
ar
X

iv
:m

at
h/

04
09

54
8v

2 
 [

m
at

h.
PR

] 
 1

6 
M

ay
 2

00
5

On mutual information, likelihood-ratios and

estimation error for the additive Gaussian channel

Moshe Zakai∗

May 15, 2005

Abstract

This paper considers the model of an arbitrarily distributed signal x observed

through an added independent white Gaussian noise w, y = x+ w. New relations

between the minimal mean square error of the non-causal estimator and the likelihood

ratio between y and w are derived. This is followed by an extended version of a

recently derived relation between the mutual information I(x; y) and the minimal

mean square error. These results are applied to derive infinite dimensional versions

of the Fisher information and the de Bruijn identity. A comparison between the causal

and non-causal estimation errors yield a restricted form of the logarithmic Sobolev

inequality. The derivation of the results is based on the Malliavin calculus.
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1 Introduction

Let wt, 0 ≤ t ≤ T denote the standard d-dimensional Wiener process and w′
t

the related white noise. The white noise channel is, roughly speaking, defined by

y′(t) = x′(t) + w′
t, 0 ≤ t ≤ T where x′(t) is a signal process independent of the

white noise process w′
t. In the context of detection theory, the key entity is ℓ(y),

the likelihood ratio, i.e. the Radon-Nikodym derivative of the measure induced by

the {y′(t), t ∈ [0, T ]} process with respect to the measure induced by the white

noise {w′
t, t ∈ [0, T ]}. In the context of filtering theory the key entities are the

causal and the non causal estimates, i.e. the conditional mean E(x′t|y′η, 0 ≤ η ≤ t)

or E(x′t|y′η, 0 ≤ η ≤ T ) respectively. In addition to this pair of random entities,

there are also averaged entities such as the averaged minimal errors which amount

to
∫ T

0
E(x′t − E(x′t|y′η, η ∈ [0, t]))2dt, or

∫ T

0
E(x′t − E(x′t|y′η, η ∈ [0, T ]))2dt; and on

the other hand, the mutual information between the paths {y = (yη, η ∈ [0, T ])} and

{x = (xη, η ∈ [0, T ])}, i.e.

E log
dP (x; y)

d(P (x)P (y))

where the expectation is w.r. to the P (x; y) measure, and also the relative entropy

Eℓ(y). Relations between the likelihood ratio ℓ(y) and the causal conditional ex-

pectation were discovered in the late 60’s and this was soon followed by a relation

between the mutual information and the causal mean square error [10], [5], [9]. These

relations which involved causal mean square errors were based on the Ito calculus.

Similar problems for the non causal estimator were also considered [6], [8]. The formu-

lation and results in the non causal case were restricted to the finite dimensional time

discrete model of the Gaussian channel. Recently, however, Guo, Shamai and Verdú

(GSV) [7] applied information theoretic arguments to derive new interesting results

relating the mutual information with non causal estimation in Gaussian channels.

The Ito calculus which has proved to be a powerful tool for the relations associ-

ated with causal estimation could not be applied to problems related to non causal

problems which explains the slow progress in the direction of relations for non causal

estimates. However, the development of the Malliavin calculus, namely, the stochas-

tic calculus of variation which was introduced in the mid 70’s led in the early 80’s to

results which prove to be a very useful tool for the non causal type of problems.
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The purpose of this paper is to apply the Malliavin calculus in order to derive

the extension of the finite discrete time relations between non causal estimation and

likelihood ratios to continuous time (section 4), and to prove an extended version of

the results of [7] relating the mutual information with causal estimation error (sec-

tion 5). The modelling of the additive Gaussian channel on the abstract Wiener space

(in contrast to the d-dimensional Wiener process on the time interval [0, T ]) yield in

sections 4 and 5 results of wide applicability, e.g. for the filtering and transmission

of images and random fields. The relation of these results to the de Bruijn identity,

causal filtering and the logarithmic Sobolev inequality are discussed in sections 6 and

7.

In the next section we define the Abstract Wiener Space which generalizes the

classical d-dimensional Wiener process, and formulate the additive Gaussian channel

which will be considered in the paper. Also, the problems considered in sections 4 and

5 are outlined in this section. Section 3 is a very short introduction to the Malliavin

calculus. Section 4 presents the results relating likelihood ratios (R-N derivatives)

with non-causal least square estimates cf. remark 2 in section 4 for possible applica-

tions of these results to nonlinear filering. In section 5 we derive an extended version

of the GSV results. These results are applied in section 6 to consider the notions

of Fisher information and the de Bruijn identities in an infinite dimensional setup.

