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Abstract

Capacity analysis for channels with side information at the receiver has been an

active area of interest. This problem is well investigated for the case of finite alphabet

channels. However, the results are not easily generalizable to the case of continuous

alphabet channels due to analytic difficulties inherent with continuous alphabets.

In the first part of this two-part paper, we address an analytical framework for ca-

pacity analysis of continuous alphabet channels with side information at the receiver.

For this purpose, we establish novel necessary and sufficient conditions for weak* con-

tinuity and strict concavity of the mutual information. These conditions are used in

investigating the existence and uniqueness of the capacity-achieving measures. Fur-

thermore, we derive necessary and sufficient conditions that characterize the capacity

value and the capacity-achieving measure for continuous alphabet channels with side

information at the receiver.

Index Terms

Capacity, capacity-achieving measure, concavity, continuous alphabets, mutual in-

formation, and optimization.

∗This work was supported in part by Texas Instruments Leadership University Program.

1

http://arxiv.org/abs/cs/0411011v1


1 Introduction

We consider the capacity analysis for continuous alphabet channels with side information at

the receiver, i.e., channels where the input, output, state, and side information alphabets

are abstract continuous spaces. For finite alphabet channels, this problem is well explored

in the literature, e.g., [1], [2], [3], [4], [5], and [6]. However, the results for finite alphabet

channels are not necessarily generalizable to continuous alphabet channels.

In fact, as shown by Csiszár [7], there are some technical difficulties that must be con-

sidered when working with continuous alphabet channels. Recall that in finite alphabet

channels, the capacity analysis is performed over a finite dimensional space of input prob-

ability distributions, e.g., the simplex of input probability distributions. In this case, the

mutual information is a real-valued function over the space of input distributions. As a

result, the capacity analysis can be conducted over the Euclidean topology. Hence, one

can simply verify the required global and local analytical properties of the set of input dis-

tributions and the mutual information. In contrast, for continuous alphabet channels, the

capacity analysis needs to be conducted over the weak* topology. This requires completely

different analytical tools and arguments that are based on machineries from measure theory

and functional analysis.

In the first part of this two-part study, we introduce an analytical framework for capacity

analysis of continuous alphabet channels with side information at the receiver. From the

practical point of view, the results of this part are useful in capacity analysis for a large

class of channels including fading channels with side information at the receiver. In these

channels, since the channel state (realization) changes from time-to-time, new challenges are

imposed in capacity analysis of the channel. Moreover, according to how much knowledge

we have about the channel state ahead of the time, one might have a range of scenarios from

no channel state information (CSI) to full CSI, see e.g., [8], [9], [10], [11], and [12]. Hence,

a unified analytical framework is required that enables us to tackle the capacity analysis

for different scenarios. In the first part of this paper, we address a general framework for

capacity analysis of continuous alphabet channels followed by applications to the multiple

antenna channels in the second part. Specifically, in this part, we address certain analytical
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properties of the space of input measures and the mutual information function based on

notions from measure theory, functional analysis, and convex optimization.

The organization of this part is as follows. A brief introduction to the problem setup

is given in Section 2. In Section 3, we introduce an analytical treatment of the space of

input measures and the mutual information function and address issues such as the weak*

compactness of the space of input measures along with strict concavity and weak* continuity

of the mutual information. In Section 4, we raise the issue of capacity analysis and address

necessary and sufficient conditions regarding the existence, uniqueness, and the expression of

the capacity-achieving measure. Finally, Section 5 states some concluding remarks along with

some guidelines for future work. A brief introduction to the required analytical preliminaries

for this paper is given in Appendix A. A detailed investigation of applications of the results

of this part to multiple antenna channels will be provided in the second part of this two-part

paper.

2 Setup

In this section, we introduce the setup for continuous alphabet channels with side informa-

tion. We assume a discrete-time memoryless channel (DTMC) where X , Y , S, and V denote

the input, output, state, and side information alphabets of a point-to-point communication

channel. We assume that X , Y , S, and V are locally compact Hausdorff (LCH) spaces

[13], e.g., alphabets are like Rn (or Cn) which are separable [14]. Moreover, the alphabets

are assumed to be associated with a corresponding Borel σ-algebra; e.g., (X,BX), (Y,BY ),

(S,BS) are the Borel-measurable spaces denoting the input, output, and the state alphabets

of DTMC, respectively; where BX , BY , and BS denote the Borel σ-algebras of X , Y , and S,

respectively. The DTMC is represented by a collection of Radon probability measures [13]

over (Y,BY ) as follows,

WX,S(Y ) = {W (·|x, s) ∈ P(Y )| x ∈ X, s ∈ S}, (1)

where P(Y ) is the collection of all Radon probability measures over (Y,BY ). Note that the

elements of the set WX,S(Y ) are probability measures over (Y,BY ), that is, for each x and s,

W (·|x, s) is a probability measure on (Y,BY ).
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We assume that there exists some side information available at the receiver that is denoted

by a measurable space (V,BV ) and characterized by a joint probability measure Q ◦ R over

Y ×V . As a result, the side information is modelled by a conditional probability measure Qv

over (S,BS) for every v ∈ V . This is an appropriate model for side information, since it can

model different scenarios. For example, one can observe that for the case of full channel state

information (CSI), having v there is no uncertainty on S, hence Qv is just the dirac measure

[13]. On the other hand, when there exists no side information available at the receiver,

the probability measure Qv is some measure Q independent from v. As a result of existence

of side information, the channel can be modelled by conditional probability measures on

(Y,BY ) as follows

∀E ∈ BY , WQv
(E|x) =

∫

W (E|x, s)dQv(s). (2)

Having the above channel model, an n-length block code for the channel is a pair of mappings

(f, φ) where f maps some finite message set M into Xn and φ maps Y n to M. The mapping

f is called the encoder and the image of M under f is called the codebook. Correspondingly,

the mapping φ is called the decoder [1]. Assuming that the channel is memoryless, the

channel from Xn to Y n is governed by probability measures

W
(n)
Qv

(E1 × · · · × En|x) =

n
∏

i=1

WQvi
(Ei|xi),

which are conditional measures on the side information vector v = (v1, v2, · · · , vn) ∈ V n.

Since the probability measure on (V,BV ) is R, then the average probability of error for

transmission of message m is defined by

e(m,Wn, f, φ) , 1−

∫

W
(n)
Qv

(φ−1(m)|f(m))dRn,

and the maximum probability of error is defined by e(Wn, f, φ) , maxm e(m,Wn, f, φ).

The channel coding problem is to make the message set M (the rate) as large as possible

while keeping the maximum probability of error arbitrarily low, subject to some constraints

applied to the choice of codebook.

A non-negative rate R for the channel is an ǫ-achievable rate, if for every δ > 0 and

every sufficiently large n there exist n-length codes of rate exceeding R− δ and probability

of error less than ǫ. Correspondingly, the rate R is an achievable rate if it is ǫ-achievable for
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all 0 < ǫ < 1. The supremum of achievable rates is called the channel capacity.

There are a number of problems that need to be addressed in capacity assessment of

a channel: These include the capacity value and the existence, the uniqueness, and the

characterization of the capacity-achieving input measures. In this part of this two-part

study, we introduce a framework to address the above problems in a unified manner for

different classes of channels.

