
2892 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

The Second Support Weight Distribution
of the Kasami Codes

Hans Georg Schaathun, Member, IEEE, and
Tor Helleseth, Fellow, IEEE

Abstract—We compute the second support weight distribution of the
Kasami codes.

Index Terms—Kasami code, support weight distribution.

I. INTRODUCTION

The support weight distribution (SWD) of linear codes was intro-
duced by Helleseth, Kløve, and Mykkeltveit [1]. From the SWD of a
single code, they were able to determine the weight distribution of a
corresponding infinite class of codes. After the introduction of the re-
lated weight hierarchy in [2], this problem received renewed interest,
and in recent years, the SWD’s of particular codes [3], [4] and dual
codes [5]–[7] have been studied. In this correspondence, we give a short
and simple calculation of the second SWD of the Kasami codes.

II. PRELIMINARIES

Let (q) be the finite field of q elements and (q)n a vector space
of dimension n with a fixed coordinate basis. An [n; k] code C over

(q) is a k-dimensional subspace of (q)n. For any vector xxx 2
(q), the support �(xxx) is defined as the set of coordinate positions

where xxx is nonzero. For a subset S � (q)n, the support �(S) is the
union of supports of the members of S. The weight w(xxx) or w(S) of
an element or a set is the cardinality of its support.

The weight hierarchy of a code C is the sequence (d1; . . . ; dk),
where dr is the smallest weight of any r-dimensional subcode of C .
The support weight distribution of C is the array of parameters Ar

i

where 0 � i � n and 0 � r � k, defined as the number of r-dimen-
sional subcodes of C with weight i.

Let Tm denote the Froebenius trace from (qm) to (q), defined
as

Tm(x) =

m�1

i=0

xq :

It is well known that

Tm(x+ y) =Tm(x) + Tm(y)

Tm(x) =Tm(xq)

and if x runs through (qm), then Tm(x) takes each value in (q)
exactly qm�1 times. The original Kasami code is a binary code, so
throughout the correspondence, we let q = 2 and writeQ = 2m. Thus,

Tm : (Q)! (2) and T2m : (Q2)! (2):
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Definition 1 (The Kasami Codes): The Kasami code with parame-
ters [22m � 1; 3m; 22m�1 � 2m�1] is the set

Km = ccc(a; b) : a 2 (Q2); b 2 (Q)

where

ccc(a; b) = T2m(ax) + Tm(bxQ+1) : x 2 (Q2)� :

The Kasami codes have three different nonzero weights, given by
the following lemma.

Lemma 1 ([8]): The weight of a codeword ccc(a; b) 2 Km is given
by

w(ccc(a; b))

=

d1 := 22m�1 � 2m�1; if b 6= 0 and Tm(aQ+1=b) = 1

m1 := 22m�1 + 2m�1; if b 6= 0 and Tm(aQ+1=b) = 0

w1 := 22m�1; if b = 0 and a 6= 0

0; if b = 0 and a = 0.

Remark 1: Given a nonzero b 2 (Q), there are 2m�1 choices for
aQ+1 giving w(ccc(a; b)) = d1 and as many for m1. For each nonzero
value of aQ+1, there are (22m � 1)=(2m � 1) = 2m + 1 choices for
a. Hence, the number of codewords ccc(a; b) for b fixed of minimum and
maximum weight are determined by

#fa : Tm(aQ+1) = 1g =(2m + 1) � 2m�1

#fa : Tm(aQ+1) = 0g =(2m + 1) � (2m�1 � 1) + 1

=2m�1(2m � 1):

The weight hierarchy of Km was studied in [8], and we will need
several lemmas therefrom. Let  2 (Q2), and define

V := fccc(b; b2) : b 2 (Q)g:

Observe that V is a subcode of dimension m.

Lemma 2 ([8]): All the nonzero words of V have the same weight,
which is d1 if Tm(Q+1) = 1 andm1 if Tm(Q+1) = 0.

Define

f(; a) := 2Qa2 + 2a2Q + aQ+1:

Lemma 3: Let a 2 (Q2). If f(; a) 6= 0 and Tm(Q+1) = 0,
then the coset V + ccc(a; 0) contains 2m�1 � 1 words of weight m1,
2m�1 words of weight d1, and one word of weight w1.

This lemma is analogous to [8, Lemma 7(ii)], but assuming
Tm(Q+1) = 0 instead of equal to one.

