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Abstract 

Bounds on the log partition function are im­
portant in a variety of contexts, including ap­
proximate inference, model fitting, decision 
theory, and large deviations analysis [11, 5, 
4]. We introduce a new class of upper bounds 
on the log partition function, based on con­
vex combinations of distributions in the ex­
ponential domain, that is applicable to an ar­
bitrary undirected graphical model. In the 
special case of convex combinations of tree­
structured distributions, we obtain a family 
of variational problems, similar to the Bethe 
free energy, but distinguished by the follow­
ing desirable properties: (i) they are convex, 
and have a unique global minimum; and (ii) 
the global minimum gives an upper bound on 
the log partition function. The global mini­
mum is defined by stationary conditions very 
similar to those defining fixed points of belief 
propagation (BP) or tree-based reparameter­
ization [see 13, 14]. As with BP fixed points, 
the elements of the minimizing argument can 
be used as approximations to the marginals 
of the original model. The analysis described 
here can be extended to structures of higher 
treewidth (e.g., hypertrees), thereby making 
connections with more advanced approxima­
tions (e.g., Kikuchi and variants [15, 10]). 

1 Introduction 

A fundamental quantity associated with any graph­
structured distribution is the log partition function. 
For a general undirected model, actually computing 
the log partition function, though a straightforward 
summation in principle, is NP-hard due to the ex­
ponential number of terms. Therefore, an important 
problem is either to approximate or obtain bounds 

on the log partition function. There is a large liter­
ature on approximation algorithms for the log par­
tition function [e.g., 7]. A related goal is to obtain 
upper and lower bounds [e.g., 6, 5]. Such bounds on 
the log partition function are widely applicable; possi­
ble uses include approximate inference [e.g., 5], model 
fitting [e.g., 4], decision theory, and large deviations 
analysis [e.g., 11]. 

An important property of the log partition function is 
its convexity. Mean field theory [e.g., 4] exploits one 
aspect of this convexity - namely, that the tangent 
line is an underestimate [1] -to provide a well-known 
class of lower bounds on the log partition function. Up­
per bounds, on the other hand, are not widely avail­
able. For the Ising model, Jaakkola and Jordan [6] 
developed a recursive node-elimination procedure for 
upper bounding the partition function. This procedure 
does not appear to have any straightforward general­
izations to variables with m > 2 states and/or higher 
order cliques. 

In this paper, we exploit exponential representations 
to derive a new class of upper bounds applicable to an 
arbitrary undirected graphical model. Bounds in this 
class are based on taking a particular convex combi­
nation of exponential parameter vectors corresponding 
to distributions in some tractable class.1 The convex 
combination is specified by a probability distribution 
i1 over the set of tractable substructures. We con­
sider the problem of optimizing both the choice of ex­
ponential parameters, as well as the distribution over 
tractable subgraphs, so as to obtain the tightest pos­
sible bounds. At first sight, this problem appears in­
tractable due to the exponential explosion in its di­
mensionality. Nonetheless, by a Lagrangian dual re­
formulation, we obtain a class of variational problems 
that can be solved efficiently to yield optimal upper 
bounds. In the special case of spanning trees, the con-

1 By tractable, we mean distributions for which infer­
ence can be performed efficiently: e.g., graphs of bounded 
treewidth. 
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ditions defining the optima are strikingly similar to the 
conditions defining fixed points of belief propagation or 
tree-based reparameterization [13, 14]. However, the 
dual function has two properties that are not typically 
enjoyed by the Bet he free energy [15]: it is convex, and 
the unique global minimum gives an upper bound on 
the partition function. 

This paper treats the case of discrete random variables, 
and graphs with pairwise clique potentials; moreover, 
we assume that the set of tractable substructures, de­
noted by 'I, corresponds to the set of all spanning trees 
of the graph G. Based on an understanding of this 
case, the modifications necessary to deal with larger 
clique sizes, and more structured approximations [e.g., 
15, 10, 14] will be clear. 

