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Abstract

Given a probability space (Ω,F , P ), a F -measurable random variable X , and a
sub-σ-algebra G ⊂ F , it is well known that the conditional expectation E[X|G] is the
optimal L2-predictor (also known as �the least mean square error� predictor) of X
among all the G-measurable random variables [8, 11]. In this paper, we provide nec-
essary and sufficient conditions under which the conditional expectation is the unique
optimal predictor. We show that E[X|G] is the optimal predictor for all Bregman Loss
Functions (BLFs), of which L2 loss function is a special case. Moreover, under mild
conditions, we show that BLFs are exhaustive. Namely, if the inÞmum of E[F (X,Y )]
over all the G-measurable random variables Y and for any variable X is attained at
the conditional expectation E[X|G], then F is a BLF.
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1 Introduction

It arises in many contexts that one would like to predict the value of a random outcome
based on the available information. To put the problem into a mathematical framework,
let (Ω,F , P ) be a probability space and X an F-measurable random variable that one
wishes to predict. The available information is represented by a sub-σ-algebra of F , say
G. Now the question is, among all the G-measurable random variables, which one is the
best predictor for X .

The notion of �best� is usually speciÞed by a non-negative loss function F and achieved
by solving a corresponding minimization problem. More precisely, the best predictor is
deÞned as the minimizer of E[F (X,Y )] over all the G-measurable random variables Y . A
particularly important case is when F is the so called the L2-loss function, also known
as the mean square error; namely F (x, y)

.
= kx − yk2. It is well known [8, 11] that the

corresponding unique best predictor is given by the conditional expectation. In other
words, if we write Y ∈ G for a G-measurable random variable Y , then

argmin
Y ∈G

E
£kX − Y k2¤ = E[X|G].

This makes the conditional expectation a crucially important concept for prediction.
A question arises naturally: Are there other loss functions F for which E[X |G] is the

unique best predictor? Some simple counter-examples lead to the general conviction that
the existence of such loss functions would be rare and would have to possess very special
properties. For example [9] if one uses the absolute error loss function and take G = {∅,Ω},
then any constant a satisfying P (X ≤ a) ≥ 1/2 ≥ P (X > a), i.e., the median of X and not
E[X|G], proves to be the best predictor. Recently [1] studied the case of general convex
loss functions and obtained a criterion for which a minimizing value exists when G = F .

In this paper, we provide necessary and sufficient conditions under which the condi-
tional expectation is the unique optimal predictor. First, we show that the optimality
property of the conditional expectation holds for all functions known as Bregman Loss
Functions (BLFs) [3], of which the L2-loss function is a special case. Indeed, one can
essentially create as many BLFs as convex functions, up to equivalences in linear and
constant terms (see DeÞnition 1). Secondly, we show that the class of BLFs is exhaustive
under mild conditions. That is, if the conditional expectation minimizes the expected loss
function for all random variables X , then the loss function has to be a BLF.

2 Bregman Loss Functions

DeÞnition 1 (Bregman Loss Functions) Let φ : Rd 7→ R be a strictly convex, dif-
ferentiable function. Then, the Bregman Loss Function Dφ : Rd × Rd 7→ R is deÞned
as

Dφ(x, y) = φ(x)− φ(y)− hx− y,∇φ(y)i.
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Table 1: Examples of BLFs.

Domain φ(x) Dφ(x, y) Loss
R x2 (x− y)2 L2-loss
R++ x log x x log(x/y)− (x− y)
(0, 1) x log x+ (1− x) log(1− x) x log(x/y) + (1− x) log((1− x)/(1− y)) Logistic loss
R++ − log x x/y − log(x/y)− 1 Itakura-Saito distance
R ex ex − ey − (x− y)ey
Rd kxk2 kx− yk2 L2-loss
Rd xTAx (x− y)TA(x− y) Mahalanobis distance 1

d-simplex
Pd

j=1 xj log xj
Pd

j=1 xj log(xj/yj) KL-divergence

Rd+
Pd

j=1 xj log xj
Pd
j=1 xj log(xj/yj)−

Pd
j=1(xj − yj) Generalized I-divergence

Example 1: The well-known L2-loss function is the simplest and most widely used loss
function. It is a special case of BLFs. Choosing φ(x)

.
= hx, xi, we have

Dφ(x, y) = hx, xi− hy, yi− hx− y, 2yi = kx− yk2.
Example 2: Another widely used BLF is the Kullback-Liebler divergence. Let p

.
=

(p1, . . . , pd) be a discrete probability distribution so that
Pd
j=1 pj = 1. The negative

Shannon entropy, φ(p)
.
=
Pd
j=1 pj log pj, is a strictly convex function on the d-simplex.