3 An analytical treatment

In capacity analysis of communication channels, there are often some constraints applied

to the transmitted signals. Commonly, this is in the form of a maximum or an average

energy constraint [15]. A maximum energy constraint is translated into a restriction of the

input alphabet to a bounded subset of X .1 On the other hand, an average energy constraint

is translated to input measures with a second moment constraint. Restriction of input

probability measures by higher moment constraints or a combination of moment constraints

and a bounded alphabet are also considered in practice, see e.g., [15], [16]. Since the capacity

analysis problem is a convex optimization problem, it is of interest to know whether such

a restricted collection of input probability measures is convex and compact (in a certain

sense). Moreover, since we try to optimize the mutual information over such a collection, we

need to investigate the global and local analytical behavior of the mutual information over

the space of input measures.

In this section, we address some analytical notions and properties of the space of input

measures and the mutual information that are essential to the capacity analysis of continu-

ous alphabet channels. We assume that a reader has elementary background in functional

analysis. However, a reader can refer to Appendix A to grasp a general view of the analyt-

ical preliminaries that are used throughout the paper. For the sake of conciseness, we only

express the main results in this section and we address the details in Appendix A.

1For example, applications that use a hard-limiter power amplifier.

5



3.1 Weak* compactness of the space of input probability measures

Let (X,BX) be an LCH Borel-measurable space. Let M (X) denote the space of Radon

measures over (X,BX). In probability theory, where the objects of interest are the set of

probability measures P(X) ⊂ M (X), weak* topology, the weakest topology over M (X), is

used to investigate the analytical properties of the functionals that are defined over P(X).

In weak* topology, the convergence phenomenon is called weak* convergence2 and defined

as follows. A sequence of probability measures converges weakly*, denoted by Pn
w∗

→ P if

and only if
∫

fdPn →
∫

fdP for all f ∈ Cb(X), where

Cb(X) = {f : X → R| f is continuous and bounded}

denotes the set of all bounded continuous functions.

Corresponding to the definition of weak* convergence, we have a notion of compactness

which is called weak* compactness. That is, a family of probability measures PA(X) ⊆

P(X) is relatively weak* compact if every sequence of measures in PA(X) contains a sub-

sequence which converges weakly* (see Appendix A) to a probability measure in the closure

of PA(X).3 In general, verification of relative compactness of probability measures over an

abstract space is not an easy task. However, for complete, separable spaces [13], there is a

simple way to verify this property, as follows.

A family of probability measures PA(X) ⊂ P(X) is tight if for every ε > 0, there is a

compact set K ⊆ X such that supP∈PA(X) P(K
c) ≤ ε. Based on this definition, we restate

Prokhorov’s Theorem from [17].

Theorem 3.1 (Prokhorov’s Theorem). Let PA(X) be a family of probability measures

defined over the complete separable measurable space (X,BX). Then PA(X) is relatively

weak* compact if and only if it is tight.

Proof. See [17, p. 318]

As a result, for X = R
n(or Cn) together with the Borel σ-algebra BX , it suffices only

to check the hypothesis of Prokhorov’s Theorem. Using Prokhorov’s Theorem, [7] derived

2In textbooks on probability theory, the term vague is used instead of weak*.
3Note that the term “relative” refers to the compactness of closure.
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the following sufficient condition for compactness of a restricted collection of probability

measures.

Lemma 3.1. Let g : X → Rk be a nonnegative Borel-measurable function such that the set

KL = {x ∈ X|gi(x) ≤ Li, i = 1, · · · k} is compact for every L ∈ R+k. Then, the collection

Pg,Γ(X) =

{

P ∈ P(X)
∣

∣

∣

∫

gi(x)dP ≤ Γi, i = 1, · · ·k

}

,

is tight and closed, and hence weak* compact for every Γ ∈ R+k.

Proof. See [7, Lem. 1].

Note that Lemma 3.1 holds in general for a collection of constraints defined by positive

functions {gi} and positive values {Γi} such that each gi satisfies the hypothesis of Lemma

3.1. As an example of the usage of Lemma 3.1, one can consider X = Rn along with a

restricting function g(x) = ‖x‖22 and a fixed positive value Γ > 0 to easily verify that the set

of probability measures with a second moment constraint, Pg,Γ(X), is compact. Likewise,

if A is a compact subset of X , one can consider

g(x) =







‖x‖22, x ∈ A

+∞, otherwise
.

and a fixed positive value Γ > 0 to easily verify that Pg,Γ(X) is compact.

3.2 Mutual information

In this subsection, we provide conditions for weak* continuity (see Appendix A) of the mutual

information over a set of probability measure. We also state and prove some novel conditions

for strict concavity of the mutual information. Applications of these properties will be

explored in the next section, where they will be used to address the existence, the uniqueness,

and the characterization of the capacity-achieving measure for continuous alphabet channels

with side information.

3.2.1 Definition

To present the precise expression of the mutual information, following [7] and [18], we first

express the definition of informational divergence or relative entropy as follows.
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For a given measurable space (X,BX), consider two probability measures P and Q. The

informational divergence between these two measures is [18] defined by

D(P‖Q) , sup
{

N
∑

i=1

P(Ei) log2
P(Ei)

Q(Ei)
: N ∈ N, Ei ∈ BX disjoint, and X =

N
⋃

i=1

Ei

}

. (3)

This can be viewed as the generalization of relative entropy of probability measures of finite

sets to the probability measures of infinite sets. By (3), it appears that if there exists an

Ei ∈ BX such that Q(Ei) = 0 but P(Ei) 6= 0, then D(P‖Q) = ∞. Thus, a necessary

condition to have a finite relative entropy between P and Q is that for every E ∈ BX with

Q(E) = 0, P(E) = 0. But this means that P is absolutely continuous with respect to Q

denoted by P ≪ Q (see Appendix A).

By the log-sum inequality [19], it can be verified that for each partition in the right-hand

side (RHS) of (3), consequent refined partitioning increases the value of the summation. In

fact, as the partitions get finer, the finite sum in the RHS of (3) gets closer to D(P‖Q). This

observation provides intuition into an important result of [18] which expresses D(P‖Q) as

D(P‖Q) =











∫

log2
dP

dQ
dP, if P ≪ Q

+∞, otherwise,
(4)

where dP
dQ

is the density of P with respect to Q [13, p. 91]. In fact, the condition P ≪ Q is

a necessary and sufficient condition for the finiteness of the informational divergence as we

show below.

Proposition 3.1. For a pair of probability measures P and Q, D(P‖Q) < ∞ if and only if

P ≪ Q. Furthermore,
∫

|log2
dP
dQ

| dP < ∞ if and only if P ≪ Q.

Proof. The direct part of this statement is proved in [18, p. 20] which is observed by (4).

Suppose the inverse part is not true. That is P ≪ Q, but
∫

log2
dP
dQ

dP = ∞. Because P is

a finite measure, then for the set E = {x ∈ X : dP
dQ

= ∞} we must have P(E) > 0. On the

other hand, since P(E) =
∫

E
dP
dQ

dQ, this requires that Q(E) = 0. This is a contradiction to

the hypothesis that P ≪ Q. Using the inequality
∫

|log2
dP
dQ

| dP ≤ D(P‖Q) + 2
e ln 2

from [18,

p. 20], we conclude the rest of the proof.