This paper is organized in the following manner. We 
begin in Section 2 by introducing exponential families 
of distributions. We then define and illustrate the con­
vex combinations of exponential parameters that un­
derlie the basic form of the upper bounds. In Section 3, 
we derive the optimal form of these upper bounds, by 
first optimizing over the exponential parameters, and 
then over the spanning tree distribution. Efficient al­
gorithms for computing upper bounds and their appli­
cation are presented in Sections 4 and 5 respectively. 
We conclude in Section 6 with a summary and ex­
tensions to this work. A more complete description, 
including discussion of applications to approximate in­
ference and large deviations analysis, can be found in 
the thesis [14]. 

2 Notation and set-up 

We consider an undirected graph G = (V, E) with 
N = lVI nodes; in this paper, we assume that the 
maximal cliques of G have size two. Let x8 be a 
random variable taking values in the discrete space 
X= {0,1, . . .  , m - 1}, and let x = {x, Is E V} be 
a random vector taking values in the Cartesian prod­
uct space XN. Our analysis makes use of the follow­
ing exponential representation of a graph-structured 
distribution p(x). For some index set I, we let 
</J = {</!a I a E I} denote a collection of potential func­
tions defined on the cliques of G, and let 0 = {Oa I a E 
I} be a vector of weights on these potential functions. 
The exponential family determined by </J is the follow­
ing collection of Gibbs distributions: 

p(x; 0) = exp { L Oa</!a(x)- <I>(O)} (1a) 
"' 

<Ji(O) log L exp { L Oa<f!a(x) } (1b) 
xEXN a 

where <Ji(O) is the log partition function that serves to 
normalize the distribution. 

The following well-known properties of <Ji are critical 
to our analysis: 
Lemma 1. (a) For all indices a E I, we have 

Ee [¢"] = L p(x; 0)</!"(x) 
xEXN 

(b) Moreover, the second derivative is given by an ele­
ment of the Fisher information matrix - namely: 

so that the log partition function <Ji is convex as a 
function of 0. 

In a minimal representation, the functions {</!a} are 
linearly independent. For example, one minimal repre­
sentation of a binary-valued random vector on a graph 
with pairwise cliques is the usual Ising model, in which 
</J = {xs I s E V} U { XsXt I (s, t) E E}. Here the 
index set I= VUE. 

In most of our analysis (other than Examples 1 and 2, 
and our simulations), we use an overcomplete represen­
tation, in which there are linear dependencies among 
the potentials {</!a}. In particular, given an m-state 
process (X= {0, 1, . . .  , m-1} ), we use indicator func­
tions as potentials: 

</!s;j(x,) = o(xs = j), s E V; j EX 
<Pst;jk (x., Xt) = o(x. = j, Xt = k), (s, t) E E; j, k E X 

In this case, the index set I consists of the union of 
I(V) = { (s; j) Is E V; j EX} with the edge indices 
I(E) = { (st; jk) I (s, t) E E; j, k E X }. 

2.1 Convex combinations 

Let 'I = 'I (G) denote the set of all spanning trees 
of G. For each spanning tree T E 'I, let O(T) be 
an exponential parameter vector of the same dimen­
sion as 0 that respects the structure of T. To be ex­
plicit, if T is defined by an edge set E(T) C E, then 
O(T) must have zeros in all elements corresponding 
to edges not in E(T). For compactness in notation, 
let 8 � { O(T) I T E 'I} denote the full collection 
of tree-structured exponential parameter vectors. The 
notation O(T) specifies those subelements of () corre­
sponding to spanning tree T. 

In order to define a convex combination, we require 
a probability distribution ji over the set of spanning 
trees - that is, a collection of non-negative numbers 

ji � { tt(T), T E 'I I tt(Tl ::::: 0} (2) 

such that l:TE'r tt(Tl = 1. For any distribution ji, 
we define its support, denoted supp(ji), to be the set 
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of trees to which it assigns non-zero probability. In 
the sequel, we will also be interested in the probability 
f..le = Pr,7{ e E T} that a given edge e E E appears 
in a spanning tree T chosen randomly under ;1. We 
Jet IJ.e = {f..le I e E E} represent a vector of these 
edge appearance probabilities. It can be shown [14] that 
these edge appearance vectors must belong to the so­
called spanning tree polytope, denoted by 1f( G). 