Let q = (q1, . . . , qd) be another probability distribution. The corresponding BLF is

Dφ(p, q) =

dX
j=1

pj log pj −
dX
j=1

qj log qj − hp− q,∇φ(q)i

=

dX
j=1

pj log pj −
dX
j=1

qj log qj −
dX
j=1

(pj − qj)(log e+ log qj)

=

dX
j=1

pj log (pj/qj) ,

which is exactly the KL-divergence KL(pkq) between p and q.

The following useful observation follows from the strictly convexity of φ [6, Proposition
5.4].

Lemma 1 For any x, y ∈ Rd, Dφ(x, y) ≥ 0, and the equality holds if and only if x = y.
Remark 1 Since a differentiable convex function is necessarily continuously differentiable
[10, Theorem 25.5], the functionDφ is continuous. Moreover, if we write∇x as the gradient
with respect to x, then the function

∇xDφ(x, y) = ∇φ(x)−∇φ(y)
1The matrix A is assumed to be strictly positive deÞnite.
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is also continuous. For more discussions on BLFs, interested readers are referred to [2]
and the references therein.

3 The optimal Bregman predictor

In this section we will show that the conditional expectation is the unique optimal predictor
for all BLFs, and that any nearly optimal predictor will converge in probability to the
conditional expectation.

Theorem 1 (Optimality Property) Let φ : Rd 7→ R be a strictly convex, differentiable
function. Let (Ω,F , P ) be an arbitrary probability space and G a sub-σ-algebra of F . Let
X be any F-measurable random variable taking values in Rd for which both E[X] and
E[φ(X)] are Þnite. Then the conditional expectation is the unique minimizer (up to a.s.
equivalence) for BLFs, i.e.,

argminY ∈G E[Dφ(X,Y )] = E[X|G].

Proof: Let Y be any G-measurable random variable, and Y ∗ .= E[X|G]. It follows from
DeÞnition 1 that

E[Dφ(X,Y )]− E[Dφ(X,Y ∗)]
= E [φ(Y ∗)− φ(Y )− hX − Y,∇φ(Y )i+ hX − Y ∗,∇φ(Y ∗)i] .

Meanwhile, for any G-measurable random variable Y , we have

E[hX − Y,∇φ(Y )i] = E[E[hX − Y,∇φ(Y )i|G]] = E[hY ∗ − Y,∇φ(Y )i].

In particular, E[hX − Y ∗,∇φ(Y ∗)i] = 0. Therefore,

E[Dφ(X, Y )]− E[Dφ(X,Y ∗)] = E[φ(Y ∗)− φ(Y )− hY ∗ − Y,∇φ(Y )i]
= E[Dφ(Y

∗, Y )]. (1)

The Theorem follows immediately from Lemma 1.

Theorem 2 (Convergence in Probability) In the setting of Theorem 1, if {Yn} is an
inÞmizing sequence, i.e., Yn is G-measurable and

E[Dφ(X,Yn)]→ E[Dφ(X,Y
∗)],

where Y ∗ .= E[X|G], then Yn → Y ∗ in probability.

Proof: It suffices to show that for any given ², δ > 0, there exists a number N such that

P (kYn − Y ∗k ≥ δ) ≤ ²
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for all n ≥ N . The integrability of X (and hence of Y ∗) suggests that there exists an M
such that

P (kY ∗k ≥M) ≤ ²/2.
Hence

P (kYn − Y ∗k ≥ δ) ≤ P (kYn − Y ∗k ≥ δ, kY ∗k ≤M) + P (kY ∗k ≥M)
≤ P (kYn − Y ∗k ≥ δ, kY ∗k ≤M) + ²/2.

DeÞne for every x ∈ Rd

h(x)
.
= inf{Dφ(x, y) : y ∈ Rd, ky − xk ≥ δ}.

The strict convexity of φ implies that h(x) > 0 for every x ∈ Rd, and
h(x) = inf{Dφ(x, y) : y ∈ Rd, ky − xk = δ}.

