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On the High-SNR Capacity of Non-Coherent

Networks

Amos Lapidoth∗

Abstract

We obtain the first term in the high signal-to-noise ratio (SNR) expansion
of the capacity of fading networks where the transmitters and receivers—while
fully cognizant of the fading law—have no access to the fading realization.
This term is an integer multiple of log log SNR with the coefficient having a
simple combinatorial characterization.

Keywords: Channel capacity, fading, high SNR, memory, multiple-antenna.

1 Introduction

In this paper we consider a discrete-time vector fading channel, where the transmit-
ted vector suffers from both multiplicative and additive noises. The multiplicative
noise takes the form of a matrix-valued stationary and ergodic process that multi-
plies the transmitted vector, and the additive noise takes the form of independent
and identically distributed (IID) isotropic Gaussian vectors. We only consider the
case where neither the realization of the additive noise nor of the multiplicative
noise is known to the transmitter and receiver; only their probability laws are given.
The mathematical model that we address is thus very similar to the “non-coherent”
flat-fading multiple-antenna channel model.

There is, however, an important difference. In the multiple-antenna channel
model we think of the components of the transmitted vector as being the signals
transmitted by co-located antennas. Similarly, the components of the received vec-
tors are viewed as the signals received at co-located antennas. Our model is more
general. We can think of the different components of the input vector as being
controlled by a single-user as in a single-user multiple-antenna communication sce-
nario, but we can also think of each component as being controlled by different
geographically separated users as, for example, in a multiple-user network where
each of the users employs a single transmit antenna. We can also envision that the
components of the transmitted vector are partitioned into disjoint groups where the
different groups are controlled by geographically separated users. This corresponds
to a network where the different geographically separated users may employ multiple
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transmit antennas of various numbers. Finally, in our setup the different components
of the input vector need not correspond to physically different transmit antennas.
We can also envision a scenario where they correspond to transmissions taking place
at different frequencies and/or times as in a network employing a slotted protocol.
Analogous scenarios can be envisioned for the received vector.

The various scenarios mentioned above differ not only in the allowed depen-
dencies between the different components of the transmitted vector. It turns out
that, at high signal-to-noise ratio (SNR), far more important is the structure of
the multiplicative noise that they imply. For example, if a certain receive antenna
and a certain transmit antenna operate at different time/frequency slots, then the
corresponding component in the multiplicative noise matrix will be deterministi-
cally zero. A similar situation occurs when a given transmitter is geographically
very far apart from a given receiver as could, for example, be the case in a cellular
system. For example, in Wyner’s linear cellular model [1] [2] the transmitters are
assumed to be uniformly spaced on a line, and each transmitter is received by only
two base-stations: the base station to its left and the base station to its right.

As we shall see, rather than the cooperation restrictions, it is these deterministic
zeroes that will determine the high SNR asymptotic behavior of channel capacity.
Very roughly, the main result of this paper is that, irrespective of the cooperation
allowed, at high SNR the capacity of the channel C is given approximately by

C ≈ κ∗ · log log SNR (1)

where the non-negative integer κ∗ can be computed combinatorially from the zeros
of the multiplicative noise.

The above result can be viewed as an extension of a result of [3] on multiple-
antenna fading channels. In the multiple-antenna scenario where the components
of the transmitted vector are geographically co-located and where the components
of the received vector are also co-located, there are typically no deterministic zeroes
in the fading noise. In this case it can be readily verified that our combinatorial
expression for κ∗ yields the value of 1, thus recovering the 1 · log log SNR asymptotics
of [3].

The rest of the this paper is organized as follows. In the next section we describe
the channel model and state the main result. In Section 3 we provide a proof, and
in the final section, Section 4, we summarize our results and discuss some possible
extensions.

2 Channel Model and Main Result

The channel we consider is a discrete-time channel where the time-k channel input
xk ∈ CnT is an nT-dimensional complex vector, where k ∈ Z is a discrete-time index
taking value in the integers Z; nT is a positive integer; C denotes the complex field;
and CnT denotes the nT-dimensional complex Euclidean space. We refer to nT as
the number of transmitters, and to the set

T = {1, . . . , nT} (2)

as the set of transmitters. For every t ∈ T we denote the t-th component of the
time-k input vector xk by xk(t). This corresponds to the signal transmitted at time
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k by Transmitter t. The time-k channel output Yk ∈ CnR corresponding to the
input xk is given by

Yk = Hkxk + Zk (3)

where nR is a positive integer that denotes the number of receive antennas and where

R = {1, . . . , nR} (4)

denotes the set of receivers. In the above, {Hk} is a matrix-valued stochastic pro-
cess such that at every time instant k the random matrix Hk is an nR×nT complex
random matrix, and the random vectors {Zk} are independent and identically dis-
tributed (IID), each taking value in CnR according to an isotropic circularly sym-
metric multivariate complex Gaussian law

Zk ∼ NC(0, InR
) (5)

where InR
denotes the nR×nR identity matrix. (In general, W ∼ NC(µ,Λ) indicates

that W−µ is a zero-mean circularly symmetric complex Gaussian random vector of
covariance matrix Λ.) We assume throughout that the processes {Hk} and {Zk} are
independent and that their joint law does not depend on the input sequence {xk}.
Denoting by Hk(r, t) the row-r column-t entry of the matrix Hk, and denoting by
Zk(r) the r-th component of the time-k additive noise vector Zk, we can re-write
(3) as

Yk(r) =
∑

t∈T

Hk(r, t)xk(t) + Zk(r), r ∈ R. (6)

To account for the possibility that some of the components of the fading matrices
might be deterministically zero we introduce the set Z