Section 7 deals with abstract Wiener spaces endowed with a time parameter. This

enables the comparison of results for causal estimations with corresponding results for

non-causal estimation. It is shown that a restricted form of the logarithmic Sobolev

inequality follows directly from the results derived in this paper.

Acknowledgement: We wish to express our thanks to Shlomo Shamai for call-

ing our attention to the problems considered in this paper and providing us with

a preliminary version of [7], and to Suleyman Üstünel and Ofer Zeitouni for useful

comments.
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2 The underlying Wiener space and the additive

channel model

A. Consider, first, a standard one-dimensional Wiener process on [0, 1], say w(t), t ∈
[0, 1]. Let {ηi(t), i = 1, 2, · · · , t ∈ [0, 1]} be a complete orthonormal base on [0, 1].

Set ei(t) =
∫ t

0
ηi(s)ds, then

∑n

1

∫ 1

0
ηi(s)dws · ei(t) converges to w(t) in quadratic

mean. We will denote the sequence of independent Gaussian, identically distributed

(i.i.d.) random variables
{∫ t

0
ηi(s)dw(s) =

∫ t

0
dei(s)
dt

dw(s) i = 1, 2, · · ·
}
by δei, i =

1, 2, · · · . Then

w(t) =

∞∑

1

δ(ei) ei(t) . (2.1)

Now {ei(t), t ∈ [0, 1], i = 1, 2, · · · } can be considered as a C.O.N. base of an Hilbert

space H of functions h(t), t ∈ [0, 1] with scalar product (h1, h2)H =
∫ 1

0
dh1(s)
ds

dh2(s)
ds

ds.

This space H is known as the Cameron Martin space. Note that the Wiener process

which is continuous but not differentiable is not an element in H . The same notation

goes over to the case of the d-dimensional Wiener process with w(t), η(t), h(t), e(t)

taking values in R
d and

δe =

∫ t

0

d∑

1

d

dt
ej(s)dwj(s) (2.2)

Eδe = 0, E(δe)2 =

d∑

1

∫ 1

0

(
d

dt
ej(s)

)2

δs . (2.3)

In this model we will consider y(t) = x(t) +w(t) where ((t), t ∈ [0, 1]) takes values in

the Cameron-Martin Space H and w(t), the Wiener process takes values in the space

of Rd valued continuous function considered as a Banach space W under the norm

|w(t), t ∈ [0, 1]|W = supt∈[0,1] |w(t)|Rd.

In addition to the Banach space W we have to consider the space W ∗ of all

continuous functionals on W and it can be shown that W ∗ is a dense subspace of H

(cf. e.g. [14]). Hence for e ∈ W ∗, it also holds that e ∈ H and “e ∈ W ∗ operating on

w ∈ W” is the stochastic integral

W
〈w, e〉

W∗

= δe . (2.4)
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An abstract model for the Wiener process in terms of the spaces W,W ∗, H and the

Wiener measure µW is considered in the next subsection. The reader can skip this

step by interpreting the triplet (W,H, µW ) as the d-dimensional Wiener process as in

equations (2.1), (2.2), (2.3).

B. The Abstract Wiener Space (AWS) is an abstraction of this model where W is a

separable Banach space andH , the Cameron-Martin space, is an Hilbert space densely

and continuously embedded in W . The dual space to W (the space of continuous

linear functionals on W ) is denoted W ∗ and assumed to be continuously and densely

embedded inH . The Abstract Wiener Space (W,H, µW ) supports aW -valued random

variable w such that for every e ∈ W ∗, δe :=
W
〈w, e〉

W∗

is a N(0, |e|2
H
) random

variable. Cf. e.g. [17], or appendix B of [18] and the references therein, for further

information on the AWS. Note that, unlike the classical case, the Abstract Wiener

Space does not have any time-like parameter (this however can be added cf. section 7).

C. In order to introduce the general setup of the additive Gaussian channel, let

(W,H, µW ) be an abstract Wiener space and let (H, σ(H), µX) be a probability space

on the Cameron-Martin Hilbert space H which is induced by an H-valued r.v. X . Let

θ = (x, w), x ∈ H and w ∈ W , set Θ = {θ} and consider the combined probability

space

(Θ,F ,P) =
(
Θ, σ(H) ∨ σ(W ), µX × µW

)
(2.5)

which is the space of the mutually independent ‘signals’ x and ‘noise’ w. Now, since

H is continuously embedded in W we can identify x with its image in W and defined

the additive Gaussian channel as

y(θ) = ρx+ w , (2.6)

where ρ is a free scalar ‘signal to noise’ parameter which will become relevant in

Section 5. We will denote by X and Y the sigma fields induced on W by the r.v.’s x

and y respectively. Note that y and w are W valued, x is H valued and we identify

x with its image in W . In fact we will make throughout this paper, just for reasons

of simplicity, the additional assumption that x is W ∗ valued. As mentioned earlier,

since W ∗ ⊂ H ⊂W we can also consider x to be H or W valued.
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In section 4 we will be interested in the relation between two types of objects.

