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STBC-Schemes With Nonvanishing Determinant for
Certain Number of Transmit Antennas
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Abstract—A space-time block-code scheme (STBC-scheme) is a family
of STBCs {C(SNR)}, indexed by the signal-to-noise ratio (SNR) such
that the rate of each STBC scales with SNR. An STBC-scheme is said to
have a nonvanishing determinant if the coding gain of every STBC in the
scheme is lower-bounded by a fixed nonzero value. The nonvanishing de-
terminant property is important from the perspective of the diversity multi-
plexing— gain (DM-G) tradeoff: a concept that characterizes the maximum
diversity gain achievable by any STBC-scheme transmitting at a partic-
ular rate. This correspondence presents a systematic technique for con-
structing STBC-schemes with nonvanishing determinant, based on cyclic
division algebras. Prior constructions of STBC-schemes from cyclic divi-
sion algebra have either used transcendental elements, in which case the
scheme may have vanishing determinant, or is available with nonvanishing
determinant only for two, three, four, and six transmit antennas. In this cor-
respondence, we construct STBC-schemes with nonvanishing determinant
for the number of transmit antennas of the form 2,3 - 2,2 . 3%, and
q*(q — 1) /2, where q is any prime of the form 4s + 3.

For cyclic division algebra based STBC-schemes, in a recent work by Elia
et al., the nonvanishing determinant property has been shown to be suffi-
cient for achieving DM-G tradeoff. In particular, it has been shown that
the class of STBC-schemes constructed in this correspondence achieve the
optimal DM-G tradeoff. Moreover, the results presented in this correspon-
dence have been used for constructing optimal STBC-schemes for arbitrary
number of transmit antennas, by Elia ef al..

Index Terms—Cyclic division algebra, diversity-multiplexing gain
(DM-G) tradeoff, multiple-input multiple-output (MIMO) channel, non-
vanishing determinant, number field, space-time block code (STBC),
STBC-scheme.

I. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

A quasi-static Rayleigh-fading multiple-input multiple-output
(MIMO) channel with n, transmit and n,. receive antennas is modeled
as

anxl = HnTXntXntXl + Wn,‘Xl

where Y, x/ is the received matrix over [ channel uses, X, x/ is the
transmitted matrix, H,, xn, is the channel matrix, and W,y is the
additive noise matrix, with the subscripts denoting the dimension of
the matrices. The matrices H, x», and W« have entries which
are independent and identically distributed (i.i.d.), complex circularly
symmetric Gaussian random variables. The collection of all possible
transmit codewords X n, x( forms a space—time block code (STBC).
While most of the initial STBC constructions in the literature con-
centrated either on codes with maximum diversity alone [1]-[10], or on
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codes with maximum possible data rate alone [11], [12], the work by
Zheng and Tse [13] shows that both diversity as well as data rate can be
simultaneously achieved, albeit with a tradeoff between them. An op-
timal diversity multiplexing—gain tradeoff (DM-G) curve for the richly
scattered Rayleigh-fading quasi-static MIMO channel is presented,
which can be used to evaluate the performance of any coding scheme. To
be more precise, if pout (1) denotes the outage probability of the MIMO
channel at a rate R bits/s/Hz, then the DM-G tradeoff of a MIMO
quasi-static Rayleigh fading channel is the curve (r, d*(r)), where
Wy log pout (R)

T ==glim g SNR
is the maximum diversity gain achievable at a rate R = rlog SNR.
The normalized rate of transmission r is called the multiplexing gain.
When ! > ns + n, — 1, the optimal DM-G tradeoff curve is d*(r) =
(n+ — r)(n, — r) at integral values of r; with the d*(r) at nonintegral
intermediate values of » being obtained by linear interpolation through
the integral ones. For the case I < n¢ 4+ n, — 1, the optimal DM-G
tradeoff is not known and it is only shown that d*(r) < (n; —7)(n, —
r), an upper bound for the optimal DM-G curve.

In order to evaluate the performance of any code against the funda-
mental DM-G tradeoff of the channel, the rate of the code R must scale
with signal-to-noise ratio (SNR). Therefore, the DM-G tradeoff perfor-
mance is defined not for a single STBC, but for an STBC-scheme: a
family of STBCs {C(SNR)}, indexed by the SNR value such that the
rate of C(SNR) which is denoted as Z(SNR), scales with SNR. An
STBC-scheme is said to achieve a multiplexing gain » and a diversity
gain d if

e . log P.(R)

R(SNR) = rlog SNR SNléIBrOO Tog SNR (1)

where P. denotes the probability of codeword error. An STBC-scheme

is said to achieve the optimal DM-G tradeoff (or DM-G tradeoff op-
timal) if (r,d) = (r,d"(r)) for all possible values of r.

and d=—

Remark 1: From the pairwise error probability (PEP) point of view,
it is well known [14] that the performance of a space-time code at
high SNR is dependent on two parameters: diversity gain and coding
gain. Diversity gain is the minimum of rank of the difference matrix
(X,,txl — X;ltxl), for any X, x:1 # X’mxl € C, also called the
rank of code C. When C is full rank, the coding gain is progortional to
the determinant of (X, x1 — X7, x1) (Xn, 1 —

Intxl)

Notice that the definition of diversity gain by Zheng and Tse devi-
ates from the classical definition of diversity as the exponent of SNR
in the PEP. Instead, it is defined as the exponent of SNR in the actual
codeword error probability I’.. Further, the DM-G analysis being
an asymptotic (in SNR) analysis, it captures only the exponent of
SNR disregarding any constant multipliers. These constant multipliers
which play a crucial role (analogous to the coding gain of PEP) when
comparing the actual codeword error performance, have no role as far
as DM-G tradeoff is considered. Thus, it is possible that two n, x [
STBC-schemes are both DM-G tradeoft optimal, yet differ in the
actual codeword error performance. Our focus in this correspondence
is only DM-G tradeoff and not the true codeword error performance.

Among the various methods of construction, codes from division
algebra [9] and the threaded-algebraic space—time (TAST) codes [10]
seem to be the only known systematic methods for constructing the full-
rate, full-rank codes for arbitrary number of transmit antennas. Similar
to the Alamouti code [1] which can be described by a 2 x 2 matrix
with two complex variables and their conjugates, these codes can be
described by a design which is defined as follows.