By the Lebesgue-Radon-Nickodym Theorem [13, p. 90], there exists a positive real valued
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function f = dP
dQ

such that P(E) =
∫

E
fdQ. Thus, for P ≪ Q,

D(P‖Q) =

∫

dP

dQ
log2

dP

dQ
dQ =

∫

f log2 fdQ. (5)

Using the expression of relative entropy as (4) and (5), we now introduce a precise expression

of mutual information function.

Let (X,BX) bs the input and (Y,BY ) be the output measurable spaces of a channel. The

product space of X and Y is denoted by (X × Y,BX ⊗ BY ), where BX ⊗BY is the Borel σ-

algebra induced on X×Y . Let P and T be two probability measures over them, respectively.

The probability measure that is induced on (X × Y,BX ⊗BY ) is denoted by P× T which is

defined as follows,

∀E ∈ Bx ⊗BY , (P × T )(E) =

∫∫

E

d(P × T ) =

∫ ∫

Ey

dP dT

where for every y ∈ Y , Ey = {x ∈ X|(x, y) ∈ E}.

As mentioned before, since side information is available at the receiver, the channel is

described by probability measures WQv
(·|x) defined as in (2). For an input probability

measure P, let the joint conditional measure of the input and output denoted by P ◦ WQv

and let the marginal output measure denoted by PWQv
. defined as follows. For every

A× B ∈ BX × BY , we have

P ◦WQv
(A× B) =

∫

A

WQv
(B|x)dP,

which results into a marginal probability measure on (Y,BY ) such that,

PWQv
(B) =

∫

WQv
(B|x)dP.

It can be verified that P ◦WQv
≪ P × PWQv

. On the other hand, P ◦WQv
≪ P × PWQv

if

and only if WQv
(·|x) ≪ PWQv

P -a.e. As a result, following [7], we can express the mutual

information of the channel as

I(P,WQv
|R)=

∫∫

D(WQv
(·|x)‖PWQv

)dPdR

=

∫∫∫

log2
dWQv

(·|x)

d(PWQv
)
dWQv

(·|x)dPdR (6)

where R denotes the probability measure on the space of channel state information (V,BV ).

To emphasize that the mutual information is a function over Pg,Γ(X), we deliberately use a

different notation for it (as in [1]) rather than the more common notation expressed in terms
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of random variables [19]. In the following subsections, we investigate some global and local

analytical properties of the mutual information (6) such as concavity and continuity.

3.2.2 Convexity and concavity

In this part, we address some global analytical properties of the mutual information. For this

purpose, we first study these global properties of the relative entropy and then we generalize

them for mutual information.

The convexity of relative entropy with respect to the convex combination of a pair of

measures is well known [18]. However, to the best of our knowledge, necessary and sufficient

conditions for its strict convexity were not known before. This is of particular interest to

show the uniqueness of the capacity-achieving measure, as it will be shown later. Hence, in

the following theorem, we state necessary and sufficient conditions for the strict convexity

of relative entropy.

Theorem 3.2. D(P‖Q) is convex with respect to the pair (P,Q). That is, for given pairs

(P1, Q1) and (P2, Q2) and given scalar 0 < α < 1,

D(αP1 + (1− α)P2‖αQ1 + (1− α)Q2) ≤ αD(P1‖Q1) + (1− α)D(P2‖Q2).

Moreover, the inequality is strict if and only if there exists a set E ∈ BX such that dP1

dQ1

6=

dP2

dQ2

6= 0 on E and for all nonempty Borel-measurable F ⊆ E, F ∈ BX , P1(F ) 6= 0 and

P2(F ) 6= 0.

Proof. For convenience in derivations, let β = 1 − α. Then, it can be verified that Q1 ≪

αQ1 + βQ2 and Q2 ≪ αQ1 + βQ2. Let g1 and g2 denote the density functions of Q1 and

Q2 with respect to αQ1 + βQ2, respectively. That is dQ1 = g1d(αQ1 + βQ2) and dQ2 =

g2d(αQ1 + βQ2). Note that αg1 + βg2 = 1. Since P1 ≪ Q1 and P2 ≪ Q2 associated with

density functions f1 =
dP1

dQ1

and f2 =
dP1

dQ2

, then αP1+βP2 ≪ αQ1+βQ2 and d(αP1+βP2) =

(αf1g1 + βf2g2)d(αQ1 + βQ2). Thus,

D(αP1 + βP2‖αQ1 + βQ2) =

∫

(αf1g1 + βf2g2) log2(αf1g1 + βf2g2)d(αQ1 + βQ2)

≤α

∫

f1 log2 f1dQ1 + β

∫

f2 log2 f2dQ2 (Log-sum inequality)

=αD(P1‖Q1) + βD(P2‖Q2).
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For strictness of the inequality, note that in log-sum inequality, for x ∈ X , strict inequality

occurs if f1(x) 6= f2(x) 6= 0 and g1(x) 6= 0, g2(x) 6= 0. Let N denote the maximal null set of

αQ1 + βQ2, then define

E = {x ∈ X\N : f1(x) 6= f2(x) 6= 0, g1(x) 6= 0, g2(x) 6= 0}.

This set is Borel measurable since f1, f2, g1, g2 are Borel measurable. To have strict inequality,

we need E such that (αQ1+βQ2)(E) 6= 0. Because, g1 and g2 are nonzero over E, Q1(E) 6= 0

and Q2(E) 6= 0. Since f1 and f2 are also nonzero, P1(E) 6= 0 and P2(E) 6= 0. For every

nonempty Borel-measurable subset F ⊆ E, the above argument holds. This proves the direct

part of the assertion.

On the other hand, suppose there exists E ∈ BX with the above definitions such that

for every nonempty Borel-measurable F ⊆ E, P1(F ) 6= 0, P2(F ) 6= 0, and f1 6= f2 over

F . Let Ki = {x ∈ X\N : gi(x) 6= 0} for i = 1, 2. It is clear that both E ∩ K1 6= ∅ and

E ∩ K2 6= ∅, otherwise either P1(E) = 0 or P2(E) = 0 which is a contradiction to our

hypothesis. This means that (E ∩ Ki) ⊂ E is a proper subset of E, and by hypothesis,

Pi(E ∩Kj) 6= 0 (i, j ∈ {1, 2}). This implies that (E ∩K1) ∩ (E ∩K2) 6= ∅. By definition

of (E ∩K1) ∩ (E ∩K2), we deduce that (αQ1 + βQ2)(E ∩K1 ∩K2) 6= 0. Thus for the set

E ∩K1 ∩K2 log-sum inequality holds strictly. Hence, the inequality would be strict. This

concludes the proof.

As an special case of Theorem 3.2, we obtain the following corollary.

Corollary 3.1. If Q = Q1 = Q2 in Theorem 3.2, then the convexity is strict if and only if

there exists a set

K =

{

x ∈ X :
dP1

dQ
6=

dP2

dQ
6= 0

}

such that Q(K) > 0.