A convex combination of exponential parameter vec­
tors is defined via the weighted sum Lre:r J..l(T)8(T), 
which we denote compactly as IE,1 [8(T)]. Let 8* denote 
the exponential parameter vector of the distribution 
p(x; 8*) of interest, which we assume to be intractable. 
Then we are especially interested in collections of ex­
ponential parameters 9 for which there exists a con­
vex combination that is equal to 8*. Accordingly, we 
define the set A(8*),@, { (9; ;1) I IE,7[8(T)] = 8*}. It is 
not difficult to see that A( 8*) is never empty. 

Example 1 (Single cycle graph). As an illustra­
tion of these definitions, consider a binary distribu­
tion defined by a single cycle on 4 nodes. Con­
sider a target distribution in the minimal Ising form 
p(x;8*) = exp{x1x2 + X2X3 + X3X4 + X4X1- 'P(8*)}. 
That is, the target distribution is specified by the min­
imal parameter 8* = [0 0 0 0 1 1 1 1], where the zeros 
represent the fact that 8; = 0 for all s E V. The 

4 0 
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4 0 3 

:} 
4 

0 4 t:o 3 
4 
3 3 

Figure 1. A convex combination of four distribu­
tions p(x; 9(7;)), each defined by a spanning tree 
T;, is used to approximate the target distribution 
p(x; 9*) on the single-cycle graph. 

tractable class consists of the four possible spanning 
trees 'I= {7i I i = 1, . . .  , 4 } on a single cycle on four 
nodes, as shown in Figure 1. We define a set of asso-
cia ted exponential parameters 9 = { 8(/;)} as follows: 

8(7i) = (4/3) [0 0 0 0 1 1 1 OJ 
8(72) = (4/3) [o 0 0 0 1 1 0 1] 
8(73) = (4/3) [o 0 0 0 1 0 1 1] 
8('rJ) ( 4/3) [0 0 0 0 0 1 1 1] 

Finally, we choose f..l(7i) = 1/4 for all 7i E 'I. With 
this uniform distribution over trees, we have f..le = 3/4 
for each edge, and moreover, IE,7 [8(T)] = 8*. That is, 
the specified pair (9; ;1) belongs to A(8*). 

2.2 Basic form of upper bound 

The convexity of 'P (see Lemma 1) allows us to apply 
Jensen's inequality to a convex combination specified 
by a pair (9, ;1) E A(8*), thereby yielding the upper 
bound: 

'P(8*) ::::: IE,.['P(8(T))] ,@, L J..l(T)'P(8(T)) (3) 
TE'I: 

Note that the bound of equation (3) is a function of 
both the distribution ;1 over spanning trees; and the 
collection 9 of tree-structured exponential parameter 
vectors. In this paper, we shall consider the problem of 
optimizing these choices so as to minimize the RHS of 
equation (3), thereby obtaining the tightest possible 
upper bound. Despite the relatively simple form of 
equation (3), these optimization problems turn out to 
have a rich and interesting structure. 

3 Optimal forms of upper bounds 

In this section, we consider first the problem of opti­
mizing the choice of 9 for a fixed ;1; and then the joint 
optimization of 9 and ;1. 

3.1 Optimizing with ;1 fixed 

For a fixed distribution ;1, consider the following con­
strained optimization problem: {minB IE,7['P(8(T))] 

s. t IE,. [8(T)] = 8* 
(4) 

With ;1 fixed, the upper bound IE,1 ['P(8(T)] is convex 
as a function of 9 = { 8(T) I T E 'I }, and the associ­
ated constraint is linear in 9. 
We assume that ;1 is chosen such that the associated 
edge appearance probabilities J..le = Prp{ e E T} are all 
strictly positive. I.e., all edges e E E appear in at least 
one tree T E supp(;1). This assumption is necessary 
to ensure that constraint set { 9 I ( 9, ;1) E A( 8*) } is 
non-empty. By standard results in nonlinear program­
ming [1], problem (4) has a global minimum, attained 
at 0 = 0(;1); moreover, it could be solved, in prin­
ciple, by a variety of methods. However, an obvious 
concern is the dimension of the parameter vector 9: it 
is directly proportional to I 'II, the number of spanning 
trees in G, which is typically very large.2 