Definition 1: A rate-k/l, n; X I design over a subfield K of the
complex field C, is an n; x [ matrix M (1, 22, ..., w;‘»), with entries
which are K-linear combinations of x;’s and their conjugates. We call

2985

M(z1,x2,...,2%) a full-rank design over the field F if every finite
subset of the set

E={M(fi,for....ft)| fi € EVi}
is a full-rank STBC. The design is said to have full rate if & = nql.

An STBC can be obtained from the design M (1, w2, ..., 25) by
specifying a signal set S C F from which the variables x; draw values.
If the design has full rate, then the STBC so obtained is said to be a
full-rate code.

For codes that can be described using a design over F, a simple
way of building an STBC-scheme is to have a family of signal sets
S(SNR) C F and then C(SNR) is obtained by allowing the variables
in the design to draw values from the signal set S(SNR).

The work by Zheng and Tse has now opened up an important re-
search problem, which is the construction of STBC-schemes that are
optimal in the sense of achieving the optimal DM-G tradeoff [15]-[17].
In [18], the authors only prove the existence of lattice-based STBC-
schemes that achieve optimal DM-G tradeoff for I > n; + n, — 1
and in [13] it is shown that the STBC-scheme based on the Alam-
outi code [1] is optimal for n,, = 1, but falls short of the optimal
DM-G tradeoff for n,, = 2. For ny = n,, = [ = 2, there are two
schemes that have been proved to achieve the optimal DM-G tradeoff:
the tilted-QAM code [15] and the “Golden code” [19]. The proof for
the former in [15] actually shows that the scheme achieves the upper
bound of the optimal DM-G curve, thus proving that the upper bound
given by Zheng and Tse (when ! < n; + n, — 1) is the actual tradeoff
curve for ny = n,, = | = 2. The DM-G optimality of Golden code
is proved in [20], where the authors give certain bounds on the achiev-
able DM-G of few existing STBC-schemes, including the ones from
cyclic division algebras for two, three, and four transmit antennas in
[21]. In all these proofs, the authors make use of the fact that the coding
gain of any of the codes C(SNR) in the scheme does not fall below a
certain positive value i.e, there exists a value dmin 7 0 such that the
coding gain of all the codes C(SNR) in the scheme is at least equal
to dmin. Schemes with this property are said to have a nonvanishing
coding gain, and for schemes that are obtained using a design over F,
having a nonvanishing coding gain is equivalent to saying that the de-
terminant of the design is always lower-bounded by d,.ix, irrespective
of the values that the variables draw from F. In the rest of this corre-
spondence, STBC-schemes from designs with this property are said to
have a nonvanishing determinant.

In summary, the known results on the DM-G tradeoff imply that, for
ang = n, =1 = 2 STBC-scheme employing M -QAM signal sets,
having a symbol rate equal to 2 and a nonvanishing coding gain is suf-
ficient to achieve the optimal DM-G tradeoff. For n; > 2, such a re-
sult is not known. However, the results in [20] do indicate that STBC-
schemes employing M-QAM signal sets, with symbol-rate equal to
n+ and having the nonvanishing coding gain is sufficient to achieve a
part of the optimal DM-G tradeoft curve. In particular, they achieve
(r,d*(r)) for r in the range min(n,,n,) — 1 < r < min(n, n,).
This is the motivation for the constructions that will be presented in this
correspondence. Our aim is to give a general technique for constructing
STBC-schemes for n; > 2, with nonvanishing coding gain and symbol
rate equal to n¢. Recently, few codes with these properties have been
constructed in [19], [21], [22], but the focus in these papers is only on
improving the coding gain (and hence the true codeword error proba-
bility), and not on the DM-G tradeoff. The fact that these codes achieve
part of the DM-G tradeoff is the result by Elia et al. in [20]. It seems
to us that the technique used in [19], [22] is different from the one used
in [21] (this will be made precise in a subsequent subsection). The con-
struction in [21] is more in-line with [9], the only difference being the
choice between an algebraic number in [21] against a transcendental
number in [9]. While a transcendental number has been used for con-
structing cyclic division algebra of arbitrary degree in [9], the authors in
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Non-vanishing
determinant

Vanishing
determinant

STBC-schemes
using transcendental
elements [9,23]

STBC-schemes
of this paper

STBC-scheme for 2, 3

. S and 4 antennas in [21]
Golden code and it’s generalization for

3, 4 and 6 antennas [19,22]

Fig. 1. STBC-schemes from cyclic division algebras.

[21] recognize that this may lead to a vanishing determinant code and
hence propose to replace the transcendental element by an appropriate
algebraic element without loosing the full-rank property. Although the
authors of [21] discuss nonvanishing determinant codes from cyclic di-
vision algebra point of view, explicit code construction is only provided
for few sporadic values of n, (for two, three, and four transmit antennas)
and a general construction technique for such codes is not available.

In this correspondence, by using an appropriate representation of a
cyclic division algebra over a maximal subfield as a design, we con-
struct STBC-schemes with nonvanishing determinant for the number
of transmit antennas of the form 2* or 3 2% or 2+ 3% or ¢*(¢ — 1)/2,
where ¢ is a prime of the form 4s + 3 and s is any arbitrary integer. In
particular, we are able to construct STBC-schemes with nonvanishing
determinant for n = 2F (resp., n = 3%) transmit antennas, using the
algebraic integer 2 + ¢ (resp., 3 + ws) and a signal set family which is
a collection of quadrature amplitude modulation (QAM) constellations
(resp., a collection of finite subsets of the hexagonal lattice Z[ws]). Fol-
lowing the results of [20], all these codes achieve part of the optimal
DM-G tradeoff corresponding to min(n:, nr)—1 < r < min(ng, ny).
In Fig. 1, based on the vanishing/nonvanishing determinant property,
we classify the various known STBC-scheme constructions from cyclic
division algebra along with the STBC-schemes of this correspondence.
The codes for two, three, and four transmit antennas constructed in [21]
are obtained as a special case of our construction technique.