Z ⊂ R× T (7)

where if (r, t) ∈ Z then Hk(r, t) is deterministically zero at all times k ∈ Z:

(r, t) ∈ Z ⇒
(

Hk(r, t) = 0, ∀k ∈ Z

)

. (8)

As for the other components, we shall assume a finite second moment

E
[

|Hk(r, t)|
2
]

< ∞, (r, t) ∈ R× T (9)

and a finite differential entropy rate condition that we next describe. But first we
introduce some notation. Given a collection of random variables {W (α)}α∈A indexed
by a set A we denote, for any subset B ⊆ A, by W (B) the unordered collection
{W (α)}α∈B. With this notation and (7) we have that Hk(Zc) is the collection of
|Zc| (= nR · nT − |Z|) random variables

Hk (Z
c) = {Hk(r, t) : (r, t) /∈ Z} (10)

where we use Zc to denote the set complement of Z in R × T and we use | · |
to denote set cardinality. The finite differentiable entropy rate condition that we
require can be now stated as

h
(

{Hk (Z
c)}k∈Z

)

> −∞. (11)
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In the case where {Hk} is IID, this condition translates to the joint differential
entropy of the (nR · nT − |Z|) random variables {Hk(r, t), (r, t) /∈ Z} being finite.
In the more general case, (11) can be written as

lim
n→∞

1

n
h
(

H1(Z
c), . . . , Hn(Z

c)
)

> −∞ (12)

or even more explicitly as

lim
n→∞

1

n
h
(

{Hk(r, t)}, 1 ≤ k ≤ n, (r, t) /∈ Z}
)

> −∞. (13)

Notice that a stationary process {Hk} simultaneously satisfies (9) and (11) if,
and only if, it simultaneously satisfies (9) and the two conditions

h (H1(Z
c)) > −∞ and lim

k→∞
I (H1, . . . ,Hk−1;Hk) < ∞. (14)

We denote by CSU(E) the capacity of this channel under full cooperation con-
ditions when the input is subjected to the average power constraint E . That is,

CSU(E) = lim
n→∞

1

n
sup I(X1, . . . ,Xn;Y1, . . . ,Yn) (15)

where the supremum is over all joint distributions on X1, . . . ,Xn satisfying

1

n

n
∑

k=1

E
[

‖Xk‖
2
]

≤ E .

This is thus the capacity when a single-user controls the input vector xk ∈ C
nT,

and when a “super-receiver” has access to all the components of the received vector
Yk. Similarly, we define CSU,FB(E) as the single-user capacity but when there is a
noiseless feedback link so that the time-k transmitted signal Xk is allowed to depend
not only on the message to be transmitted but also on all the past channel outputs.
Clearly, CSU(E) ≤ CSU,FB(E) because the feedback link can always be ignored.

At the other extreme we define CMAC(E) as the sum-rate capacity for this channel
when it is viewed as a multiple-access channel (MAC) where the different compo-
nents of the input vector are viewed as separate users who wish to communicate
independent messages. Each user is assumed to be allowed a peak power of E . The
assumption of a “super-receiver” continues to hold. (We shall later see that this
assumption can be significantly relaxed.) We assume no feedback link. We thus
have,

CMAC(E) ≤ CSU,FB(nT · E). (16)

To state the paper’s main theorem we need to introduce the notion of a “power
chain”. To define this concept we introduce the following notation. For any trans-
mitter t ∈ T let Rt be the set of receivers that can “hear” it, i.e.,

Rt =
{

r ∈ R : (r, t) /∈ Z
}

. (17)

Analogously, for any receiver r ∈ R, let Tr denote the set of transmitters that r
“hears”:

Tr =
{

t ∈ T : (r, t) /∈ Z
}

. (18)
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Definition 1. We shall say that the κ-tuple (t1, . . . , tκ) ∈ T κ is a κ-length power
chain with respect to the set Z if

Rt1 6= ∅ (19)

and
Rtν \

⋃

1≤η<ν

Rtη 6= ∅, ν = 2, . . . , κ. (20)

We can now state the paper’s main result.

Theorem 2. Consider a vector fading channel (3) whose input takes value in CnT

and whose output takes value in CnR. Let the set Z ⊂ R×T be given, where R and
T are defined in (4) and (2) respectively. Assume that the stationary and ergodic
matrix-valued fading process {Hk} satisfies (8), (9), and (11). Further assume that
{Zk} are IID according to (5), that the process {Zk} is independent of {Hk}, and that
their joint law does not depend on the channel input sequence {xk}. Let CSU,FB(E)
and CMAC(E) be defined as above. Then,

lim
E→∞

{

CSU,FB(E)− κ∗ log log E
}

< ∞ (21)

where κ∗ = κ∗(nT, nR,Z) is the length of the longest power chain with respect to Z.
If, additionally, {Hk} has a Gaussian marginal, i.e., if the components of the ma-

trix H1 (and hence, by stationarity, of Hk for any k) are jointly circularly symmetric
and Gaussian, then

lim
E→∞

{

κ∗ log log E − CMAC(E)
}

< ∞. (22)

Moreover, in this Gaussian case, (22) is achievable with κ∗ single-user scalar detec-
tors. That is, there exist transmitters t1, . . . , tκ∗ ∈ T ; receivers r1, . . . , rκ∗ ∈ R; and
distributions for X under which the components of X are independent, under which
the peak constraints |X(t)| ≤ E , t ∈ T are satisfied almost surely, and such that

lim
E→∞

{

κ∗ log log E −
κ∗

∑

ν=1

I
(

X(tν); Y (rν)
)

