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Abstract

A new method for analyzing low density parity check (LDPC) codes and low density gen-
erator matrix (LDGM) codes under bit maximum a posteriori probability (MAP) decoding is
introduced. The method is based on a rigorous approach to spin glasses developed by Francesco
Guerra. It allows to construct lower bounds on the entropy of the transmitted message condi-
tional to the received one. Based on heuristic statistical mechanics calculations, we conjecture
such bounds to be tight. The result holds for standard irregular ensembles when used over
binary input output symmetric channels.

The method is first developed for Tanner graph ensembles with Poisson left degree distri-
bution. It is then generalized to ‘multi-Poisson’ graphs, and, by a completion procedure, to
arbitrary degree distribution.
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1 Introduction

Codes based on random graphs are of huge practical and theoretical relevance. The analysis
of such communication schemes is currently in a mixed status. From a practical point of
view, the most relevant issue is the analysis of linear-time decoding algorithms. As far as
message-passing algorithms are concerned, our understanding is rather satisfactory. Density
evolution [1-4] allows to compute exact thresholds for vanishing bit error probability, at least
in the large blocklength limit. These results have been successfully employed for designing
capacity-approaching code ensembles [5, 6].

A more classical problem is the evaluation of decoding schemes which are optimal with re-
spect to some fidelity criterion, such as word MAP (minimizing the block error probability) or
symbol MAP decoding (minimizing the bit error probability). Presently, this issue has smaller
practical relevance than the previous one, and nonetheless its theoretical interest is great. Any
progress in this direction would improve our understanding of the effectiveness of belief propa-
gation (and similar message-passing algorithms) in general inference problems. Unhappily, the
status of this research area [7,10] is not as advanced as the analysis of iterative techniques. In
most cases one is able to provide only upper and lower bounds on the thresholds for vanishing
bit error probability in the large blocklength limit. Moreover, the existing techniques seems
completely unrelated from the ones employed in the analysis of iterative decoding. This is
puzzling. We know that, at least for some code constructions and some channel models, belief
propagation has performances which are close to optimal. The same has been observed empir-
ically in inference problems. Such a convergence in behavior hints at a desirable convergence
in the analysis techniques.

This paper aims at bridging this gap. We introduce a new technique which allows to derive
lower bounds on the entropy of the transmitted message conditional to the received one. We
conjecture that the lower bound provided by this approach is indeed tight. Interestingly
enough, the basic objects involved in the new bounds are probability densities over R, as in
the density evolution analysis of iterative decoding. These densities are required moreover to
satisfy the same ‘symmetry’ condition (see Sec. Hlfor a definition) as the messages distributions
in density evolution. The bound can be optimized with respect to the densities. A necessary
condition for the densities to be optimal is that they correspond to a fixed point of density
evolution for belief propagation decoding.

The method presented in this paper is based on recent developments in the rigorous theory
of mean field spin glasses. Mean field spin glasses are theoretical models for disordered mag-
netic alloys, displaying an extremely rich probabilistic structure [12,13]. As shown by Nicolas
Sourlas [14-16], there exists a precise mathematical correspondence between such models and
error correcting codes. Exploiting this correspondence, a number of heuristic techniques from
statistical mechanics have been applied to the analysis of coding systems, including LDPC
codes [17-20] and turbo codes [21,22]. Unhappily, the results obtained through this approach
were non-rigorous, although, most of the times, they were expected to be exact.

Recently, Francesco Guerra and Fabio Lucio Toninelli [23,24] succeeded in developing a
general technique for constructing bounds on the free energy of mean field spin glasses. The
technique, initially applied to the Sherrington-Kirkpatrick model, was later extended by Franz
and Leone [25] to deal with Ising systems on random graph with Poisson distributed degrees.
Finally, Franz, Leone and Toninelli [26] adapted it to systems on graphs with general degree
distributions. This paper adds two improvements to this line of research. It generalizes it to



Ising systems with (some classes of) biased coupling distributions!. Furthermore, it introduces
a new way of dealing with general degree distributions which (in our view) is considerably
simpler than the approach of Ref. [26]. Using the new technique, we are able to prove that
the asymptotic expression for the conditional entropy of irregular LDPC ensembles derived
in [20] is indeed a lower bound on the real conditional entropy. This gives further credit to the
expectation that the results of [20] are exact, and we formalize this expectation as a conjecture
in Sec.

The new technique is based upon an interpolation procedure which progressively eliminates
right (parity check) nodes from the Tanner graph. This procedure is considerably simpler
for graph ensembles with Poisson left (variable) degree distribution. Such graph can be in
fact constructed by adding a uniformly random right node at a time, independently from
the others. We shall therefore adopt a three steps strategy. We first prove our bound for
Poisson ensembles. This allows to explain the important ideas of the interpolation technique
in the simplest possible context. Unhappily Poisson ensembles may have quite bad error-floor
properties due to low degree node and are not very interesting for practical purposes 2. Next,
we generalize the bound to ‘multi-Poisson’ ensembles. These can be constructed by a sequence
of rounds such that, within each round, right nodes are added independently of each other. In
other words multi-Poisson graphs are obtained as the superposition of several Poisson graphs.
Finally, we show that a general degree distribution can be approximated arbitrarily well using
a ‘multi-Poisson’ construction. Together with continuity of the bound, this implies our general
result.

In Section Bl we introduce the code ensembles to be considered. Symbol-MAP decoding
scheme is defined in Sec. Bl together with some basic probabilistic notations. Section H collects
some remarks on symmetric random variables to be used in the proof of our main results. We
then prove that the per-bit conditional entropy of the transmitted message concentrates in
probability with respect to the code realization. This serves as a justification for considering
its ensemble average. Our main result, i.e. a lower bound on the average conditional entropy
is stated in Sec. @ This Section also contains the proof for Poisson ensembles. The proof for
multi-Poisson and standard ensembles is provided (respectively) in Sections [ and B Section
presents several applications of the new bound together with a general strategy for optimizing
it. Finally, we draw our conclusion and discuss extensions of our work in Section [0 Several
technical calculations are deferred to the Appendices.

2 Code ensembles

In this Section we define the code ensembles to be analyzed in the rest of the paper. By
‘standard ensembles’ we refer to the irregular ensembles considered, e.g., in Refs. [2,3]. Poisson
ensembles are characterized by Poisson left degree distribution. Finally multi-Poisson codes
can be thought as ‘combinations’ of Poisson codes, and are mainly a theoretical device for
approximating standard ensembles.

For each of the three families, we shall proceed by introducing a family of Tanner graph
ensembles. In order to specify a Tanner graph, we need to exhibit a set of left (variable)
nodes V, of size |V| = n, a set of right (check) nodes C, with |C| = m and a set of edges &,

'The reader unfamiliar with the statistical physics jargon may skip this statement.

20ne exception to this statement is provided by Luby Transform codes [27]. These can be regarded as Poisson
ensembles, and, due to the large average right degree, have an arbitrary small error floor



each edge joining a left and a right node. If ¢ € V denotes a generic left node and a € C a
generic right node, an edge joining them will be given as (i,a) € £. Multiple edges are allowed
(although only their parity matters for the code definition). Furthermore, two graphs obtained
through a permutation of the variable or of the check nodes are regarded as distinct (nodes
are ‘labeled’). The neighborhood of the variable (check) node ¢ € V (a € C) is denoted by 0i
(0a). In formulae i ={a €C : (i,a) e} and da={i €V : (i,a) € E}.

A Tanner graph ensemble will be generically indicated as (- - -), where - - - is a set of relevant
parameters. Expectation with respect to a Tanner graph ensemble will be denoted by Eg.

Next, we define LDPC(- - ) and LDGM(- - ) codes as the LDPC and LDGM codes associated
to a random Tanner graph from the (---) ensemble. Since this construction does not depend
upon the particular family of Tanner graphs to be considered, we formalize it here.

Definition 1 LetH = {H,; : a € C;i € V} be the adjacency matriz of a Tanner graph from the
ensemble (---): Hg =1 if (i,a) appears in £ an odd number of times, and Hq; = 0 otherwise.
Then

1. A code from the LDGM(---) ensemble is the linear code on GF[2] having H as generator
matriz. The design rate of this ensemble is defined as rqes = n/Egm.

2. A code from the LDPC(---) ensemble is the linear code on GF|2] having H as parity
check matriz. The design rate of this ensemble is rqes = 1 — Egm/n.

Before actual definitions of graph ensembles, it is convenient to introduce some notations
for describing them. For a given graph we define the degree profile (A, P) as a couple of
polynomials

lmax
AMa)=> ANat,  P@)=> B, (2.1)
=2 k=2

such that A; (B) is the fraction of left (right) nodes of degree i. The degree profile (A, P), will
be in general a random variable depending on the particular graph realization. On the other
hand, each ensemble will be assigned a non-random ‘design degree sequence’ (A, P). This is
the degree profile that the ensemble is designed to achieve (and in some cases achieves with
probability approaching one in the large blocklength limit). Both A(z) and P(z) will have
non-negative coefficients and satisfy the normalization condition A(1) = P(1) = 1. Finally, it
is useful to introduce the ‘edge perspective’ degree sequences: A(z) =), Nzt~ = N () /N (1),
and p(z) = Y, pra®~t = P'(x)/P'(1).

In the following Sections, ‘with high probability’ (w.h.p.) and similar expressions will refer
to the large blocklength limit, with the other code parameters kept fixed.

2.1 Standard ensembles

Standard ensembles are discussed in several papers [2-5,29,30]. Their performances under
iterative decoding have been thoroughly investigated allowing for ensemble optimization [2,6].
A standard ensemble of factor graphs is defined by assigning the blocklength n and the design
degree sequence (A, P). We shall assume the maximum left and right degrees lyax and Kmax
to be finite.

Definition 2 A graph from the standard ensemble (n,A, P) includes n left nodes and m =
nA'(1)/P'(1) right nodes (i.e. V = [n] and C = [m]), and is constructed as follows. Partition
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the set of left nodes uniformly at random into lyax subsets {V;} with |Vj| = nA;. For any
1 =2,...,lmax, associate | ‘sockets’ to each i € V;. Analogously, partition the right nodes into
sets {Cr} with |Cx| = nPy, and associate k sockets to the nodes in C. Notice that the total
number of sockets on each side is nA'(1).

Choose a uniformly random permutation over nA’(1) objects and connect the sockets ac-
cordingly (two connected sockets form an edge).

The ensemble (n, A, P) is non-empty only if the numbers nA’(1)/P’'(1) and {nA;,mP;} are
integers. The design rate of the LDPC(n, A, P) ensemble is rqes = 1 — A’(1)/P’(1), while for
the LDGM(n, A, P) ensemble rqes = P’(1)/A’(1). Tt is clear that the degree profile (A, P)
concentrates around the design degree sequences (A, P)

An equivalent construction of a graph in the standard ensemble is the following. As before,
we shall partition nodes and associate them sockets. Furthermore we shall keep track of the
number of ‘free’ sockets at variable node i after ¢ steps in the procedure, through an integer
di(t). Therefore, at the beginning set d;(0) = [ for any ¢ € V;. Next, for any a = 1,...,m
consider the a-th check node, and assume that a € C;. For r = 1,...,k do the following
operations: (i) choose iy in V with probability distribution w;(t) = d;(t)/(3_;d;(t)); (i) Set
dia(t +1) = dja(t) — 1 and d;(t + 1) = d;(t) for any i # if; (i) increment ¢ by 1. Finally a is
connected to if,...i¢. The graph G obtained after the last right node a = m is connected to
the left side, is distributed according to the standard ensemble as defined above.

2.2 Poisson ensembles

A Poisson ensemble is specified by the blocklength n, a real number + > 0, and a right degree
design sequence P(x). Again, we require the maximum right degree knax to be finite.

Definition 3 A Tanner graph from the Poisson ensemble (n,~y, P) is constructed as follows.
The graph has n wvariable nodes i € V = [n]. For any 2 < k < kpax, choose my from a
Poisson distribution with parameter nyPy/P'(1). The graph has m = Y, my check nodes
acC={(a,k):acmg,2<k<kna}

For each parity check node a = (a, k) choose k variable nodes i$, ... ,ij, uniformly at random
inV, and connect a with i{,...,if.

A few remarks are in order: they are understood to hold in the large blocklength limit n — oo
with v and P fixed. (i) The number of check nodes is a Poisson random variable with mean
Egm = n~vy/P’(1). Moreover, m concentrates in probability around its expectation. (i) The
right degree profile P concentrates around its expectatlon EgP, = P, + O(1/n). (iii) The
left degree profile A has expectation EgA; = v'e=7/I! + O(1/n), and concentrates around its
average. In view of these remarks, we define the design left degree sequence A of a Poisson
ensemble to be given by A(z) = e7(@=1),
The design rate? of the LDGM(n, v, P) ensemble is 74,5 = P’(1) /7, while, for a LDPC(n,~, P)

ensemble, rges = 1 —v/P'(1) =1 —Egm/n.

3In the first case, the actual rate r is equal to n/m, and therefore, because of the observation (i) above, concentrates
around the design rate. In the LDPC(n, v, P) ensemble, the actual rate r is always larger or equal to 1 —m/n, because
the rank of the parity check matrix H is not larger than m. Notice that 1 —m/n concentrates around the design rate.
It is not hard to show that the actual rate is, in fact, strictly larger than rqes with high probability. A lower bound
on the number of codewords N (H) can in fact be obtained by counting all the codewords such that z; = 0 for all the
variable nodes i with degree larger than 0. This implies 7 > Ag. Take v and P(z) such that e=7 > 1 —y/P'(1) + 0
for some § > 0 (this can be always done by chosing ~ large enough). Since Ag is closely concentrated around e~ in
the n — oo limit, we have r > rqes + 6 with high probability.



The important simplification arising for Poisson ensembles is that their rate can be easily
changed in a continuous way. Consider for instance the problem of sampling a graph from the
(n,y + A~, P) ensemble. To the first order in A~y this can be done as follows. First generate
a graph from the (n,7, P). Then, for each k € {3,..., kmnax}, add a check node of degree k
with probability Ay P/P’(1), and connect it to k uniformly random variable nodes i1, . . . , i.
Technically, this property will allow to compute derivatives with respect to the code rate, cf.
App.