2For example, the complete graph on N nodes has 
NN-2 spanning trees [2]. 
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However, the theory of convex duality allows us to 
neatly avoid this combinatorial explosion. In particu­
lar, we show that the Lagrangian dual of problem (4) 
depends on a vector of pseudomarginals on the nodes 
and edges of the graph: 

T = {T., s E V } U { T8t, (s, t) E E} (5) 

The constraint set IC for T consists of the local consis­
tency conditions: 

IC � { T I LTst(x.,x;) = T8(x.), 
x; 

Let 9 { O(T) I T E 'I } denote the optimum of 
problem ( 4). The significance of T is in specifying 
this optimum in a very compact fashion. For each tree 
T E 'I, let II7 (T) denote the projection of T onto the 
spanning tree T. Explicitly, 

II7 (T) � {T8, s E V} U { Tst, (s, t) E E(T) } (6) 

consists only of those elements of T corresponding to 
single nodes, or belonging to the edge set E(T) C E 
of the tree T. Any such vector II7 (T) provides an 
explicit construction of a distribution p(x; II7 (T)) via 
the usual factorization of tree-structured distributions 
implied by the junction tree representation [9] - viz.: 

T "' 

II II Tst(x.,xt) 
p(x; II (T)) = T8(x.) T (x ) T. (x ) sEV (s,t)EE(T) 8 8 t t 

The proof of Theorem 1 below shows that the opti­
mal dual parameter T specifies the full collection of 
optimal exponential parameters 9 via the relation: 

p(x; O(T)) ex p(x; rr7 (T)) for all T E 'I (7) 

That is, at the optimum, a single collection of pseu­
domarginals T on nodes and edges suffices to specify 
the full collection 9 = { O(T) I T E 'I } of tree pa­
rameters. Consequently, the dual formulation reduces 
the problem dimension from the size of 8, which is 
proportional to I'II, down to the dimension of T -
namely, (mN + m2IEI). It is this massive reduction 
in the problem dimension that permits efficient com­
putation of the optimum. Moreover, the conditions in 
equation ( 7) that define the optimal T are very simi­
lar to the consistency conditions satisfied by any fixed 
point of tree-based reparameterization or BP [13, 14]. 
Not surprisingly then, the dual function of Theorem 1 
has a very close relation with the Bethe free energy. 

With this intuition, we now state and prove the op­
timal upper bounds of the type in equation (3). Let 
j1 be a distribution over spanning trees, with asso­
ciated edge appearance probabilities J.Le· For each 

s E V, let Hs (Ts) denote the entropy of the distri­
bution T5; for each (s, t) E E, let 18t(T8t) denote 
the mutual information between x8 and Xt as mea­
sured under Tst· Lastly, let LaEI Tafi� be a com­
pact representation of the two terms in the "average 
energy" - namely LsEV LjEX T8(X8 = j)fl;;j and 
L(s,t)EE Lj,kEX Tst(Xs = j, Xt = k)fl;t;jk· Using this 
notation, our bounds are based on the following func­
tion: 

sEV (s,t)EE 
- LTQfi� (8) 

QEI 
Theorem 1 (Optimal upper bounds). 
For an arbitrary j1 E 'JI'(G), :F(T; J.Le; 8*) is convex as 

a function of T. Moreover, the log partition function 
is bounded above as follows: 

ci>(ti*) < - min{ :F(T; J.Le; fi*)} (9) TEIC 
and this global minimum is attained at a unique vector 
T = T(J.Le) in the constraint set C. 

Remarks: (1) Note that when J.Le = 1, then 
:F(T; 1; 8*) is equivalent to the Bethe free energy [15]. 
Of course, each edge can belong to every spanning tree 
with probability one (i.e., J.le = 1 for all e E E) only 
when the graph G is actually a tree. 