}

< ∞. (23)

Note that since log log(aξ) − log log ξ converges to zero as ξ → ∞ with a > 0
held fixed, it follows from (16) and from the theorem that

lim
E→∞

{CSU,FB(E)− CMAC(E)} ≥ 0. (24)

Consequently, we can loosely say that, at high SNR, the capacity of a Gaussian
fading network is given by (1), where κ∗ = κ∗(nT, nR,Z), irrespective of whether
we impose individual peak power constraints or whether we impose combined av-
erage power constraints, irrespective of whether we allow cooperation between the
transmitters or not, and irrespective of whether feedback is available or not.
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3 Proof of Theorem 2

In this section we provide a proof of Theorem 2. We shall begin by showing that
it suffices to prove the theorem in the case where the fading {Hk} is memoryless,
i.e., when {Hk} are IID. We shall then separately prove the “converse” (21) and the
“direct” part (22) in the two corresponding subsections.

Let then {Hk} be some stationary and ergodic fading process with memory
satisfying (9) & (14), and let {H̃k} be an IID fading process of equal marginal so
that the law of H̃k is the same as the law of H1 (which is the same, by stationary,
as the law of Hk for any k ∈ Z).

That it suffices to prove the converse in the memoryless case follows because,
as shown by Moser [4, Chapter 8], the difference between the feedback-capacity of
the channel with fading {Hk} and the capacity of the channel with IID fading {H̃k}
is bounded in the SNR. For the sake of completeness we repeat Moser’s result in
Appendix A.

As to the direct part, we note that the capacity of the channel with fading
{Hk} cannot be smaller than that of fading {H̃k}. Indeed, if Q is any distribution
on CnT then the mutual information on the memoryless channel of fading {H̃k} is
achievable on the channel of fading {Hk} by considering inputs X1, . . . ,Xn that are
IID according to Q. Indeed, for such IID inputs

1

n
I (Xn

1 ;Y
n
1 ) =

1

n

n
∑

k=1

I
(

Xk;Y
n
1

∣

∣Xk−1
1

)

=
1

n

n
∑

k=1

I
(

Xk;Y
n
1 ,X

k−1
1

)

≥
1

n

n
∑

k=1

I (Xk;Yk)

= I (X1;H1X1 + Z1)

= I
(

X1; H̃1X1 + Z1

)

where the first equality follows from the chain rule; the subsequent from the indepen-
dence of X1, . . . ,Xn; and the subsequent inequality because reducing observations
cannot increase mutual information. Here we use Xm

ℓ to denote Xℓ, . . . ,Xm.
We shall thus proceed to prove the theorem assuming that the fading is mem-

oryless. In this case we shall omit the time index so that our assumptions on the
fading process can be now written as:

E
[

|H(r, t)|2
]

< ∞, (r, t) ∈ R× T (25)

h
(

H(Zc)
)

> −∞ (26)

(r, t) ∈ Z ⇒
(

H(r, t) = 0, almost surely
)

. (27)

We shall further assume that none of the rows of H is deterministically zero, i.e.,

∀r ∈ R ∃t ∈ T : (r, t) /∈ Z (28)
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or equivalently,
Tr 6= ∅, r ∈ R. (29)

This corresponds to the condition that every receiver “hears” at least one transmit-
ter. Analogously, we shall assume that none of the columns of H is deterministically
zero, i.e.,

∀t ∈ T ∃r ∈ R : (r, t) /∈ Z (30)

or equivalently
Rt 6= ∅, t ∈ T . (31)

This corresponds to the condition that every transmitter is heard by at least one
receiver. The above assumptions can be made without loss of generality because a
receiver that hears no signals (other than ambient additive noise) does not affect the
longest power chain and can also be ignored at the detector. Similarly, a transmitter
that cannot be heard by any receiver will never be an element of a power chain and
there is also no point in having it transmit any signal.

3.1 The Converse

In this section we provide a proof of (21) for IID fading {Hk} satisfying (25), (26),
and (27). We begin by considering the “ordering permutation” σ(x) of a given
nT-tuple x ∈ C

nT . This is the permutation that orders the components of x in
descending order of their magnitudes, resolving ties with preference to lower indices.
Thus, given an nT-tuple x ∈ CnT we set σ(X) to be the permutation τ : ν 7→ τν on
T that satisfies

|x(τ1)| ≥ |x(τ2)| ≥ · · · ≥ |x(τnT
)| (32)

and that resolves ties in favor of lower indices so that

|x(τν)| = |x(τν+1)| ⇒ τν < τν+1. (33)

The form in which ties are resolved does not play an important role in our analysis.
It is made here explicit because it is important that x ∈ CnT determine the ordering
permutation σ(x) uniquely.

If X is a random vector taking value in C
nT, then its ordering permutation σ(X)

is a random permutation. Since the number of permutation on T is nT!, it follows
that, irrespective of the distribution of X, the entropy of σ(X) is upper bounded by

H
(

σ(X)
)

≤ log nT! . (34)

Given any channel input X we can thus expand the mutual information I(X;Y)
between the channel terminals as:

I(X;Y) = I
(

X, σ(X);Y
)

= I
(

σ(X);Y
)

+ I
(

X;Y|σ(X)
)

≤ H
(

σ(X)
)

+ I
(

X;Y|σ(X)
)

≤ lognT! + I
(

X;Y|σ(X)
)

=
∑

τ : Pr[σ(X)=τ ]>0

I
(

X;Y|σ(X) = τ
)

Pr[σ(X) = τ ] + log nT! (35)
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The proof of the converse will now focus on the terms of the form

I
(

X;Y|σ(X) = τ
)

where τ is an arbitrary permutation satisfying

Pr[σ(X) = τ ] > 0.