2.3 Multi-Poisson ensembles

We introduce multi-Poisson ensembles them in order to ‘approximate’ graphs in standard
ensembles as the union of several Poisson sub-graphs. The construction proceeds by a finite
number of rounds. During each round, we add a certain number of right nodes to the graph.
The adjacent left nodes are drawn independently using a biased distribution. The bias drives
the procedure towards the design left degree distribution, and is most effective in the limit of a
large number of ‘small’ stages. A multi-Poisson ensemble is fully specified by the blocklength
n, a design degree sequence (A, P) (with A(z) and P(x) having maximum degree, respectively,
Imax, and kpmax), and a real number v > 0 describing the number of checks to be added at
each round. The number of rounds is defined to be tyax = [A'(1)/v] — 1. Below we adopt the
notation [z]4 = z if > 0 and = 0 otherwise.

Definition 4 A Tanner graph G from the multi-Poisson ensemble (n, A, P,v) is defined by
the following procedure. The graph has n variable nodes i € V = [n]|, which are partitioned
uniformly at random into lyax subsets {V;}, with |V;| = nA;. For eachl =2,... lnax and each
i €V, let d;(0) = 1. Let Gy be the graph with variable nodes V and without any check node.
We shall define a sequence Gy, ...,G,..., and set G =Gy . .

For anyt=0,...,tmax — 1, Giy1 18 constructed from Gy as follows. For any 2 < k < kpax,
choose m,(f) from a Poisson distribution with parameter nyPy/P'(1). Add m®) = 3, m,(f)

check nodes to G, and denote them by C; = {(a,k,t) : a € [m,(:)], 2 < k < kmax}. For each
node a = (a,k,t) € C, choose k variable nodes i$, ..., i independently in V', with distribution
w;(t) = [di(t)]4+/(>2;[d;i(D)]+), and connect a with if,...,i. Finally, set d;(t + 1) = d;(t) —
A;(t), where Ai(t) is the number of times node © has been chosen during round t.

Notice that the above procedure may fail if > °/[d;(¢)]+ vanishes for some ¢ < tpax—1. However,
it is easy to understand that, in the large blocklength limit, the procedure will succeed with
high probability (see the proof of Lemma [l below).

The motivation for the above definition is that, as v — 0 at n fixed, it reproduces the
definition of standard ensembles (see the formulation at the end of Sec. EZIl). At non-zero 7,
the multi-Poisson ensemble differ from the standard one in that the probabilities w;(t) are
changed only every about n7y edge connections. On the other hand, we shall be able to analyze
multi-Poisson ensembles in the asymptotic limit n — oo with the other parameters —the design
distributions (A, P) and the stage ‘step-size’ y— kept fixed. It is therefore crucial to estimate
the ‘distance’ between multi-Poisson and standard ensembles for large n at fixed 7.

We formalize this idea using a coupling argument. Let us recall here that, given two random
variables X € X and Y € ), a coupling among them is a random variable (X', Y”') € X' x ) such
that the marginal distributions of X’ and Y’ are the same as (respectively) those of X and Y.
Furthermore, we define a ‘rewiring’ as the elementary operation of either adding or removing
a function node from a Tanner graph. The following Lemma is proved in Appendix [Al



Lemma 1 Let 0 < v < 1 and (A, P) be a degree sequence pair. Then there exist two n—
independent positive numbers A(A, P),b(A, P) > 0 and a coupling (Gs, Gmp), between the stan-
dard ensemble (n,A, P) and the multi-Poisson ensemble (n,A, P,7), such that w.h.p. Gs is
obtained from Gup with a number of rewirings smaller than A(A, P)ny?A-P),

In other words, we can obtain a random Tanner graph from the standard ensemble by first
generating a multi-Poisson graph with the same design degree sequences and small v, and then
changing a small fraction of edges.

Although it is convenient to define multi-Poisson ensembles in terms of the design degree
distribution A(z), such a distribution does not coincide with the actual degree profile achieved
by the above construction, even in the large blocklength limit. In order to clarify this statement,
let us define the expected degree distribution A7) (z) = E¢A(x) for blocklength n and step
parameter 4. Furthermore, let* A (z) = lim, oo A7 (z). We claim that, in general,
A (z) # A(x). This can be verified explicitly using the characterization of A (z) provided
in Appendix[Bl However, as a consequence of Lemmal[Il for small v, A (z) is ‘close’ to A(z).

Corollary 1 Let 0 < v < 1 and (A, P) be a degree sequence pair. Then there exist two n—
independent positive numbers A(A, P),b(A, P) > 0 such that ]Al(y) — Ay < A(A, P)yny? &P for
each 1 € {2,...,lmax}. Moreover

1
' () Al = M _All == ™) _
%1_% [|A Al =0, where ||A Al = 5 El A, A (2.2)

The distance || — v|| defined above is often called the ‘total variation distance’: we refer to
App. [Al for some properties.

Proof: Let (Gs,Gmp) be a pair of Tanner graphs distributed as in the coupling of Lemma
[ Their marginal distributions are, respectively, the standard (n, A, P) and the multi-Poisson
(n, A, P,7) ones. Denote by [\l(g.) the fraction of degree-l variable nodes in graph G.. Then,
there exist A and b such that

lim P31 s.t. [Aj(Gs) — Ay(Gup)| > A7°] = 0. (2.3)

n—o0

This follows from Lemma [l together with the fact that each rewiring induces a change bounded
by kmax/m in the degree profile. Therefore, using the notation Al(") = EAl(gs) for the expected
degree profile in the standard ensemble at finite blocklength, we get

A7 — AP = [BA1(Gs) — Ai(Gaup)]| < EIA(Gs) — Ar(Gunp)| € AP +0n (1) (24)

The first thesis follows by taking the n — oo limit.
Convergence in total variation distance follows immediately:

1 1 1 1
M _ Al = L () _ 1 () _ 1 1 ) _
[AD) —A|| = 2Z|Al Al|§22|Al Al|+ZZAl+ZZAl =
l 1<l 1>l 1>l
- 1Z\AW—A\+3(1—ZA)+3(1—ZAW) (2.5)
2 ! 1Ty K L ‘
1<lx 1<lx >l

4In App. B we shall prove the existence (in an appropriate sense) of this limit and provide an efficient way of
computing A (z).



The last expression can be made arbitrarily small by chosing v and [, appropriately. For
instance, one can choose [, in such a way that Zlgz* A; > 1 — ¢, and then v such that

Ayb < e/l,. This implies [|[A) — A|| < 3e. O

3 Decoding Schemes

In the LDGM case the codeword bits are naturally associated to the check nodes. A string
T ={Z,:a€C}e{0,1}™ is a codeword if and only if there exists an information message
z ={z;:i €V} e {0,1}" such that

Lo =20 @ - B xie, (3.1)

for each a = (a,k) € C. Here @ denotes the sum modulo 2. Encoding consists in choosing
an information message x with uniform probability distribution and constructing the corre-
sponding codeword Z using the equations (BI). Notice that, because the code is linear, each
codeword is the image of the same number of information messages. Therefore choosing an
information message uniformly at random probability is equivalent to choosing a codeword
uniformly at random.

In the LDPC case the codeword bits can be associated to variable nodes. A string x =
{z; 1€V} €{0,1}" is a codeword if and only if it satisfies the parity check equations

xig@'-'@xigzo, (32)

for each a = (G, k) € C. In the encoding process we pick a codeword with uniform distribution.

The codeword, chosen according to the above encoding process, is transmitted on a binary-
input output symmetric channel (BIOS) with output alphabet A and transition probability
density Q(y|x). In the following we shall use a discrete notation for A. It is straightforward
to adapt the formulas below to the continuous case. If, for instance A = R, sums should be
replaced by Lebesgue integrals: Zye a4 [dy -

The channel output has the form § = {y, : a € C} € A™ in the LDGM case or y = {y; : i €
V} € A" LDPC case. In order to keep unified notation for the two cases, we shall introduce
a simple convention which introduces a fictitious output y, associated to the variable nodes,
(in the LDGM case) or g, associated to the check nodes (in the LDPC case). If an LDGM is
used, y takes by definition a standard value y = (x,...,*), while of course § is determined by
the transmitted codeword and the channel realization. The character * should be thought as
an erasure. If we are considering a LDPC, y is the channel output, while g takes a standard
value g, = (0,...,0). B B

We will focus on the probability distribution P(z|y,y) of the vector z, conditional to the
channel output (y,9). Depending upon the family of codes employed (whether LDGM or
LDPC), this distribution has different meanings. It is the distribution of the information
message in the LDGM case, and the distribution of the transmitted codeword in the LDPC
case. It can be always written in the form

P(zly,9) = L H Qc(Jalwio © -+ © wia) H Qv (yilzi) - (3.3)

Z(g, Q) acC i€V

The precise form of the functions Qc¢(+|-) and Qy(-|-) depends upon the family of codes:



Qu(xy)
Qu(*2)
Qulxa)
Qulxa)
Qu(%s)
Qu(%e)
Qu(*7)

Qc(Xq+Xg+ X5+ X%7)
Qcl¥ot X3t Xg+%7)

Qc(Xg+ X5+ X5+ X7)

X7

Figure 1: Factor graph representation of the probability distribution of the transmitted codeword (infor-
mation message for LDGM codes) conditional to the channel output, cf. Eq. (B3]). Notice that, for the
sake of compactness the y arguments have been omitted.

For LDGM’s:
LN el 1 ify =%
Qelil) =@l Qi) ={ g B (3.4
For LDPC’s
o 1 ifg =2,
Qelile)={ § SITE L Qulsle) = Q). (35)

The probability distribution (B3]) can be conveniently represented in the factor graphs language
[31], see Fig. [ There are two type of factor nodes in such a graph: nodes corresponding to
Qv (:]) terms on the left, and nodes corresponding to Qc¢(+|-) on the right. It is also useful
to introduce a specific notation for the expectation with respect to the distribution (B3)). If
F :{0,1}Y — R is a function of the codeword (information message for LDGM codes), we
define:

(F(z)) = ZF (zly,9). (3.6)

In the proof of our main result, see Sec. ] it will be also useful to consider several i.i.d. copies
of x, each one having a distribution of the form B3). If F : {0,1}Y x --- x {0,1}¥ — R,

(g(l), . ,g(q)) — F(g(l), e ,g(q)) is a real function of ¢ such copies, we denote its expectation
value by
(FW,....29)). = > F@W,. .., 29) PaWy,j) - P?y,j). (3.7)
g(l),,,z(@

We are interested in two different decoding schemes: bit MAP (for short MAP hereafter)
and iterative belief propagation (BP) decoding. In MAP decoding we follow the rule:

:E?/IAP

= arg max P(z;|y,7), (3.8)
T - -
where P(z;|y, ) is obtained by marginalizing the probability distribution (B3) over {x;; j # i}.
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BP decoding [32] is a message passing algorithm. The received message is encoded in terms
of log-likelihoods {h; : i € V} and {J, : a € C} as follows (notice the unusual normalization):

1, @v(yil0) _ 1. Qc(9a]0)
h; = 5 log Qo) Jo = 5 log Qclial) (3.9)

The messages {uq—, Vi—q} are updated recursively following the rule

Ug—; = arctanh{tanh J, H tanhvj_q}, (3.10)
j€da\i
Viva = hit Y Ups. (3.11)
bedi\a

After iterating Eqs. (BI0), (BII) a certain fixed number of times, all the incoming messages
to a certain bit x; are used to estimate its value.

In the following, we shall denote by E¢ the expectation with respect to one of the code
ensembles defined in this Section. Which one of the ensembles defined above will be clear from
the context. We will denote by E, the expectation with respect to the received message (y,9),
assuming the transmitted one to be the all-zero codeword (or, in some cases, with respegt_to
one of the received symbols).

4 Random variables

It is convenient to introduce a few notations and simple results for handling some particular
classes of random variables. Since these random variables will appear several times in the
following, this introduction will help to keep the presentation more compact. Here, as in the
other Sections, we shall sometimes use the standard convention of denoting random variables
by upper case letters (e.g. X) and deterministic values by lower case letters (e.g. x). Moreover,

we use the symbol 4 {6 denote identity in distribution (i.e. X 4y if X and Y have the same
distribution).
The most important class of random variables in the present paper is the following.

Definition 5 A random variable X is said to be symmetric (and we write X € S) if it takes
values in (—oo, +00] and

Exlg(z)] = Ex[e*"g(—)], (4.1)
for any real function g such that at least one of the expectation values exists.

This definition was already given in [33]. Notice however that the two definitions differ by
a factor 2 in the normalization of X. The introduction of symmetric random variables is
motivated by the following observations [33]:

1. If Q(y|x) is the transition probability of a BIOS and y is distributed according to Q(y|0),
then the log-likelihood

_ 1. Q(ylo)
W30

is a symmetric random variable. In particular the log-likelihoods {h; : i € V} and
{Jy : a € C} defined in [BH) are symmetric random variables.

(4.2)
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2. Two important symmetric variables are: (i) X = 0 with probability 1; (i7) X = +oo with
probability 1. Both can be considered as particular examples of the previous observation.
Just take an erasure channel with erasure probability 1 (case i) or 0 (case ii).

3. If X and Y are symmetric then Z = X + Y is symmetric. Here the sum is extended to
the domain (—o0, 4+00] by imposing the rule z + oo = +oc.

4. If X and Y are symmetric then Z = arctanh(tanh X tanhY) is symmetric. The functions
x +— tanhz and x — arctanhz are extended to the domains (respectively) (—oo, +0o0]
and (—1,+1] by imposing the rules tanh(4+00) = 41 and arctanh(+1) = +oc.

As a consequence of the above observations, if the messages {uq—;,vi—q} in BP decoding are
initialized to some symmetric random variable, remain symmetric at each step of the decoding
procedure. This follows directly from the update equations ([BI0) and BIT).

Remarkably, the family of symmetric variables is ‘stable’ also under MAP decoding. This
is stated more precisely in the result below [30].

Lemma 2 Let P(z|y,q) be the probability distribution of the channel input (information mes-
sage) x = (x1...xy,), conditional to the channel output y = (y1...yn), § = (41...0n) as given
in Bq. [33). Assume the channel is BIOS and x is the codeword of (is coded using a) linear
code. Leti={i1...ix} C [n| and define

1 Py, ©...© = 0Jy)

li(y) == 1 .
i(y) 9 8 Pz @ ... 0z = 1ly)

(4.3)
If y is distributed according to the channel, conditional to the all-zero codeword being trans-
mitted then {;(y) is a symmetric random variable.

To complete our brief review of properties of symmetric random variables, it is useful to
collect a few identities to be used several times in the following (throughout the paper we use
log and log, to denote, respectively, natural and base 2 logarithms).