Remark 2 (Recent Results): After submitting this correspon-
dence, there have been some important recent developments on codes
achieving the optimal DM-G tradeoft [24], [25]. An extended analysis of
the DM-G tradeoff is provided in [24], where it is proved that codes with
nonvanishing coding gain achieve the optimal DM-G tradeoff. In [25],
the authors have improved upon their previous results [20] and prove
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that nonvanishing determinant is a sufficient condition for full-rate
STBC-schemes from cyclic division algebra to achieve the upper bound
on optimal DM-G tradeoff; thus proving that the upper bound itself is
the optimal DM-G tradeoff for any values of n+ = ! and n... In partic-
ular, it has been shown that the class of STBC-schemes constructed
in this correspondence for n, € {2* 2-3% 2% .3 ¢*(¢ — 1)/2}
are all optimal. Moreover, in [25], the results presented in this
correspondence have been used for constructing STBC-schemes with
nonvanishing determinant for arbitrary values of n..

We emphasize that the determinant criterion which is based on the
worst case PEP analysis at high SNR is insufficient to determine the
true performance. More refined design criteria have been investigated
for improving the performance [26]-[29]. However, as mentioned
above, nonvanishing determinant is a sufficient criterion (with full
rate) as far as the DM-G tradeoff is considered.

In the next subsection, we recollect the main principle used in [9]
for constructing full-rate and full-rank STBCs from cyclic division
algebra.

A. Space-Time Codes From Cyclic Division Algebras [9], [23]

Let F be a subfield of the complex field C, and K be a finite cyclic
Galois extension of F. A cyclic algebra D = (K/F, o, v) over the field
F is an algebra that has F as the center (F = {« | dv = vd Vd € D})
and K as a maximal subfield, with the Galois group Gal(K/F) = (o)
being cyclic. D is naturally a right vector space over K, with the degree
or the index of D being defined as the dimension of the vector space
D over K. If n is the degree of D, then |Gal(K/F)| = n and D can
be decomposed as

D=K®:KdI Ko o:"'K

where z is some element of D and the multiplication operation in D is
completely defined by the relations

kz=zo(k), Vk€EK

Let N/ (k) = T[], o'(k) denote the relative algebraic norm of
an element k£ € K. Then the cyclic algebra D is a division algebra if ¥

satisfies the condition
v & Ncr (K), )

The division algebra D can be isomorphically embedded inside the ring
of invertible 7 X n matrices GL(n, K), by a map that takes the element
> —! 2'k; to the matrix [9]

n
z

and for some v € F*.

=7

for1 <i<n and ~" € Ngsr(K).

=0 z
ko o (k1) ~02(kn—2) yo" T (k)
ks a(ko)  v0?(kn—1) 70" (k2)
1172 O'(kl) 0'2(]»'0) ‘}"O'H_l(]\'g) (3)
k77,—1 J(kn—Q) Jg(kn—g) o-n_l(k())

Since K is an nth-degree extension of F, any element %; € K can be
expressed as k; = 27;01 fi;t;, where {to,...,tn—1} is a basis of
K over F and f; ; € F for all 4, j. Therefore, using the above matrix
representation over K as a template, any element d € D can now be
represented in the matrix form (4) at the bottom of the page.

- n—1 n—1
"o fouti Ao (ijo fn—wtj) vo® (
—1 —1 .
Yico fuiti 7 (Z;'l:o fo,ﬁ‘o‘) yo® (

9

n—1 n—1
2o J2.it T (Z,:o fi,jt]') v

2

n—1
j=0

n—1
DY A 0( fn—a.ﬂ‘j) 4

(=

n—I1

=0 fn—Q-,jt,i

)
)

yo" ! (Z;’;J fi ,,jf.j) |

yo Tt (Z}Zol fz,ﬂ‘o‘)
n—1

(Z,:o fz,jt]')

n—1
j=0 Fn—15t

n—1
=0 fOVJ'tJ')

n—1
=0 fn—3-jt])

>

o=l

Yo

“

n—1 n—1
o (Z]»:o fo,jf]') 1
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The set of all matrices of the type (4), with the n”* elements fi; €F
forms a division algebra. Using (4) as a rate-n design over F, we can
get a full-rank STBC for n transmit antennas by letting the n? variables
take values from a signal set which is a finite subset of . Further, this
code is called full rate, which means the symbol rate is n symbols per
channel use since n° symbols f; ;,0 < i,j < n — 1 are transmitted in
n channel uses. An STBC-scheme can be constructed using the above
design by considering a family of signal sets that are subsets of .

Proposition 1: Let C be a full-rate STBC constructed from a cyclic
division algebra (K/F, o, v) with codeword matrices of the form (4).
Then, the coding gain of the code C is equal to

min |(—1)n_] Nig/e(Aku_1)y" ™ 4o + Nic/e(Ako)|
F£f
where

2/n

f=1fo0.- s fon—1seees foo1,0,0vos fro1,n-1]

and
! ! ! ! !
f = [f(J,(Jv- . vf(J,nfls' . '7fn71,07' - '7fn71,nfl]

are two distinct sets of values of the n? variables in the design, and

n—1

Ak; = Z(.fi,j — it
71=0

Proof: The proof follows from the expression for the determinant
of a matrix of the form (4), which is available in [30, Ch. 16]. O

Remark 3: When n > 2, unlike the constant term and the coef-
ficient of 4", the coefficients of the remaining +*’s in the coding
gain expression of Proposition 1 are not simple expressions like
(—1)" Nic/e (Ak;), but involve complicated homogeneous polynomial
expressions in the variables Ak; and their conjugates. Nevertheless,

the expression within |.| is still an element of F [30].

Constructing a cyclic division algebra involves finding v € F satis-
fying condition (2) which is quite difficult. In [9], the authors overcome
this difficulty by choosing v = 6, transcendental over K which will
ensure that (K(8)/F(6), 0, 6) is a division algebra. While this method
does yield full-rank STBCs, the coding gain given by the expression
in Proposition 1 tends toward zero as the size of the signal set (any
subset of [F) keeps increasing. This was first observed by Belfiore et
al. in [21], where they are able to construct STBCs with nonvanishing
determinant property for some specific values of n; (equal to 2, 3, and
4). In order to get nonvanishing determinant codes from cyclic division
algebras, they propose the following.