The first class of objects is

E
(
(x, e)

H
|Y
)

and E
(
(x, e1)H · (x, e2)H |Y

)

for e, e1, e2 ∈ W ∗ or globally

x = E(x|Y ) and (x, x)
H
= E

(
(x, x)

H
|Y
)
. (2.7)

The second class of objects are the likelihood ratio (the R-N derivative) between the

measures induced by y and the one induced by w on W . This likelihood ratio will

be denoted ℓ(w), w ∈ W . Note that if W is infinite dimensional then the measure

induced by x is singular with respect to the measure induced by w, (since x ∈ H

while w 6∈ H).

In section 5 we will consider the relation between I(X ; Y ) or rather dI(X ; Y )/dρ

and the non-causal filtering error:

{
E|x|2

H
−
∣∣∣E(x|Y )

∣∣∣
2

H

}
= E

{
|x|2

H
− | x |2

H

}
.

A related result for d(E log ℓ(w))/dρ is considered in section 6 and shown to be an

extended version of the De Bruijn identity.

3 A short introduction to the Malliavin calculus

For further information cf. e.g. [11], [13], [17] or appendix B of [18].

(a) The gradient

Let (W,H, µ) be an AWS and let ei, i = 1, 2, . . . be a sequence of elements in

W ∗. Assume that the image of ei in H form a complete orthonormal base in H . Let

f(x1, . . . , xn) be a smooth function on R
n and denote by f ′

i the partial derivative of f

with respect to the i-th coordinate and let δe be as discussed in the previous section.

For cylindrical smooth random variables F (w) = f(δe1, . . . , δen), define

∇hF = dF (w+εh)
dε

∣∣∣
ε=0

. Therefore we set the following: ∇hF = (∇F, h) where ∇F , the
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gradient, is H-valued. For F (w) = δe, ∇F = e, and

∇F =
n∑

i=1

f ′
i(δe1, . . . , δen) · ei . (3.1)

It can be shown that this definition is closable in Lp(µ) for any p > 1, which means

that it can be extended to a wider class of functional as we will see below. We

will restrict ourselves to p = 2, consequently the domain of the ∇ operation can be

extended to all functions F (w) for which there exists a sequence of smooth cylindrical

functions Fm such that Fm → F in L2 and ∇Fm is Cauchy in L2(µ,H). In this case

set ∇F to be the L2(µ,H) limit of ∇Fm. This class of r.v. will be denoted D2,1. It

is a closed linear space under the norm

‖F‖2,1 = E
1
2
µ (F )

2 + E
1
2
µ |∇F |

2

H
. (3.2)

Similarly let K be an Hilbert space and k1, k2, . . . a complete orthonormal base in K.

Let ϕ be the smooth K-valued function ϕ =
∑m

j=1 fj(δe1, . . . , δen)kj define

∇ϕ =
m∑

j=1

n∑

i=1

(fj)
′
i(δe1, . . . , δen)ei ⊗ kj (3.3)

and denote by D2,1(K) the completion of ∇ϕ under the norm

‖ϕ‖2,1 = E
1
2

(
|ϕ|2K + |∇ϕ|2H×K

)
. (3.4)

Note that this enables us to define recursively ∇nF (w) for n > 1.

(b) The divergence (the Skorohod integral)

A few introductory remarks. Let v(x), x ∈ Rn take values in Rn, v(x) =
∑

1 vi(x)ρi,

where the ρi are orthonormal vectors in Rn. Assume that the vi and F (x) are smooth

and converge “quickly enough” to zero as |x| → ∞. Then the following “integration

by parts formula” holds

∫

Rn

(v(x),∇F (x))dx = −
∫

Rn

F (x) div v dx , (3.5)
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where div is the divergence:

div v =
n∑

1

∂vi
∂xi

.

Note that the gradient and divergence are differential operations, and equation (3.5)

deals with integration with respect to the Lebesgue measure on Rn. In this subsection

we are looking for an analog of the divergence operation on Rn which will yield an

integration by parts formula with respect to the Wiener measure.