Lemma 3 Let X be a symmetric random variable. Then the following identities hold

2%—1 2% tanh?* X
— — e ——— > .
Ex tanh X =Eyxtanh** X EXl b X fork>1, (4.4)
S 1 1 ok
Ex log(1 + tanh X') = E <2k:—1 2k>EXtanh X. (4.5)

k=1

Proof: The identities (4] follow from the observation that, because of Eq. EIl), we
have

Eg(X) = ZE[g(X) + ¢ ¥ g(=X)]. (4.6)

The desired result is obtained by substituting either g(X) = tanh?* X or g(X) = tanh?~1 X
In order to get (D)), apply the identity (8 to g(X) = log(1 + tanh X) and get

Elog(1+1) — %El%t[u + 1) log(1 4 1)+ (1 — ) log(1 — )] = (4.7)
> 1 1Y) %
- E;<2k—1_%>1—+t’ (48)
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where we introduced the shorthand ¢ = tanh X. At this point you can switch sum and
expectation because of the monotone convergence theorem. O

The space of symmetric random variables is useful because log-likelihoods (for our type of
problems) naturally belong to this space. It is also useful to have a compact notation for the
distribution of a binary variable z whose log-likelihood is u € (—o0, +00]. We therefore define

[ et if =0,
Pu(x) - { (1 + e—2u)—1e—2u’ ifr=1. (49)

5 Concentration

Our main object of interest will be the entropy per input symbol of the transmitted message
conditional to the received one (we shall generically measure entropies in bits). We take the
average of this quantity with respect to the code ensemble to define

1

hn = —EcHn(X[Y,Y)= (5.1)
= ECElog; Z(0) ~ iy 3 Qelyl0) o Qe(41)
— Y Qu(y]0)log, Qv (yl0) . (5.2)
Y

In passing from Eq. (1) to (£2), we exploited the symmetry of the channel, and fixed the
transmitted message to be the all-zero codeword.

Intuitively speaking, the conditional entropy appearing in Eq. (&) allows to estimate the
typical number of inputs with non-negligible probability for a given channel output. The
most straightforward rigorous justification for looking at the conditional entropy is provided
by Fano’s inequality [34] which we recall here.

Lemma 4 Let Pg(C) (P,(C)) be the block (bit) error probability for a code C' having block-
length n and rate r. Then

1. Py(C) > [Hp(X[Y,Y) — 1]/ (nr).
2. u(By(C)) > Ho(X|Y,Y)/n.
Here h(z) = —xlogyx — (1 — z) logy(1 — ) denotes the binary entropy function.

The rationale for taking the expectation with respect to the code in the definition (&J) is
the following concentration result

Theorem 1 Let Hn(X|X,X) be the relative entropy for a code drawn from any of the ensem-
bles LDGM(- - -) or LDPC(---) defined in Section [, when used to communicate over a binary
memoryless channel. Then there exist two (n-independent) constants A, B > 0 such that, for
any e >0

Po{|Ho(X|Y,Y) — nhy| > ne} < Ae "B (5.3)

Here Po denotes the probability with respect to the code realization.
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In particular this result implies that, if h,, is bounded away from zero in the n — oo limit,
then, with high probability with respect to the code realization, the bit error rate is bounded
away from 0. The converse (namely that lim,, . hy, = 0 implies lim,,,~ P[Py (C) > ] = 0)
is in general false. However, for many cases of interests (in particular for LDPC ensembles)
we expect this to be the case. We refer to Sec. for further discussion of this point.

Proof: We use an Azuma inequality [35] argument similar to the one adopted by
Richardson and Urbanke to prove concentration under message passing decoding [3].

Notice that the code-dependent contribution to H,(X|Y,Y) is E,logy Z(y,9), cf. Eq.
(B2)). We are therefore led to construct a Doob martingale as follows. First of all fix Mmax =
(1+6)Egm, and condition to m < mmax (m being the number of right nodes). A code C'in this
‘constrained’ ensemble can be thought as a sequence of my,,x random variables cy, ..., cm,.. -
The variable ¢; = (k, 1) consists in the degree k of the t-th check node, plus the list i = {i{ ...i¢}
of adjacent variable nodes on the Tanner graph. We adopt the convention ¢; = * if ¢ > m. Let
Cy = (c1,...,¢) and define the random variables

Xt = E¢[Eylogy Z(y,9)|Ct,m < Mumax] t=0,1,..., Mmnax - (5.4)

mmay form a martingale. In particular E[X; | X ... X;—1]
X¢—1. In order to apply Azuma inequality we need an upper bound on the differences
|X; — Xy—1|. Consider two Tanner graphs which differ in a unique check node and let A
be a uniform upper bound on the difference in E, logs Z(y, ) among these two graphs. Since
X1 is the expectation of X; with respect to the choice of the ¢-th check node, | X;— X;—1] < A
as well. In order to derive such an upper bound A, we shall compare two graphs differing in
a unique check node, with the graph obtained by erasing this node.

More precisely, consider a Tanner graph in the ensemble having m check nodes, and channel
output y, y. Now add a single check node, to be denoted as 0. Let gy be the corresponding
observed value, and i{... 2'2 the positions of the adjacent bits. In the LDGM case g will be
drawn from the channel distribution, while it is fixed to 0 if the code is a LDPC. Evaluate the
difference of the corresponding partition functions. We claim that

It is obvious that the sequence Xj, ... X

EQOEy 10g2 Zm—i-l(ga Qa ?JO) - Ey log ZM(% @ = EQOEy 10g2<Qc(@0’$i1 DD xlk» ’ (5’5)

where (-) denotes the expectation with respect to the distribution ([B3]) for the m-check nodes
code. In order to prove such a formula, we write explicitely logy(Qc(%olzs, - - - x;,)) using

Eq. (B3). We get
1 . .
logy \ Z—r ST Qelialzis - 2i0) [T Qulwilwi) - Qe(folas, - 2i) p - (5.6)
m T a€lm] i€[n]
Next we apply the definition of Z,,11(y,9,%0), and take expectation with respect to y, § and

Yo-
Using the definitions ([L2) and (E3]) we obtain

N 1
(Qc(Polzi, ® -+ ®ay,)) = 3 [1 + tanh {(yo) tanhﬁi(g)] , (5.7)
with 2 = (ig ... 1). It follows therefore from Lemma B that

— 1 < Ey,Eylog{Qc(dolzi, ® - @ xy,)) <0. (5.8)
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Therefore the difference in conditional entropy among two Tanner graph which differ in a
unique check node is at most 2 bits (one bit for removing the check node plus one bit for
adding it in a different position). Arguing as above, this yields |X;y; — X¢| < 2 and Azuma
inequality implies

Po{|Ho(X|Y,Y) — nhp| > ne|m < mupaxt < Ay e "B1e” (5.9)

with A1 =2 and By = P/(1)/[8v(1 + 9)].

In the case of standard ensembles, we are done, because the condition m < muyax = (1 +
d)Egm holds surely (m is a deterministic quantity). For Poisson and multi-Poisson ensembles,
we have still to show that the event m > mp.x does not modify significantly the estimate
(E9). From elementary theory of Poisson random variables we know that, for any § > 0 there
exist Ag, By > 0 such that Po[m > mupax] < A e~"B28"  Notice that

Po{|Hn(X|Y,Y) — nhy| > ne} < Po{|HW(X|Y,Y) — nhy| > ne |m < mupayx} +(5.10)
‘Hpc [m > mmax] <
< Ape B 4 gy Bt (5.11)

The thesis is obtained by choosing § = ¢, B = min(By, By), and A = Ay + A,. O

6 Main result and proof for Poisson ensembles

As briefly mentioned in the Introduction, the main ideas in the proof are most clearly described
in the context of simple Poisson ensembles. We shall therefore discuss them in detail here,
will be more succinct when using similar arguments for multi-Poisson ensembles. Some of the
calculations and technical details are deferred to Appendices [( and

In order to state our main result in compact form, it is useful to introduce two infinite
families {Ua}, {VB} of i.i.d. random variables. The indices A, and B run over whatever set
including the cases occurring in the paper. We adopt the convention that any two variables of
these families carrying distinct subscripts are independent. The distribution of the U and V
variables shall moreover satisfy a couple of requirements specified in the definition below.

Definition 6 Fiz a degree sequence pair (A, P), and let py be the edge perspective right degree
distribution pr = Py/P'(1). Let V1,Va,... LV be a family of i.i.d. symmetric random
variables, k an integer with distribution py, J a symmetric random variable distributed as the
log-likelihoods {J,} of the parity check bits, cf. Eq. (33), and
k—1
UV = arctanh [tanh J H tanh V;
i=1

(6.1)

The random variables U, V' are said to be admissible if they are independent, symmetric and
viyv,

For any couple of admissible random variables U, V, we define the associated trial entropy
as follows

dy(A,P) = —AN(Q)E,,log,

Z Py + E,EyE(,,) log, [Z H Py (z

A(1 gl ® -z
AW g w R, Lo, [ > Y] £
i=1

(1) Qe(il0) ’ (6.2)

T1...T)
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{x} — = |LDGM®M) —{&} — —| Q | — )

——= | REPEAT %{(Xa»i ) —= Qut ——={(z4.i)}

Figure 2: A communication scheme interpolating between an LDGM code and an irregular repetition
code. Notice that the repetition part is transmitted through a different (effective) channel.

where | and k are two integer random wvariables with distribution (respectively) A; and Py.
Hereafter we shall drop the reference to the degree distributions in ¢y (A, P) whenever this is
clear from the context.

Notice that, in the notation for the trial entropy, we put in evidence its dependence just on
the distribution of the V-variables. In fact we shall think of the distribution of the U-variables
as being determined by the relation U du V. see Eq. [@1)).

The main result of this paper is stated below.

Theorem 2 Let P(z) be a polynomial with non-negative coefficients such that P(0) = P'(0) =
0, and assume that P(x) is convex for x € [—xg, o).

1. Let h, be the expected conditional entropy per bit for either of the Poisson ensembles
LDGM(n,~, P) or LDPC(n,~, P). If xog > 1, then

hyp > sup ¢y (A, P). (6.3)
\%4

2. Let h,, be the expected conditional entropy per bit for either of the multi-Poisson ensembles
LDGM(n,~, A, P) or LDPC(n,v, A, P). If xy > e, then

lim inf h, > sup ¢y (A, P). (6.4)
n—o0 Vv

3. Let h,, be the expected conditional entropy per bit for either of the standard ensembles
LDGM(n, A, P) or LDPC(n,A, P). If xo > e, then

lim inf A, >supoy (A, P). (6.5)
n—oo 14

Here the sup has to be taken over the space of admissible random variables.

Proof [Poisson ensembles|: Computing the conditional entropy (B2 is difficult because
the probability distribution (B3] does not factorize over the bits {z;}. Guerra’s idea [23]
consists in interpolating between the original distribution ([B3]) and a much simpler one which
factorizes over the bits. In the LDPC case, this corresponds to progressively removing parity
check conditions ([B:2), from the code definition. For LDGM’s, it amounts to removing bits from
the codewords (BJ). In both cases the design rate is augmented. In order to compensate the
increase in conditional entropy implied by this transformation we imagine to re-transmit some

15



) w0
Qulxy -—]u&\- 0ux)

Qe X2 x) Qulx) -—XZ\—- Qus()
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Figure 3: Action of the interpolation procedure on the factor graph representing the probability distribu-
tion of the channel input (or, in LDGM case, the information message) conditional to the channel output.
For the sake of simplicity we dropped the arguments y; (for Qy), g, (for Q¢) and z4—; (for Qe).

of the bits {z;} through an ‘effective’ channel. It turns out that the transition probability of
this effective channel can be chosen in such a way to ‘match’ the transformation of the original
code.

In practice, for any s € [0, 7] we define the interpolating system as follows. We construct a
code from the same ensemble family as the original one, but with modified parameters (n, s, P).
Notice that both the block length and the right degree distribution remained unchanged. The
design rate, on the other hand has been increased to 7qes(s) = P’(1)/s (in the LDGM case) or
Tdes(t) = 1 — s/P’(1) (in the LDPC case). A codeword from this code is transmitted through
the original channel, with transition matrix Q(-|-). It is useful to denote by Cs the set of
factor nodes for a given value of t. Of course C; is a random variable.

As anticipated, we must compensate for the rate loss in the above procedure. We there-
fore repeat each bit x; I; times and transmit it through an auxiliary channel with transition
probability Qeg(-|-). The l;’s are taken to be independent Poisson random variables with pa-
rameter (y—s). We can therefore think this construction as a code formed of two parts: a code
from the LDGM(n, s, P) or LDPC(n, s, P) ensemble, plus an irregular repetition code. Each
part of the code is transmitted through a different channel. In Fig. Bl we present a schematic
description of this two—parts coding system (the scheme refers to the LDGM case).

The received message will have the form (y, 7, 2), with z = {z4,5i}, @; € [l;]. We can write
the conditional probability for z = (x; ... a:n)_ to be the transmitted codeword conditional to
the output (y,y,2) of the channel as follows:

l;
P(zly,9,2) = Zi H Qc(Jalzis © - © i0) H Qv (yilz;) H H Qeft (2a;—ilTi),  (6.6)

5 aeCs ey eV a;=1

with Z; = Z(y, 9, z) fixed by the normalization condition of P(z|y, 7, z). Notice that, for s =~
the original distribution B3) is recovered since [; = 0 for any i € V. On the other hand, if
s =0, then m = 0 and the Tanner graph contains no check nodes: Cy = ). We are left with a
simple irregular repetition code. The action of the interpolation procedure on the factor graph
is depicted in Fig. Bl

The following steps in the proof will depend upon the effective channel transition probability
Qegr( - |+ ) only through its log-likelihood distribution. We therefore define the random variable
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U as
QOH(Z‘O)

4 Heff A2 1Y)
Qe (Z|1)

U log (6.7)

1
2
Where Z is distributed according to Qeg(z|0). Notice that U is symmetric and that, for any
symmetric U we can construct at least one BIOS channel whose log-likelihood is distributed
as U [3]. Hereafter we shall consider Qeg( - |-) to be determined by such a construction. When
necessary, we shall adopt a discrete notation for the output alphabet of the effective channel
Qe (- ]+). However, our derivation is equally valid for a continuous output alphabet.

