between the distance from uniform of the outcomes of binary
and general (non-binary) two-universal functions on a random
variableX , given some knowledgeWS .12

Theorem 18:Let X andS be random variables onX and
S, respectively and letW be a selectable channel onS. If,
for all two-universal random predicatesH on X ,

d(H(X)|WS ;H) ≤ ε , (11)

then, for all two-universal random functionsG from X to Y,

d(G(X)|WS ;G) ≤ 3

2

√

|Y| ε . (12)

Proof: From Definition (1), we have

d(G(X)|WS ;G) = E
g←PG

[

max
W∈W

d(g(X)|WS)
]

12 Using the version of Vazirani’s XOR-Lemma stated in Footnote 11, the
constant3

2
in the bound (12) of Theorem 18 can be eliminated by replacing

condition (11) by the stronger requirement
√

Eh←PH
[d(h(X)|WS)2] ≤ ε.
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The expression in the maximum can then be bounded using
Lemma 16, that is

d(g(X)|WS) ≤ 3

2

√

|Y| d(F (g(X))|WSF ).

This leads to

d(G(X)|WS ;G) ≤ 3

2

√

|Y| E
g←PG

[

max
W∈W

d(F (g(X))|WSF )
]

≤ 3

2

√

|Y| E
f←PF

g←PG

[

max
W∈W

d(f(g(X))|WS)
]

DefiningH := F ◦G, we obtain

d(G(X)|WS ;G) ≤ 3

2

√

|Y| E
h←PH

[

max
W∈W

d(h(X)|WS)
]

=
3

2

√

|Y| d(H(X)|WS ;H).

Finally, Lemma 17 states thatH is a two-universal random
predicate onX , hence the assertion of the theorem follows.

B. Application: Privacy Amplification with a Quantum Adver-
sary

Consider two parties, Alice and Bob, being connected by
an authentic but otherwise completely insecure communica-
tion channel. Assume that they initially share a uniformly
distributedn-bit key X about which an adversary Eve has
some partial information, where the only bound known on
Eve’s information is that it consists of no more thans bits.
Privacy amplification, introduced by Bennett, Brassard, and
Robert [7], is a method to transformX into an almost perfectly
secure keyK. It has been shown that if Alice and Bob publicly
(by communication over the insecure channel) choose a two-
universal random functionG mapping then-bit string to an
k-bit string K = G(X), for k smaller thann − s, then
the resulting stringK is secure (i.e., Eve has virtually no
information aboutK). Note thatn−s is roughly Eve’s entropy
about the initial stringX , i.e., privacy amplification with
two-universal random functions is asymptotically optimalwith
respect to the number of extractable key bits. In our formalism,
the possibility of privacy amplification by applying a (two-
universal) random functionG, as proved in [7] (a simplified
proof has been given in [8]), reads

d(G(X)|SG) = O(2−
n−s−k

2 ) (13)

for any random variableS on {0, 1}s defined by a channel
PS|X .

Combining the results from the previous section, we obtain
a similar statement for the situation where Eve’s knowledge
aboutX is stored ins quantum instead ofs classical bits.
More precisely, we can derive a bound on the distance of the
final keyK ≡ G(X) from uniform, from an adversary’s point
of view, whereG is a two-universal random function applied

to an initial stringX , assuming only that the adversary’s
knowledge aboutX is stored in a limited numbers of qubits.13

Corollary 19: Let X be a random variable with rangeX
and Rényi entropyR(X) = n and letG be a two-universal
random function fromX to {0, 1}k. Then, for any family of
states{ρx}x∈X ⊂ S(H2s)

d(G(X)|ρX ;G) ≤ 3

4
2−

n−s−k
2 .

Proof: Theorem 18 together with Corollary 13 implies

d(G(X)|ρX ;G) ≤ 3

4

√

2k · 2s
∑

x∈X
P 2

X(x)

for any family of states{ρx}x∈X ⊂ S(H2s). The corollary
then follows from the definition of the Rényi entropy (cf.
remark after the proof of Corollary 13).

We thus have a quantum analogue to (13), implying that
privacy amplification remains equally secure (with the same
parameters) if an adversary has quantum rather than only
classical bits to store her information. Note that a similar
bound follows from [13] together with a result of [5], for the
case whereG is the inner product with a randomly chosen
string.

This generalization of the security proof of privacy amplifi-
cation immediately extends a result by Csiszár and Körner[21]
(see also [22]) to the quantum case. Consider a situation where
Alice and Bob share information described byN independent
realizations of random variablesX and Y , respectively, and
where Eve has information described by realizations of a
classical random variableZ. The result of [21] says that the
number of secret key bits that can be generated by one-way
communication (from Alice to Bob) over a public channel
is at least (roughly)N(I(X ;Y ) − I(X ;Z)), for large N .
The protocol that Alice and Bob have to apply consists of an
error correction step followed by a privacy amplification step
using a two-universal random function. If we now consider
a situation where Eve holdss qubits of quantum information
aboutX , it follows immediately from Corollary 19 that the
same protocol can be used to generate a secret key of length
roughlyN(I(X ;Y ) − s).