Let u(w) be an H-valued r.v. in (W,H, µ), u will be said to be in dom2 δ if

E|u(w)|2
H
< ∞ and there exists a r.v. say δu such that for all smooth functionals

f(δe1, . . . , δen) and all n the “integration by parts” relation

E
(
∇f, u(w)

)

H

= E(f · δu) (3.6)

is satisfied. δu is called the divergence or Skorohod integral. A necessary and sufficient

condition for a square integrable u(w) to be in dom2 δ is that for some γ = γ(u),

∣∣∣E(u(w),∇f)
H

∣∣∣ ≤ γE
1
2 f 2(w)

for all smooth f . Note that while the definition of∇f (at least for smooth functionals)

is invariant under an absolutely continuous change of measure, this is not the case for

the divergence which involves expectation in the definition. For non-random h ∈ W ∗,

δh = 〈h, w〉, setting f = 1 in (3.6) yields that Eδh = 0. It can be shown that if

u ∈ D2.1(H) then u ∈ dom2 δ. Also, for smooth f(w) it can be verified directly that

δ
(
f(w)h

)
= f(w)δh− (∇f, h)

H

and more generally under proper restrictions

δ
(
f(w)u(w)

)
= f(w)δu−

(
∇f, u(w)

)
H
. (3.7)

Consequently, if E|u|2
H
<∞, and ∇u is of trace class then

W∗

〈u, w〉
W

= δu+ trace∇u . (3.8)
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where for an operator A on H and ei, i = 1, 2, . . . a CONB on H , define

traceA =

∞∑

1

(ei, Aei)

provided the series converges absolutely and in this case A is said to be of trace class.

Among the interesting facts about the divergence operator, let us also note that for

the classical Brownian motion and if

(u(w))(·) =
∫

·

0

u′s(w)ds

and u′s(w) is adapted and square integrable then δu coincides with the Ito integral

i.e. δu =
∫ 1

0
u′s(w)dws.

(c) Let (W,H, µ) be an abstract Wiener space and let µ1 be another probability

measure on the same space (W,σ{W}). Assume that µ1 is absolutely continuous

with respect to µ. Set

ℓ(w) =
dµ1

dµ
(w) and Q(w) = {w : ℓ(w) > 0}

E1 and E0 will be used to denote the expectation with respect to the measures µ1

and µ respectively. We will use the convention 0 log 0 = 0 throughout the paper.

Following the definition in 3(b), we define the divergence with respect to µ1 to be

as follows. The H-valued random variable u(w) will be said to be in dom1
2 δ̃ if there

exists a r.v., say δ̃u, which is L2 under u1 and such that for all smooth r.v.s f(w), it

holds that

E1

(
f(w) · δ̃u

)
= E1(u,∇f)H .

The relation between δ̃u and δu is given by the following lemma.

Lemma 3.1 Assume that ℓ(w) ∈ D2,1, u ∈ dom2 δ, ℓ · δu ∈ L2 and ℓ · ∇u ∈ D2,0(H)

and µ1 ≪ µW (where D2,0(H) is the completion of (3.3) under the H-norm). Then

u ∈ dom1
2 δ̃ and

δ̃u = 1Q(w)(δu−
(
∇ log ℓ(w), u(w)

)

H

(3.9)
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Proof: Since f(w) is a smooth r.v., ℓ·f ·δu−f(∇f, u)
H
is in L1 and ℓ(w)∇ log ℓ(w) =

∇ℓ(w) a.s.-µ. Hence

E1

(
f(w)δu− f(w)

(
∇ log ℓ(w), u)

H

)
= E0

(
ℓ · f · δu− ℓf(∇ log ℓ, u)

H

)

= E0

{
(∇(ℓ · f), u

)

H

− f(∇ℓ, u)
}

= E0

(
ℓ(∇f, u)

H

)

= E1(∇f, u)H

4 Relations between the estimation error and the

likelihood ratio

Let (W,H, µ), (H, σ(H), µX), (Θ,F ,P) and y(θ) = ρx+w be as in section 2. We

will further assume that theH-valued r.v. x is actuallyW ∗ valued, and expα(x, h)
H
∈

L1(µX) for all real α and all h ∈ W ∗. The measures induced by y and x on W will be

denoted µY and µX respectively. The conditional probability induced on W by y(θ)

conditioned on x will be denoted by µY |X . Similarly, µX|Y will denote the conditional

probability induced on W ∗ of x conditioned on y (cf. e.g. [4] for the existence of these

conditional probabilities).