It is natural to consider the conditional entropy-per-bit of the interpolating model. With
an abuse of notation we denote by E¢ the expectation both with respect to the code ensemble
and with respect to the I;’s. We define

1 N
ha(s) = ;EcHn(KILX,Z)Z (6.8)

1 .
= —ECE,:log, Z(y,9,2 (y]0) —

— > Qu(y|0)log, Qu(y[0) — (v — s) ZQCH 2|0)logs Qe (2[0) . (6.9)
Yy z

Notice that h,,(s) depends implicitly upon the distribution of U. In passing from Eq. (6.8 to
Eq. (E3) we used the symmetry condition for the two channels and assumed the transmitted
message to be the all-zero codeword.

It is easy to compute the conditional entropy () at the extremes of the interpolation
interval. For s = v we recover the original probability distribution (B3]) and the conditional
entropy h,. When s = 0, on the other hand, the factor graph no longer contains function nodes
of degree larger than one and the partition function can be computed explicitly. Therefore we
have

h(7) = ha (6.10)

hn(0) = E,.E; log, [Z Qvly H Qeft (2a|T)

—’yZQCg 2|0) logy Qe (2]0) . (6.11)

where [ is a poissonian variable with parameter . As anticipated, h,(0) can be expressed
uniquely in terms of the distribution of the U variables. Using Eq. (&), we get

l

ha(0) = E,EEq,, log, [Z % [ Pu@)| + vEulogy(1+e7).  (6.12)

The next step is also very natural. Since we are interested in estimating h,,, we write

7 dhy,
hp, = hy(0) + —(s) ds. (6.13)
0 ds
A straightforward calculation yields:
dhy, P 1 Qc(@‘mzl EB---GBJ:,;)
— = — — E;E; 1 k —
s ®) — P'(1) nk 12 55 1082 < Qc(y[0) s
(2 (2%
Qeff(z|xz) >
Z *\ Qen(2[0) (014

ZEV
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where the average (-); is taken with respect to the interpolating probability distribution (G.6l).
The details of this computation are reported in App. Of course the right-hand side of Eq.
(613 is still quite hard to evaluate because the averages (-)s are complicated objects. We shall
therefore approximate them by much simpler averages under which the x;’s are independent
and have log-likelihoods which are distributed as V—variables. More precisely we define

2 k
dhn P, 1 Qc(flzi, ® - B wy,)
o (s) = PI) nf Z EyE, log, Z Qc y[O H w; (Ti;)
k 01...0 Ty Ty, j=1
Qoﬁ ’xz
—— E.E,lo Py(x;) ¢ . 6.15
Z; g {§ LI ) (6.15)

Notice that in fact this expression does not depend upon s. Summing and subtracting it to
Eq. [813), and after a few algebraic manipulations, we obtain

7| dhy, dhy, v
hn=¢v+/ —2(s) — =~ (s )] ds = ¢v+/ R, (s) ds. (6.16)

o |t dt A
The proof is completed by showing that R,(s) > 0 for any s € [0,7]. This calculation is
reported in App. O

7 Proof for multi-Poisson ensembles

The proof for multi-Poisson ensembles follows the same strategy as for Poisson ensembles. The
only difference is that the interpolating system is obviously more complex.

Given the ensemble parameters (n,v, A, P), and defining as in Sec. B3, tnax = [A'(1) /7] —
we introduce an interpolating ensemble for each pair (t.,s), with t, € {0,...,tmax — 1} and
s € [0,v] as follows. The first ¢, rounds (i.e. ¢t = 0,...,t, — 1 in Definition @) in the graph
construction are the same as for the original multi-Poisson graph.

(t+)

Next, during round ¢, m; "’ is drawn from a Poisson distribution with mean nsPj/P’(1)

(instead of nyPy/P’(1)), and m,(f*) right (check) nodes of degree k are added for each k =
2,..., kmax.- The neighbors of each of this check node are i.i.d. random variables in V with
distribution w;(t) = [d;(t)]+/(32;[d;(t:)]+). In order to compensate for the smaller number
of right nodes, an integer [;(t.) is drawn for each ¢ € V from a Poisson distribution with mean
n(y — s)w;(t). As in the previous Section, this means that [;(¢.) repetitions of the bit x; will
be transmitted through an effective channel with transition probability Qeg(-|-). Finally, the
number of free sockets is updated by setting d; (¢, + 1) = d;(t«) — Ai(t«) — li(t«), where A;(t,)
is the number of times the node 7 has been chosen as neighbor of a right node in this round.

During rounds ¢t = ¢, + 1, ..., tmax — 1, no right node is added to the factor graph. On the
other hand, for each i € V a random integer [;(t) is drawn from a Poisson distribution with
mean nyw;(t,). This means that the bit ; will be further retransmitted I; times through the
effective channel. Furthermore the number of free sockets is updated at the end of each round
by setting d;(t + 1) = d;(t) — L;(t).

This completes the definition of the Tanner graph ensemble. We denote by C(, ,) the set

of function nodes and by I; = im;"‘_l l;(t) the total number of times the bit x; is transmitted
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through the effective channel. The overall conditional distribution of the channel input given
the output has the same form () as for the simple Poisson ensemble.

The overall number of function nodes in the (¢, s) ensemble is easily seen to be a Poisson
variable with mean n(vt, +s)/P’(1). In fact we add Poisson(n~y/P’(1)) function nodes during
each of the first ¢, rounds, and Poisson(ns/P’(1)) during the (¢, + 1)-th round. Analogously,
the overall number of repetitions ), l; is a Poisson variable with mean n[y(tmax —t«—1)+v—s].
Using these remarks, we get the expression

haltars) = T~ ECH,(XIY,Y,2) = (7.1)
= ECE, o8 2(3.9:2) — (7t + ) 2 Qelwl0) o, Qelwl0) —  (72)
Yy

= Qu(yl0)1ogy Qu(Y]0) — (Y(tmax—ts) = 8) > _ Qesr(2]0) logs Qegr (2]0) -
Yy z

Let us now look at a few particular cases of the interpolating system. For (¢, = tmax 1,5 =
7) we recover the original multi-Poisson ensemble. Moreover, for any ¢, € {0,. .., tmax 2} the
ensembles (¢, s = ) and (t,+1, s = 0) are identically distributed. Finally, when (¢ ( «=0,5=0)
the set of factor nodes is empty with probability one, and the resulting coding scheme is just
an irregular repetition code (bit x; being repeated [; times) used over the channel Qeg(-|-).
If we denote by h,(t.,s) the expected entropy per bit in the interpolating ensemble, we get

Po(tmax—1,7) = hn (7.3)
1

hn(O, 0) = E%ZEI log2 Z H Za|517 — Ytmax Z Qef‘f(zm) 10g2 Qef‘f(zm) .

(7.4)

Here the expectations on y, {24} are taken with respect to the distributions Qv (y|0), Qes(2]0),
while [ is distributed according to the expected degree profile A(n’ﬁ/)
that Zl V= Nytmax. Finally, as in the previous Section (cf. Eq. (EI2)) the conditional
entropy h (0 0) depends upon the effective channel transition probability only through the
distribution of the log-likelihood U.

The next step consist in writing

Moreover, we used the fact

(b y) = Bt )+/J%(t*,s) ds. (7.5)

for t, € {0,...,tmax — 1}. Using the fact that h,(t., ) = hn(t« + 1,0), this implies

t -1
max dh
hn = hn(0,0) + / (ty,s) ds. (7.6)

t«=0

The derivative with respect to the interpolation parameter is similar the simple Poisson case:

dhy, Qc(flziy @ - ©xyy)
t*7 = E E{Zl Zk} Wy t* log < 1 k _
ds ( ) ZIE;k ( ) k( ) 2 QC(?J‘O) (ter5)
- ZE E{D w(t,) log, <M> + p(nits,s), (7.7)
i€V Qeﬁ(zm) tx,s)
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where (- ), 5) denotes expectation with respect to the conditional distribution (E6) appropri-

ate for the (¢, s) ensemble and the expectations Eli-ir} are defined in App. [El Moreover, the
term ¢(n;ty, s) has the following properties.

Al Jo(n;ty, s)| < Cy for some constant C; which depends uniquely upon the ensemble pa-
rameters A, P and 7.

B. o(n;ty,s) < Ca(ts, s)/(logn)3/n for some function Cy(t, s) which does not depend upon
n.

We refer to App. [Hfor the details of this computation. Notice that the equivalent expression for
Poisson codes, cf. Eq. (6I4), is recovered by setting w;(t.) = 1/n and dropping the correction
o(). )

Finally, we introduce an ‘approximation’ dg—;(t*,s) to Eq. ([C1) analogous to Eq. (GIH).
More precisely, we replace the expectations <'>(t*’s) with expectations over product measures
of the form []; P,,(x;), the ensemble averages Ela--ik} with averages over i.i.d. Vi’s, and we
drop the remainder ¢(-). Using Eq. ([CH) and after rearranging various terms (the relation
A (1) = vt is useful here) we end up with

tmax—1 ¥ 7

2y | a it
tmax—1 0

= (A0 P e Y / Ru(tss) ds + on(1), (7.8)
t*=0 0

where the second inequality follows by applying the dominated convergence theorem to ¢(-).
The proof is finished by showing that R, (¢, s) is non-negative for any ¢, € {0,...,tmax — 1}
and s € [0,7]. this calculation is very similar to the simple Poisson case, and is discussed in
App.[EH O

8 Proof for standard ensembles

We proved points 1 and 2 of Theorem B directly. We will now show that 2 implies the lower
bound for standard ensembles (point 3) which is the practically more relevant case.

The idea is that the standard ensemble (n, A, P) is indeed ‘very close’ to the multi-Poisson
ensemble (n,7, A, P) for small v. In order to implement this idea, we state a preliminary result
here.

Lemma 5 Let C7 and Cy be two codes with the same blocklength n from any of the ensembles
defined in Section [A (the ensemble does not need to be the same). Assume they are used to
communicate through the same noisy channel and let H1(X|Y7), Ho(X|Y2) be the corresponding
conditional entropies. If Ci can be obtained from Cy with n, rewirings, then |Hy(X|Y1) —
H2(X|Y2)| S MNy.

Proof: Recall that a rewiring was defined as either the removal or the addition of a function
node to the Tanner graph. We already proved (cf. Egs. (E0) to (8) and relative discussion)
that the introduction of a single function node induces a change in the conditional entropy
which is smaller than 1 bit. o
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Let now 0 < v < 1, and consider a pair of Tanner graphs (Gs, Gyp) distributed according to
the coupling in Lemmalll In particular, the marginal distribution of G 4 (n, A, P) and Gy,p 4
(n,A, P,v). With an abuse of notation, denote by h,(Gs) and h,(Gnp) the corresponding

conditional entropy per bit and by h,, hg)

follows that

their ensemble averages. From Lemmas [l and B it

Tim_ P|hn(Gup) — ha(Gs)] > A7) =0, (8.1)
where the constants A and b are as in Lemma [[l Therefore
B — h| = B[ (Gunp) = hn(Go)]| < Bl (Gunp) — hn(Gs)] < Ar° 4 0n (1), (82)

where the last inequality follows from Eq. ([&1l) together with the remark that h,(G) <1 for
any code. By taking the large blocklength limit, we get

lim inf Ay, >lim inf hQ) — Ay® > ¢y (A, P) — An°, (8.3)

n—oo n—oo

where the last inequality follows from our lower bound on multi-Poisson ensembles, Eq. (G4).
Next we notice that ¢y (A, P) is a continuous function of A (with respect to the total variation
distance, see App. [Al for a definition), once the degree distribution P, and the V—variables
distribution have been fixed. Moreover by Corollary [ lim, .o A = A in total variation

distance sense. Therefore we can obtain the thesis (G.H]) by taking the v — 0 limit in the last
expression. O

9 Examples and applications

The optimization problem in Eq. (B3] is, in general, rather difficult. Nevertheless, one can
easily obtain sub-optimal bounds on the entropy h,, by cleverly chosing the distribution of
the V—variables to be used in Eq. ([62). Moreover, bounds can be optimized through density
evolution. Although a complete discussion of the optimization problem is beyond the scope of
this paper, a rather simple approach, cf. Sec. and Tab. Bl already gives very good results
(indeed we believe them to be optimal).

Our main focus will be here on standard (n, A, P) ensembles. As in our original definition,
cf. Eq. (1), we shall generically consider the case in which Ag = A; = 0 (no degree 0 or degree
1 variable nodes). However, most of the arguments can be adapted to Poisson ensembles too.
On the other hand, we shall always assume Py = P; = 0 (no degree 0 or degree 1 check nodes).

Throughout this Section, we shall use the notation A = liminf, ., h, for the asymptotic
conditional entropy per symbol.

9.1 Shannon threshold

Assume V = 0 with probability 1, and therefore, from Eq. (EII), U = 0 with probability 1.
Plugging these distributions into Eq. ([f2) we get

_ N Qv(yl)
W=y e [Z Qu(s[0)

/

N L [ Qi)
P e [Z @c<g|o>] - e

21



Using Theorem B, and after a few manipulations, we get

1- @, for the LDGM(n, A, P) ensemble, (9.2)

Tdes
h > 7rges — C(Q), for the LDPC(n, A, P) ensemble. (9.3)

h

v

Where we denoted C(Q) the capacity of the BIOS channel with transition probability Q(y|z):

=1- Z Q(y|0) logy [Z G ] (9.4)

yeA

In other words reliable communication (which requires h,, — 0 as n — oo) can be achieved only
if the design rate is smaller than channel capacity. For the LDGM ensemble this statement is
equivalent to the converse of channel coding theorem, because rqes is concentrated around the
actual rate. This is the case also for standard LDPC ensembles with no degree 0 or degree 1
variable nodes [36].

For general LDPC ensembles, Eq. ([@3) is slightly weaker than the channel coding theorem
because the actual rate can be larger than the design rate. However, as shown in the next
Sections, the bound can be easily improved changing the distribution of V.

Of course this results could have been derived from information-theoretic arguments. How-
ever it is nice to see that it is indeed contained in Theorem B2l

9.2 Non-negativity of the entropy

Let us consider the opposite limit: V = 400 with probability 1, and distinguish two cases:
LDPC(n, A, P) ensemble. As a consequence of Eq. (61I), also U = 400 with probability 1
Using Theorem B and Eq. (62), it is easy to obtain

h> Ay Ho(X|Y), (9.5)

where Hg(X|Y) = 1 — C(Q) is the relative entropy for a single bit transmitted across the
channel Q(y|x). The interpretation of Eq. (@H) is straightforward. Typically, a fraction Ag
of the variable nodes have degree zero. The relative entropy (BIl) is lower-bounded by the
entropy of these variables.