1) The element ~ satisfying condition (2) should belong to O, the
algebraic integer ring in .
The basis {to, t1, 2, ..., tn—1} of K over F must be an integral
basis, i.e., t; € O for all 7.
The variables f;,; should take values from O, which implies
that the signal sets that can be used are subsets of the algebraic
integer ring OF.
Since the algebraic norm map N ¢ (+) maps an algebraic integer in K
to an algebraic integer in -, these modifications will ensure that the de-
terminant of the design (2) is an algebraic element in F. If O is a dis-
crete subset of C, then there exists dnin (OF ): the smallest Euclidean
distance between any two elements of OF C C when viewed as com-
plex numbers. In such a case, the above modifications together with
Proposition 1 ensure that the STBC using design (4) and any subset of
OF will have a nonvanishing determinant. Therefore, STBC-schemes
obtained by a family of signal sets that are subsets of Of and the de-
sign in (4) will have nonvanishing coding gain.

In this correspondence, we continue with this setup and construct
STBCs from cyclic division algebras satisfying all the modifications

2)

3)
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mentioned above. We give a technique for finding v satisfying the con-
dition in (2), using which it is possible to get STBCs for arbitrary
number of antennas by simply replacing the transcendental element
with a suitable ~ for all the codes in [9]. Doing this alone will not en-
sure the nonvanishing determinant property because OF needs to be a
discrete subset of C which is not true for all F. This, coupled with the
difficulty that finite cyclic extensions of arbitrary number field F are
not well known, limits the number of transmit antennas for which we
are able to construct STBC-schemes with nonvanishing determinant.

Remark 4 (Recent Result): The choice of v and basis {¢; } would
affect the actual performance of the code. As far as nonvanishing
coding gain is considered, these need to satisfy the conditions men-
tioned above. The codes for n; = 2,3, 4, and 6 transmit antennas in
[19], [22] satisty these conditions and more (as indicated in Fig. 1,
these are not covered under the general construction technique that
is proposed in this correspondence). These codes are now known as
perfect STBCs [31]: a class of codes which need to satisty the four
requirements for nonvanishing determinant listed earlier and more
(see [31] for details). For instance, an additional requirement is that
|v| = 1. These additional requirements ensure a very good error
probability performance, but as far as DM-G tradeoff is considered,
these do not give any additional benefits. They, in fact, turn out to be
restrictive because perfect STBCs exist only for n; = 2, 3,4, and 6.

The remaining part of this correspondence is organized as follows. In
the next subsection, we develop the necessary background on the ideals
and their factorization in number fields. The main theorem (Theorem
1) of this correspondence is proved in Section II and in Section III, we
discuss few constructions of nonvanishing determinant STBC-schemes
for various number of transmit antennas and illustrate them through
examples.

B. Ideal Factorization in Number Fields: A Brief Overview

In this subsection, we briefly review some important concepts from
the theory of algebraic number fields which are necessary for our pur-
poses. A number field K is a finite extension of the field of rationals
Q and it is always of the form Q(«) for some algebraic integer «. The
set of all algebraic integers in K form a ring, called the ring of alge-
braic integers, and is denoted by O. In general, the ring O is not a
unique factorization domain (UFD) for an arbitrary I, but it is always
a Dedekind domain, which means that

e every prime ideal in O is a maximal ideal, and
* every ideal uniquely factorizes into a product of prime ideals.

These are two important properties that we are going to exploit in the
later sections. Further, every ideal in O is generated by at most two
elements, i.e., every ideal a is of the form {a, as), for some a1, a> €
O. The sum of two ideals a + b, also called the greatest common
divisor (GCD) of a and b, is the smallest ideal containing both the
ideals. The ideals a and b are said to be coprime if a + b = O. The
product of two ideals ab is the ideal generated by all finite sums of
the form )", a;b;,a; € a and b, € b. We use the notation a Ok and
{a) interchangeably to mean the principal ideal generated by a € O.
An ideal a is said to divide ideal b, if there exists another ideal ¢ such
that b = ac, alternately, if a C b. If both these ideals are principal
ideals, i.e., a = {(a), b = (b) for some a,b € Ok, then the ideal
division a dividing b is equivalent to the element « dividing b. The
norm of an ideal a, denoted as ||a||, is defined to be the index of a in
the additive Abelian group O. If a = (a) for some a € Ok, then
lall = |Ni/q(a)]-

Let F be a number field and K be a finite algebraic extension of
F. If p is a prime ideal in O, pOx may no longer be a prime ideal
in the ring O. It factorizes uniquely into a product of prime ideals:
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PO = PIP352 - - - Pr~. We will say that each prime ideal P; that
appears in the factorization lies over the prime ideal p, or p lies under
P, . Notice that B, N OF = p, and therefore every prime ideal in
Ok is over a unique prime ideal in OF. This means, if 3; is a prime
factor of pO then it cannot be a prime factor to any other ideal O
where q is a prime ideal in OF different from p. The exponent of any
P, that appears in the factorization of p O is called the ramification
index of B; over p, denoted as e(‘P;|p) = e;. Since every prime ideal
in Ok is a maximal ideal, the quotient ring O /P; is a field. It turns
out that this is an extension of the finite field OF /p with characteristic
p, where p is the unique prime that lies under p in Z. The degree of the
extension field O /P, over O /p is called the inertial degree of P
over p, denoted as f(;|p) = f;. This means that the norm of the ideal
B, |%B:]], is equal to ||p||’*. The ramification indices and the inertial
degrees satisfy the relation ) ., e; f; = [K: F] and

e(Bilp) = e(Pilp)e(plp).

and

F(PBilp) = F(Bilp) f(plp)

We call the primes p, p, 3, that lie one below the other as a prime
triplet (p; p; P ).

Our interest being in cyclic Galois extensions, it is important to men-
tion that when K is Galois over I, if B;, 1 < ¢ < r are all the prime
ideals that lie above p as denoted above, then the ramification index of
all the prime ideals are equal and so is the inertial degree. If e and f
denote these common values then we have the relation e fr = [K : F]
and ||%B:]| = ||p||’ foralli =1.2,....r.