Fix then such a permutation τ and let

Eτ = E
[

‖X‖2|σ(X) = τ
]

. (36)

We will show that corresponding to the set Z and to the permutation τ there is a
power chain of length κ = κ(Z, τ) such that

I
(

X;Y|σ(X) = τ
)

≤ κ · log(1 + log(1 + Eτ )) + c (37)

≤ κ∗ · log(1 + log(1 + Eτ )) + c (38)

where the constant c depends only on the law of H and on the permutation τ but
not on the power Eτ .

Note that once we establish (38), the converse will follow from (36) & (35) and
Jensen’s inequality by the concavity of the double-logarithmic function. We thus
proceed to construct the power chain and to then prove (37).

To simplify the typesetting describing the construction of κ(Z, τ) we shall use
[ν] for τν . Thus, conditional on σ(X) = τ we have that X([1]) has the maximal
magnitude among all the elements of X, and X([nT]) has the smallest magnitude.

Let j1 = 1. Assume that we have defined j1, . . . , jν . We then define jν+1 as

jν+1 = min

{

jν < ℓ ≤ nT : R[ℓ] \
ν
⋃

η=1

R[jν ] 6= ∅

}

(39)

where the minimum of an empty set should be understood as ∞. We then set

κ = max {1 ≤ ν ≤ nT : jν < ∞} (40)

and define

tν = [jν ] Bν = Rtν \
ν−1
⋃

η=1

R[tη ], ν = 1, . . . , κ. (41)

Thus, tν is the next strongest transmitter after tν−1 that can be heard by some
receiver that is uninfluenced by any of the stronger transmitters that are already
in the chain. The set Bν is the set of receivers that can hear tν but not any of the
stronger transmitters that are in the chain. Note that by (31) we have Rt1 6= ∅. In
fact, (t1, . . . , tκ) is a power chain with respect to Z, so that

κ ≤ κ∗. (42)

(Recall that κ∗ is the length of the longest power chain with respect to Z.) Also
note that the sets {Bν} are disjoint and that by (29) their union is R, i.e., they
form a partition of R:

R =
κ
⋃

ν=1

Bν Bν ∩ Bν′ = ∅ whenever 1 ≤ ν 6= ν ′ ≤ κ. (43)
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Finally, we define

Aν = {[jν ], . . . , [jν+1 − 1]} ν = 1, . . . , κ− 1 (44)

and
Aκ = {[jκ], . . . , [nT]} . (45)

The key properties of the constructions of κ(Z, τ), of the power chain (t1, . . . , tκ),
of the collection {Bν}, and of the collection {Aν} are as follows. The κ-tuple
(t1, . . . , tκ) is a power chain, so that κ ≤ κ∗, (42). The collections {Bν} and {Aν}
are partitions of R and T respectively. And conditional on σ(X) = τ the ran-
dom variables X(Aν) only influence Y (∪ν

η=1Bη); they do not influence any receiver
in R \ ∪ν

η=1Bη. That is, conditional on σ(X) = τ and on the random variables
X(Aν ∪ · · · ∪ Aκ), the random variables X(A1 ∪ · · · ∪ Aν−1) are independent of the
random variables Y (Bν).

Using these properties, we next prove (37). The key will be the following lemma:

Lemma 3. Let H be a random nR × nT complex matrix whose components are all
of finite second moment

E
[

|H(r, t)|2
]

< ∞, (r, t) ∈ R× T

where R = {1, . . . , nR} and T = {1, . . . , nT}. Let the set Z ⊂ R × T be the set of
pairs (r, t) such that H(r, t) is deterministically zero:

H(r, t) = 0 almost surely ∀(r, t) ∈ Z.

Assume that the joint differential entropy of the coordinates that are not in Z is
finite

h (H(Zc)) > −∞. (46)

Let t∗ ∈ T be fixed. Assume that Transmitter t∗ influences all receivers in the sense
that

(r, t∗) /∈ Z, ∀r ∈ R. (47)

Let X be a random vector taking value in C
nT whose component of largest magnitude

is almost surely t∗:

max
t∈T

|X(t)| = |X(t∗)|, almost surely. (48)

Assume the average power constraint

∑

t∈T

E
[

|X(t)|2
]

≤ E .

Finally, let Z take value in CnT according the multivariate Gaussian law NC(0, InR
)

and assume that H, Z, and X are independent.
Then there exists some constant c, which depends on the law of H but not on the

law of X or on its power E , such that

I(X;HX+ Z) ≤ log
(

1 + log(1 + E)
)

+ c. (49)
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Proof. Let Y = HX+ Z and let

D = {x ∈ C
nT : max

1≤t≤nT

|x(t)| = |x(t∗)|} (50)

so that (48) can be rewritten as Pr[X ∈ D] = 1.
The proof of the lemma is very similar to the proof of [3, Theorem 4.2]. It too

is based on the bound [3, Eq. (333)] :

I(X;Y) ≤ log πnR − log Γ(nR)

+ EX

[

nRE
[

log ‖Y‖2|X = x
]

− h(Y|X = x)
]

+ α
(

1 + log E
[

‖Y‖2
]

− E
[

log ‖Y‖2
])

+ log Γ(α)− α logα, α > 0. (51)

From this inequality it follows that for inputs X satisfying (48)

I(X;Y) ≤ log πnR − log Γ(nR)

+ sup
x∈D

{

nRE
[

log ‖Y‖2|X = x
]

− h(Y|X = x)
}

+ α
(

1 + log E
[

‖Y‖2
]