LDGM(n, A, P) ensemble. Equation (G1I) implies that U is distributed as the log-likelihoods
Jo = (1/2)1og Q(y]0)/Q(y|1), see Eq. BH). It is easy then to evaluate the bound:

h > EE, log, [ZH = QZZ|$ ] (9.6)

r =1

The meaning of this inequality is, once again, quite clear:

Hoy(X[Y) > Ho(Xi| XD, Y) > Ho(Xi[{z; =0 V) #£i}Y), (9.7)
i=1 i=1
where we introduced X = = {X,}j%i- The above inequalities are consequences of the entropy

chain rule and of the fact that conditioning reduces entropy. Taking the expectation with
respect to the code ensemble and letting n — oo yields (6.
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Figure 4: Left frame: trial entropy ¢y on the erasure channel BEC(¢) as a function of the parameter
z characterizing the V-distribution, cf. Eq. (@I0). Here we consider the LDPC(n, A, P) ensemble with
A(x) = 23 and P(z) = 2% (i.e. a regular (3,6) Gallager code). A square (O) marks the high bit-error-rate
local maximum zp,q(€). Right frame: graphical representation of the equation z = f(z) yielding the local
extrema of the trial entropy, cf. Eq. ([@I]).

9.3 Binary Erasure Channel

Let us define the binary erasure channel BEC(e). We have A = {0, 1, *} and Q(0]0) = Q(1]1) =

1 —¢, Q(*]0) = Q(x|1) = e. Since the log-likelihoods ([BH) take values in {0, +o00} it is natural

to assume the same property to hold for the variables U and V. We denote by z (2) the

probability for V' (U) to be 0. As in the previous example we distinguish two cases
LDPC(n, A, P) ensemble. Equation (&1 yields

Z2=1-p(1—-2). (9.8)

It is easy to show that Eq. (63) implies the bound

h > sup ¢(z,1—p(1—2)), (9.9)
z€[0,1]
where
(2, 2) = N(1)2(1 — 2) — Jfg 1= P(1—2)] + €A(Z). (9.10)

Notice that ¢(z,1 — p(1 — z)) = ¢(z) is a smooth function of z € [0,1]. Therefore the sup in
Eq. ([@3) is achieved either in z = 0,1 or for a z € (0,1) such that ¢(z) stationary. It is easy
to realize that the stationarity condition is equivalent to the equations

z=¢€M(2), 2=1-p(1—-2). (9.11)

The reader will recognize the fixed point conditions for BP decoding [29].

Let us consider a specific example: the (3,6) regular Gallager code. We have A(x) = 23 and
P(z) = 25 P(z) is convex for any x € R and therefore Theorem Bl applies. The design rate is
Tdes = 1/2. In Fig. @l we show the function 1 (z) for several values of the erasure probability.
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Figure 5: Left frame: trial entropy evaluated at its local maxima zgo0q(€) and zpaq(€), as a function of the
erasure probability € (notice that 1(zg00d(€)) = 0 identically). Right frame: bit error rate under maximum
likelihood decoding. The dashed line is the lower bound obtained from Fano inequality. The continuous
curve is the conjectured exact result.

In the right frame we present the function f(z) = eA(1 — p(1 — z)) for some of these values.
At small €, the conditions (ITI) have a unique solution at zgyeq(€) = 0, and 1 (z) has its
unique local maximum there. The corresponding lower bound on the conditional entropy is
Y (2g00d(€)) = 0. For € > epp ~ 0.4294398 a secondary maximum z,,4(€) appears. Density
evolution converges to zpaq(€) and therefore this fixed point control the bit error rate under
BP decoding. For egp < € < emap ~ 0.4881508, ) (2pad) < ¥(2good) and therefore this local
maximum is irrelevant for MAP decoding. Above exap, ¥(2bad) > ¥(2go0d) and therefore
Zbad (€) controls the properties of MAP decoding too.

In Fig. B left frame, we reproduce the function ¥ (zpaq(€)) as a function of e. Fano inequality,
cf. LemmaHl can be used for obtaining lower bounds on block and bit error rates in terms of
the quantity max{1(2go0d(€)), ¥(2bada(€))}. The result for our running example is presented in
Fig. B right frame. It is evident that the result is not tight because of the sub-optimality of
Fano inequality. For instance, in the e — 1 limit, ¢ (2paq(€)) yields the lower bound h,, > 1/2.
This result is easily understood: since no bit has been received, all the 2"/2 codewords are
equiprobable. On the other hand Fano inequality yields a poor P,(e = 1) > 0.11003.

A better (albeit non-rigorous) estimate is provided by the following recipe. Notice that BP
decoding yields (in the large blocklength limit)

BP, » | €A(2good(€)) for e <emp,
Pb (6) a { EA(Zbad(E)) for ¢ > €EBP - (9'12)

Our prescription consists in taking

MAP, \ _ | €A(Zgood(€)) for e < enap,
B = { eA(zpaa(€))  for € > enap . (9.13)

In other words, BP is asymptotically optimal except in the interval [egp, emap]. Generalizations
and heuristic justification of this recipe will be provided in the next Sections. The resulting
curve for our running example is reported in Fig. B, right frame.
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kv €BP emap: New UB  Gallager UB  Gallager LB
2 4 1/3 1/3 * *

3 6 0.4294398 0.4881508 0.4999118 0.4833615
4 8 0.3834465 0.4977409 0.4999118 0.4967571
5 10 0.3415500 0.4994859 0.4999997 0.4992593
6 12 0.3074623 0.4998757 0.5000000 0.4998207

Table 1: Maximum a posteriori probability and belief propagation thresholds for several ensembles of the
form LDPC(n,~,z*) with v = (1 — 74es)k and rqes = 1/4. For the MAP threshold we compare several
different thresholds: ‘New UB’ is the upper bound derived in this paper; ‘Gallager UB’ is Gallager lower
bound as generalized in Ref. [9]; ‘Gallager LB’ is the upper bound derived using Gallager’s technique, as

applied in Ref. [11].

The analysis of this simple example uncovers the existence of three distinct regimes: (i) A
low noise regime, € < egp: both BP and MAP decoding are effective in this case: the bit error
rate vanishes in the large blocklength limit; (i7) An intermediate noise regime, egp < € < €\AP-
Only MAP decoding can produce vanishing error rates here. (i¢i7) An high noise regime,
emMap < €. The bit error rate under MAP decoding is bounded from below. In Table [
we report the values of egp and eyap for a few ensembles LDPC(n, A, P) with A(z) = z!,
P(z) = 2* and rges = 1/2. As we shall discuss below, this pattern is quite general.

LDGM(n, A, P) ensemble. It is interesting to look at the differences between LDGM and

LDPC ensembles within the BEC context. The requirement (E1I) implies

z=1-(1—-¢€p(l—=2). (9.14)
Applying Theorem [ we get the bound
h > sup ¢(z,1—(1—¢€)p(1—2)), (9.15)
z€[0,1]
where, with a slight abuse of notation, we defined
é(z,2) =N (1)2(1 - 2) — w[l —P(1—2)]+A(2). (9.16)

PI(1)

As in the LDPC case we look at the stationarity condition of the function ¢(z) = ¢(z,1—(1—
€)p(1 — z)). Elementary calculus yields the couple of equations

z=A2), Z=1—(1—-¢)p(l—-2), (9.17)
that, once again, coincide with the fixed point conditions for BP decoding. These equations
have a noise-independent solution zp,q(€) = 1 (implying 2 = 1 because of Eq. (&I4)). Theorem
yields h > 1 — C(€)/rqes, with C(e) = 1 — € the channel capacity: we recover in this context
the simple lower bound of Sec.

A better understanding of the peculiarities LDGM ensembles is obtained by looking at a
particular example. Consider, for instance, A(z) = 2% and P(z) = x* which corresponds to
a design rate rges = 1/2. Theorem [ applies because P(z) is convex on R. In Fig. @ left
frame, we plot the function ¢(z) for several values of the erasure probability e. It is clear
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Figure 6: Left frame: trial entropy for the LDGM(n, A, P) ensemble on the BEC(e) channel. Here
A(z) = 2% and P(z) = 2 (the design rate is rqes = 1/2). A square (O) marks the small-P, stationary
point zgeod (€). Right frame: graphical representation of the stationarity condition z = f(z).

that zpaq = 1 is always a local maximum. A second local maximum 2g00q(€) appears when the
erasure probability becomes smaller than egp =~ 0.6165534. The extremum at zg,0q(€) becomes
a global maximum for € < epap, With epap ~ 0.5022591. In Fig. Bl right frame, we reproduce
the function f(z) = A(1 — (1 — €)p(1 — z)) in terms of which the stationarity condition (@17
reads z = f(z). We also mark the solutions zgooq(€) (corresponding to a local maximum of
¥(2)) and zipgt(€) (corresponding to a local minimum of ¢ (z)).

The interpretation of these results is straightforward. Maximum likelihood decoding is
controlled by the stationary point zp,q = 1 for € > eyap. In this regime the lower bound
(@T4) yields the same conditional entropy as for the random code ensemble. We expect the
bit error rate in this regime to be B, () = 1/2. At low noise (e < emap) the fixed point zgp04(€)
controls the MAP performances. Analogously to what argued in the previous Subsection, we
expect this to imply to a bit error rate B, () = A(1 — (1 — €)p(1 — 2g00d(€)))-

As for BP decoding, it has a unique fixed point zp,q = 1 for € > egp. This corresponds to
a high bit error rate P, (e) = 1/2. A second, locally stable, fixed point appears at egp. If BP is
initialized using only erased messages (as is usually done), all the messages remain erased (BP
does not know where to start from). The same remains true is a small number of non-erased
(correct) messages is introduced: density evolution is still controlled by the z},,q fixed point. If
however the initial conditions contains a large enough fraction (namely, larger than 1 — zjpst)
of correct messages, the small-F, fixed point zg,0q is eventually reached.

Let us finally notice that the present results can be shown to be consistent with the ones
of Refs. [37,38].

9.4 General channel: a simple minded bound

The previous Section suggests a simple bound for the LDPC(n, A, P) ensemble on general
BIOS channel. Take, as for the BEC case, V' = 0 with probability z and = co with probability
1 — 2z, while U = 0 with probability Z and = oo with probability 1 — 2. These conditions are
consistent with the admissibility requirement (G.1I) if

2=1-p(1—2). (9.18)
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Plugging into Eq. (B2) we get a bound of the same form as for the BEC, cf. Eq. (@3) with

A1)
P

6(2,2) = N(1)=(1 - 2) 1= P(1—2)] + [1 - C(Q)AE). (9.19)
Passing from the BEC to a general BIOS, amounts, under this simple ansatz, to substituting
1—-¢(Q) to e.

9.5 General channel: optimizing the bound

We saw in Sec. @3 that, for the BEC, stationary points of the trial entropy function correspond
to fixed points of the density-evolution equations. This fact is indeed quite general and holds
for a general BIOS channel.

In order to discuss this point, it is useful to have a concrete representation for the random
variables U, V entering in the definition of the trial entropy ([E2). A first possibility is to
identify them with the distributions U(z) = P[U < z] and V(z) = P[V < z] as explained in [30].
The distributions are right continuous, non decreasing functions such that lim,_, -, A(z) = 0,
and lim;_ 4o A(z) < 1. Viceversa, to any such function we may associate a well defined
random variable. It is convenient to introduce the densities u(x) and v(z) which are formal
Radon-Nikodyn derivatives of U(x) and V(z). We also introduce the log-likelihood distributions
associated to channel output, c¢f Eq. B3): J(z) = P[J < z] and H(z) = P[h < z]. The
corresponding densities will be denoted by j(z) and h(x).

The admissibility condition ([EJ]) translate of course into a condition on the distributions
U(z) and V(x). Following once again [30], we express this condition through ‘G-distributions’.
More precisely for any number z € (—oo,+00], we define y(z) = (y1(x),y2(x)) € {£1} x
[0, +00) by taking v1(x) = signz, and v2(x) = —log |tanh x|. We define I" to be the change-
of-measure operator associated to the mapping ~. If X is a random variable with distribution
A and (formal) density a, I'(a) is defined to be the density associated to v(X). Despite the
notation I' is defined on distributions, and only formally on densities. The action of I' is
described in detail in [30]. Among the other properties, it has a well defined inverse I'"*. We
can now write the condition implied by (1) in a compact form:

kmax

u=> TP 2 TWEED] = p(v). (9.20)
k=2

A second concrete representation is obtained by inverting the distributions U(x), V(z). Of
course this is not possible unless U(z), V(z) are continuous and increasing. However, we can
always define the ‘inverse distributions’:

U:(0,1) — (—o0,+0o0] (9.21)
¢ — U(¢) = min{z such that U(z) > ¢}, (9.22)

with an analogous definition for V(¢). We introduce analogously the inverse distributions
J(€) and H(¢) for the log-likelihoods J, and h;, cf. Eq. @). Notice that, given a real
valued random variable X, its inverse distribution A(¢) is non-decreasing and left-continuous.
We shall denote by A the space of inverse distributions. Moreover, it has a simple practical
meaning: if one is able to sample ¢ uniformly in (0, 1), then A(¢) is distributed like X. From
this observation it follows that any inverse distribution A(¢) uniquely determines its associated
random variable.
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We can now re-express the trial entropy (62) as a functional over A, ¢ = ¢(U,V) using
the above correspondence®. After some straightforward computations we get

¢ = —A/(l)/logz[l + tanh U(&1) tanh V(&2)] d&o dér + (9.23)
!
+ZAl e‘”’/logQ [Z (14 otanh H(&)) H 1+ o tanh U(¢; ] Hdﬁl
l o==1 i=1

y
+P,(1)Zk:Pk/1og2

with all the integrals on the &’s being on the interval (0,1). This representation allows to
easily derive the following result.

1+ tanh J(&) H tanh V(&)

!
N
gdﬁi —C(Qv) — WC(QC)’

Lemma 6 Assume the supremum of the trial free energy ¢y over the space of admissible
random variables is achieved for some couple (U,V). Then

!
VEnrt > Ui, (9.24)
i=1

I being a Poisson random variable of parameter ~v and h distributed according to the definition
E3).