Lemma 1: Let K be a degree-n Galois extension of a number field
F. If p is a prime ideal in O such that the ideal P = pOi is prime
in O, then [|B[| = [Ip[|".

Proof: If B = pOi is the only prime above p, then we have
r = 1 and also e(*B|p) = 1. Therefore, f = [K: F]/(re) =n. O

A prime p of the form in Lemma 1 is said to be inert in K, otherwise,
we say it either ramifies (or is ramified) in K when e; > 1 for some
¢ = 1,2,...,7 or splits in K when e; = 1 for all ¢ and » > 1.1If
p C OfF isinert in K, then P = pO is the unique prime that lies
over p.

Example 1: LetF = Q and K = Q(4). It is well known that the
primes of the form 4k + 1 split in Z[¢], whereas the primes of the
form 4%k + 3 remain prime (or inert) in Z[¢]. Since Z[¢] is a UFD, the
factorization of elements is equivalent to the factorization of the ideals
generated by the corresponding element. For example, 5 = (2+1)(2—
i), which implies the ideal (3) = (2 + #)(2 — 7} in Z[i], whereas (3)
is itself a prime ideal in Z[7].

II. MAIN RESULT: PRINCIPLE FOR FINDING SUITABLE ~

In Example 1, the splitting of a rational prime p in Z[i] is equivalent
to the possibility of expressing this prime as a sum of two squares (5 =
(24 i)(2—14) = 2 + 1%). For any = + iy € Q(i), 2* + »*
Ng(iy/q(x +iy) and, therefore, we can say that a prime p splits in Z[7]
if and only if p € Ng(i)/@(Q¢]). Because we are interested in finding
an element v which is not in the image of a norm map N /¢ (-), this
observation led us to the study of prime ideal factorization in arbitrary
extension fields. In this section, we present our main result (Theorem
1) which is a generalization of the above argument in Z[¢] to integer
rings of arbitrary number fields.

Lemma 2 ([32, Ch. 3, Exercise Problem 11]): Let J be an ideal
in a number field K. Then, ||J|| divides Nk,q(a) for all @ € J and
1311 = | Nic/q(a)]| if and only if J = (a).

Proof: By definition, ||J|| is the cardinality of the additive quo-
tient group O /J. Forany a € J, the ideal {a) is an additive subgroup
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(b)

Fig. 2. Lattice structure of the integer ring of an imaginary quadratic field.
(a) Rectangular lattice when d = 2, 3 mod 4. (b) Isosceles triangular lattice
when d = 1 mod 4.

of J and hence O /7 is a subgroup of O /{a}. Therefore,
vides |[{a)|| = ’J\"K/Q(a)|.

Theorem 1 (Main Theorem): Let K be a degree-n Galois extension
of a number field F and let p be a prime ideal in OF that is below the
prime ideal P C O such that |B]| = ||p||’. If ~ is any element of
p\ p’ theny’ ¢ N, e(K) foranyi =1,2,....f—1.

In particular, if Gal(I</F) = (o) with [KK : F] = n, then the cyclic
algebra (K/F, o, ) is a division algebra if v € p \ p? for some prime
triplet (p; p; PB) with f(Plp) = n.

Proof: Recall that |3 = [|p]|. Now, if we assume that v* =
N/ (x) for some « € K, then « has to be in P and according to
Lemma 2, ||p||/ divides Ni/q(z) = Ng,g(7)". But this is a contra-
diction since v € p \ p? implies ||p|| divides Ng/g(7), whereas ||p||®
does not. ]

|31 di-
(]

To construct cyclic division algebra (IK/F, o, ), Theorem 1 along
with Lemma 1 suggest that we need to look for a prime ideal p in OF
that remains inert in O.

Example 2 (Example 1 Continued): Let p = {(3) C Z. Since p is
inert in Z[i], according to Lemma 1, we have ||8|| = ||p||* = 3%. The
element v = 3 belongs to the set v € (3) \ (3?) and it cannot belong
to Ng(i)/q(Q(i)) because 3% cannot divide 3.

In general, it is not easy to find the parameters e, f, and r, let alone
the factorization of an ideal p©O in an arbitrary number field K. But
in this correspondence and also in [9], [21], STBC constructions from
cyclic division algebra (IK/F, o, v) consider K to be a cyclotomic ex-
tension of Q, for which there exist results on finding e, f, and » for any
rational prime p. Further, all our constructions in this correspondence
assume the field F to be a quadratic extension of Q. For both classes
of extension fields, there exist results on finding e, f, and =, which are
given in the following two subsections.

A. Factorization in a Quadratic Extension of Q

A number field F = Q(+/d), d a square-free integer in Z, is said
to be a quadratic extension of Q. The degree [F : Q] is always 2 and
the Galois group Gal(F/Q) = (o), with 0 (v/d) = —+/d. The integer
ringof Fis Z Vd| when d = 2,3 mod 4, otherwise, it is Z %ﬁ .
When d < 0, F is an imaginary quadratic extension field, in which
case, the ring O forms a lattice in the complex plane. This lattice,
which is shown in Fig. 2, is rectangular if d = 2,3 mod 4 and it is
“isosceles triangular” when d = 1 mod 4 (see [33, Ch. 11]).

In this correspondence, in all the cyclic division algebras
(K/F,o,~) that are used for STBC-scheme construction, we
consider the field F to be an imaginary quadratic extension. Thus, the
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signal sets used are always subsets of either a rectangular lattice or
an isosceles triangular lattice. In the special case when d = —1 and
d = —3, the integer ring is the Gaussian ring (square lattice) and the
hexagonal lattice (equilateral triangular lattice ), respectively.

Theorem 2 ([32, p. 74]): LetF = Q(ﬁ). Suppose d is odd, then
the ideal 29O factorizes as

e (2,14 Vd)ifd = 3 mod 4;

o {2, %)(Z 1_2—‘/3) ifd = 1 mod 8;

e 29F (remains prime) if d = 5 mod 8.
Further, if p is an odd prime such that ged(p, d) = 1, then the ideal
pOF factorizes as

o A(p,x+ Vd){p,x — V) if 2> = d mod p for some = € Z;

«  pOF (remains prime) if 2° # d mod p for any x € Z.