By the Cameron-Martin theorem (cf. e.g. [18]) and since x and w are independent,

we have
dµY |X

dµW

(w) = exp

(
ρ〈w, x〉 − ρ2

2
|x|2

H

)
, w ∈ W (4.1)

which by our assumptions belongs to Lp for all p > 0. Hence, denoting by µX(dx)

the restriction of P to H :

ℓ(w) =
dµY

dµW

(w) =

∫

H

dµY |X

dµW

(w, x)µX(dx)

=

∫

H

exp

(
ρ〈w, x〉 − ρ2

2
|x|2

H

)
µX(dx) (4.2)
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Proposition 4.1 Under these assumptions it holds that

(a)

(∇ℓ, h)
H
=:∇hℓ(w) = ρℓ(w)( x , h)

H
, ∀h ∈ H hence :

∇ℓ = ρℓ(w) x or x =
1

ρ
∇ log ℓ(w)

(4.3)

a.s. µW . Note that a denotes the conditional expectation conditioned on Y , equa-

tion (2.7).

(b)

(
∇nℓ(w), h1 ⊗ · · · ⊗ hn

)
H⊗n

= ℓ(w)ρn

(
n∏

i=1

(hi, x)

)
(4.4)

(c) in particular trace∇2ℓ(w) exists and a.s. µW

∇2
h1,h2

ℓ(w) = ρ2ℓ(w)
(
(h1, x) · (h2, x)

)
(4.5)

and

∇2
h,h log ℓ(w) = ρ2

( (
(x, h)2

)
− ( x , h)2

)
(4.6)

where ∇2
h1,h2

ϕ =: (∇(∇ϕ, h2), h1)H , cf. also (4.8)

(d)

( n∏

i=1

(hi, x)
)
= (hn, x )

(n−1∏

1

(hi, x)
)
+∇hn

(n−1∏

i=1

(hi, x)
)
. (4.7)

Remark 1: Let E1 denote the measure induced by y on W and let E denote

expectation w.r. to the measure in (2.5). For an operator A on H and ei, i = 1, 2, . . .

a CONB on H , define

traceA =

∞∑

1

(ei, Aei)
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provided the series converges. Consequently, we have from (4.6) and (4.3) that

E1 trace∇2 log ℓ(w) = ρ2E|x− x |2
H
= ρ2

(
E|x|2

H
− E| x |2

H

)

= ρ2E|x|2
H
− E|∇ log ℓ(w)|2

H
.

(4.8)

(c.f. also equations (6.3) and (6.4)).

Remark 2: (a) Consider the case where the abstract Wiener space is a classical

Wiener space Rn, then u ∈ H is of the form
∫ ·

0
u′(s)ds, x ∈ H is of the form

∫ ·

0
x′(s)ds

where x′(s) ∈ Rn and
∫ T

0
|x′(s)|2Rn

ds <∞. Further assume that E
∫ T

0
|x′(s)|2

Rn
ds <∞

and x′(s) is a.s. continuous on [0, T ]. Then given some t ∈ [0, T ], one can consider a

sequence of linear functionals hn such that (hn, x) converges in L
2 to x(t, w) and ex-

tend the results of proposition 4.1 to x t := E(x′(t)|Y ) for any t ∈ [0, T ]. (b) Consider

equation (4.2), given w ∈ W we can replace the integration with respect to µX(dx)

with a Monte-Carlo approximation. Similarly we can replace 〈∇nℓ(w), h1 ⊗ · · · ⊗ hn〉
by applying ∇n to the integrand of equation (4.2) and then replacing again the in-

tegrand with a Monte-Carlo approximation. This can then be applied to derive a

numerical approximation to
∏n

i−1(hi, x) i.e. the non-adapted non-linear fitlering of
∏n

i=1(hi, x). We will not follow these directions.

The following lemma will be needed in the proof of Proposition 4.1:

Lemma 4.1 Assume that µY and µY |X are absolutely continuous with respect to µW

then for all bounded and measurable functions ψ on Θ

∫

X×W

ψ(x, y)
dµY |X

dµW

(y, x)µX(dx)×µW (dy) =

∫

X×W

ψ(x, y)
dµY

dµW

(y)µX|Y (dx; y)µW (dy) .

Proof of Lemma: Let

L =

∫

X×Y

ψ(x, y)µX,Y (dx, dy) .
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Then, by Fubini’s theorem

L =

∫

X×Y

ψ(x, w)µY |X(dw, x)µX(dx)

=

∫

X×Y

ψ(x, y)
dY |X

dµW

(y, x)µX(dx)µW (dy) .

Since the conditional probability µX|Y is regular (cf e.g. theorem 10.2.2 of [4]) we

also have

L =

∫

X×Y

ψ(x, y)µX|Y (dx, y)µY (dy)

=

∫

X×Y

ψ(x, y)
dµY

dµW

(y)µX|Y (dx, y)µW (dy) .