_ Proof: Look at ¢ as a functional (U,V) — ¢(U,V) of the inverse distributions U and
V. The idea is to differentiate this functional at its (assumed) maximum. Let D : (0,1) —
(—00, +o0] be left continuous and non decreasing. It is an easy calculus exercise to show that

Z—E¢(U+55,V) — A / [1 — tanh U()] D(E) Fe (U, V), (9.25)
e=0
%(JS(U,V +¢eD) = —AN(1) /[1 — tanh? V(£)] D(¢) gf(U, V), (9.26)
e=0
where
= tanh V(&) B
FeUV) = /1+tanhU(§)tanhV( )d51 (9.27)

I l

- tanh[H(&) + Y0, U(&)] e
Z /1+tanhU (&) tanh[H (Eo)—l-Z,-:lU(fz‘)] g “

dér — (9.28)

N tanh U(&;)
Ge(U,V) = /1+tanhU(§1)tanhv(£)

k-1 Gre
_ Zpk/ tanh J(&o) [];Z; tanh V(&)

1 + tanh J(&) [TF=] tanh V(&;) tanh V(€) gd&'

k-1

Notice that G¢(U,V) vanishes because of the admissibility condition (E]). It is then straight-
forward to show that F¢(U,V) must vanish for any & such that U(§) < oo, in order for (U, V)
to be a maximum. This in turns implies the thesis. O

5Since throughout this Section the degree sequences are kept fixed, we shall drop the dependence of ¢ on (A, P),
and (with an abuse of notation) replace it with its dependence upon U and V.
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rees New UB  Gallager UB Gallager LB Shannon limit
1/4 0.2101(1)  0.2109164 0.2050273 0.2145018
2/5 0.1384(1)  0.1397479 0.1298318 0.1461024
1/2 0.1010(2)  0.1024544 0.0914755 0.1100279
1/3 0.1726(1)  0.1726268 0.1709876 0.1739524

S O O |
=W W W e~

Table 2: Thresholds for regular LDPC codes over the binary symmetric channel BSC(p) (k and [ are,
respectively, the check and variable node degrees, and r4es the design rate). The new upper bound proved
in this paper is evaluated numerically following the approach described in the text. The quoted error
comes from Monte Carlo sampling of the random variables U and V. ‘Gallager UB’ and ‘Gallager LB’
refer respectively to the upper and lower bounds obtained by Gallager [1].

9.6 Numerical estimates and comparison with previous bounds

The discussion in the previous Section suggests a natural possibility for evaluating numerically
the lower bound in Theoreml Run density evolution [3] for 7" iterations and then evaluate the
trial entropy (62) taking U and V' to be random variables with the density of (respectively)
right-to-left or left-to-right messages. Notice that, in order for Eq. (G1I) to be satisfied, the
right-to-left density must be updated one last time before evaluating the trial entropy.

This still leaves a lot of freedom. The first question is: how large T (the number of
iterations) should be? While it is difficult to provide a quantitative answer, in order to approach
the supremum in Eqs. (63) to (63, one should get a good approximation of fixed point
densities. Generically, this happens only as T is let to infinity.

The next question is: how the densities should be initialized? This question has a very
simple answer in usual applications of density evolution: just initialize to the message density
seen at the zeroth step of message passing. This generally means U, V identically equal to 0.
Hereafter, we shall refer to this as the ‘O-initialization’ This answer is no longer complete in
the present context. In fact any initial condition, such that U and V are symmetric random
variables, corresponds eventually to a valid lower bound of the form in Eqgs. (€3] to (EX3]). At
least one other simple initial condition consist in taking U = V = +o0 identically. In the case
of standard ensembles with minimum left degree at least 2 this is in fact a fixed point and the
corresponding trial entropy vanishes. We shall refer to this as the ‘co-initialization’.

Despite this freedom, Eqs. (E3)) to ({E0) always provide a lower bound, no matter how we
implement the general strategy. In Tab. Pl we report the numerically-evaluated upper bound
for a few regular ensembles over the binary symmetric channel. We implemented a sampled
(Monte Carlo) version of density evolution (with 10% to 10° sampling points) and adopted the
O-initialization. The trial entropy (62)) was averaged over 10? iterations after 10* equilibration
iterations. The threshold was estimated as the smallest noise parameter such that the trial
entropy is positive.

In the same Table (and analogously in Table [l for the erasure channel), we compare our
upper bounds with previous upper and lower bounds. In his thesis [1], Gallager used an
estimate of the distance spectrum, together with a clever modification of the union bound in
order to obtain lower bounds. This technique was further generalized and refined over the
years, see for instance [8,10,11] but it’s fair to say that there were no major modification over
the initial result for the simplest regular ensembles and channel models. We should stress that
a different technique, based on typical pairs decoding was proposed in [7]. Our evaluation of
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Gallager bound wasn’t numerically distinguishable from the results of [7].

As for upper bounds, Gallager approach is based on an information theoretic argument.
Also in this case, despite some improvements [9], the main idea remained essentially unchanged.
Moreover, the quantitative estimates by Gallager remained essentially the state-of-the art for
the simplest regular ensembles and channel models considered here.

Despite the various estimates in Tables [lland ] are numerically close (which is partially due
to the proximity of capacity), the bound of Theorem [ is clearly superior to previous upper
bounds.

9.7 Relation with the Bethe free energy

Until now we studied the average properties of the code ensembles defined in Sec. Bl Although
the concentration result of Sec. [ justify this approach, it may be interesting to take a step
backward and consider the decoding problem for a single realization of the code and of the
channel. It is convenient to introduce the ‘Bethe free-energy’ [39] Fg(b) associated to the
probability distribution ([B3]). We have

Fp(b) = Us(b) — Hi(b), (9.29)
where

Us(b) = =D balz,)logs Qelialz,) =D Y bilwi)logy Quluilzs),  (9.30)

acC z, IS 7 7
Hp(b) = —ZZb o) logs by +Z (|oi] — 1 Zb (i) logy bi(x;),  (9.31)
acC z, i€y

and we used the shorthands z, = (we,...,2z;¢) and Qc(Jalz,) = Qc(Jalris © -+ & @40). The
parameters {b,(z,) : a € C} and {b;(z;) : i € V} are probability distributions subject to the
marginalization conditions

> ba(z,) = bi(x) Vi € da, (9.32)
> bi(zi) = 1 Vi. (9.33)

For LDGM codes Fg(b) is always finite. For LDPC codes, it takes values in (—oo, +oo] and
is finite if by(z,) vanishes whenever zje & - - & z;2 = 0 (as always we use the convention
0log0 = 0). Moreover, as explained in [39], its stationary points are fixed points of BP
decoding.

Following [39], we consider the stationary points of the Bethe free energy ((Z9) under
the constraints (I32), ([@33)). This can be done by introducing a set of Lagrange multipliers
{ia(x;)} for Eq. ([@32), the constraint ([@33)) being easily satisfied by normalizing the beliefs.
One then consider the Lagrange function

Lp(b,\) =YD Nam) | DD balag) = bil) | - (9.34)

(ia)e€ Ti x;: je€da\i
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We refer to [39] for further details of this computation. Stationary points are eventually shown
to have the form

balz,) = —Qc z,) [ P (9.35)
j€da

bi(zi) = —Qv Wilz:) [ Puassi (@) (9.36)
a€di

with P.(x) being defined as in Eq. (d). The z,’s and z;’s are fixed by the normalization
conditions ) be(z) = 1 and > bi(x;). The messages {vi—,} are related to the Lagrange
multipliers {\i,(z;)} by the relation

Pviaa (xZ) X exp{)‘ia(xi)} ) (937)

while the {u,—;} must satisfy the equation

Visa = h;+ Z Up—si , (938)
bedi\a

for any i € V. The marginalization constraint ((.32)) is satisfied if the equation

Ug—; = arctanh{tanh J, H tanhvj_q} (9.39)
j€da\i

holds for any a € C.

If we substitute the beliefs (@30]), [@36) into Eq. (@29) we can express the Bethe free
energy as a function of the messages u = {uq,—;} and v = {v;4}. Using Eqs. (@38), [@39),
we get the following expression (with a slight abuse of notation we do not change the symbol
denoting the free energy)

Fown) = 3 b | R GRS ] S log, [z@v i) T Pan ()| -

(ia)e€ i€V ac0i

—ZlogQ ZQC Jalz,) HPvHa x)| - (9.40)

acC 1€0a
A simple comparison of this expression with Eq. [f2) yields the following interesting result.
Proposition 1 Let F(u,v) be the Bethe free energy for any of the code ensembles LDGM(n, vy, P),
LDPC(n,v, P), LDGM(n, A, P), LDPC(n, A, P), with the beliefs parameterized as in Egs.
(@23) and (Z34), and assume that the messages are i.i.d. random variables u;_q LU and
Vagsi 4 V. Then

.1

lim —F Fg(u,v) = —¢v (A, P)+ £ > _ Q(y|0)log, Q(yl0), (9.41)

n—oo N
Y

where the expectation E(-) is taken both with respect to the messages distribution and the code
ensemble, and k = v/ P'(1) (for LDGM ensembles) or k = 1 (for LDPC ensembles). For multi-
Poisson ensembles LDGM(n,~, A, P) and LDPC(n,~, A, P), the same formula holds with A
being replaced by A on the right hand side.
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Proof: In order to compute the expectation on the left hand side of Eq. (@ZIl), let us
proceed in two steps. In a first step, we shall take the expectation with respect to the messages
{Ui—a,Va—i}, which in the Theorem statement are assumed to be i.i.d.’s, as well as with respect
to the channel output {y;, 7, }. Let us denote by V; (Ci) the set of variable nodes (check nodes)
of degree [ (degree k). By linearity of expectation, we get

l
EuoFa(w,v) = [€] Buylogy | Pu(@)Py(x)| = > V| EyE, log, [Z Qu(yla) [ Pua(@)| -
T l x a=1
k
— > [Ck| EyEy log, [Z Qe(flzy @ -+ @ ap) [ [ Pu(xs) (9.42)
k x =1

Now notice that the number of edges is equal to the number of variable nodes times the
average left degree: || = nA’(1). The number of variable nodes of degree [ is, by definition
Vi| = nA;. Furthermore the total number of check nodes is nA’(1)/P'(1), and therefore
|Ck| = (nA’(1)/P'(1))Py. Finally both for Poisson and standard ensembles, the expected
degree profile converges to the design profile, see Sec. In other words
lim EgA;=A;, lim Eg Py =P, lim EgA'(1) = A'(1). (9.43)
n—oo n—o0 n—oo
Therefore ([@IZ]) is proved by taking the expectation with respect to the graph ensemble in
Eq. ([@22) and then taking the large blocklength limitS.
Finally, for the multi-Poisson ensemble we gave just to notice that the expected left degree
profile converges to A(Y) rather than to A, see App. O

This result provides an appealing interpretation for the trial entropy entering in Theorem
Bl Apart from a simple rescaling, it is asymptotically equal to the expected value of the Bethe
free energy when the messages {u;—q} and {v,;} are i.i.d. random variables. Viceversa,
Theorem [l can be interpreted as yielding a connection between the Bethe free energy, and the
conditional entropy of the transmitted message.

10 Generalizations and conclusion

We expect that the results derived in this paper can be extended in several directions.

A first direction consists in proving the analogue of Theorem [ for more general code
ensembles. It is important to notice that the technique used in this paper (as well as in [26])
makes a crucial use of the convexity of P(x). Although the non-rigorous calculations of [17-20]
suggest that the the result will have the same form for a non-convex P(z), the proof is probably
more difficult in this case.

A second direction consists in proving that the bound of Theorem B is indeed tight. We
precise this claim as follows.

Conjecture 1 Under the hypotheses of Theorem [A we have

lim h, = sup ¢y, (10.1)
n—o0 \%

6Notice that in the case of Poisson ensembles A; as no bounded support (I can be arbitrarily large). However the
thesis follows from convergence of Eg A; in total variation distance.
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where the sup has to be taken over the space of admissible random wvariables. The degree
sequences to be used as argument of ¢y are the same as in Theorem [4

Once again, this claim is supported by [17-20].

Finally, in this paper we limited ourselves to estimating the conditional entropy per channel
use. As discussed in Section Bl this implies only sub-optimal bounds on the bit error rate. It
would be therefore important to estimate directly this quantity without passing through Fano
inequality. The results of [17-20] suggest the following recipe for computing the bit error rate
under symbol MAP decoding. Determine the message densities maximizing the trial entropy,
cf. Eq. (E3). Compute the density of a posteriori likelihoods as in density evolution (this
implies a convolution of all the densities incoming in a variable node). The bit error rate is
simply given by the weight of negative log-likelihoods under this distribution.

Finally, one may hope that the strong connection between message passing techniques (den-
sity evolution) and MAP decoding (conditional entropy) highlighted in the present approach
may lead to a better understanding of the former.
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A Coupling graph ensembles

In this Appendix we prove Lemma [[l Instead of exhibiting directly a coupling between a

standard graph G 4 (n, A, P) and a multi-Poisson graph G,p 4 (n, A, P,~), we shall proceed
in two step. More precisely, we shall exhibit two couplings (Gs, G«) and (Gs, Gmp) where the
distribution of G, < (n, A, P,7). is defined below (as in Sec. Z3, we let tyax = [A'(1)/7] — 1
be the number of rounds).

In order to generate a random element in (n, A, P,7),, proceed as for the multi-Poisson
ensemble (see Definition ) but the following modification. During stage t, for each check node
a = (a,k,t) € C, and for each r = 1,...,k, i% is chosen randomly in V with distribution
wi(t,a,r) = (di(t) — Ai(t,a,7))/[32;(di(t) — Ai(t,a,7))], where A;(t,a,r) is the number of
times ¢ has been already chosen during stage ¢. In other words, unlike in the multi-Poisson
ensemble, we keep track faithfully of the number of free sockets.

Let us now describe how the two-step coupling works.

From G,p to G,: Consider round ¢. Let dF(¢) and d}(¢) be the number of free sock-
ets respectively for Gy,p and G.. Choose the variable nodes (if)y,p and (i), in the
two graphs by coupling optimally (see discussion below) the distributions wi"F (t) =
[ ()] /(25T (D)4 and wi(tia,r) = (df () — Ai(tsa,r))/[30;(d; (1) — Ai(t;a,7))).
If (i%). # (i%)mp, we say that a ‘discrepancy’ has occurred. We claim that, if v < 1,
then the total number of discrepancies is smaller than Any® w.h.p. (C and b being n—
and y—independent constants). The proof of this claim is provided below. Of course the
number of rewirings necessary to pass from G,p to G, is bounded by twice the number

of discrepancies.
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From G, to Gs: Notice that G, is generated in the same way as G (see discussion at
the end of Sec. Z1]) but for the fact that it contains a random number of check nodes.
In fact, the total number of check nodes of degree k (call it my) in a (n, A, P,7). graph
is a Poisson random variable with mean My = tmaxnyFPr/P’(1). Denoting by m](:) =
nA'(1) Py, /P’(1) the number of check nodes in a standard (n, A, P) graph, it is easy to see

that m,(:) —2Bny <my < m,(:) — Bny for some positive (n and «y independent) constant B.