When the integer ring DQ( V) is a Euclidean domain with respect
to the norm map of Q(\/ﬁ), then it is also a UFD and hence a principal
ideal domain (PID), which means all ideals are generated by single el-
ements. In such a case, the ideal {p, = + \/3) in Theorem 2 is generated
by 7; a factor of p. For instance, the rings Z[¢] as well as Z[w3] are both
Euclidean domains.

B. Factorization in a Cyclotomic Field

A number field K = Q(w,») is said to be an mth cyclotomic exten-
sion field if w, is a primitive mth root of unity. The degree of Q(wy )
i8 [Q(wm) : Q] = ¢(m), where ¢(.) denotes the Euler totient function
and the ring of algebraic integers is Z[w,]. This field is Galois over Q,
with

Gal(K/Q) = {0, : 0;(wm) = Wl | ged(m, j) = 1}

which is isomorphic to the group of units in Z/mZ, denoted as
U(Z/mZ).

Theorem 3 ([32, p. 78]): 1f gcd(p,m) = 1, then the ideal pZ[w,n]
splits into w(m )/ f distinct prime ideals in Z[w,,], where f is the mul-
tiplicative order of p modulo m.

III. STBC-SCHEMES WITH NONVANISHING DETERMINANT

In this section, we construct STBC-schemes with nonvanishing de-
terminant from cyclic division algebras. We will first treat the n = 2*
antenna case separately by going through the detailed process of finding
a suitable value for +. The odd prime power case will be taken up in
the subsequent subsection.

A. STBC-Scheme for n = 2% Transmit Antennas Over QAM Signal
Sets

Letm = 272 k > 1, and K = Q(w,). The Galois group
Gal(K/Q) is isomorphic to Z/27 x 7/2¥7 and F = Q(i) is the
subfield fixed by the cyclic subgroup Z/2*Z. Therefore, K /F is cyclic
with [K : F] = n = ¢(m)/2 = 2*. Now, to construct division algebra
(Q(wm)/Q(i),0,7v), we need to find a prime triplet (p; p; P),p C
Z[i] and B C Z[wym] such that fF(P|p) = n = 2*. In the following
theorem, we prove that p = 5 is a suitable choice.

Theorem 4: Let k be a positive integer. For n = 2* transmit
antennas, the scheme constructed using a family of M-QAM
signal sets and the design (4) based on the cyclic division algebra
(Q(wyr+2)/Q(i), 0,2 + 7) has a nonvanishing determinant.

Proof: We will continue to use the notations used in the earlier
paragraph, where we already showed that the extension K/F is a
cyclic extension of degree 2%. It is well known that the Gaussian
integer ring Z[é] is a discrete subset of C. Therefore, it remains to
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prove that v = 2 4 ¢ satisfies the condition (2), which follows from
the argument below.

1) Let ;1 be one of the primes in Z[w,,] which lies above
p = 5. The multiplicative order of 5 modulo 2*72 is equal to
F(P1lp) = 2" (see [34, Ch. 4, Theorem 2]).

2) Since ged(5,m) = 1 in Z[wy,], the ideal 5Z[w,,] splits into
©(28T2) /£ (P |p) = 2 distinct prime ideals, ;1 and P-.

3) Ifp = P10 Z[4] is the unique prime in Z[7] below P, since
we know that 5 = (2 + 7)(2 — i) in Z[i], p has to be equal to
either (2 + 7)Z[7] or (2 — i) Z][i]. Without loss of generality, we
assume p = (2 + ¢)Z[]. Further, since 5 splits into two factors
and [Q(7) : Q] = 2, we have f(p|p) = 1.

4) Therefore, (5; (2 + 4)Z[i]; P1) is a prime triplet with

F(PBilp) = f(Balp)/F(plp) = 2°/1 = 2"

From Theorem 1, this argument proves that (Q(w., )/ Q(i), 7,2 + 4)
is a cyclic division algebra and hence the STBC-scheme under consid-
eration has a nonvanishing determinant. O

Example 3:

i) Letn = 2 be the number of transmit antennas. The field K =
Q(ws) is a degree 2 cyclic extension of Q(7) with {1,+/7} as a
basis. The design of (4) takes the form

x o [foot foavi A(fio— fiai)

o f1.0+f1,1'\/; fo,o—fo.L\/l_'
where v = 2 4. This design is a full-rank design over Q(7) and
an STBC-scheme can be constructed for two transmit antennas
using this design along with a family of M -QAM signal sets.

ii) For n = 4 transmit antennas, the design takes the form

do,0 ~aiz Yyaz2 Yd31

@o,1 ai,0 Yd2,3 Y432
X= " ,

aop,2 a1, azo 7433

ap,3 ai.2 a2 1 as,o

where vy =2+i and a;, = Y, fr(i’wis)" and f; i € Z(i)
for 7,k = 0,1,2,3. An STBC-scheme can be constructed for
four transmit antennas using this design along with a family of
M-QAM signal sets.

In the above construction, there is a restriction on the number of
transmit antennas (n of the type 2*) because of the difficulty in con-
structing cyclic extension fields of arbitrary degree over Q(¢). For de-
signing STBCs from cyclic division algebra for n not of the type 2*, we
have to change to a different base field F # Q(¢). This, in turn, means
that we will have to forgo the standard QAM signal set for some non-
standard signal sets. In all cases, the procedure to find suitable v would
be exactly the same as we did here: to find a rational prime p such that
the number of prime factors of pOF in OF is the same as the number
of prime factors of pO in Ox. This will ensure f(Plp) = [K : F[;
a consequence of a general theorem on factorization of ideals and a
corollary to this theorem which is given in the Appendix.

B. STBC-Schemes for n = q*(q — 1)/2 Transmit Antennas

We will now generalize the construction of the previous subsection
ton = (¢**1)/2 number of transmit antennas, where ¢ is a rational
prime of the form 4s + 3.