Since Dφ is continuous (Remark 1), the inÞmum is always achieved. Moreover, it can be
shown that

α
.
= inf{h(x) : |x| ≤M} > 0. (2)

For now assuming (2) is true, we have

P (kYn − Y ∗k ≥ δ) ≤ P (Dφ(Y ∗, Yn) ≥ α) + ²/2 ≤ E[Dφ(Y ∗, Yn)]/α+ ²/2.
Since Yn is an inÞmizing sequence, from (1) it follows that E[Dφ(Y

∗, Yn)] → 0. Hence,
there exists N such that for n ≥ N , E[Dφ(Y, Yn)] ≤ ²α/2. Therefore, for n ≥ N , we have

P (kYn − Y ∗k ≥ δ) ≤ ²,
and hence convergence in probability.

Now, it remains to be shown that α > 0. This is proved by contradiction. Suppose
α = 0. Then there exists a sequence {xn} with kxnk ≤ M and a sequence {yn} with
kyn − xnk = δ such that

h(xn) = Dφ(xn, yn)→ 0.

Since {xn} and {yn} are both bounded, there exists a subsequence (still indexed by n)
such that

xn → x̄, yn → ȳ.

Clearly kx̄k ≤M and kȳ − x̄k = δ. The continuity of Dφ yields that Dφ(x̄, ȳ) = 0, which
contradicts h(x̄) > 0.
Now the proof is complete.

Remark 2 Stronger and different types of convergence results may be obtained by im-
posing proper conditions on the function φ. For example, it is easy to see that Yn → Y ∗

in L2 if the Hessian matrix of φ is uniformly positive deÞnite over Rd (in the 1-dim case,
it amounts to infx∈R φ00(x) > 0).
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4 Exhaustiveness property of BLF

In this section we establish the exhaustive results for the class of BLFs. More precisely,
we show, under mild regularity conditions, that if F : Rd ×Rd 7→ R is a non-negative loss
function such that

argminY ∈G E [F (X,Y )] = E[X|G], (3)

for all random variable X , then F has to be a BLF.
We will present the results for the one-dimensional case (Theorem 3) and the higher-

dimensional case (Theorem 4) separately, since the latter needs slightly stronger regularity
conditions; see section 5 for more discussions.

For ease of exposition, without loss of generality, we will assume F (x, x) = 0 for
any x in Theorem 3 and Theorem 4. Indeed, if F is a loss function satisfying (3), so is
F̄ (x, y)

.
= F (x, y)− F (x, x) with F̄ (x, x) ≡ 0.

Theorem 3 (d = 1) Let F : R × R 7→ R be a non-negative function such that F (x, x) =
0, ∀x ∈ R. Assume that F and Fx are both continuous functions. If for all random
variables X, E[X|G] is the unique minimizer for E[F (X,Y )] over random variables Y ∈ G,
i.e.,

argminY ∈G E[F (X,Y )] = E[X |G],
then F (x, y) = Dφ(x, y) for some strictly convex, differentiable function φ : R 7→ R.

Proof: The proof will be completed in three steps. First, we prove that F = Dφ for some
convex, differentiable function φ, under an additional assumption that Fy is continuous;
We then extend this result to the general case by a molliÞcation argument; Finally, we
show that φ is strictly convex.

Step 1: Assuming Fx, Fy are both continuous. Fix arbitrarily a, b ∈ R, and p ∈ [0, 1].
Consider a random variableX on some probability space (Ω,F , P ) such that P (X = a) = p
and P (X = b) = q with p+ q = 1. Let G = {∅,Ω}. Fix Y = y, then by assumption
pF (a, y) + qF (b, y) = E[F (X,Y )] ≥ E[F (X,EX)] = pF (a, pa+ qb) + qF (b, pa+ qb)

for all y ∈ R. Moreover, if we consider the left-hand-side as a function of y, it equals the
right-hand-side at y = y∗ .= E[X] = pa+ qb. Therefore, we must have

pFy(a, y
∗) + qFy(b, y∗) = 0. (4)

Substituting p = (y∗ − b)/(a− b) and rearranging terms yield
Fy(a, y

∗)/(y∗ − a) = Fy(b, y∗)/(y∗ − b).
Since a, b and p are arbitrary, the above equality implies that the function

Fy(x, y)/(y − x)
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is independent of x. Thus one can write, for some function H,

Fy(x, y) = (y − x)H(y), (5)

where H is continuous.
Now deÞne function φ by

φ(y)
.
=

Z y

0

Z t

0
H(s)dsdt.

Then φ is differentiable with φ(0) = φ0(0) = 0, φ00(y) = H(y). Since F (x, x) = 0,
integration by parts for (5) leads to

F (x, y) =

Z y

x
(s− x)H(s) ds = φ(x)− φ(y)− φ0(y)(x− y).