By elementary properties of Poisson random variables, one obtains m( s) —3Bny <my <

(S — (1/2)Bnry for each k € {2, ..., kmax} with probability greater than 1 — 2e=C7*" for
some constant C.
We therefore obtain the desired coupling as follows: first generate G,. If myp > mgf)
for any k, then generate an independent graph Gs. In the opposite case, generate Gg by
adding m,(:) —my, check nodes for each k and connect them to variable nodes as described
at the end of Sec. ZJl Because of the above argument, the number of rewirings (check

nodes added) is smaller than A’nvy with high probability.

We are now left with the task of proving the claim in the first step. Before accomplishing
this task, it is worth recalling an elementary fact which is useful in this proof [40]. Given two

distributions {wgl)} and {w§2)} over ¢ € [n], their total variation distance is defined as
1 n
1) _ @ = = o _ @
o w1 = 53 Jul” ). (A1)

Furthermore, if 4; and 4y are distributed according to w(® and w®), there exist coupling
between them (i.e. a joint distribution which has w(l) w? as marginals) such that |jw() —

@) = P(i; # i2). Such coupling is ‘optimal’ in the sense that, for any coupling we have
) — o] < Bl # i)

The proof of the claim is obtained by recursively estimating the number of discrepancies
between Gp,p and G,. Suppose that we have terminated the first ¢ rounds (denoted as 0, ..., t—1
in Definition M) in the generation of the couple (Gyp, G«) and no more than Cyny discrepancies
occurred so far (with C; n-independent). This hypothesis trivially holds for ¢ = 0. We will
determine an n-independent constant Cyy1, such that, at the end of the t-th step there will
be, w.h.p., less than Cy;1ny discrepancies. By iterating this argument, we deduce that G,p
and G, have less than C , nvy discrepancies with high probability, and will be able to obtain
the estimate C;, < A+ By P with0 < p <1, A, B > 0 three y-independent constants. This
implies Lemma [l with b =1 — p.

During the round #, (i%), and (i%),p are taken from the distributions wif (t) and wi (¢; a, r)
described above. Let us start by noticing that, with high probability

ST —di () + Ailtsa, )] <D [dT() |+§:A (t;a,7) <
i=1 i=1
< Cmy*t+2ny. (A.2)
The first inequality follows from the fact that d}(¢f) and A;(t;a,r) are non-negative. The
second one, from the induction hypothesis together with the observation that Y ;" | A;(¢;a,r)

is smaller than the total number of variable node choices during round ¢, which in turn is a
Poisson random variable with mean n-y.
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Next, we observe that, w.h.p.

n

D)) = n(A (1) =yt = 7). (A.3)

i=1

In fact, at ¢ = 0 the sum on the left-hand side has value nA’(1), and after each round it
decreases at most by the number of left sockets which are occupied during that round. This
is a Poisson random variable of mean n-~.

Now we can estimate the variation distance between the distributions of (i%)y,p and (i%),:

S 4 (0] — di (1) + Aultia, )| _
IO 8

[w™ () = w’(t;a,7)]| - <

Ct’72t + 2’7
A(1 ) (t +1) — (A.-4)
- tmax —t '

where the second inequality follows from ¢ < tpax and tmax < A’(1)/y — 1. During round
t, about ny couples (i%),p and (i%), are chosen and they differ with probability ||w™F (¢) —

w*(t;a,7)|| (because we coupled wmp( ) and w’*(t;a,r) optimally). The total number of dis-
crepancies is therefore smaller than 2ny||w™F (¢) —w?* (¢; a, 7)|| with high probability. Unhappily
this estimate worsen as ¢t approaches tyax because of the denominator in ((AZH). This problem is
overcome as follows. Fix t, = tpax— [tmax ], where 0 < p < 1 is the solution of p = 2A’(1)(1—p),
and use the estimate ([AZ0) only for ¢ < .. For t, <t < tpax we just use the fact that during
each round no more than n+vy discrepancies can be introduced. In other words

{ Cy + 2N (1) (Cp + A/ (tmax — t) i t < ty,
Ciy1 =

Cy+1 if ty <t < tmax (A-6)

where we introduced the constant A = 2/A’(1) > 0. This recursion is easily summed up,
yielding

(A7)

te—1 20(1 -
log(Cy, + ) —log(A) = Z log (1 > Z
=0

max —t =0 max

IN

t
max 1 t <
20() Y s <20 ( e e> . (A.8)
t=[thax ) +1 [t
Using the definition of ¢y, and the relation 2A’(1)(1 — p) = p, we get Cy, < A+ By~ with
A and B two v independent constants. Finally Cy_, < Cy, + |thax] < A’ + B'y™7.

B Degree distribution for multi-Poisson ensembles

In this Appendix we provide an asymptotic characterization of the variable-node degree profile
for the multi-Poisson ensemble (n, A, P,vy). We shall start by defining a construction which
yields the degree profile in the large blocklength limit and then prove convergence to this
construction.
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Let Ql(tg be a sequence of distributions over [ € {2,...,lhax} and d € Z indexed by ¢ €
{0,...,tmax} and defined as follows. Introduce the kernel

a@) AMd)2 _ld]
Wi(Ald) = e N AT A(d):m. (B.1)

)

Next define recursively Ql( c)i as
1) 0
ot =S ol wd —dd), Q) = A Lo, (B.2)
d’>d
where 14 is the indicator function of the event A. Notice that the sum in the denominator of

Eq. (B is always well-defined. In fact from the definition follows that Ql(tg =0ifd > lnax.
Finally, we define the asymptotic degree profile to be

ZQ;}“,‘”‘ : (B.3)

The following result implies that {AI(V)} is in fact the correct asymptotic degree profile.

Lemma 7 Let {[\l : 1 =2,...,lmax} be the variable nodes degree profile for a random Tanner
graph from the (n,A, P,~) multi-Poisson ensemble. Denote by ||u — v|| the total variation
distance between distributions p and v (see previous Section). If {AZ(V)} is defined as above,
then there exist A, B > 0, such that

(I). lim EA, = A (B.4)
(I1). lim IEA — A =0, (B.5)
(II1). ]P’{]Al A > a} < Ae~Bne® (B.6)

for any positive €.

Proof: Notice that (I1I) obviously implies (I). Moreover (see proof of Corollary [I),
if a sequence of distributions over the integers (™ converges pointwise to a (normalized)
distribution £(°°), then || — u(>)|| — 0. Therefore (I) implies (I11).

We are left with the task of proving (II17). We shall in fact prove the following stronger

statement. Consider a multi-Poisson graph generated as in Definition (#l). Let fAZl(tj be the

fraction of variable nodes i € V such that i € V; (or, equivalently, d;(0) = {) and d;(¢) = d. We

claim that ﬁl(tc)i is well approximated by the sequence Ql(tg defined above. More precisely, there

exist constants A, B (which may depend on the ensemble parameters as well as on t) such that
P{;ﬁ} Ql(d\>s}<Ae Bne? (B.7)
Recall that the degree of a variable node i € V; is | — d;(tmax), we have

ZQ}?‘;&X . (B.8)

The thesis therefore follows from Eq. (BZ) together with the observation that the sum (BS)
contains a finite number of terms.
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The claim is proved by induction on t. It is obviously true for £ = 0. Assume now that

(t+1)

the claim is true up to stage ¢, and consider the distribution of €, conditional to ﬁl(tc)i. By

the induction hypothesis we can assume that \Ql g — d‘ <e. Furthermore, since Ql(tg =0
whenever d > [;,,x, we can also assume

rzﬂfd +—Zﬂf d<e. (B.9)

We shall neglect the exponentially rare cases in which these conditions do not hold.

The total number of variable nodes sampled during stage ¢ + 1 is Ayt = >, k;m,(:) where
mg) is a Poisson random variable with mean nyPy/P’(1). We can therefore assume that
|Atot — n7y| < me and neglect the rare cases in which this is false. Next, consider a variable 7,
such that d;(t) = d. The probability that this is chosen when selecting one of the neighbors of

a function node a is

SR (10 P T
D DR ST T .

The probability that, during stage ¢, this variable node is selected A;(t) = A times (conditional
to the total number Ay ) is therefore

P[Ai(t) = Ald;(t) =d] = <A£°t> w(d)® (1 —w(d)) e = (B.11)
= Wi(Ald) +0(1/n) + O(e).

Therefore, the fraction of variable nodes such that d;(0) =

(to be denoted by Q(At),l,d) is concentrated around [W;(A|d) + (E
hypothesis, this implies that

10

Using the induction

di(t) = d and A;(t) = A
o)

i {‘Q(At),l,d — WAl > a} < AenBe (B.12)

Next we notice that d;(t) = d and A;(¢t) = A implies d;(¢t + 1) = d — A. Therefore ﬁl(tjl) =

> dr>d Qgt,)_d Lq- Since a finite number of terms enter in this sum, Eq. (BI2) implies

PG - Y Wid —dld)e) | <ep < AeB (B.13)
d’>d

for some, eventually different, constants A and B. Notice that the sum in the above expression
is exactly Ql(tj b, Therefore, thesis (111) is proved. 0

C Derivative of the conditional entropy: Poisson en-
semble

In this Appendix we compute derivative of the conditional entropy with respect to the interpo-
lation parameter, cf. Eq. (6I4]). The crucial observation is the following. Let n a poissonian
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random variable with parameter A > 0, and f : N — R any function on the positive integers,
then:

d
Ef(n) = Elf(n+1) - f(n)]. (C.1)

Consider now the expression (G for the interpolating conditional entropy. This depends
upon ¢ through the distributions of the my’s (i.e. the number of right nodes of degree k which
is a poissonian variable with parameter ntP,/P’(1)), and the distribution of the [;’s (i.e. the
number of repetitions for the variable x;, which is a random variable with parameter v — t).
When differentiating with respect to ¢ we get therefore a sum of several contributions. For
the sake of clarity, let us compute in detail one of such terms. In order to single out a term,
assume that the parameter entering in the distribution of my is ¢, and is distict from ¢ (i.e.
the number of right nodes of degree k is a poissonian variable with parameter ntyPy/P’(1)).
Let Z = Z(my,) be the normalization defined in Eq. (66 for a graph with my check nodes of
degree k. Applying the above formula we get

dhy

Un 1) = B logy {Z0me + 1)/Z(mi)} (C2)
k

PI(1)

The symbol E; includes expectation with respect to my, the choice of my + 1 check nodes
of degree k, as well as with respect to the corresponding received message. We can however
single out expectation with respect to the last of these nodes and use the fact that Z(my) does
not depend on it. Denote Z¢(i ... ig; y) the normalization constant in Eq. (68 when a factor
Qc(ylzi, & -+ & xy,) is is multiplied to the probability distribution. Then we have

dhy,
dty,

P, 1 . A
(t,ty) = W ok ZZ; EyEslogy {Zc (i1 ... ik 9)/ 2} (C.3)
1.0k
The same calculation can be repeated for check each degree k as well as for the dependency
upon ¢ of the distribution of the /;’s. We introduce the notation Z.g(i; z) for the normalization
constant in Eq. (B8] when a factor Qeg(z|x;) is multiplied. With these definitions we have
(here we set aagain tj = t)

dhy, P . . |
%(t) ) k Pl—(kl) % z;k Eoltslogy {Zelin 45 0)/2} = % ieZvEZES logy {Zet(4;2)/ 2} —
_ P,l(l) Ey: Qc(y|0) logy Qc(y[0) + Z Qetr (2]0) logy Qe (2(0) . (C.4)

The expression ([EI4) is recovered by noticing that Z¢ (i1 ...1x;9)/ 2 = (Qc(y|zi, & - - - S xi )
and Zeg(i;2)/ 2 = (Qor(2]24)).
D Positivity of R,(t): Poisson ensemble

In this Appendix we show that, under the hypotheses of Theorem B the remainder R, (¢) in
Eq. (EJ4) is positive. This completes the proof of the Theorem. We start by writing the
remainder in the form

R (t) = Ran(t) — Ryp(t) — Ran(t) + Ryn(t) (D.1)
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where (throughout this Appendix entropies will be measured in nats: this clearly does not
affect the sign of R, (t))

_ 1 3 1 Y E 2Qc(@!wi1@'~@xik)>

Ra,n(t) _ P,(l) - Pk nk o EyEs 10g< QC(@‘O) n Qc(ml) . ’ (D2)
B l 2Qeff(z|xi)

Rb,n(t) - n EZ EZES log <Qeﬁ‘(Z|0) + Qeﬁ‘(2|1) >t . (D3)

Analogous definitions are understood for ﬁa,n(t) and ﬁb,n(t) with the (-); average being sub-
stituted by an average over P, (x1)- - P, (x,) as in the passage from Eq. ([EI4) to Eq. (GIH).
The code average E; has to be of course substituted by an average over V variables E,.