Theorem 5: Let ¢ be a rational prime of the form 4s + 3, and
m = ¢"** for some arbitrary rational integer k¥ > 0 (k > 0 when
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¢ = 3). Consider the STBC-scheme for n = @(¢***)/2 transmit
antennas that can be constructed using a family of signal sets that are
subsets of Z Hzﬂ and the design (4) from the cyclic division
algebra (Q(wm)/Q(v/=q),,v). This scheme has a nonvanishing
determinant if v € p \ p? for the prime triplet (p; p; B) chosen such
that gcd(p,¢) = 1, and

« p 2 if —q 1 mod 8, else p is chosen such that 22

—¢q mod p for some integer x;
e 0, 0,(wm) = wh, is a generator of the cyclic Galois group

(o) = Gal(Q(wm)/Q(V=1))-

Proof: For m = ¢**', the Galois group Gal(Q(w,.)/Q) is
U(Z/¢"Z), which is known to be a cyclic group for any k. Therefore,
if d is any positive divisor of ¢(m), then there is a unique subfield of
degree d. When ¢ is of the form 4s + 3, the unique degree 2 subfield of

Q(wm) is Q(v/—q) (see [32, Ch. 2, Exercise problem 8]), whose in-

V=g
2

2, the first condition implies that the ideal {p) splits into two prime fac-
tors p and p’ in Z | 1HY—12
to saying that the multiplicative order of p modulo m is

teger ring Z [ ] is always a discrete subset of C. From Theorem

] , while the second condition is equivalent

FPBIp) = [K:Fl =" /2= q"(g - 1)/2. O

As an example of this theorem, we consider STBCs for n = 3*
transmit antennas over a constellation that is a subset of the hexagonal

lattice
14++/-3
Llws] = Zws] = Z {#]
where wg = Hzﬂ and ws = —ws.

Example 4 (Scheme for 3 Antennas Over Hexagonal Lattice): This
construction is similar to that of n = 2* antenna STBC; the only dif-
ference being the various fields and the prime p that are involved in the
construction. Let m = 37" and K = Q(w,», ). The extension K/Q is
cyclic Galois, with

Cal(K/Q) = U(2/3*'7) and [K:Q]= ¢(3*T") =3"2.

Now, the field F = Q(ws) is a subfield of K, with [K : F] = 3* and
the extension K/F is also cyclic Galois.

Let p = 7. This satisfies the first condition of Theorem 5 because
2?2 = —3 mod 7; it splits in Z[ws] as 7 = (3 4+ w3)(2 — w3) and,
therefore, 7Z[ws] = (3 + w3){2 — ws). This implies that the inertial
degree of p = (3 + ws) is f(p|p) = 1. Further, let B be a prime
over p in Z[w,,]; since the multiplicative order of 7 modulo 3**" is
equal to f(*B|p) = 3* for any k& > 0, the ideal 7Z[w,,] splits into
©(35T1)/ £(Blp) = 2 distinct prime ideals. This implies B is the only
prime over p in Z[w,,] which means p = (3 + ws) is inert in Z[w,y].
Thus, (Q(w.,)/Q(ws), 0,3 + ws) is a cyclic division algebra for any
k> 0.

For n = 3 transmit antennas we use { 1. wo, w3 } as a basis of Q(ws )
over Q(ws), and the design in (4) takes the form

ag,o Yai2 yaz1
X=|a,1 aipo ~ase
ao,2 ai1 az2,0
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where v = 3+ w3 and aj; = 3/, Fra(wiws)! for j, k = 0,1,2.
An STBC-scheme for three transmit antennas can be obtained using
this design along with signal sets from Z[ws]. This is the same scheme
that is obtained in [21] for three transmit antennas.

Example 5 (STBC-Scheme for Five Transmit Antennas): Let
K = Q(wi1), which contains F Q(v/—11) as a subfield with
[K : F] = 5. We have

oF:zFi%EE}

LAY EL Vz_” == Vz_ﬂ (notice that 22

—11 mod 3). Following Theorem 3, we find that the multiplicative
order of 3 modulo 11 is 5 = [K : F] and so p splits into p(11)/5 =2
V=11 we geta

distinct prime ideals in Z[w11]. Thus, choosing v = H'f

degree 5 cyclic division algebra (Q(wi1)/Q(v/=11),0,7).

Example 6 (STBC-Scheme for 11 Transmit Antennas): Let K =
Q(ws3 ), which contains F = Q(1/—23) as a subfield with [K : F] =
11. The algebraic integer ring

where p = 3 factorizes as (

oF:zFigzg}

is not a PID, but from Theorem 2, we find that {p) = (2) factorizes
as (2, =2 y(2, 1=V=23) in Op (notice that —23 = 1 mod 8).
Following Theorem 3, we find that the multiplicative order of 2 modulo
23is 11 = [K : F] and so 2 splits into ¢(23)/11 = 2 distinct prime
ideals in Z[w.3]. Thus, by choosing v = @, we get a degree 11
cyclic division algebra (Q(w2s)/Q(v/—23),0,7).

In both the classes of STBC-schemes that we have constructed so
far, we made use of the fact that IK/F is cyclic. With this knowledge,
we used an inert prime ideal to get a vy satisfying condition (2). All
the proofs and techniques that we have used so far rely on a general
theorem (stated in the Appendix) that actually says that existence of
inert prime ideal implies that K/F is cyclic. We make use of this to
construct STBC-schemes for n that is of the form 2 - 3% or 3 - 2%,

C. STBC-Scheme for n = 2 - 3% orn = 3. 2% Antennas

Theorem 6: Letm = 4 -3 andn = o(m)/2 = 2-3*. Forn
transmit antennas, the STBC-scheme obtained using a family of signal
sets that are subsets of Z[ws], and the design (4) based on the cyclic
division algebra (Q(w.,)/Q(ws), 7,3 + ws) has a nonvanishing de-
terminant.

Proof: Letp = 7. Since K = Q(w, ) is a cyclotomic extension
field, any subgroup of Gal(K/Q) is a normal group and hence we can
use the results of Corollary 1 in the Appendix. Since 7 splits into p =
(34 w3){2 — w3) in F = Q(ws3) and there is no other subfield of F,
the field F must be the decomposition field of p = 7. Therefore, it is
enough to show that n is the multiplicative order of 7 modulo m. This
is straightforward because

1 mod 4
mod 3kF!