Proof. From Theorem 3.2, the strict inequlity holds if and only if there exists E ∈ BX such

that dP1

dQ
6= dP2

dQ
6= 0 on E and for every proper F ⊂ E ∈ BX , P1(F ) > 0 and P2(F ) > 0.

Taking a nonempty K ⊆ E, the direct part of the assertion is proved.

For the reverse part, suppose there exists a set K as in the hypothesis. Let N be the

maximal null set of Q and let E = K\N . Now, it can be verified that for any proper

11



Borel-measurable subset F ⊂ E, we have P1(F ) > 0 and P2(F ) > 0. This proves the reverse

direction of the assertion.

Now, we use Theorem 3.2 and Corollary 3.1 to establish a proposition on global properties

of the mutual information. This can be considered as a generalization of a similar result in

[7] for channels with side information. However, we provide a rigorous proof for this more

general proposition, since later in the paper, we use some of the intermediate results.

Proposition 3.2. The mutual information (6) is concave with respect to P, convex with

respect to WQv
(·|x), and linear with respect to R.4

Proof. The linearity with respect to R is clearly seen by (6). The convexity with respect

to WQv
(·|x) follows by the convexity of D(WQv

(·|x)‖PWQv
) which can be verified by Theo-

rem 3.2.

To prove the concavity with respect to the input distribution P, let 0 < α < 1, β = 1−α,

and P = αP1 + βP2. By linearity, this implies that PWQv
= αP1WQv

+ βP2WQv
. Pick an

auxiliary probability measures Tv (conditional on v) over Y such that PWQv
≪ Tv; the

existence of such a measure is obvious. Since, WQv
(·|x) ≪ PWQv

and PWQv
≪ Tv, then

WQv
(·|x) ≪ Tv. By Proposition 3.1, we also know that D(PWQv

‖Tv) < ∞. Let us consider

the mutual information for a fixed value v, and denote it by I(P,WQv
). As a result, we can

expand it as

I(P,WQv
) =

∫∫

log2
dWQv

(·|x)

d(PWQv
)
dWQv

(·|x)dP

=

∫∫

[

log2
dWQv

(·|x)

dTv

− log2
d(PWQv

)

dTv

]

dWQv
(·|x)dP

=

∫∫

log2
dWQv

(·|x)

dTv

dWQv
(·|x)dP −

∫∫

log2
d(PWQv

)

dTv

dWQv
(·|x)dP

Now, we can use Fubini’s theorem to change the order of integration in the second term and

4Note that concavity, convexity, and linearity are with respect to the convex combination of the operands.
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apply Theorem 3.2 to obtain:

I(P,WQv
) =

∫∫

log2
dWQv

(·|x)

dTv

dWQv
(·|x)dP −

∫

log2
d(PWQv

)

dTv

d(PWQv
) (7)

≥α

∫∫

log2
dWQv

(·|x)

dTv

dWQv
(·|x)dP1 − α

∫

log2
d(P1WQv

)

dTv

d(P1WQv
)

+ β

∫∫

log2
dWQv

(·|x)

dTv

dWQv
(·|x)dP2 − β

∫

log2
d(P2WQv

)

dTv

d(P2WQv
)

Noting that P1WQv
≪ Tv, P2WQv

≪ Tv and using the above arguments, we can contract the

RHS to obtain

I(P,WQv
) ≥ αI(P1,WQv

) + βI(P2,WQv
).

Because, this holds for every v, we can integrate both sides of the above equation with

respect to R and deduce that

I(P,WQv
|R) ≥ αI(P1,WQv

|R) + βI(P2,WQv
|R).

This concludes the proof.

Proposition 3.2 addresses the concavity of the mutual information with respect to input

measures. In the following proposition, we address its strictness.

Proposition 3.3 (Strictness). The mutual information is strictly concave with respect to

the input measure if and only if the set

E =
{

(y, v) ∈ Y × V :
d(P1WQv

)

d(PWQv
)
6=

d(P2WQv
)

d(PWQv
)
6= 0

}

has (PWQv
× R)(E) > 0. Moreover, if Tv is a conditional probability measure on Y such

that PWQv
≪ Tv for all v ∈ V , then strict concavity holds if and only if the set

E =
{

(y, v) ∈ Y × V :
d(P1WQv

)

dTv

6=
d(P2WQv

)

dTv

6= 0
}

has nonzero measure with respect to the product measure Tv × R.

Proof. The proof follows from considering the proof of Proposition 3.2 together with Corol-

lary 3.1. For a fixed v, by Corollary 3.1 if there exists a set Ev such that
d(P1WQv )

d(PWQv )
6=

d(P2WQv )

d(PWQv )
6= 0 and PWQv

(Ev) > 0, then strictness holds. To have strictness in total, we need

to have it for R-almost everywhere. The proof of the special case is immediate by definition

of E.
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This concludes our discussion on convexity and concavity properties of the mutual infor-

mation.

3.2.3 Continuity

So far, we have discussed the compactness of the set of input probability measures and some

global properties of the mutual information. In this subsection, we discuss the continuity

of the mutual information in the sense of weak* topology. However, before expressing the

main result of this part, let us introduce a useful inequality.

Lemma 3.2. For a channel with side information as specified by WQv
(·|x) (2), let

|I|(P,WQv
|R) ,

∫∫∫
∣

∣

∣

∣

log2
dWQv

(·|x)

d(PWQv
)

∣

∣

∣

∣

dWQv
(·|x)dPdR.

Then, the following inequalities hold

I(P,WQv
|R) ≤ |I|(P,WQv

|R) ≤ I(P,WQv
|R) +

2

e ln 2
.

Proof. The first inequality is obvious. The second inequality follows from a simple obser-

vation that − 1
e ln 2

≤ x log2 x. As a result, we have |x log2 x| ≤ x log2 x + 2
e ln 2

. Using this

observation, the proof of the second inequality follows.

We now state and prove a novel sufficient condition for the continuity of mutual infor-

mation.

Theorem 3.3. Consider a channel with side information which is described by WQv
(·|x),

together with a closed collection of input probability measures PA(X). Suppose there exists

a measure T on (Y,BY ) such that WQv
(·|x) ≪ T and density function fT,Qv

(y|x) ,
dWQv (·|x)

dT
.

If

a. The function fT,Qv
(y|x) is continuous over X × Y × V , and fT,Qv

(y|x) log2 fT,Qv
(y|x)

is uniformly integrable over {T × P × R |P ∈ PA(X)}.

b. For fixed y and v, the function fT,Qv
(y|x) is uniformly integrable over PA(X).

Then, the mutual information function is bounded and weak* continuous over PA(X).

14



Proof. To show the continuity of I(P,WQv
|R), we need to show that for every sequence

Pn
w∗

→ P, we have I(Pn,WQv
|R) → I(P,WQv

|R). For this purpose, using Proposition 3.1,

similar to the proof of Proposition 3.2, we decompose the conditional mutual information

into two terms.