(2) Equation (9) stipulates the bound that is optimal 
over all bounds of the form in equation (3). The vector 
T specifies the optimal collection of tree-structured ex­
ponential parameters 9 = { O(T) } in a very compact 
fashion via equation ( 7). 

(3) The convexity (and the resultant unique global 
minimum) of the variational problem in Theorem 1 is 
in sharp contrast with mean field theory, where the as­
sociated optimization problem is well-known to suffer 
from multiple local minima, even for relatively simple 
problems [e.g., 4]. 

Proof of Theorem 1: We shall calculate the Lagrangian 
dual of problem ( 4), and show that it is equivalent to 
-F. We form the Lagrangian: 

£(6; T; jl; 6') = IE;t [.P(B(T)] + L Ta { ��� - IE;t [B(T)al} 

where the vector T = {T., Tst} corresponds to La­
grange multipliers.3 (E.g., the quantity Ts;j is asso­
ciated with the constraint that !Ell [8s;i (T)] = 8;;j·) 

3We are not assuming that the Lagrange multipliers 
correspond to marginals; nonetheless, our choice of no­
tation is deliberately suggestive, in that our proof shows 
that the Lagrange multipliers can be interpreted as local 
(pseudo )marginals. 
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In addition, each ()(T) is restricted to correspond to 
a tree-structured distribution, meaning that indices 
a E I corresponding to edges not in T must be zero. 
We let I(T) C I correspond to the set of exponen­
tial parameters that are free to vary for tree T. (I.e., 
I(T) = I(V) U .Z'(E(T))). 
Now the Lagrangian is also convex as a function of 
(J, so that it has a global minimum, attained at 
some 0 = {B(T)}. By taking derivatives of the La­
grangian with respect to ()"' for a E I(T) and us­
ing Lemma 1, we obtain the stationary conditions 
J1(T){E0(T)[¢a(xa)] - fa}= 0 for the optimum. If 
Jl(T) = 0, then the tree parameter ()(T) plays no role 
in the problem, so that we can simply ignore it. Oth­
erwise, if Jl(T) > 0, for all indices a, the Lagrange 
multipliers Ta are connected to the optimal tree pa­
rameters B(T) via the relation: 

E0(T)[¢a(xa)] = Ta 
Recall that 

for all a E I(T) (10) 

rPa(xa) = {o(x, = j) 

o(x. = j)o(xt = k) 

if a= (s; j) 
if a= (st; jk) 

so that the expectations JE.o(n[<Pa(xa)] correspond to 
elements of the marginal probabilities; for example, we 
have E0(T)[<Ps;J(x8)] = p(x, = j; B(T)). As a conse­
quence, equation (10) has two important implications: 

(a) for all nodes s E V, the single node marginals 
p(x,; B(T)) are all equal to a common quantity 
T8(x8). 

(b) similarly, for all trees T that include edge (s, t), 
the joint marginal p(x., x1; B(T)) is equal to 
Tst(x.,xt). 

By the Legendre duality between the log partition 
function and the negative entropy function [see 14], 
we have the relation: 

4>(B(T)) = L B(T)aTa- ll!(IIT('T)) (11) 
aEI(T) 

where w(IIT('T)) is the negative entropy of the tree­
structured distribution p(x; IIT(T)). Substituting 
equation (11) into the definition of the Lagrangian 
yields an explicit expression for the negative of the 
Lagrangian dual function: 

F(T; 17; e·) = E� [w(rrr (T) )] - L T "'e� (12) 
aEI 

We note that the following decomposition of the neg­
ative entropy for any tree-structured distribution: 

ll!(ITT(i')) = - L H8(T8) + L fst(Tst) 
sEV (s,t)EE(T) 

Taking averages with respect to 17, we recover the form 
of F given in equation (8). 