Lemma 4: If Tm(Q+1) = 0, then f(; a) 6= 0 for all a 6= 0.
Proof: Clearly, the only solution of f(a; ) = 0 when  = 0 is

a = 0, so suppose  6= 0 for the rest of the proof. Suppose there is
nonzero a 2 (Q2) such that f(; a) = 0. Then

2a2(Q�1) + 2Q + aQ�1 = 0; aQ �1 = 1

and writing z = aQ�1, z we get that

2z2 + z + 2Q = 0; zQ+1 = 1: (1)

Setting u = 2z and multiplying by 2, we get that (1) is equivalent
to

u2 + u+ 2(Q+1) = 0; uQ+1 = 2(Q+1): (2)
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THE SECOND SWD OF THE KASAMI CODES

Set b = 2(Q+1). From (2), we get that u2 = u + b, which is, by
repeated squaring and multiplication by u, equivalent to

u2 +1 = u2 + Tm(b)u

which is equal to 2(Q+1) if and only if Tm(b) = 1 by Lemma 2. This
proves the lemma.

III. SECOND SUPPORT WEIGHT DISTRIBUTION

Consider the two-dimensional subcodes of Km. There are essen-
tially eight types of such subcodes, which we denote by the weights of
the three nonzero words as follows: w:w:w, w:d:d, w:d:m, w:m:m,
d:d:d, d:d:m, d:m:m, andm:m:m. Let Bx:x:x denote the number of
subcodes of type x:x:x, and let A2

i be the number of two-dimensional
subcodes of weight i. We distinguish four different cases. Let By

x:x:x

denote the number of subcodes of type x:x:x resulting from case y.
LetD = haaa; bbbi be a two-dimensional subcode, where aaa = ccc(a1; b1)

and bbb = ccc(a2; b2) and aaa + bbb = ccc(a3; b3). Recall that a3 = a1 + a2
and b3 = b1 + b2.

Case 1: b1 = b2 = b3 = 0.
The words of weight 2m�1 are ccc(a; 0)where a 6=0. So ifD has three

words of weight 2m�1 it must be one of the (22m�1)(22m�1�1)=3
two-dimensional subcodes contained in fccc(a; 0) : a2 (22m)g

B1
w:w:w = (22m � 1)(22m�1 � 1)=3:

Case 2: b1 = b2 6= 0, b3 = 0.
There are 2m � 1 choices for b1. We have three possibilities, 1)

w(aaa) = w(bbb) = d1, 2) w(aaa) = w(bbb) = m1, and 3) w(aaa) = d1
whereas w(bbb) = m1. For 1) and 2), aaa and bbb may be interchanged, so
each possibility is counted twice. The number of a values giving each
weight is found by Remark 1

B2
w:d:d =2m�2(2m � 1)(2m + 1)((2m + 1)2m�1 � 1)

B2
w:d:m =22m�2(22m � 1)(2m � 1)

B2
w:m:m =2m�2(2m � 1)2(2m + 1)(2m�1 � 1):

Cases 3–4: b1; b2; b3 distinct.
Define i = ai=

p
bi. Observe that

p
b3 =

p
b1 +

p
b2, because

(x+ y)2 = x2+ y2 in characteristic 2. It follows that if 1 = 2, then

a3 = 3
p
b3 = 1(

p
b1 +

p
b2) = 1

p
b3

so 3 = 1 as well.
Case 3: 1 = 2 = 3.
In this case, D � V . So either D has three words of weight m1

or three of weight d1. There are (2m� 1)(2m�1� 1)=3 possible two-
dimensional subcodes for each choice of 1; and the number of 1
values for each weight is found in Remark 1

B3
d:d:d =

(2m � 1)(2m�1 � 1)

3
2m�1(2m + 1)

B3
m:m:m =

(2m � 1)(2m�1 � 1)

3
2m�1(2m � 1):

Case 4: Distinct 1; 2; 3.

In this case, there is an a0 2 (Q2) such that

ccc(a1; b1) 2V + ccc(a0; 0)

ccc(a2; b2) 2V + ccc(a0; 0)

ccc(a3; b3) 2V :

The subcode D is chosen by the following procedure.

1. Choose 3. There are 22m possibilities.
2. Choose a0 6= 0. There are 22m � 1 possibilities.
3. Choose an unordered pair of points b1; b2 2 (Q)�, which

defines uniquely a pair of distinct points in V +ccc(a0; 0). There
are (2m � 1)(2m�1 � 1) possibilities.