− E
[

log ‖Y‖2
])

+ log Γ(α)− α logα, α > 0, Pr[X ∈ D] = 1. (52)

We now proceed to analyze the various terms in the above. We begin with
showing that the supremum, which does not depend on E , is finite

sup
x∈D

{

nRE
[

log ‖Y‖2|X = x
]

− h(Y|X = x)
}

< ∞. (53)

To this end we use Jensen’s inequality to obtain:

nRE
[

log ‖Y‖2|X = x
]

≤ nR logE
[

‖Y‖2|X = x
]

, x ∈ C
nT

= nR log
(

E
[

‖HX‖2|X = x
]

+ E
[

‖Z‖2
])

, x ∈ C
nT

≤ nR log
(

E
[

‖H‖2F
]

· ‖x‖2 + nR

)

, x ∈ C
nT

≤ nR log
(

E
[

‖H‖2F
]

· nT · |x(t∗)|2 + nR

)

, x ∈ D (54)

where the second inequality follows from the Cauchy—Schwarz Inequality with
‖H‖2F =

∑

r,t |H(r, t)|2 denoting the squared Frobenius norm, and where the last

inequality follows by restricting x to be in the set D where ‖x‖2 ≤ nT|x(t∗)|2.
As to the differential entropy term in (53), we obtain two separate bounds. The

first is useful when ‖x‖2 is very small and is otherwise quite crude

h(Y|X = x) = h(Hx + Z)

≥ h(Z)

= nR log(πe), x ∈ C
nT . (55)

The second is

h(Y|X = x) ≥ h(Hx)

≥ h
(

Hx

∣

∣

∣
{H(r, t)}r∈R, t∈T \{t∗}

)

= h
(

{H(r′, t∗) · x(t∗)}r′∈R

∣

∣

∣
{H(r, t)}r∈R, t∈T \{t∗}

)

= nR log |x(t∗)|2 + h
(

{H(r′, t∗)}r′∈R

∣

∣

∣
{H(r, t)}r∈R, t∈T \{t∗}

)

= nR log |x(t∗)|2 + h
(

{H(r′, t∗)}r′∈R

∣

∣

∣
{H(r, t)}t∈T \{t∗}, (r,t)/∈Z

)

,

|x(t∗)| > 0. (56)
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Here the first inequality follows because conditioning cannot increase differential
entropy; the subsequent equality by expressing Hx as

Hx =







∑

t∈T H(1, t)x(t)
...

∑

t∈T H(nR, t)x(t)







=







H(1, t∗)x(t∗)
...

H(nR, t
∗)x(t∗)






+







∑

t∈T \{t∗}H(1, t)x(t)
...

∑

t∈T \{t∗}H(nR, t)x(t)






,

by noting that conditional on {H(r, t)}r∈R, t∈T \{t∗} the second term on the right
is deterministic, and by noting that the addition of a deterministic vector does
not affect a vector’s differential entropy; the next equality from the behavior of
differential entropy under scaling; and the final equality because it is pointless to
condition on deterministic random variables. Note that (46) guarantees that the
RHS of (56) is finite.

Inequalities (54), (55) and (56) combine to prove (53). The analysis of the other
terms in (52) and the choice of α = α(E) in (52) is identical to the analysis in [3,
Appendix II]:

log E
[

‖Y‖2
]

= log
(

E
[

‖HX‖2
]

+ E
[

‖Z‖2
])

≤ log
(

E
[

‖H‖2
]

E
[

‖X‖2
]

+ E
[

‖Z‖2
])

≤ log
(

E
[

‖H‖2F
]

E + nR

)

(57)

E
[

log ‖Y‖2
]

= E
[

log ‖HX+ Z‖2
]

(58)

≥ E
[

log ‖Z‖2
]

(59)

α∗ =
(

1 + log E
[

‖Y‖2
]

− E
[

log ‖Y‖2
])−1

(60)

where α∗ ↓ 0 with the SNR. See [3, Appendix II] for the details.

Note 4. The Gaussianity of the noise in the above lemma is not crucial. As in [3,
Appendix II] the result continues to hold whenever E[‖Z‖2] < ∞ is of finite second
moment and of finite differential entropy.

With the aid of this lemma we can now prove (37). We shall upper bound
I(X;Y|σ(X) = τ) in κ phases. In the first phase we shall upper bound this mutual
information by a double-logarithmic term, a constant, and another mutual infor-
mation term. This latter mutual information term will be upper bounded in the
second phase by a double-logarithmic term, a constant, and yet another mutual in-
formation term, which is then upper bounded in the third phase. In the final phase,
Phase κ, we upper bound the mutual information by a double-logarithmic term and
a constant only, thus terminating the calculation. Since each phase contributes a
double-logarithmic term, the κ phases contribute together a κ·log log Eτ , as required.
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The details now follow. In Phase 1 we expand mutual information using the
chain rule

I
(

X;Y
∣

∣σ(X) = τ
)

= I
(

X(T ); Y (R)
∣

∣σ(X) = τ
)

= I
(

X(T ); Y (B1), Y (Bc
1)
∣

∣σ(X) = τ
)

= I
(

X(T ); Y (B1)
∣

∣σ(X) = τ
)

+ I
(

X(T ); Y (Bc
1)
∣

∣Y (B1), σ(X) = τ
)

. (61)

The first term on the right of the above is easily treated using the lemma, because
conditional on σ(X) = τ , the component X(t1) (= X([1])) is of largest magnitude,
and it is heard by all the receivers in B1. Consequently, we have by Lemma 3

I
(

X(T ); Y (B1)
∣

∣σ(X) = τ
)