I(P,WQv
|R)=

∫∫∫

log2
dWQv

(·|x)

d(PWQv
)
dWQv

(·|x)dPdR

=

∫∫∫

log2
dWQv

(·|x)

dT
dWQv

(·|x)dPdR−

∫∫

log2
d(PWQv

)

dT
d(PWQv

)dR

=

∫∫∫

fT,Qv
(y|x) log2 fT,Qv

(y|x)dTdPdR−

∫∫

fT,P,Qv
(y) log2 fT,P,Qv

(y)dTdR.

Momentarily, we assume that both terms are finite, then we provide evidence for this as-

sumption. Thus, we need only to show that both terms are bounded and continuous over

PA(X).

Continuity of the first term: Since Pn
w∗

→ P, by Proposition A.2, we have T × Pn × R
w∗

→

T ×P×R. Because fT,Qv
(y|x) is continuous, so is fT,Qv

(y|x) log2 fT,Qv
(y|x). By hypothesis,

fT,Qv
(y|x) log2 fT,Qv

(y|x) is uniformly integrable over {T × P ×R |P ∈ PA(X)} (Definition

A.2). Therefore, using Theorem A.2, we deduce that
∫∫∫

fT,Qv
(y|x) log2 fT,Qv

(y|x)dTdPndR →

∫∫∫

fT,Qv
(y|x) log2 fT,Qv

(y|x)dTdPdR.

This proves the continuity of the first term. The finiteness of the first term is immediate by

the uniform integrability property.

Continuity of the second term: For fixed y and v, since fT,Qv
(y|x) is uniformly integrable

over PA(X), by Theorem A.2, we deduce that Pn
w∗

→ P implies the pointwise convergence

of fT,Pn,Qv
(y) → fT,P,Qv

(y). By continuity of the log2, we deduce the pointwise conver-

gence of fT,Pn,Qv
(y) log2 fT,Pn,Qv

(y) → fT,P,Qv
(y) log2 fT,P,Qv

(y). It only remains to show the

convergence of their integrals with respect to T ×R. For this purpose, we proceed as follows.

By Lemma 3.2 and its proof along with the log-sum inequality, for every n,

|fT,Pn,Qv
(y) log2 fT,Pn,Qv

(y)|≤
2

e ln 2
+ fT,Pn,Qv

(y) log2 fT,Pn,Qv
(y)

≤
2

e ln 2
+

∫

fT,Qv
(y|x) log2 fT,Qv

(y|x)dPn.

But, we have already shown that the integration of the RHS over T×R leads to a convergent

sequence of integrals. Thus, by the generalized Dominated Convergence Theorem [13, p. 59],
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we deduce that
∫∫

fT,Pn,Qv
(y) log2 fT,Pn,Qv

(y)dTdR →

∫∫

fT,P,Qv
(y) log2 fT,P,Qv

(y)dTdR

This implies the continuity of the second term. Note that its finiteness is obvious. Since

both terms are finite and continuous, we deduce the continuity of mutual information. This

concludes the proof.

So far, we have discussed the conditions for compactness of the set of input probability

measures and the strict concavity and continuity of the mutual information. The following

section demonstrates the application of these results for capacity analysis purposes.

4 Capacity analysis

In this section, we address the capacity analysis for continuous alphabet channels with side

information. We provide a coding and converse coding argument for the capacity value of

the channels of our interest, and we address the existence, the uniqueness, and the charac-

terization of the capacity-achieving input measure.

4.1 Channel capacity

Consider the channel of interest described by WQv
(·|x). Let g : X → Rk be a nonnegative

Borel-measurable function that satisfies the hypothesis of Lemma 3.1. Let Γ ∈ R
+k and

Pg,Γ(X) defined as in Lemma 3.1. We show that

C = sup
P∈Pg,Γ(X)

I(P,WQv
|R) (8)

is the capacity of the channel. For this purpose, we use the results of [7] to express the

coding and converse coding theorem for the case of continuous alphabet channels with side

information.

Lemma 4.1 (Converse Coding Lemma). Consider a collection of probability measures

Pg,Γ(X) on X. For any δ > 0, there exists n0 and ǫ > 0 such that for every code (f, φ) of

length n ≥ n0 with N codewords whose empirical measures all belong to Pg,Γ(X), if

1

n
log2N > sup

P∈Pg,Γ(X)

I(P,WQv
|R) + δ,
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then the maximum error probability satisfies e(Wn, f, φ) > ǫ.

Proof. The proof follows from [7, Lemma 6]. We note that, here, the channel has only

one strategy and we can consider Y × V as the output alphabet of our channel. Since

V is independent of the input, we can simplify the results of [7, Lemma 6] to obtain our

assertion.

By Lemma 4.1, we can easily verify that any rate R > C is not achievable. Suppose not,

i.e., suppose R > C is achievable. That is for every δ > 0 and ǫ > 0 there exists n0 such

that for every n > n0, there exists a code with at least ⌈2n(R−δ)⌉ and error probability less

than ǫ. But this is a contradiction to the assertion of Lemma 4.1.

Now, inspired by [7, Thm. 1], we state the coding theorem.

Theorem 4.1 (Coding Theorem). For every positive number δ, there exists an integer n0

and γ > 0 such that for block length n ≥ n0 for any prescribed codeword type P ∈ Pg,Γ(X)

there exists a code with N codewords, each of type P, such that

1

n
log2N > I(P,WQv

|R)− δ and e(Wn, f, φ) < 2−nγ.

Proof. The proof is by [7, Thm. 1]. First consider Y × V as the output alphabet of the

channel. Then, noting that the CSI, V , is independent from the input, we can simplify the

results of [7, Thm. 1] to obtain our assertion.

Since the result of Theorem 4.1 holds for every input measure, it holds for their supremum.

Hence, we can deduce that for every δ > 0 and sufficient large block length, there exist codes

with rate R > supP∈Pg,Γ(X) I(P,WQv
|R)− δ. Because this is true for every δ > 0, using the

Converse Coding Lemma, we deduce that the channel capacity is

C = sup
P∈Pg,Γ(X)

I(P,WQv
|R).

4.2 Existence

In this subsection, we give a sufficient condition for the existence of an optimal input measure,

say Po, such that the capacity is achievable by some code with codewords of type Po.
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Proposition 4.1. Let PA(X) denote a weak* compact collection of probability measures on

(X,BX) and let the channel be described by WQv
(·|x). If the mutual information I(P,WQv

|R)

is continuous over PA(X), then it is bounded and achieves its maximum on PA(X).

Proof. We claim that the range of I(P,WQv
|R) is bounded. Suppose not. Then, for every

n ∈ N , there exists Pn ∈ PA(X) such that I(Pn,WQv
|R) ≥ n. But the sequence (Pn)

∞
n=1

belongs to PA(X) which is a weak* compact family. By definition this means that there

exists a weak* convergent subsequence Pnk

w∗

→ P. By closedness of PA(X), we know that

P ∈ PA(X), hence I(P,WQv
|R) is finite. This is a contradiction to I(Pn,WQv

|R) ≥ n.

Thus, the range of mutual information function is bounded.