Step 2: Now we show that there exists a convex function φ such that F = Dφ
under the assumption of the theorem. Consider a sequence of molliÞer, i.e., a sequence
of functions {gn} deÞned on R, which are non-negative, C∞, with compact support such
that Z

R
gn(x) dx = 1.

A classical example for such a sequence of molliÞer is as follows: let

g(x)
.
=

(
c exp

©
1/(x2 − 1)ª if |x| < 1,

0 if |x| ≥ 1,

where the constant c is to chosen so that
R
R g(x)dx = 1, and deÞne gn(x)

.
= ng(nx). The

molliÞed version of F is then given by

Fn(x, y)
.
=

Z
R
F (x− u, y − u)gn(u) du =

Z
R
F (x− y + u, u)gn(y − u) du.

It is standard to show that [7, Section 7.2] Fn is continuously differentiable with respect
to x and y, and that

lim
n→∞Fn(x, y) = F (x, y),

for every x, y ∈ R.
Further, it is easy to see that Fn has the same property as F , i.e., E[X|G] is the

minimizer for the loss function Fn. Therefore, by the proof in Step 1, there exists a
convex, differentiable function φn such that φn(0) = φ

0
n(0) = 0 and

Fn(x, y) = φn(x)− φn(y)− φ0n(y)(x− y). (6)
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In particular, Fn(x, 0) = φn(x). Since Fn(x, 0)→ F (x, 0) for every x, we have

lim
n→∞φn(x) = F (x, 0)

.
= φ(x)

for every x. Since φn�s are convex, so is their limit φ. In particular, φ is continuous [10,
Theorem 10.1]. Setting x = y + 1 in equation (6), we have

φ0n(y) = Fn(y + 1, y)− φn(y + 1) + φn(y)
⇒ lim

n→∞φ
0
n(y) = F (y + 1, y)− φ(y + 1) + φ(y) .= f(y).

Clearly f is continuous. Letting n→∞ in both sides of equation (6), we have

F (x, y) = φ(x)− φ(y)− f(y)(x− y).
Where φ is continuously differentiable, since F is continuously differentiable with respect
to x. Furthermore, the non-negativity of F implies that f(y) is a subgradient of φ [10,
Page 214]. Finally, the differentiability of φ suggests that its subdifferential is just its
derivative [10, Theorem 25.1]. It follows that φ0(y) = f(y), whence F = Dφ.

Step 3: It remains to show that φ is strictly convex. From step 2, we already know
that φ is a convex function. We argue by contradiction that if φ is not strictly convex, the
assumption of uniqueness will be violated. Suppose φ is not strictly convex. Then there
exists an interval I = [`1, `2] such that `1 < `2 and φ

0(y) = φ0(`1) for all y ∈ I. Consider
a random variable X such that P (X = `1) = P (X = `2) = 1/2, and set G = {∅,Ω}. It is
not difficult to check that any y ∈ I is a minimizer. Indeed, E[Dφ(X, y)] ≡ 0 for all y ∈ I.
This is a contradiction and we complete the proof.

Theorem 4 (d ≥ 2) Let F : Rd×Rd 7→ R be a non-negative function such that F (x, x) =
0, ∀x ∈ Rd. Assume that F (x, y) and Fxixj (x, y), 1 ≤ i, j ≤ d are all continuous. If
E[X|G] is the unique minimizer for E[F (X, Y )] over all random variables Y ∈ G and for
all random variables X taking value in Rd, i.e.,

argminY ∈G E[F (X,Y )] = E[X |G],
then F (x, y) = Dφ(x, y) for some strictly convex and differentiable function φ : Rd 7→ R.

The proof is divided into three analogous steps as those in Theorem 3. The only essential
difference is in Step 1, which relies on the following lemma. The lemma itself is a direct
consequence of the celebrated Poincaré Lemma.

Lemma 2 Given a collection of continuous functions {hij : 1 ≤ i, j ≤ d} deÞned on an
open, convex set U ⊆ Rd (d ≥ 2). If for all triples of indices 1 ≤ i, j, k ≤ d,

hij ≡ hji, ∂hij
∂xk

≡ ∂hkj
∂xi

.