≤ log
(

1 + log(1 + Eτ)
)

+ c1 (62)

where the constant c1 is as in Lemma 3 independent of the SNR.
As for the second term on the RHS of (61) we use the chain rule once again to

obtain

I
(

X(T ); Y (Bc
1)
∣

∣Y (B1), σ(X) = τ
)

≤ I
(

X(T ), Y (B1); Y (Bc
1)
∣

∣σ(X) = τ
)

= I
(

X(T ); Y (Bc
1)
∣

∣σ(X) = τ
)

+ I
(

Y (B1); Y (Bc
1)
∣

∣X(T ), σ(X) = τ
)

= I
(

X(Ac
1); Y (Bc

1)
∣

∣σ(X) = τ
)

+ I
(

Y (B1); Y (Bc
1)
∣

∣X(T ), σ(X) = τ
)

≤ I
(

X(Ac
1); Y (Bc

1)
∣

∣σ(X) = τ
)

+ I

(

{H(r, t)} t∈T
r∈B1

; {H(r, t)} t∈T
r∈Bc

1

)

(63)

Here the last inequality follows by the data processing inequality, and the preceding
equality follows because Y (Bc

1) is conditionally independent of X(A1) given X(Ac
1).

Thus, we have by (61) and (62) that the original mutual information term is
upper bounded by a double-logarithmic term, a constant term, and another mutual
information term:

I
(

X;Y
∣

∣σ(X) = τ
)

≤ log
(

1 + log(1 + Eτ)
)

+ c1 + I

(

{H(r, t)} t∈T
r∈B1

; {H(r, t)} t∈T
r∈Bc

1

)

+ I
(

X(Ac
1); Y (Bc

1)
∣

∣σ(X) = τ
)

. (64)

The mutual information term

I
(

X(Ac
1); Y (Bc

1)
∣

∣σ(X) = τ
)

on the RHS of the above is now upper bounded in Phase 2. Notice that this term
corresponds to a “smaller” fading channel where the inputs A1 are immaterial, as
are the outputs B1. In Phase 2 we thus upper bound this term as follows:

I
(

X(Ac
1); Y (Bc

1)
∣

∣σ(X) = τ
)

= I
(

X(Ac
1); Y (Bc

1 ∩ B2), Y (Bc
1 ∩ Bc

2)
∣

∣σ(X) = τ
)

= I
(

X(Ac
1); Y (Bc

1 ∩ B2)
∣

∣σ(X) = τ
)

+ I
(

X(Ac
1); Y (Bc

1 ∩ Bc
2)
∣

∣Y (Bc
1 ∩ B2), σ(X) = τ

)

. (65)
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The first term can be bounded using the lemma because X(t2) is the component of
X(Ac

1) of largest magnitude, and it is heard by all receivers in Bc
1 ∩ B2:

I
(

X(Ac
1); Y (Bc

1 ∩ B2)
∣

∣σ(X) = τ
)

≤ log
(

1 + log(1 + Eτ)
)

+ c2,

for some constant c2.
The second term in (65) can be expanded in analogy to (63) to yield

I
(

X(Ac
1); Y (Bc

1 ∩ Bc
2)
∣

∣Y (Bc
1 ∩ B2), σ(X) = τ

)

≤ I
(

X(Ac
1), Y (Bc

1 ∩ B2); Y (Bc
1 ∩ Bc

2)
∣

∣σ(X) = τ
)

= I
(

X(Ac
1); Y (Bc

1 ∩ Bc
2)
∣

∣σ(X) = τ
)

+ I
(

Y (Bc
1 ∩ B2); Y (Bc

1 ∩ Bc
2)
∣

∣X(Ac
1), σ(X) = τ

)

= I
(

X(Ac
1 ∩Ac

2); Y (Bc
1 ∩ Bc

2)
∣

∣σ(X) = τ
)

+ I

(

{H(r, t)} t∈Ac

1

r∈Bc

1
∩B2

; {H(r, t)} t∈Ac

1

r∈Bc

1
∩Bc

2

)

.

The mutual information term

I
(

X(Ac
1 ∩Ac

2); Y (Bc
1 ∩ Bc

2)
∣

∣σ(X) = τ
)

is now upper bounded in Phase 3. This process is continued until the final phase,
Phase κ, when the term

I
(

X(Ac
1 ∩ · · · ∩ Ac

κ−1); Y (Bc
1 ∩ · · · ∩ Bc

κ−1)
)

= I
(

X(Aκ); Y (Bκ)
)

is upper bounded using the lemma by a double-logarithmic term and a constant
without an additional mutual information term. Indeed, the component X(tκ) is of
largest magnitude among the terms in X(Aκ) and it influences all the receivers in
Bκ.

It is thus seen that performing a total of κ phases yields the bound (37) and
hence, by (42), also (38). The converse now follows from (38) and (35) using Jensen’s
inequality because the double-logarithmic function is concave and because, in view
of (36),

∑

τ : Pr[σ(X)=τ ]>0

Pr[σ(X) = τ ] · Eτ = E
[

‖X‖2
]

. (66)

3.2 The Direct Part

To prove the direct part we shall demonstrate that, under the Gaussian marginals
assumption, if (t1, . . . , tκ) ∈ T κ is any power chain with respect to Z then we can find
a distribution on X under which its components are independent (thus guaranteeing
achievability under multiple-access conditions) and such that

lim
E→∞

{

κ · log log E − I(X;Y)
}

< ∞. (67)

The proof that this mutual information is achievable with scalar single-user detectors
will be described separately.