Since T must correspond to a set of pseudomarginals 
valid for each node and edge, it is restricted to the con­
straint set C Since the cost function is convex and the 
constraints are linear, strong duality holds [1]; there­
fore, the optimum dual4 value- minTE<C F(T; 17; ()*) is 
equivalent to the global minimum of the primal prob­
lem (4). D 

3.2 Optimization of the distribution l7 

We now consider the problem of optimizing the choice 
of the distribution 17 over spanning trees. Since the 
function F only depends on this distribution via the 
edge appearance probabilities J.le, it is equivalent to op­
timize this vector, subject to the constraint that it be­
long to the spanning tree polytope 'IT'( G). We define 
the function 1/.(J.Le; ()*) � minTE<C F(T; J.le; ()*), where 
J.le belongs to 'IT'( G). 

Theorem 2 (Jointly optimal bounds). 
We have an upper bound, jointly optimal over both T 

and P,e, of the form: 

4>(()*) < max 1/.(J.Le; ()*) 
1-'eE'if(G) 

- max minF(T; J.L.; ()*) J.LeE1'(G) TE<C 
(13) 

The function 11. has a global maximum attained by 
some J.le, which yields the tightest possible upper 
bound. 

Remarks: (1) Let ji be a distribution with edge ap­
pearance probabilities ji;. Then it can be shown [14] 
that the optimal pair ({i;,; T({i;,)) satisfies the rela­
tions: 

eEE(T) eEE 

for trees T E supp(jl). This condition corresponds to 
a type of equalization of mutual information on trees. 

(2) Moreover, it can be shown [14] that the following 
minimax relation holds: 

max min F(T; J.le; ()*) = min max F(T; J.le; ()*) 
J.LeE'lf(G) TE<C TE<C J.LeE1'(G) 

This relation has a game-theoretic interpretation: we 
can think of a two-person game, in which Player 1 
chooses local pseudomarginals T so as to minimize 
F(T; J.le; ()*), whereas Player 2 chooses a spanning tree 

4We have defined F as the negative of the Lagrangian 
dual, so that it should be minimized as opposed to maxi­
mized. 
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so as to maximize the same quantity. The minimax re­
lation specifies that a mixed strategy is optimal, in the 
sense that Player 2 chooses not just a single spanning 
tree, but rather a probability distribution over span­
ning trees. 

Proof of Theorem 2: The bound of equation (9) holds 
for all /1-e E ']['(G), from which equation (13) follows. 
Observe that F(>.; IJ-e;{J*) is linear in /1-e· Therefore, 
H (11-e; IJ*) is the minimum of a collection of linear func­
tions, and so is concave as a function of /1-e [1]. Conse­
quently, 1/.(�J-e; IJ*) has a globally optimal point �, at 
which the optimal value of the upper bound in equa­
tion (13) is attained. 0 
We illustrate Theorems 1 and 2 by following up the 
single cycle case of Example 1. 
Example 2 (Optima on a single cycle). 
Consider the single cycle of Example 1, but 
the non-symmetric choice of exponential parameter 
IJ* = [0 0 0 0 1 1 1 3f. If we choose uniform (3/4) 
edge appearance probabilities, then we obtain an up­
per bound -F(T; 3/4; IJ*) >:::: 6.3451, optimal in the 
sense of Theorem 1, on the log partition function 
<P ( IJ*) >:::: 6.3326. If we perform the optimization of 
the edge weights /1-e (by an algorithm to be specified), 
we obtain the optimal edge appearance probabilities 
� >:::: [0.92 0.54 0.54 1]. Note that the optimum as­
signs edge appearance probability of one to the edge 
with largest weight (i.e., the single edge with weight 
3). As a result, this edge must appear in any spa�­
ning tree in the support of an optimal distribution jl. 
This set of edge appearance probabilities, combined 
with the associated T(�), yields the upper bound 
-H(�; IJ*) >:::: 6.3387 on the true log partition func­
tion <P(IJ*) ::e 6.3326. This upper bound is tighter than 
the previous bound ( ::e 6.3451) based on uniform edge 
appearance probabilities. 

4 Algorithms for optimization 

We first consider the problem of computing the 
upper bound of Theorem 1 (that is, with /1-e E ']['(G) 
fixed). This task requires minimizing the function 
F(T; /)-e; IJ*) defined in equation (8), subject to the 
constraint that T E C. Since the problem is convex 
with linear constraints, a variety of methods can be 
used. In our current work, we have used a form of 
constrained Newton's method [1], which has desirable 
convergence properties. In future work, we will 
describe a modified form of local message-passing, 
analogous to but distinct from belief propagation, for 
solving this variational problem. 