Proof of Proposition: From (4.1) and (4.2) and since by our assumptions we may

(by dominated convergence) interchange the order of integration and differentiation

∇hℓ(w) =

∫

H

ρ(∇h〈w, x〉) exp
(
ρ〈w, x〉 − ρ2

2
|x|2

H

)
µX(dx)

=

∫

H

ρ(h, x) exp

(
ρ〈w, x〉 − ρ2

2
|x|2

H

)
µX(dx)

=

∫

H

ρ(h, x)
dµY |X

dµW

(w, x)µX(dx) .

Thus, by Lemma 4.1

∇hℓ(w) =

∫

X

ρ(h, x)
dµY

dµW

(w)µX|Y (dx, w)

= ρℓ(w)(h, x )

proving (4.3). The same arguments also hold for repeated differentiation

(
∇nℓ(w), h1 ⊗ · · · ⊗ hn

)
H⊗n

= ρn
∫

X

(h1, x) . . . (hn, x)
dµY |X

dµW

(w, x)µX(dx)

= ρn
∫

x

(
n∏

i=1

(hi, x)

)
dµY

dµW

(w)µX|Y (dx, w) ,

13



which yields (4.4). (4.5) follows directly from (4.4) since

∇2
h1,h2

ℓ(w) = ρ2ℓ(w)
(
(h1, x) · (h2 · x)

)
(4.9)

therefore

∇2
h,h log ℓ(w) =

1

ℓ(w)
∇2

h,hℓ(w)−
1

(ℓ(w))2
(∇hℓ(w))

2

=
1

ℓ(w)
∇2

h,hℓ(w)− |∇h log ℓ(w)|2 (4.9a)

proving (4.5) and (4.6). From (4.4) we have

ρnℓ(w)
( n∏

1

(hi, x)
)
= ∇hn

(
∇n−1ℓ(w), h1 ⊗ · · · ⊗ hn−1

)
H⊗(n−1)

= ∇hn


ℓ(w) · ρn−1 ·

(n−1∏

1

(hi, x)
)



and (4.7) follows.

We conclude this section with some results for δ x and δ̃ x (cf. part (c) of sec-

tion 3). By the assumptions of this section x ∈ dom2 δ and x ∈ dom1
2 δ. Therefore

by (4.3)

δ x =
1

ρ
δ∇ log ℓ(w) .

Note that L = δ∇ is the number operator, i.e. if α(w) is a square integrable r.v. of

the Wiener space and α =
∑

n=1 In, where In is the Wiener chaos decomposition of

x; then, formally, Lα =
∑

n=1 nIn. Therefore if Lα(w) ∈ L2 and E(Lα(w)) = 0 then

L−1Lα is well defined, consequently it holds by equation (4.3) that

ℓ(w) = c · exp ρL−1δ x . (4.10)

where c is a normalizing constant. For δ̃ x we have

Lemma 4.2

δ̃ x =
1

ρℓ(w)
δ∇ℓ(w) .

14



Proof: By (4.3)

δ∇ℓ = ρδ(ℓ(w) x )

= ρℓ(w)δ x − ρ( x ,∇ℓ)
H

= ρℓ(w)δ x − ρ2ℓ(w)( x , x )
H

and

δ x =
1

ρℓ(w)
δ∇ℓ(w) + ρ( x , x )

H
.

Hence by Lemma 3.1

δ̃ x = δ x −
(
∇ log ℓ(w), x )

H

= δ x − ρ| x |2
H

=
Lℓ(w)
ρℓ(w)

5 The GSV relation between the mutual informa-

tion and the mean square of the estimation error

Consider the setup and assumptions in the first paragraph of section 4. The

mutual information between x and y is defined as

I(X ; Y ) =

∫

X×W

log
dµX;Y

d(µX × µY )
(x, y) µX,Y (dx, dy) .

E will denote expectation w.r. to the measure in (2.5), (cf. e.g. [16]). E0 will denote

expectation w.r. to the Wiener measure and E1 will denote expectation w.r. to the

measure on W induced by y (hence Ef(y) = E1f(w) = E0ℓ(w)f(w)).

Proposition 5.1 Under the assumptions of the previous section, it holds that

dI(X ; Y )

dρ
= ρE

(
|x|2

H
− | x |2

H

)
(5.1)

= ρE|x− x |2
H

15



Proof: By our assumptions, and since
dµX,Y

d(µX×µY )
=

dµY |X

dµW
· dµW

dµY
, we have

I(X ; Y ) =

∫

X×W

{
log

dµY |X

dµW

(x, y)− log
dµY

dµW

(y)

}
µ(dx, dy)

= E

(
ρ〈y, x〉 − ρ2

2
|x|2

H

)
−E log ℓ(w) .