Fix then some such power chain (t1, . . . , tκ) ∈ T κ. Consider now a distribution
for X under which the components of X are independent with marginals that can
be described as follows. If some t ∈ T is not in {t1, . . . , tκ}, we set X(t) to be
deterministically zero

t /∈ {t1, . . . , tκ} ⇒ (X(t) = 0, a.s.) . (68)
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As to the other components of X , we choose them to be circularly symmetric with
squared magnitudes whose logarithms are uniformly distributed on an interval that
will be described later:

log |X(tν)|
2 ∼ Uniform

(

log x2
min,ν, log x

2
max,ν

)

, ν = 1, . . . , κ. (69)

Here
0 < x2

min,ν < x2
max,ν ≤ log E , ν = 1, . . . , κ (70)

will be specified later. (See (93) & (94).) Note that with this choice of the marginals,

h
(

log |X(tν)|
2
)

= log log
x2
max,ν

x2
min,ν

, ν = 1, . . . , κ. (71)

Since (t1, . . . , tκ) is a power chain, it follows that for every 1 ≤ ν ≤ κ we can
find a receiver rν ∈ R such that

rν ∈ Rtν \
ν−1
⋃

η=1

Rtη . (72)

Thus, Receiver rν can hear Transmitter tν

(rν , tν) /∈ Z (73)

but it is uninfluenced by the transmitters t1, . . . , tν−1

(rν , tη) ∈ Z, η = 1, . . . , ν − 1. (74)

It may be influenced by transmitters tν+1, . . . , tκ but those, as we shall see, will be
chosen to have powers that are much smaller than the power assigned to Transmit-
ter tν .

The mutual information I(X;Y) can be now lower bounded as follows:

I(X;Y) = I ({X(tν)}
κ
ν=1;Y)

=

κ
∑

ν=1

I (X(tν);Y| {X(tη)}
κ
η=ν+1

)

≥
κ
∑

ν=1

I (X(tν); Y (rν)| {X(tη)}
κ
η=ν+1

)

. (75)

Here the first equality follows by (68); the second by the chain rule; and the subse-
quent inequality by restricting the set of observables in each of the terms.

We shall next show that with a judicious choice of the constants

{xmin,ν}, {xmax,ν}, ν = 1, . . . , κ

in (69) we can guarantee that each of the κ terms in (75) grows double-logarithmically
in the SNR.

The term that is easiest to deal with is the term I(X(tκ); Y (rκ)). It corresponds
to the mutual information across the terminals of a Ricean fading channel with
additive Gaussian noise:

Y (rκ) = H(rκ, tκ)X(tκ) + Z(rκ).

14



Indeed, by our choice of rκ, non of the transmitters t1, . . . tκ−1 influences it (74),
and the other transmitters were chosen deterministically zero (68). This mutual
information term can therefore be handled using the results from [3] on the Ricean
fading channel.

The other terms, however, are more complicated. Consider the expression

I
(

X(tν); Y (rν)
∣

∣X(tν+1) = x(tν+1), . . . , X(tκ) = x(tκ)
)

(76)

for some 1 ≤ ν < κ. By (68) and (74) it follows that we can express Y (rν) as:

Y (rν) = H(rν , tν)X(tν) +W (rν) (77)

where

W (rν) =
κ
∑

η=ν+1

H(rν , tη)x(tη) + Z(rν), 1 ≤ ν < κ. (78)

Since the components of H are jointly Gaussian, it follows that under the condition-
ing in (76), the pair (H(rν , tν),W (rν)) are jointly Gaussian. They are not, however,
independent because the components of H may be dependent. We thus need to
analyze the mutual information across the Ricean fading channel when the additive
noise and the multiplicative noise are jointly Gaussian and dependent. The following
lemma does just that.

Lemma 5. Let the pair of complex random variables (H,W ) be jointly Gaussian,
and assume that the pair is independent of the complex random variable X. Assume
that X has a finite second moment and that it is of finite differential entropy. Then,

I(X ;HX+W ) ≥ h(X)−E
[

log |X|2
]

+E
[

log |H|2
]

−E

[

log
(

πe
(

σH +
σW

|X|

)2
)

]

. (79)

where σ2
W , σ2

H > 0 are the variances of W and H respectively. Consequently, if the
magnitude of X is almost surely larger than the positive constant xmin > 0, then

I(X ;HX +W ) ≥ h(X)− E
[

log |X|2
]

+ E
[

log |H|2
]

− E

[

log

(

πe

(

σH +
σW

xmin

)2
)]

, |X| ≥ xmin, a.s.. (80)

If, additionally, X is circularly symmetric, then

I(X ;HX +W ) ≥ h
(

log |X|2
)

+ log π + E
[

log |H|2
]

− E

[

log

(

πe

(

σH +
σW

xmin

)2
)]

, |X| ≥ xmin, circ. sym.. (81)

Proof. First note that the assumptions that X has a finite second moment and
finite differential entropy guarantee that the logarithm of its magnitude is of finite
expectation [3, Lemma 7.7] so that the lemma’s claim is meaningful.

The proof proceeds by expressing I(X ;HX +W ) as

I(X ;HX +W ) = h(HX +W )− h(HX +W |X) (82)
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and by then bounding the terms on the RHS. We begin with the first:

h(HX +W ) ≥ h(HX +W |H)

≥ h(HX|H)

= h(X) + E
[

log |H|2
]

(83)

where the first inequality follows because conditioning cannot increase differential
entropy; the second because conditional on H the random variables X and W are
independent; and the subsequent equality from the behavior of differential entropy
of complex random variables under deterministic scaling.