Next we consider the problem of maximizing H over 

IJ-e E ']['(G), as required for the upper bound of Theo­
rem 2. Since neither the Hessian nor the gradient of H 
are difficult to compute, it is tempting to apply a con­
strained Newton's method once again. However, the 
spanning tree polytope ']['(G) is defined [see 14] by a 
very large number of linear inequalities ( 0(2N)), which 
precludes solving the quadratic programs required by 
constrained Newton's method. 

Interestingly, it turns out that despite the exponen­
tial number of constraints characterizing ']['(G), maxi­
mizing a linear function over this polytope is feasible. 
Indeed, this task is equivalent to solving a maximum 
weight spanning tree problem [see 8]. On this basis, it 
can be seen that the conditional gradient method [1], 
as specified in Algorithm 1, is a computationally fea­
sible proposal. 

Algorithm 1 (Conditional gradient). 

1. Initialize IJ-e0 E 'IT'( G). 

2. For iterations n = 0, 1, 2, . . .  , compute the ascent 
direction as follows: 

3. Form /1-e n+l = (1 - an )11-e n + an /1-e n+l where 
an E (0, 1) is a step size parameter. 

It can be shown [14] that elements of the gradient 
\11/.(IJ-en;IJ*) correspond to mutual information terms 
!81 (T st (11-e n)). As a consequence, the second and third 
steps of Algorithm 1 have an interesting interpreta­
tion. In particular, let us view the current pseudo­
marginal vector T(IJ-e n ) as a set of data, which is used 
to specify mutual information terms lst(Tst(ll-en)) on 
each edge. In this case, finding the corresponding 
maximum weight spanning tree is equivalent to find­
ing the tree distribution that best fits the data in the 
maximum likelihood sense, or Kullback-Leibler diver­
gence between the empirical distribution specified by 
the data, and the tree distribution. (See Chow and 
Liu [3] for more details on this interpretation of the 
maximum weight spanning tree procedure.) Conse­
quently, at each iteration, the algorithm takes a step 
towards the spanning tree that best fits the current 
data. The size an of this step is chosen by the limited 
minimization or Armijo rule [see 1]. 
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Figure 2. Upper and lower bounds on <I-(0*) for a randomly chosen distribution p(x; 0*) on various graphs: 36 
node grid (first column), 81 node grid (middle column) or fully connected 9 node graph Ko (nght column). Panels 
in the top (respectively bottom ) row correspond to the attractive (respectively mixed) conditiOn. Each panel 
shows the mean relative error [Bound -<I-(0*)]/<I-(0*) versus a normalized measure of edge strength; error bars 
correspond to plus/minus one standard deviation. See text for more details. 

5 Results 

To illustrate our bounds, we present the results of sim­
ulations on three graphs: square 2-D grids with 36 or 
81 nodes, as well as a fully connected graph with 9 
nodes (Kg). We performed simulations for a binary 
process, using the standard minimal exponential rep­
resentation of(}* = {e;,e;t} of the Ising model.5 In 
all cases, we set e; = 0 for all s E V. For a given 
edge strength d > 0, we set the pairwise potentials 
in one of two ways: (a) for an attractive ensemble, 
choose e;t � U[O, dJ independently for each edge; (b) 
for a mixed ensemble, choose e;t � U[ -d, dJ indepen­
dently for each edge.6 For each of graphs and each of 
the two conditions (attractive or mixed), we ran sim­
ulations with edge strengths d ranging from 0 to )N. 
For each condition and setting of the edge strength, 
we performed 30 trials for the grids, and 10 trials 
for Kg. The inner optimization minTEC F(T; J.Le; (}*) 
was performed using constrained Newton's method [1], 
whereas the outer maximization was performed with 
the conditional gradient method (Algorithm 1). In 
all cases, step size choices were made by the Armijo 

5For these simulations, we used a set of so-called spin 
variables taking values in { -1, +1}. 