Note that Eρ〈y, x〉 = ρ2E|x|2
H
, hence

I(X ; Y ) =
ρ2

2
E|x|2

H
−E1 log ℓ(w) (5.2)

and

dI(X ; Y )

dρ
= ρE|x|2

H
− d

dρ
E0ℓ(w) log ℓ(w) (5.3)

= ρE|x|2
H
−E0

(
dℓ(w)

dρ
· log ℓ(w)

)
− 0 . (5.4)

Now,

dℓ(w)

dρ
=

∫

X

(
〈x, w〉 − ρ|x|2

H

)dµY |X(x)

dµW

(w)µX(dx) .

By lemma 4.1

dℓ(w)

dρ
=

∫

X

(
〈x, w〉 − ρ|x|2

H

) dµY

dµW

(w)µX|Y (dx)

=
(
〈 x , w〉 − ρ (|x|2

H
)
)
ℓ(w) .

Substituting in (5.4) yields

dI

dρ
= ρE|x|2

H
−E0

{(
〈 x , w〉 − ρ (|x|2

H
)
)
ℓ(w) log ℓ(w)

}
. (5.5)
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Now, by (4.3)

E0ℓ log ℓ〈 x , w〉 = E0

(
1

ρ
log ℓ〈∇ℓ, w〉

)

by (3.8)
= E0

1

ρ
log ℓ

(
δ∇ℓ+ trace∇2ℓ

)

by (3.7)
= E0

1

ρ
δ(log ℓ∇ℓ)−E0

1

ρ

(
∇ℓ,∇ log ℓ

)
+ E0

1

ρ
(log ℓ trace∇2ℓ)

by (3.6) and (4.9)
= 0− 1

ρ
E0

1

ℓ
(∇ℓ,∇ℓ) + E0ρ

(
ℓ log ℓ (|x|2

H
)

)

= ρE0ℓ(w)( x , x ) + E0ρℓ(w) log ℓ(w) (|x|2
H
) .

Substituting into (5.5) yields

dI

dρ
= ρE|x|2

H
− ρE| x |2

H
+ E0ρℓ log ℓ (|x|2

H
) −E0ρℓ log ℓ (|x|2

H
)

Remark (a): E1 log ℓ(w)(= E log ℓ(y)) is the relative entropy (or I-divergence or

Kullback-Leibler number) of µY with respect to µW (cf. e.g. [16] or [2]). Equation

(5.2) relates this relative entropy to the mutual information I(x; y) for the additive

Gaussian channel. By equations (5.3) and (5.1)

d

dρ
E1 log ℓ(w) = ρE1| x |

2

H
. (5.6)

Remark (b): Consider the following generalizations to the additive Gaussian chan-

nel. Let M be “the space of messages which generate the signals” x, i.e. (M,Bµ,Pµ)

is a probability space and x = g(m) , m ∈M , where g is a measurable from (M,Bµ)

to H . Then obviously I(M,Y ) = I(X ; Y ). More generally, consider the case where x

and m are related by some joint probability on M ×H and w and m are condition-

ally independent conditioned on x. The extension of proposition 5.1 in this context

follows along the same arguments as in theorem 13 of [7] and therefore omitted.
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6 An extended version of the De Bruijn identity

The Fisher information matrix J associated with a smooth probability density

p(y1, . . . , yn), y ∈ Rn is defined as

J =

(
∂2 log p(y1, . . . , yn)

∂yi∂yj

)

1≤i,j≤n

and then the Fisher information which is defined by the r.h.s. of (6.1) satisfies:

E trace J = −E
{∣∣∣∇ log p

∣∣∣
2

Rn

}
, (6.1)

where E is the expectation with respect to the p density. The De Bruijn identity

(cf. [3] or [7] and the references therein) deals with the case where y = x +
√
tw

where w = w1, w2, . . . , wn and the wj , j = 1, . . . , n are i.i.d. N(0, 1) and x is an Rn

random variable independent of w. It states that

d

dt
E log p(y) =

1

2
E
{∣∣∣∇ log p(y)

∣∣∣
2

Rn

}
. (6.2)

The Fisher information matrix cannot be extended directly to the case where y is

infinite dimensional. However, the results of sections 4 and 5 yield some similar

relations. Under the assumptions of section 5, comparing (5.1) with (5.3) we have

d

dρ
E1 log ℓ(w) = ρE1| x |2H

=
1

ρ
E1|∇ log ℓ(w)|2H , (6.3)

which is “similar” to (6.2) and may be considered an extended De Bruijn identity.