Since the range of mutual information is bounded, it has a supremum. Let us denote this

supremum value by M . By definition of supremum, for every n, there exists Pn such that

I(Pn,WQv
|R) ≥ M − 1

n
. By weak* compactness of PA(X), there exists a weak* convergent

subsequence Pnk

w∗

→ P. By continuity of I(P,WQv
|R), limk I(Pnk

,WQv
|R) → I(P,WQv

|R).

This requires that M = I(P,WQv
|R) which means that the maximum is achieved by P.

Since Pg,Γ(X) is weak* compact and I(P,WQv
|R) is continuous over Pg,Γ(X), by Propo-

sition 4.1, there exists a capacity-achieving measure in Po ∈ Pg,Γ(X). In the next subsection,

we address a condition for the uniqueness of the capacity-achieving measure.

4.3 Uniqueness

In this subsection, we address sufficient conditions for the uniqueness of the capacity-

achieving measure, a topic that that is of interest both from practical and theoretical stand-

points.

Proposition 4.2. Suppose PA(X) is a convex set of input measures and WQv
(·|x) denotes a

channel with side information. Assuming the existence of a capacity-achieving input measure

Po, it is unique upon the satisfaction of the hypothesis of Proposition 3.3.

Proof. Suppose there exists another input measure P∗ ∈ PA(X) that achieves the capacity,

also. For Po and P∗, if the hypothesis of Proposition 3.3 is satisfied, then their convex

combination achieves a higher mutual information, which is a contradiction.
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4.4 Characterization

Now, we show how to characterize the capacity-achieving probability measure. Let g : X →

Rk be a continuous positive function that satisfies the hypothesis of Lemma 3.1, and let G ∈

R+k. By Lemma 3.1, the set of probability measures Pg,Γ(X) is weak* compact. Moreover,

since the functionals
∫

gidP are linear over the space of probability measures, the constraints
∫

gidP ≤ Γi make Pg,Γ(X) a convex set. Suppose that the mutual information function is

weak* continuous over Pg,Γ(X). By Proposition 4.1, the mutual information function assume

its maximum over Pg,Γ(X). The problem is how to characterize this measure.

To characterize the capacity-achieving measure, we use the global theory of constrained

optimization [20] which uses Lagrange multipliers to facilitate the optimization problem.

Applying the results of [20, p. 217], we obtain the following result.

Lemma 4.2. Let C = supPg,Γ(X) I(P,WQv
|R). Then, there exists an element γ ∈ R+k such

that

C = sup

{

I(P,WQv
|R)−

k
∑

i=1

γi

(

∫

gidP − Γi

)

: for all P ∈ Pg,Γ(X)

}

.

Furthermore, this supremum is achieved by a probability measure P ∗ ∈ Pg,Γ(X) such that

γi
∫

gidPo = γiΓi for i = 1, · · · , k.

Proof. It suffices to show that our optimization problem satisfies the hypothesis of [20,

Theorem 1, p. 217]. Here, we have Pg,Γ(X) as the convex space we are optimizing over,
∫

gidP as the convex constraint functions, and the mutual information is a concave function

where its negative is our objective function over Pg,Γ(X). As we have discussed before,

Pg,Γ(X) is a nonempty, weak* compact, and convex set. Since mutual information is weak*

continuous over it, C is finite. By Theorem 1 in [20, p. 217], we deduce that there exists γ ≥ 0

that satisfies the hypothesis. This concludes the proof of the first assertion. Moreover, since

mutual information achieves its maximum over Pg,Γ(X), the second assertion holds.

To obtain the optimum probability measure in Lemma 4.2, we need some simplifying

necessary and sufficient conditions which we define as follows. Let

f(P) , I(P,WQv
|R)−

k
∑

i=1

γi

(

∫

gidP − Γi

)

. (9)
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It can be seen that for every P ∈ Pg,Γ(X), f(P) < ∞. This comes from the finiteness of

both terms. Note that the second term is finite by definition of Pg,Γ(X), and the finiteness

of the first term follows from Proposition 4.1. The weak* continuity and the concavity of

(9) follows, similarly. By definition of Gateaux differential [20, p. 171], if for θ ∈ [0, 1], the

limit

δf(Po, P) , lim
θ↓0

1

θ
[f(θP + (1− θ)Po)− f(Po)]. (10)

exists, then we call it the differentiation of f at Po with increment of P. If (10) exists for

all P ∈ Pg,Γ(X), we say that f is differentiable at Po. We state and prove the following

theorem.

Theorem 4.2. The supremum of f is obtained by Po ∈ Pg,Γ(X) if and only if f is differ-

entiable at Po and δf(Po, P) ≤ 0 for every P ∈ Pg,Γ(X).

Proof. To prove the necessity, take any P ∈ Pg,Γ(X). For 0 ≤ θ ≤ 1, let Pθ = θP+(1−θ)Po.

By convexity of Pg,Γ(X), Pθ ∈ PΓ(X). Since f attains its supremum on Po, then f(Pθ) ≤

f(Po) which implies that f(Pθ)−f(Po)
θ

≤ 0. This implies that δf(P
o
, P) ≤ 0 upon its existence.

Moreover, since f is a concave function with respect to P, we know that θf(P) + (1 −

θ)f(Po) ≤ f(Pθ). This implies that

f(P)− f(Po) ≤
1

θ
[f(Pθ)− f(Po)].

Since both f(P) and f(Po) are finite, 1
θ
[f(Pθ) − f(Po)] is bounded below for all values of

θ. Since θ → 0 implies that Pθ
w∗

→ Po, by weak* continuity of f , we have f(Pθ) → f(Po).

Moreover, 1
θ
[f(Pθ) − f(Po)] is bounded, then the existence of its deleted limit at θ = 0 is

immediate [14, p. 175]. Therefore, for all P ∈ Pg,Γ(X), δf(Po, P) exists and δf(Po, P) ≤ 0.

This concludes the proof of the necessity.

To prove sufficiency, we proceed by contradiction. Suppose the assertion is not true.

That is, there exists a probability measure P ∗ such that f(P ∗) > f(Po). By concavity of f ,

we would have

f(θPo + (1− θ)P ∗) ≥ θf(Po) + (1− θ)f(P ∗) ≥ f(Po)

which creates a contradiction to non-positiveness of the differentiation.

To characterize the capacity-achieving probability measure Po, by Theorem 4.2, it suffices
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to check the sign of δf(P
o
, P) for all P ∈ Pg,Γ(X). Recalling the finiteness of the following

terms, one can easily verify that

δf(P
o
, P)=

∫∫

[D(WQv
(·|x)‖PoWQv

)−

k
∑

i=1

γigi(x)]dPdR

−

∫∫

[D(WQv
(·|x)‖PoWQv

)−
k

∑

i=1

γigi(x)]dPodR

Noting that Po is the capacity-achieving measure, by Theorem 4.2 this means that
∫∫

[D(WQv
(·|x)‖PoWQv

)−
k

∑

i=1

γigi(x)]dPdR ≤ C −
k

∑

i=1

γiΓi (11)

for all P ∈ Pγ(X). The following result simplifies this condition.

Theorem 4.3 (Kuhn-Tucker conditions). The capacity-achieving measure is Po if and

only if there exists γ ≥ 0 such that

∀ x ∈ X,

∫

D(WQv
(·|x)‖PoWQv

)dR−

k
∑

i=1

γigi(x) ≤ C −

k
∑

i=1

γiΓi (12)

where the equality holds for Po-almost everywhere.