6The notation U[a, b] denotes the uniform distribution 
on [a,b]. 

rule [1]. The value of the actual partition function 
<P((J*) was computed by forming a junction tree for 
each grid, and performing exact computations on this 
junction tree. 

Shown in Figure 2 are plots of the relative error 
[Bound -<P((J*)]/<P((J*) versus the edge strength (nor· 
malized by 4/ yN for each N so that it falls in the 
interval [0, 1]). The "unoptimized" curve shows the 
bound of Theorem 1 with the fixed choice of uniform 
edge appearance probabilities Jl.e = (N- 1)/IEI. The 
"optimized" curve corresponds to the jointly optimal 
(over both T and i1) upper bounds of Theorem 2. The 
lower curve in each panel corresponds to the relative 
error in the naive mean field lower bound. Note that 
the gain from optimizing J.Le is especially pronounced 
as the edge strength is increased, in which case the 
distribution of edge weights e;t becomes more inho­
mogeneous. For the two square grids, the tightness of 
the upper bounds decreases more slowly than the cor­
responding mean field lower bound. In terms of the rel­
ative error plotted here, the upper bounds are superior 
to the mean field bound by factors of roughly 3 and 2 
in the attractive and mixed cases respectively. For the 
fully connected Kg, all of the bounds are much poorer. 
In the attractive condition, the fully optimized upper 
bound remains superior to the mean field bound. In 
the mixed condition, the mean field lower bound is of 
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mediocre quality, whereas the upper bounds are very 
poor. Thus, the quality of our upper bounds appears 
to degrade for mixed potentials on densely connected 
graphs. 

It is worthwhile emphasizing the importance of the 
dual formulation of our bounds. Indeed, the naive 
approach of attempting to optimize the primal prob­
lem ( 4) would require dealing with a number7 of span­
ning trees that ranges from 4, 782, 969 for K 9, all the 
way up to the astronomical number � 8.33 x 1033 for 
the grid with N = 81 nodes. 

6 Conclusions 

We have developed and analyzed a new class of upper 
bounds for the log partition function that are based 
on convex combinations of the exponential parame­
ters corresponding to a set of tractable distributions. 
This paper treated in detail the case of convex com­
binations of spanning trees. Despite the prohibitively 
large number of spanning trees in a general graph, we 
developed a technique for optimizing the bounds effi­
ciently - though implicitly - over all spanning trees. 

Although this paper focused on the special case of 
graphs with pairwise cliques, the line of analysis out­
lined here is broadly applicable. For instance, it is nat­
ural to consider convex combinations of more complex 
approximating structures - for example, hypertrees 
of width k � 2, as opposed to spanning trees.8 Doing 
so leads to dual functions that correspond to "con­
vexified" forms of Kikuchi and related free energies. 
Optimization of the pseudomarginals T, which now 
involve higher order cliques, is again possible. Since 
these families of substructures are nested (e.g., span­
ning trees are a strict subset of graphs of treewidth 
2), this procedure provides a sequence of progressively 
tighter bounds. However, there is a caveat: unlike the 
spanning tree case, the optimization of the distribution 
i1 over hypertrees is not straightforward. Although 
solving the maximum weight spanning tree problem 
required as part of Algorithm 1 is easy, its analog for 
hypertrees of width k � 2 is NP-hard [12]. 

The results of this paper, in addition to the usefulness 
of the upper bounds, have possible implications for ap­
proximate inference. As with belief propagation and 
the Bethe free energy [15], the variational problems 
specified by Theorem 1 suggest the following agenda: 
after performing the minimization, take the optimiz­
ing argument T as an approximation to the marginals 
of p(x; 0*). One possible advantage of the variational 

7 These numbers can be calculated by applying the 
Matrix-Tree theorem [2]. 

8Background on hypertrees and hypergraphs can be 
found in the thesis [12]. 

problems in Theorem 1 is that, in contrast with the 
Bethe free energy, they have a unique global minimum 
that can be found by a variety of techniques. 
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