. ~f
=1 modd 3" = { {

7‘[ = 1

and if f is the smallest integer satisfying the preceding equation, f

must be the least common multiple of f; and f2, where fi = order of

7Tmod 4 =2, and f2 = order of 7mod 3*' = 3* forallk > 0. O

By considering m = 9- 2kl andp = 5, we can give a similar proof
as above, to show that (Q(wym)/Q(4), 0,2 + i) is a division algebra
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Q(wss) G

(”19)

Fig. 3. Subfield tower of Q(ws3s).

of degree ¢(m)/2 = n = 3 2*. Thus, STBC-scheme with nonvan-
ishing determinant can be constructed using this division algebra along
a family of signal sets from Z[].

Example 7 (STBC for Six Transmit Antennas): Let KK = Q(wss) for
which Gal(K/Q) = {o; : ged(7,36) = 1}, and o; is determined by
oi(wse) = whe. We have the tower of subfields and the subgroups of
Gal(K/Q) fixing them as shown in Fig. 3.

Notice that the Q(wss)/Q(¢) is cyclic with Gal(Q(wss)/Q(i)) =
{05). We can now say that the decomposition field of 5 in K is Q(7)
and the inertial field is K itself. Thus, the ideal (2+7)Z[¢] remains inert
in every extension between K and Q(¢) and we have: a degree 6 cyclic
division algebra (K/Q(i), 05,2 + ).

Similarly, Q(wse)/Q(ws) is cyclic with Gal(Q(
{o7) and we get a sixth-degree cyclic
(K/Q(ng),()‘7, 34 ws).

w36)/Q(ws)) =

division algebra

D. Bound on the Coding Gain
The coding gain of an n x n full-rank STBC C is known [14] to be

equal to

- Co)Pl.

min

|D(3'[7(01
C1#£C2eC

For the STBCs considered in this correspondence, we have the fol-
lowing result on the coding gain.

Theorem 7: Let C be an n X n STBC constructed using the design
(4) and any of the cyclic division algebras (Q(wm) /Q(Vd), 0. 7),
discussed in the previous subsections. If ~ denotes the scaling factor
used on each codeword as part of power constraint, then the coding
gain of C is always greater than or equal to 7.

Proof: From Proposition 1, and the fact that Det(xC)
k" Det(C), it is clear that the coding gain is lower-bounded by
(K" dmin)Q/ " where dmin denotes the minimum Euclidean distance
of the integer ring DQ( V- The cyclic division algebras considered

in this correspondence are over an imaginary quadratic field Q(v/d),
where d = —1 or d = —gq, ¢ is of the form 4s + 3. So, the ring of
integers is either the Gaussian integer ring or some isosceles triangle
lattice, and for both these lattices the minimum Euclidean distance
is 1. O

The need for x arises when comparing the performance of two dif-
ferent codes that are using the same signal set. If both the codes are
described through designs, then x depends only on the respective de-
signs to make sure that both codes are using the same average en-
ergy. Therefore, « is independent of the signal set size, and hence the
STBC-scheme constructed using our design and a family of signal sets
that are subsets of either the Gaussian integer ring or the isosceles tri-
angle lattice, has a nonvanishing determinant.
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IV. CoNCLUSION

In this correspondence, we have presented a general construction
technique for STBC-schemes with nonvanishing determinant for the
number of transmit antennas (r¢) of the form 2% or 3 - 2% or 2 - 3% or
¢"(q —1)/2, where g is a prime of the form 4s + 3 and s is any arbi-
trary integer. The proposed STBC-schemes are based on cyclic division
algebras. We provide a technique for finding suitable ~ so that the de-
terminant of the design based on cyclic division algebra (K/F, a, )
is always a nonzero element in the integer ring of F. This technique
is general and can be used for any cyclic extension IK/F of arbitrary
degree. But in this correspondence, we have only been able to use this
for the above mentioned values of n,, because these are the only values
for which we could manage to satisfy the twin restrictions: the integer
ring of F should be discrete in C and K/F should be cyclic.

In a recent work [25], the construction techniques and results of
this correspondence have been used to construct cyclic division al-
gebra based STBC-schemes with nonvanishing determinant for arbi-
trary number of transmit antennas. Moreover, it has been proved that
all the STBC-schemes constructed in this correspondence achieve the
optimal DM-G tradeoff.

APPENDIX

Theorem 8 ([32, Ch. 4, Theorem 28]): Let K be a Galois extension
of @ and let P be a prime factor of pO for some rational prime p,
with e(Plp) = e, f(P|p) = fandefr = [K: Q). Let

D =D(Plp) = {r € Gal(K/Q) : o(B) = B}

and
E=E(Blp)
={r e Gal(K/Q):0(a)+P=a+P VaeOq}.

Then, E C D andboth D, E are subgroups of Gal(IK/Q), respectively
called the decomposition group and the inertia group of P over p. If
Kp and K7 denote the fixed subfields of D and E, respectively, and
PBo = PN Ox,, Pr = P N Ok, are the prime ideals below P
and above p in the respective algebraic integer rings, then we have the
following relation among the tower of fields and ideals:

K
i Ke] = T Tﬂg'@?
K Ko) = T Tﬂ?i'@i)‘l
Kp : Q]—’“T T $Z||§)__11
p

Further, the extension Kz /Kp is always cyclic.

The intermediate fields Kz and Kp, called the inertial and the de-
composition field, respectively, depend on the prime ‘P and p. For the
same p if we choose a different prime 3’ above p then the associated
decomposition field and inertia field can be different. Also, the various
ramification and inertial degree values given above is specific to the
prime pair p and ‘B. For example: if 3, is another prime in K above
p but below a different ideal 3, then e(P’5|p) and f (P’ |p) may not
be equal to 1. But this disparity in values across B and P’ does not
occur for the following special case.

Corollary 1: Suppose D is a normal subgroup of Gal(I</Q). Then
p splits into r different primes in Kp. If £ is also a normal subgroup in
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Gal(K/Q), then each of them remains prime in K, and finally, each
one becomes an eth power in K.
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