Note that E1 log ℓ(w) is the relative entropy of µY relative to µW , also, note the

difference between the ρ and the t parametrizations.

Comparing (5.1) with (4.8) yields

E1 trace∇2 log ℓ(w) = ρ
dI(x; y)

dρ

= ρ2E|x|2H −E1|∇ log ℓ(w)|2H , (6.4)
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which is different from (6.1) by the ρ2E|x|2H term. Note that the validity of (6.4) is

restricted to the case where ℓ(w) is induced by a signal plus independent noise model

and not for any ℓ(w) which is a negative r.v. and whose expectation is 1, cf. the

concluding lines of the next section.

7 Adding a “time parameter” to the abstract Wiener

space

Given an abstract Wiener space (W,H, µ) we can introduce the notion of continuous

time on this space as follows. Let {πθ, 0 ≤ θ ≤ 1} be a continuous , strictly increasing,

resolution of the identity on H with π0 = 0, π1 = I. Set Fθ = σ{δπθh, h ∈ H} and F
·

will denote the filtration induced by Fθ on [0, 1]. An H-valued r.v. u(w) will be said

to be adapted to F
·
if (u, πθ, h)H is Fθ measurable for all h ∈ H and every θ ∈ [0, 1],

(c.f. section 2.6 of [18] for more details). Let D2(H) denote the class of H-valued u(w)

such that E1|u|2
H
< ∞. The class of adapted square integrable random variables is

a closed subspace of D2(H) and will be denoted by D
a
2(H). We will denote by û the

projection of u ∈ D2(H) on D
a
2(H), i.e.

E1|u− û|2
H
= inf

v∈Da
2(H)

E1|u− v|2
H

(7.1)

(this corresponds to the dual predictable projection in martingale theory). Since x is

independent of w, and since x = E1(x|σ(y)), then

x̂ = ( x )̂ (7.2)

i.e. if x is not measurable on the σ-field induced by y, project, first, x on the σ-field

generated by y and then project on D
a
2(H), which is the same as replacing u with x

in (7.1). Then (cf. e.g. [18])

ℓ(y) = exp

(
ρδx̂− ρ2

2
|x̂|2

H

)
. (7.3)

By the same arguments as in [5] or [9] and by the assumptions of proposition 5.1

I(X ; Y ) =
ρ2

2
E|x− x̂|2

H
. (7.4)
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Remarks: (a) The left hand side of (7.4) is independent of the choice of π
·
while x̂

does depend on the choice of π
·
. Consequently, by (7.3), E|x− x̂|2

H
is independent of

the particular choice of π
·
. (b) The validity of (7.3) and (7.4) is not restricted to the

case where x is independent of w (cf. [9] and [18]).

By equations (5.2) and (7.4),

E1 log ℓ(w) =
ρ2

2
E

(
|x|2

H
− 1

2
|x− x̂|2

H

)

=
ρ2

2
E
(
−|x̂|2

H
+ 2(x, x̂)

H

)

Hence

E1 log ℓ(w) =
ρ2

2
E|x̂|2

H
. (7.5)

We conclude the paper with the following remark. Obviously

E|x̂|2
H
≤ E| x |2

H
. (7.6)

Hence by (7.5) and (6.3),

E1 log ℓ(w) ≤
1

2
E1|∇ log ℓ(w)|2

H

or

E0ℓ(w) log ℓ(w) ≤
1

2
E0ℓ(w)|∇ log ℓ(w)|2

H
. (7.7)

Setting f 2(w) = cℓ(w), c > 0 then

E0f
2(w) log |f(w)| ≤ E0f

2 · logE
1
2
0 f

2 + E0|∇ log f |2
H

(7.8)

which is the logarithmic Sobolev inequality of L. Gross on Wiener space (cf. e.g.

section 9.2 of [20] and the references therein). Note, however, that (7.8) is not the

complete logarithmic Sobolev inequality since as derived above, it holds only the for

the case where ℓ(w) is the likelihood ratio associated with x + w where x and w are

independent (and not for any nonnegative ℓ(w) for which Eℓ(w) = 1 cf. [15], [21]).

Inequality (7.8) follows from the obvious inequality (7.6) and the equalities derived

earlier in this paper. The question arises whether a similar argument can yield (7.8)
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without the restriction on ℓ(w) to be generated by a signal plus independent white

noise. This seems to be a delicate problem; the left hand side of (7.7) can be shown

to be equal to the left hand side of (7.6) without the restriction that the signal and

noise are independent ([9]). However it is not clear if the right hand side of (7.7) and

(7.6) are equal.
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