Consider the case where Tm(
Q+1
3 ) = 0, which implies that

w(ccc(a3; b3)) = m1. By Remark 1, there are (2m � 1)2m�1 appro-
priate choices of 3. By Lemmas 3 and 4, for any a0 6= 0,V +ccc(a0; 0)
has 2m�1 � 1 words of weight d1 and 2m�1 words of weight m1.
Thus, there are 22m�2 � 2m�1 pairs (b1; b2) giving one word of
weight d1 and one of weight m1. There are (2m�1 � 1)(2m�2 � 1)
pairs where both words have weight d1, and 2m�2(2m�1 � 1) where
both have weight m1. Each subcode has been counted once for each
maximum weight word it contains, since any such word may be
ccc(a3; b3). Thus, we get

B4
d:d:m =2m�1(2m � 1)(22m � 1)(2m�1 � 1)2m�2

B4
d:m:m =2m�1(2m � 1)(22m � 1)2m�1(2m�1 � 1)=2

B4
m:m:m =

2m�1(2m � 1)(22m � 1)(2m�1 � 1)(2m�2 � 1)

3
:

The number of subcodes with three words of weight d1 is computed
as

B4
d:d:d = T �B4

d:d:m �B4
d:m:m �B4

m:m:m

where T is the number of words for Case 4, i.e.,

T = (24m � 22m)(2m � 1)(2m�1 � 1)=3:

This gives us

B4
d:d:d =

(22m � 1)(2m � 1)(2m�1 � 1)

3

� (22m � 2m�1(7 � 2m�2 � 1)):

To find the weight for each subcode type, and thereby to find the SWD,
we need the following lemma.

Lemma 5 ([8]): LetD be an r-dimensional subcode of C . Then

w(D) =
1

2r�1
ccc2D

w(ccc):

Observe that types w1:w1:w1 and w1:d1:m1 have the same support
weight, whereas the other types have distinct weights. Adding the dif-
ferent cases, we obtain the following theorem.
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TABLE II
THE SECOND SWD FOR SOME SMALL KASAMI CODES

Theorem 1: The second support weight distribution of the [22m �
1; 3m; 22m�1 � 2m�1] Kasami code is given by the expressions in
Table I.

We have verified the second SWD for some small Kasami codes by
computer, and these numbers are shown in Table II.

It appears to be more difficult to determine higher order support
weight distributions completely. The most difficult case is probably
when all the i are distinct. For instance, studying a three-dimensional
subcode, we have one nonzero word in V and two words in each of
three cosets V + ccc(a1; 0), V + ccc(a2; 0), and V + ccc(a1 + a2; 0).
Since only three out of the six coset points may be chosen freely, it is
not obvious how to divine the weights of the remaining three. Maybe
it can be done in combination with other methods.
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Quasi-Cyclic LDPC Codes for Fast Encoding

Seho Myung, Kyeongcheol Yang, Member, IEEE, and Jaeyoel Kim

Abstract—In this correspondence we present a special class of
quasi-cyclic low-density parity-check (QC-LDPC) codes, called block-type
LDPC (B-LDPC) codes, which have an efficient encoding algorithm due to
the simple structure of their parity-check matrices. Since the parity-check
matrix of a QC-LDPC code consists of circulant permutation matrices or
the zero matrix, the required memory for storing it can be significantly
reduced, as compared with randomly constructed LDPC codes. We show
that the girth of a QC-LDPC code is upper-bounded by a certain number
which is determined by the positions of circulant permutation matrices.
The B-LDPC codes are constructed as irregular QC-LDPC codes with
parity-check matrices of an almost lower triangular form so that they
have an efficient encoding algorithm, good noise threshold, and low error
floor. Their encoding complexity is linearly scaled regardless of the size of
circulant permutation matrices.

Index Terms—Block cycle, circulant permutation matrix, efficient en-
coding, low-density parity-check (LDPC) codes, quasi-cyclic codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes—first discovered by Gal-
lager [7] and rediscovered by Sipser et al. [13] and MacKay et al. [10],
[11]—havecreatedmuch interest recently since they are shown tohave a
remarkable performance close to the Shannon limit over additive white
Gaussian noise (AWGN) channels [14]. LDPC codes possess many ad-
vantages including parallelizable decoding, self-error-detection capa-
bility by syndrome check, an asymptotically better performance than
turbo codes, etc. Many coding theorists have brought new develop-
ments in the construction and decoding schemes of LDPC codes with
low complexity for their commercial use in the past few years.
Richardson et al. introduced a method to design LDPC codes that

perform extremely close to the Shannon capacity for sufficiently large
code length under the assumption of no cycles [14]. They computed
the threshold of noise level for a large class of binary-input channels
by density evolution, and presented some simulation results for proving
their claims. Here, the threshold of noise level means the maximum
noise level to obtain the zero error probability as the block length tends
to infinity. To find an ensemble which has larger threshold than that
of the conventional ensemble of LDPC codes, Kasai et al. introduced
detailedly represented irregular LDPC codes [8] and Richardson and
Urbanke introduced multi-edge type LDPC codes [16]. They are ob-
tained by representing the degree distribution according to the type of
the edges.
Density evolution is a useful tool to obtain the asymptotical per-

formance of LDPC codes, but not to estimate their performance in
the case of finite length. In other words, it is not guaranteed that fi-
nite-length LDPC codes with degree distribution suggested by density
evolution have good performance. The performance of LDPC codes of
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