We shall treat each of the four terms R, ,(t). ..ﬁbm(t) separately and put everything
together at the end. Let us start from the first term. Using the definitions ([B9) and 3 we
get

1 1
Ran(t) = =0 Zk:Pk — > EjElog[l + tanh J tanh £;, ;] (D.4)

i1..0p

Here we did not write explicitly the dependence of the log-likelihood ¢;, ;, for the sum z;, ©
.-+ @ x;, upon the received message (y,y,z) and the code realization. We notice now that
J and ¢;, ;, are two independent Sym;ngtric random variables. We can therefore apply the
observations of Sec. Bl (and in particular Lemma Bl to get

Ran(t) = f: cm Ran(t;m), (D.5)
m=1
where
Cm = <2m1_ 1~ ﬁ) >0, (D.6)
and
Ryn(t;m) = ﬁwtanh 77 3R - 3 a7 (D7)
i1k

It is now convenient to introduce the ‘spin’ variables’ o;, i € V as follows

. +1 ifx; =0,
7i _{ —1 ifz;=1. (D8)
Notice that tanh?¢;, ; = (o, ---0i.)t. We can also write the 2m-th power of tanh?;, ;.

introducing 2m i.i.d. copies M, ..., ™). Using the notation introduced in Eq. @) we get

m 1 1 2m 2m
(tanh &, i, )™ = (o) - 0l)) - (02 o)), (D.9)
We replace this formula in Eq. (D7), and we are finally able to carry on the sums over i .. . i
and k. The final result is remarkably compact

Ran(t;m) = % E[(tanh J)>™] Ey(P(Qam))er (D.10)

"This name comes from the statistical mechanics analogy [14].
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where we defined the ‘multi-overlaps’

Qonle,...,0@) = 23 60 m), (D.11)

Notice that Q2,, € [-1,1].
The same procedure can be repeated for Ry, (t). We get Ry, (t) =, cmRpn(t;m), with

Ryn(t;m) = E,[(tanhu)*™ ZE [(tanh £;)%™] = (D.12)
= E,[(tanhu)? ZE o)) = (D.13)
— E,[(tanhu)? ZE T = (D.14)
= E,[(tanhu)*™] S<Q2m>. (D.15)

Let us now consider ﬁam(t). Since the probability distribution for the bits z;’s is factorized,
the averages can now be easily computed. We get

~ 1
Ron(t) = m Z P, E; E, log[1 4 tanh J tanh vy - - - tanh vy] . (D.16)
k

Notice that in fact the right-hand side is independent both of n and ¢ Once again we observe
that J and the v;’s are independent symmetric random variables. Using the properties exposed
in Sec. @l we obtain Rq,,(t) =), ¢mRan(t;m), where

Ron(t;m) = % E[(tanh J)*™] E}; Py {E,|[(tanh v)2m]}k = (D.17)
_ % E j{(tanh J)2™] P(gam) . (D.18)

where we defined ¢o,,, = E,[(tanhv)?™] € [-1, 1]. R R
Finally, the same procedure is applied to Ry, (t). We obtain Ry, (t) = >, cmRpn(t;m)
with

Eb,n(t; m) = E,[(tanh u)?™] g2, - (D.19)
The next step consists in noticing that, because U and V are admissible, we can apply Eq.
) to get
E,[(tanh u)*] = E [(tanh J)*™] > " pj, {E,|(tanh v)>"] R E[(tanh J)?™] P’ (qam(D.20)

: (i)

This identity allows us to rewrite Eqgs. (O.J3) and (OD:19) in the form

Ry (t;m) = P’l(l) Es[(tanh J)*™] P (gom) Es(Qam) , (D.21)
Eb,n(t;m) = P’l(l) Es[(tanh J)*™] P’ (g2m) q2m - (D.22)
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All the series obtained are absolutely convergent because c¢,, ~ m~™2 as m — oo and

|R. n(t;m)| < 1. We can therefore obtain R, (¢) by performing the sum in Eq. () term by
term. We get
Ralt) = = i cm Eg[(tanh J)* " Ee[(f(Qam, g2m))t,s] (D.23)
n Pl(l) — m t ms Y2m )/ t,*] » .

where

f(@Q,q9) = P(Q) — P'(¢)Q — P(q) + P'(q)q. (D.24)

Since we assumed P(x) to be convex for x € [—1,1], f(Q,q) > 0 for any Q,q € [-1,1]. This
completes the proof.

E Derivative of the conditional entropy: multi-Poisson
ensemble

Throughout this Section ¢, € {0,...,tmax — 1} and s € [0,~] are fixed. Let us start by noticing
that the expected conditional entropy with respect to the multi-Poisson has the structure (here
we use the shorthand Y for the received message, which in our formalism is in fact (Y,Y)):

1 1
hy = ~EcHn(X]Y) = —ByBr 1By jp, 1 By 1), Ha(X[Y) - (E.1)

Here we denoted by E,;,, with t2 > #; the expectation with respect to the rounds t1+1,... %
in the code construction, and by E;, the unconditional expectation over the first ¢; rounds.
Notice that parameter s enters uniquely in the state E;, |;, 1, and more precisely in the mean of

the Poisson variables {m,(f*)} and {l;(t.)}. We can therefore apply Eq. (CJJ) to the expression

[T1). We get

dh, P, i1 . N

i Z P’(kl) Z EyE¢, wy, - - - wik{ E;{mlax_kl]"t* logy Ze (i1 ik §) — Eypo—1pe. l0go 2 }
k

(i)

- E EzEt*wi{ Et{ri}ax_l‘t* logy Zeft (4 2) — Eipax—1]t, 1082 Z } -
1%
[4S] (1)

gy 20 Qeli0) ogs Qe(u10) + 3 Qur(:10) Lok Qur (=), (E£2)

i1k

where we used the shorthand w; = w;(t,). The definition of the modified partition functions
Ze(i1...ik;9) and Zeg(i; 2) is the same as in App. The resulting expression is here more
complicated because the expectation over the stages t,+1, ..., tmax—1 is not independent of the
graph realization after stage t.. For instance, if an extra check node is added during round ¢, (as
a result of Eq. ([C])), the following check nodes are going to be added with a slightly different
distribution in rounds t, 4+ 1,.. ., tmax — 1. This fact is taken into account by defining the state
Ei;laxiﬁ}'t* as follows. At the end of round ¢, set d;(t. +1) = d;(ts) — Aj(ts) — i (ts) — v; with v;
equal to the number of times i appears in {i,...,it}. Then proceed as for the interpolating
ensemble introduced in Sec. [ for rounds ¢, +1,...,tmax — 1.
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We now decompose the underbraced terms in ([E2) as follows:

{ (@) } - {Et{lnlaxikl}it logy Ze(ir ... ik; §) — Et{lnlaxikl}\t log; Z} +
+{ E;{rllaxl—kl}\t logy Z — Ky -1t 1082 2 } ) (E.3)

F(iy...iy)

and analogously for terms of type (ii). It is now a matter of simple algebra to obtain Eq. (1),
where (dropping the dependence of ¢ upon ¢, and s)

o(n) = E, K, Z% > wiy w, Fliy.ig) — > wi F(i) o (E.4)
k

21... 0k 1S4

We are now faced with the task of proving that ¢(n) is bounded as claimed in Sec. [0
Denote the quantity in parenthesis as ¢(n). Notice that [@(n)] < 2n: in fact @(n) is the
difference among the entropies of two n-bits distributions.

First, we shall show that ¢(n) < C'y/(logn)3/n, under the hypothesis that >, d;(t. +1) >
An for some positive constant A. Notice that the condition holds with high probability at
least 1 — 2~ 5", for some B > 0. The thesis follows from the inequality (hereafter we set

(log )
n

(log n)?
n

C + P on <’

lp(n)| <P [Z d; > An (E.5)

Zdz < An

We start by two simple observations which hold under the above condition.

1. There exist a constant Fy > 0 such that |F (i1 ...ix)| < Fy. Fp is understood to depend
on the ensemble parameters as well as on &, but not on n, t, or s. This fact is proved
by noticing that F'(i; ...4) is the difference between the expectation values of log Z in
two different ensembles. These ensembles can be coupled as G, and Gp in App. [Al
Each time a new variable node must be chosen in the two graphs, choose it by coupling
optimally the corresponding w; distributions. The number of discrepancies obtained in
this way is bounded: there is probability O(1/n) of discrepancy (here the condition on
>, di is used) at each step and less than nA’(1) steps. Finally the variation in log Z
produced by a single rewiring is smaller than 2 in absolute value.

2. Let 4y,...,i be ii.d. with distribution {w;}. There exist a constant wy such that the
probability that any two of them coincide is smaller than wg/n. This is proved by noticing
that w; = [d;(t.)]+/ >, [di(te)]+ < lmax/An because of the above condition. Therefore,
the probability of having coinciding indices is smaller than k(k — 1)lyax/An.

In a nutshell, these two remarks imply that terms with coincident indices give a contribution
bounded by C/n in Eq. ([E4). Moreover, the first of these observation implies |¢p(n)| < Cy
uniformly in ¢, and s, as claimed in Sec. [d

We next rewrite the function F'(i...i;) by singling out the stage t, + 1 in the code
construction

Fin..iy) = Eglﬁf} (Etpae—1)tst11082 Z] = By 1)t By 116,41 1082 2] =
= ECU0L ) — Eesrp Y i) (E.6)
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Here ¥(- - ) denotes the quantity in square brackets in the previous line, and we made explicit
its dependency upon the variable nodes chosen during stage t, + 1. Notice that j; ... j,, are
i.i.d.’s with distributions

>oildi — vy e >oldily
where v; is (as above) the number of times j appears in {i;...i;}. Notice that w; is not the
same as w;j, the former being computed in terms of the {d;(¢. + 1)} while the latter depends
upon {d;(¢,)}. The only property of W(j; ... j,) we shall need hereafter is that it concentrates
exponentially when j; ... j,, are distributed according to ;. More precisely

aad - Mizvle g [l (E.7)

P[|¥ — E¥| > ne] < Ae "B (E.8)
for some positive constants A and B. This result is obtained by repeating the proof of Theo-
rem [Il for the quantity ¥ (j; ... jm).

Now, we use the general fact that, given two distributions p(s) and ¢(s), such that p(s) =0
only if ¢(s) = 0, we can write

B () =B X S, X9 =12 o=, |10) (£.9)

Applying this general relation to Eq. ([Ef), we get
F(iy...ig) = E[Xg 40010 dm)i Y01 dm)] (E.10)

_ [k‘]>_m T (i — v+
X = 1—=— s Sram E.11
where we denoted L = ) [d;]+ and [k] = >, ([di]+ — [d; — v4]4). Furthermore, we assumed
d; > 0. We denote by V,; the set of variable nodes satisfying this condition. Notice that
0 < [k] < k. Moreover 0 < Xy;, ;1 < C for some constant C (recall that m = O(n)) and
EX(, .4,y = 1. In view of the remarks 1. and 2. above, we focus here that iy,... i are
distinct. Under this assumption

k -m 1 Za Hja:il 1 Za Hja:il
N A

= (1+44(n) X, - Xiy, (E.12)

1 —-m 1 Zaﬂja:i
D (S (e 1

where [ 4 is the indicator function for the event A and é(n) is a non random function, which
can be bounded |§(n)| < §y/n. Inserting into Eq. (EZI0), and using observation 1 above, we
get

F(il N Zk) = (1 + (5(n))E [Xz'l ce Xik; ] =E [Xil s Xik§ \I’] + O(l/n) . (E.14)
We can now plug this result in Eq. (E4)), to get
o(n) = % Z wiy - wi, E[XG, - XG5 0] — ZwiE[Xi;\I/] +0(1/n) =
k i1 i€V
_ %E{[P(X) ~ P'()X]; 0 + O(1/n) = (E.15)
1
= WIE{]’(X,EX) (P —E¥)} +0O(1/n). (E.16)
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Here f(X,z) is defined as in Eq. (L24)) and we introduced the site average X = > " | w; X;.
Furthermore we used the fact that terms with coincident indices induce an error of order
O(1/n), and that EX = 1. Since f(X,z) is convex positive with f(x,x) = 0, we have

|p(n)| < CE{(X —EX)* (¥ —EV)} +O(1/n). (E.17)
Finally, we notice that X satisfies a concentration law of the form
P[IX — 1] > ¢] < Ae "B (E.18)

The proof is, once again, the same as for Theorem [
Using the expression (ET6) together with Eqs. (E8), (EXI8), and the fact that ¥ < n we
finally get

(log )
)"

1B(n)| < Cyne® + Coynne B<* + O(1/n) < C (E.19)

where the last inequality follows by choosing e = ay/logn/n.

F Positivity of R,(t,;s): multi-Poisson ensemble
We start as for the Poisson ensemble, by writing the remainder in the form
Rn(t*7 8) = Ra,n(t*a 3) - Rb,n(t*a 3) - Ea,n(t*y 8) + Eb,n(t*a 3) ) (Fl)

where (to lighten formulae, entropies will be measured in nats in this Appendix)

2@@(@’%,’1 D---D a:,k)>
Qe 1o )P

Ryn(t,s) = Z E.E®w; log <QefE é%ﬁf&i €0 > : (F.3)

¥ i1
Ryn(te,s) = Wkl) Z EQE{ 1o k}wil S Wj, 10g<
k

i1..dg

Analogous expressions hold for ﬁam(t*, s), ﬁbm(t*, s) with the conditional measure (-) substi-
tuted by the product measure Py, (z1) -+ P,, (x,). Here we set w; = w;(t.) as in the previous
Section, and we use the notation E{i1-ix} introduced there.

The treatment of the four terms Rg ,,(+), Ry n(+), Ran(-), Ron () parallels closely the calcula-
tions in App.[Dl Here we limit ourself to discussing R, ,,(+): this should be more than sufficient
for understanding the necessary changes with respect to the Poisson case. As in that case, we

use (B9) and [E3)) to write

b i1
Ryp(te,s) = Z P’—(kl) Z EJE{ Lo ’“}wil ---w;, log [1 4 tanh J tanh ¢;, ;| = (F.4)
k 11...0)
P
= Wkl) Z E ;E {wil oo wiy Xy log [1 4+ tanh Jtanhfilmik]} = (F.5)
110k
P
_ p/(kl) Z E;E {w;, X;, ... w; X;, log[1 + tanh Jtanh ¢;, |} + O(1/n).
k il.. 1k
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In passing from Eq. (E4) to Eq. (EX), we used the general identity B/} A] = E[Xf,. i3 AlL
where Xy;, ;.3 is defined in Eq. ([ETT). We then used Eq. (EI2)) to approximate Xy, ;1
with an error of order O(1/n).

Now we can Taylor expand the logarithm as in App. We obtain

Ry (ts,s) Z Em Ran(ts,s;m), (F.6)
where ¢, = 1/(2m — 1) — 1/2m and

Ron(te,s;m) = E[(tanh J)*™)| E(P(Q2m))s - - (F.7)

1
P(1)
The unique difference with respect to Poisson ensemble is in the definition of ‘multi-overlaps’.
Now in fact we have (with an abuse we use the same notation as for the simple Poisson
ensemble):

Qam(aW, ... M) Zw,XU Voo (F.8)

Notice that we no longer have Q2,, € [—1,+1] because of the terms X;. However Eq. (EI3)
implies | X;| < exp(m/L). Recall that m is the number of variable nodes chosen during stage
t, + 1, which is exponentially concentrated around its expectation ny. On the other hand
L =3 ,[di]+ > >, d;, and the last quantity is exponentially concentrated around ny(tmax —
ti) > n7y. Therefore, for any 6 > 0, we have |X;| < e(1+4¢) for any i € [n] with high probability.
As a consequence |Qam,| < e(1 + €) with high probability.

The other terms in Eq. ([EZ]) are treated analogously. We finally get

Ry (ts,s) = ZcmEJ [(tanh J)* ™) Ey[( f(Q2m g2m))] , (F.9)

P’(

with f(X,x) defined as in ([D24]). Positivity follows from the assumption that P(x) is convex
n[—e(l+e¢),e(l+¢e).
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