Proof. The inverse part can be verified immediately from Theorem 4.2 and (11). For the

direct part, since P is arbitrary, we can take P as dirac measures in different points, which

results in the asserted inequality. By (11) and Theorem 4.2 we conclude the optimality of

Po. For the rest of the assertion, suppose that it is not true. That is, there exists a set

E ∈ BX such that Po(E) > 0. Now taking the integration of LHS of (12) and decomposing

the integration over E and Ec, one can verify that this assumption leads to the inequality

C −
∑k

i=1 γiΓi < C −
∑k

i=1 γiΓi which is a contradiction.

Theorem 4.3 provides the necessary and sufficient conditions for the capacity-achieving

measure in its most general form for continuous alphabet channels with side information at

the receiver. Similar results are known for finite alphabet channels [1], [21] and [22]. For

these channels, systematic algorithms are known to find the capacity-achieving measure [22].

In contrast, such algorithms are not known for continuous alphabet channels. However, one

might be able to find the solution of Theorem 4.3 for special classes of channels.

Because of the importance of Theorem 4.3, let us rephrase the assertion of Theorem 4.3
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more intuitively. For a given probability measure P on (X,BX), the support is defined as

SX(P) = {x ∈ X| ∀ open U ∈ BX that contains x, P(U) > 0}.

The capacity-achieving measure is such that the equality in (12) occurs if and only if x ∈

SX(P).

In an effort to characterize the support of the capacity-achieving measure, suppose X =

C
n and let define ρ : X → R as

ρ(x) ,

∫∫

[D(WQv
(·|x)‖PoWQv

)−
k

∑

i=1

γigi(x)]dPdR +
k

∑

i=1

γiΓi − C. (13)

Let Z = C2n and consider the extension ρ : Z → C by replacing Re(xi) = zi and Im(xi) =

zn+i, corresponding to a natural embedding ξ : X → Z. This means that ρ(z) is real-

valued for z ∈ Rρ(Z), where Rρ(Z) denotes the range of ρ. For every set U ⊆ Z, let

XU = ξ−1(U ∩ Rρ(Z)) denote the inverse image of U under ξ. Using the properties of

analytic functions [23], we state and prove the following proposition.

Proposition 4.3. Let ρ(z) be analytic on an open set U ⊆ Z, and let XU be the inverse

image of U under ξ. If SX(Po) ∩XU has an interior point, then XU ⊆ SX(Po).

Proof. Suppose SX(Po) ∩ XU has an interior point, say for example xo. Then, there exists

an ǫ > 0 and an open ball of radius ǫ centered at xo, Bǫ(xo), such that Bǫ(xo) ⊆ SX(Po).

This means that the ρ(x) = 0 on Bǫ(xo), and consequently ρ(z) = 0 on ξ(Bǫ(xo)) ∩ U . Let

zo = ξ(x0). Since ρ(z) is analytic on zo ∈ U , there exists an open ball Br(zo) ∈ U (for some

r > 0) such that ρ(z) can be represented as a Taylor series expansion on Br(zo) [24]. Since

ρ(x) = 0 on Bǫ(xo), the coefficients of the Taylor expansion are all zero. This implies that

ρ(z) = 0 on Br(zo). By Uniqueness Theorem [24, p. 12], [23], we conclude that ρ(z) = 0 on

U . This means that ρ(x) = 0 on XU which implies that XU ⊆ SX(Po).

By Proposition 4.3, one can verify that if for some channel, the function ρ(z) is analytic

on Z, then either the support includes no interior point or it is equal to X .

This concludes our discussion on capacity-analysis of continuous alphabet channels with

side information. In Part II of this two-part paper, we use this framework to study the

capacity analysis problem for multiple antenna channels.
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5 Conclusion

In this part, we established a general analytical framework for capacity analysis of continuous

alphabet channels with side information (at the receiver). We studied the mutual information

of these channels along with some of its analytical properties such as strict concavity and

continuity. We established novel necessary and sufficient conditions for strict concavity

and continuity of the mutual information in the weak* topology. We used these results and

addressed issues regarding the existence, uniqueness, and the expression of capacity-achieving

measure.

The results of this work can be used for capacity analysis of different classes of channels.

Specifically, as will be shown in the Part II of this paper, these results are useful for capacity

assessment of multiple antenna fading channels, fast or slow, Rician or Rayleigh, with partial

or no CSI at the receiver, where the input probability measure could be subject to any

combination of moment constraints.

Appendix

A Preliminaries

In this appendix, we discuss some analytical notions and properties that are used throughout

this paper. Some of these results are new while others are the review of the previous work,

which we restate them here for the sake of completeness.

A.1 Weak* topology

Let (X,BX) be an LCH Borel-measurable space. The weak* topology is defined as follows.

Let C0(X) denote the space of continuous functions from X to R which vanish at infinity,

i.e.,

C0(X) = {f : X → R| f is continuous and it vanishes at infinity}.

By the Riesz representation Theorem [13], the dual space of C0(X) is isomorphic to the

space of Radon measures M (X) over the measurable space (X,BX) [13]. To study the effect
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of an operation over M (X), there are different topologies that can be considered on M (X).

The only crucial requirement is that the topology should be well behaved with respect to

the operation of interest. In probability theory, where the objects of interest are the set of

probability measures P(X) ⊂ M (X), weak* topology is used which is the weakest topology

on M (X) defined as follows. For each f ∈ C0(X), and every open set G ⊆ R, let

U(f,G) ,

{

µ ∈ M (X)
∣

∣

∣

∫

fdµ ∈ G

}

.

The collection of all subsets U(f,G) ⊂ M (X) forms a basis for weak* topology on M (X).

The collection of all subsets which are formed by any arbitrary union or finite intersections

of the basis subsets form the weak* topology.

A.2 Convergence

In weak* topology, the convergence phenomenon is called weak* convergence5 and defined as

follows. A sequence of probability measures converges weakly*, denoted by Pn
w∗

→ P if and

only if
∫

fdPn →
∫

fdP for all f ∈ C0(X) [13]. Since our focus is on probability measures

P(X) ⊂ M (X), where all measures have unit norm, this is equivalent to saying that a

sequence of probability measures converges weakly*, Pn
w∗

→ P , if and only if
∫

fdPn →
∫

fdP

for f ∈ Cb(X), where

Cb(X) = {f : X → R| f is continuous and bounded}

denotes the set of all bounded continuous functions.

Given two measures ν and µ over (X,BX), ν is said to be absolutely continuous with

respect to µ denoted by ν ≪ µ, if for every E ∈ BX such that µ(E) = 0, with ν(E) = 0. By

the Lebesgue-Radon-Nickodym theorem [13], there exists a µ-integrable function f such that

for every E ∈ BX , ν(E) =
∫

E
fdµ. The function f is unique µ-almost everywhere (µ-a.e.)

and is called the density (Radon-Nikodym derivatives) of ν with respect to µ, denoted by

f = dν
dµ
. As an example of a sequence of probability measures which is weak* convergent, let

us consider the following proposition.