Then there exists a function Φ : U 7→ R such that Φxixj = hij.
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Proof: (of Lemma 2) We Þrst show that there exists a sequence of functions {φi : 1 ≤
i ≤ d} deÞned on U such that, for every index i,

∇φi ≡ (hi1, . . . , hid)T . (7)

This follows easily from the assumption and the Poincaré Lemma [5, Theorem 8.1] (take
k = 1 and note every convex set is star shaped). It remains to show that there exists a
function Φ such that

∇Φ = (φ1, . . . ,φd)T .
Note that for any pair of indices i, j, from equation (7) and the assumption, we have

∂φi
∂xj

= hij = hji =
∂φj
∂xi

.

the existence of Φ is now established via the Poincaré Lemma.

Proof: (of Theorem 4) Step 1: Assume that Fxixj , Fxiyj and Fyiyj , 1 ≤ i, j ≤ d are
all continuous (i.e., F is twice continuously differentiable). Fix arbitrarily a, b ∈ Rd, and
p ∈ [0, 1]. Consider a random variable X on some probability space (Ω,F , P ) such that
P (X = a) = p and P (X = b) = q with p+ q = 1. Let G = {∅,Ω}. Similar to the proof of
equation (4), we have

pFyi(a, y
∗) + qFyi(b, y

∗) = 0, ∀ i = 1, . . . , d,
at y∗ = pa+qb. Taking derivatives over p on both sides of the above equation and recalling
q = 1− p, we arrive at

Fyi(a, y
∗)− Fyi(b, y∗) +

dX
j=1

£
pFyiyj (a, y

∗) + qFyiyj (b, y
∗)
¤
(aj − bj) = 0,

for every i = 1, . . . , d. In particular, setting p = 1 leads to

Fyi(a, a)− Fyi(b, a) +
dX
j=1

Fyiyj (a, a)(aj − bj) = 0, ∀ i = 1, . . . , d.

Since F is non-negative and F (x, x) ≡ 0, we have Fyi(a, a) ≡ 0. Write Hij(a) .= Fyiyj (a, a).
Since a and b are arbitrary, the above equation is equivalent to

Fyi(x, y) =

dX
j=1

Hij(y)(yj − xj), ∀ x, y ∈ Rd. (8)

Since Fyi is continuously differentiable for every i, it follows easily that Hij is also con-
tinuously differentiable for all 1 ≤ i, j ≤ d. We now claim that there exists a function
φ : y ∈ Rd 7→ H(y) ∈ R such that

φyiyj (y) = Hij(y), 1 ≤ i, j ≤ d. (9)
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Indeed, it follows from equation (8) that, for every k = 1, . . . , d,

Fyiyk(x, y) =

dX
j=1

(Hij)yk(y)(yj − xj) +Hik(y),

and

Fykyi(x, y) =
dX
j=1

(Hkj)yi(y)(yj − xj) +Hki(y),

Now, Fyiyk = Fykyi implies

Hik ≡ Hki, (Hij)yk ≡ (Hkj)yi . (10)

The existence of φ now follows from Lemma 2.
Moreover, equation (8) now becomes

Fyi(x, y) =
dX
j=1

φyiyj (y)(yj − xj) =
∂

∂yi
[−φ(y)− h∇φ(y), x− yi] ,

which, combined with the condition F (x, x) ≡ 0, readily yields

F (x, y) = φ(x)− φ(y)− h∇φ(y), x− yi = Dφ(x, y).

The convexity of φ follows from the non-negativity of F .
Step 2 and Step 3: Now repeating the same steps as those in the proof of Theorem

3, the proof is complete.

5 Conclusion

Our paper provides necessary and sufficient conditions for loss functions under which
the conditional expectation is the unique optimal predictor. Beyond its mathematical
interest, the expansion form the L2-loss function to the general class of the BLFs has
its own distinctive value. In areas such as image and speech codings where the L2-loss
function is no longer an appropriate or even meaningful measure of error (as was pointed
out in [4]), other functions such as the well-known KL-divergence as well as the Itakura-
Saito distance (Table 1)) play an dominant role. Our Þndings may serve as yet another
mathematical justiÞcation for the adoption of these loss functions.

It is worth pointing out that through out the paper, for purpose of concise presentation,
we assume that X is allowed to take values in and the convex function φ is Þnte on, the
whole Euclidean space Rd. However, the same methodology with very minor modiÞcations
also works for the case when Rd is replaced by any open convex subset of Rd. Some
examples of interest include the half-space (for φ(x) = − log x), and the d-simplex (for
φ(p) =

Pd
j=1 pj log pj).
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Finally, as was alluded earlier, the stronger regularity condition for the high-dimensional
case (Theorem 4) is used in a crucial way to verify the compatibility condition (10) that
seems almost necessary for solving the system of equations (9). It will be interesting to
see if the regularity condition can be relaxed.
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