In most QKD protocols, Alice encodes some classical
informationX into the state of a quantum system and sends
it to Bob. Upon receiving this state, Bob applies a measure-
ment, resulting in classical informationY . After this step,
the adversary might hold some quantum information about
X and Y . The situation is thus characterized by classical
random variablesX andY together with the quantum system
of Eve, where the size of her system depends on the error rate
tolerated by the protocol (see [10]). Hence, the generalization
of the Csiszár-Körner bound described above directly gives an

13 Note that this is an example illustrating the fact that a bound on the
expected distance of a single bitH(X) from uniform d(H(X)|WS ;H)
suffices to derive bounds on the expected distance from uniform
d(G(X)|WS ;G) of a long keyG(X) obtained by privacy amplification. In
the case of quantum knowledge, however, it is possible to prove even stronger
statements for the single-bit case, resulting in a strengthened version of
Corollary 13, which gives a bound on a quantity similar tod(H(X)|WS ;H)
. Using this and Footnote 12, the constant3

4
in Corollary 19 can be replaced

by 1

2
.
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expression for the amount of key that can be generated by the
protocol. In particular, it proves that the security holds against
any type of attack (including coherent measurements on Eve’s
whole quantum system).

VI. CONCLUSIONS ANDOPEN PROBLEMS

It is a fundamental question whethers quantum bits are
more powerful thans classical bits in order to store infor-
mation about ann-bit valueX (for n > s). We considered
the problem of answering a randomly chosen questionF about
X , given only the stored information aboutX . The uncertainty
about the answerF (X) is then a measure for the usefulness
of the stored information. It can be quantified in terms of
the distance ofF (X) from uniform conditioned on the stored
information, which, for binary questionsF , corresponds to the
advantage over1/2 of the success probability when guessing
F (X). It turns out that when storing a bitstringX of length
n = 2 bits, one quantum bit can indeed be more useful than
one classical bit (cf. Lemma 14). However, for larger valuesof
n− s, the difference between classical and quantum memory
becomes inessential.14

We have shown that this has interesting implications for
cryptography. In particular, privacy amplification by two-
universal hashing remains secure even against adversaries
holding quantum information (cf. Corollary 19). This also
leads to conceptually simpler and more general security proofs
for quantum key distribution, where privacy amplification is
used for the classical post-processing of the raw key (cf. [10],
[13]).

It is well-known that so-calledstrong extractors[9] can be
used to do privacy amplification in the classical case. While
two-universal hashing can be seen as special case of this,
the converse generally does not hold. It is an open problem
whether strong extractors are sufficient to generate a key which
is secure against a quantum adversary in general.
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APPENDIX

Lemma 20 (Schur’s inequality):Let A be a linear operator
on a d-dimensional Hilbert spaceHd and let{µi}d

i=1 be its
eigenvalues. Then

d
∑

i=1

|µi|2 ≤ tr(AA†) ,

with equality if and only ifA is normal (i.e.,AA† = A†A).
Proof: See, e.g., [23].

http://arXiv.org/abs/quant-ph/9804043
http://arXiv.org/abs/quant-ph/9904093
http://arxiv.org/abs/quant-ph/0402131
http://arXiv.org/abs/quant-ph/9802025
http://www.msri.org/publications/ln/msri/2002/quantumintro/ben-or/2/
http://arXiv.org/abs/quant-ph/9601020
http://eccc.uni-trier.de/eccc/
http://www1.cs.columbia.edu/~arielbaz/


11

Lemma 21:LetA be a normal operator on ad-dimensional
Hilbert spaceHd. Then

|tr(A)|2 ≤ d · tr(AA†) .
Proof: SinceA is normal, we have

tr(A) =

d
∑

i=1

µi and tr(AA†) =

d
∑

i=1

|µi|2 ,

where{µi}d
i=1 are the eigenvalues ofA. The assertion then

follows from Jensen’s inequality stating that

∣

∣

∣

d
∑

i=1

µi

∣

∣

∣

2

≤ d ·
d

∑

i=1

|µi|2 .

Lemma 22:Let a, b ∈ N. Then the following equalities
hold:

2a
∑

z=0

(

2a

z

)

·
∣

∣

1

2
− z

2a

∣

∣ =
1

2

(

2a

a

)

(14)

min(a,b)
∑

z=0

z

(a+ z)! (a− z)! (b+ z)! (b− z)!
=

ab

2(a+ b) (a!)2 (b!)2

(15)

min(a,b)
∑

z=0

z + 1
2

(a+ z + 1)! (a− z)! (b+ z + 1)! (b− z)!

=
1

2(a+ b+ 1) (a!)2 (b!)2
.

(16)

Proof: The first equality follows from a straightforward
calculation, using the identity

(

a
z

)

· z
a =

(

a−1
z−1

)

. The second
and the third equality can be obtained with Zeilberger’s algo-
rithm [24] which is implemented in many standard computer
algebra systems (e.g., Mathematica or Maple).

Lemma 23 (Stirling’s approximation):For n ∈ N,
√

2πnn+ 1
2 e−n+ 1

12n+1 < n! <
√

2πnn+ 1
2 e−n+ 1

12n .
Proof: A proof of this extension of Stirling’s approxi-

mation can be found in [25].
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