Proposition A.1. Let (Pn) be a sequence of probability measures which are absolutely con-

5In textbooks on probability theory, the term vague is used instead of weak*.
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tinuous with respect to some measure µ (e.g. Lebesgue measure). For each n, let fn = dPn

dµ

denote the density of Pn with respect to µ, and let f be a function such that fn → f µ-a.e.

and
∫

fdµ = 1. Then, Pn
w∗

→ P, where P is the probability measure defined as P(E) =
∫

E
fdµ

for every E ∈ BX . Moreover, for every E ∈ BX , P(E) = limn Pn(E).

Proof. Because {fn} are density functions for probability measures {Pn} with respect to µ,

we have
∫

fndµ = 1. By Fatou’s lemma, for every E ∈ BX

P(E) =

∫

E

fdµ ≤ lim inf
n

∫

E

fndµ = lim inf
n

Pn(E).

By [17, p. 311], this implies the weak* convergence. Moreover, noting that
∫

E
fdµ +

∫

Ec fdµ =
∫

E
fndµ+

∫

Ec fdµ = 1, we deduce that
∫

E

fdµ = lim
n

∫

E

fndµ.

This concludes the second part of the assertion.

To establish some of our results in this paper, it is of interest to verify whether the weak*

convergence of a sequence of measures on one of these spaces implies the weak* convergence

on the sequence of product measures. The following proposition is quite useful for this

purpose.

Proposition A.2. Let (Pn) be a sequence of probability measures on (X,BX) and let T be

a probability measure on (Y,BY ). Then, Pn
w∗

→ P implies (Pn × T )
w∗

→ (P × T ).

Proof. For every open E ∈ BX ⊗BY , let Ey be as defined before. It is obvious that, for each

y, Ey is an open set in BX . Therefore,

(P × T )(E) =

∫∫

E

d(P × T )

=

∫

P(Ey)dT (By Tonelli’s Theorem)

≤

∫

lim inf
n

Pn(Ey)dT ([17, p. 311])

≤ lim inf
n

∫

Pn(Ey)dT (Fatou’s lemma)

≤ lim inf
n

(Pn × T )(E) (By Tonelli’s Theorem).

By [17, p. 311], this implies (Pn × T )
w∗

→ (P × T ) and concludes the proof.
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Note that this can be also generalized for products of higher order. After this brief

introduction to some necessary properties on convergence of probability measures, we now

proceed to discuss the convergence of integrals, which is used to prove the continuity of

mutual information.

A.3 Uniform integrability

Some common sufficient conditions for convergence of a sequence of integrals are the mono-

tone convergence theorem (MCT), the dominated convergence theorem (DCT), and the

generalized dominated convergence theorem (GDCT) [13]. However, in this paper, we face

a sequence of integrals whose convergence is not verifiable by any of these conditions. For

our purposes, a less common condition exists known as uniform integrability.

Recalling that Radon probability measures are regular [13], i.e., for every ǫ > 0, there

exists a compact subset K ∈ BX such that P(K) ≥ 1−ǫ, we express the following definition.

Definition A.1. Let P ∈ P(X). A collection of functions {fα}α∈A is called uniformly

P-integrable if

sup
α∈A

∫

Eα(c)

|fα| dP → 0, as c → ∞

where Eα(c) = {x ∈ X| |fa| > c}.

A more general definition of uniform integrability for positive measures is perhaps more

familiar. However, we emphasize that Definition A.1 is an equivalent statement to the more

general statement in the case of finite measures. We refer an interested reader for more details

to [13, p. 92] and [17]. In the following theorem, we show that the sequence of integrals of

a pointwise convergent sequence of uniformly P-integrable functions is converging.

Theorem A.1. Let P ∈ P(X) and let {fα}α∈A be uniformly P-integrable. Let (fn) be a

sequence from {fα}α∈A such that fn → f P-almost everywhere (P-a.e.). Then, f is integrable,
∫

fndP →
∫

fdP, and
∫

|fn − f | dP → 0.

Proof. By definition of uniform integrability, for every ǫ ≥ 0,

∃ cǫ such that ∀α ∈ A,

∣

∣

∣

∣

∫

Eα(c)

fαdP

∣

∣

∣

∣

≤
ǫ

3
for c ≥ cǫ.
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For every set E, let χE denote its characteristic function. Let gn,c = fnχEc
n(c). Since fn → f

P -a.e., then gn,c → gc P -a.e. Because |gn,c(x)| ≤ c for all x and n, by DCT, we have
∫

gn,cdP →
∫

gcdP. That is

∀ǫ > 0, ∃N such that

∣

∣

∣

∣

∫

Ec
n(c)

fndP −

∫

Ec(c)

fdP

∣

∣

∣

∣

≤
ǫ

3
for n ≥ N.

Now, by the triangular inequality
∣

∣

∣

∣

∫

fndP −

∫

fdP

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

En(c)

fndP

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ec
n(c)

fndµ−

∫

Ec(c)

fdµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E(c)

fdP

∣

∣

∣

∣

≤
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

This means that
∫

fndP →
∫

fdP. To prove the other part of the assertion, we recall that

since |fn − f | ≤ |fn|+ |f |, by GDCT it follows that
∫

|fn − f | dP → 0.

Another common scenario that arises in the context of convergence of integrals is the

case that we have a fixed integrand function but a sequence of probability measures. To deal

with such scenario, let us establish the following definition.

Definition A.2. Let PA(X) be a collection of probability measures over (X,BX). A function

f is called uniformly integrable over PA(X), if

sup
P∈PA(X)

∫

E(c)

|f | dP → 0, as c → ∞

where E(c) = {x ∈ X| |f | > c}.

Using Definition A.2, we state and prove a sufficient condition for the convergence of the

sequence of integrals of a function with respect to a weak* convergent sequence of probability

measures.

Theorem A.2. Let PA(X) be a closed collection of probability measures and let (Pn) be a

weak* convergent sequence in it. If f is a continuous function and uniformly integrable over

{Pn}, then
∫

fdPn →
∫

fdP.

Proof. For every c > 0, let E(c) = {x ∈ X| |f | > c} and χE(c) be its characteristic function.

By definition of uniform integrability of f over {Pn},

∀ ǫ > 0, n, ∃ cǫ > 0 such that

∫

E(c)

fdPn ≤
ǫ

3
for c ≥ cǫ.
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Let gc , fχEc(c) + cχE(c). Continuity of f over X implies the continuity of gc over X . By

weak* continuity of {Pn},

∀ǫ > 0, ∃N such that

∣

∣

∣

∣

∫

gcdPn −

∫

gcdP

∣

∣

∣

∣

≤
ǫ

3
, for n ≥ N.

By the triangular inequality,
∣

∣

∣

∣

∫

fdPn −

∫

fdP

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

(f − gc)dPn

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

gcdPn −

∫

gcdP

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(f − gc)dP

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

E(c)

fdPn

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

gcdPn −

∫

gcdP

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E(c)

fdP

∣

∣

∣

∣

≤
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

This means that
∫

fdPn →
∫

fdP which concludes the proof.

This concludes our discussion on analytical preliminaries for the first part of this paper.
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