As to the other term in (82), we note that conditional on X = x, the random
variable HX +W is Gaussian. Hence,

h(HX +W |X) = E
[

log |X|2
]

+ h

(

H +
W

X

∣

∣

∣

∣

X

)

= E
[

log |X|2
]

+ E

[

log πe · Var

(

H +
W

X

∣

∣

∣

∣

X

)]

≤ E
[

log |X|2
]

+ E

[

log πe

(

σH +
σW

|X|

)2
]

(84)

where σ2
H and σ2

W are the respective variances of H and W .
Combining (83) and (84) with (82) yields (79), which combines with the mono-

tonicity of the logarithm function to imply (80). Finally, to obtain (81) we note that
if X is circularly symmetric then

h(X)− E
[

log |X|2
]

= h
(

log |X|2
)

+ log π (85)

which follows, for example, from [3, Eqs. (320) & (316)].

To apply the lemma to the analysis of (76)–(78) we need an estimate on the
variance of W (rν). But such an estimate can be readily found using the Cauchy—
Schwarz inequality. Under the conditioning in (76), we have from (78)

Var(W (rν)) ≤ E
[

|W (rν)|
2
]

= E
[

|Z(rν)|
2
]

+ E





∣

∣

∣

∣

∣

κ
∑

η=ν+1

H(rν, tη)x(tη)

∣

∣

∣

∣

∣

2




≤ 1 +

κ
∑

η=ν+1

E
[

|H(rν, tη)|
2
]

·
κ
∑

η=ν+1

|x(tη)|
2

≤ 1 + E
[

‖H‖2F
]

· (κ− ν) max
ν<η≤κ

x2
max,η. (86)

It thus follows from Lemma 5 and from (86) that the mutual information in (76)
will satisfy

lim
E→∞

{

log log E − I
(

X(tν); Y (rν)
∣

∣X(tν+1) = x(tν+1), . . . , X(tκ) = x(tκ)
)

}

< ∞

(87)
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uniformly over all {x(tη), η = ν + 1, . . . , κ} satisfying

xmin,η ≤ |x(tη)| ≤ xmax,η, η = ν + 1, . . . , κ (88)

whenever both

lim
E→∞

x2
min,ν

1 + E[‖H‖2F ] · (κ− ν)maxν<η≤κ x2
max,η

= ∞ (89)

(so that the last term on the RHS of (81) tends to zero) and

lim
E→∞

{

log log E − log log
x2
max,ν

x2
min,ν

}

< ∞ (90)

(so that by (71) the first term on the RHS of (81) has the right asymptotic growth.)
Since (89) and (90) guarantee uniform convergence in (87) it follows that they also
guarantee that

lim
E→∞

{

log log E − I
(

X(tν); Y (rν)
∣

∣X(tν+1) . . . , X(tκ)
)

}

< ∞, ν = 1, . . . , κ (91)

and hence, by (75), they also guarantee that

lim
E→∞

{

κ · log log E − I
(

X;Y
)

}

< ∞ (92)

as we had set out to prove.
To conclude this part of the proof it is thus only required to find choices for

{xmin,η, xmax,η}κη=1 that will guarantee that both (89) and (90) hold. An example of
such a choice is:

xmax,η = E1/η, η = 1, . . . , κ (93)

xmin,η = E1/(η+1) log E , η = 1, . . . , κ. (94)

Having established the achievability of (22) we now set out to prove that this
can also be achieved using κ∗ scalar single-user detectors. We do so by showing that,
with our choice of X, (91) implies that

lim
E→∞

{

log log E − I
(

X(tν); Y (rν)
)

}

< ∞, ν = 1, . . . , κ. (95)

Since I
(

X(tν); Y (rν)
)

is achievable with a single-user detector, this will conclude
the proof. To prove that (91) implies (95) we will show that

lim
E→∞

{

I
(

X(tν); Y (rν)
∣

∣X(tν+1), . . . , X(tκ)
)

− I
(

X(tν); Y (rν)
)}

= 0, ν = 1, . . . , κ.

(96)
To this end we upper bound this difference as:

I
(

X(tν); Y (rν)
∣

∣ {X(tη)}ν<η≤κ

)

− I
(

X(tν); Y (rν)
)

= I
(

X(tν); {X(tη)}ν<η≤κ, Y (rν)
)

− I
(

X(tν); Y (rν)
)

= I
(

X(tν); {X(tη)}ν<η≤κ

∣

∣Y (rν)
)

≤ I
(

X(tν), Y (rν); {X(tη)}ν<η≤κ

)

≤ I
(

X(tν), Y (rν), {H(rν, tη)}ν<η≤κ; {X(tη)}ν<η≤κ

)

= I
(

{X(tη)}ν<η≤κ; Y (rν)
∣

∣ {H(rν, tη)}ν<η≤κ, X(tν)
)

. (97)
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Here the first equality follows from the independence ofX(tν) and {X(tη)}ν<η≤κ; the
second equality from the chain rule; the subsequent inequality from the chain rule
and the nonnegativity of mutual information; the subsequent inequality by adding
observations; and the last equality because {X(tη)}ν<η≤κ is independent of the pair
(X(tν), {H(rν, tη)}ν<η≤κ). Conditional on

{H(rν, tη)}ν<η≤κ = {h(rν , tη)}ν<η≤κ

the distribution of H(rν , tν) is Gaussian with some variance ǫ2 > 0, which does not
depend on the realization of {H(rν, tη)}ν<η≤κ. (Note that by (26) and (73) ǫ2 is
strictly larger than zero.) Consequently, if we additionally condition on X(tν) =
x(tν) we obtain that the mutual information between Y (rν) and {X(tη)}ν<η≤κ is
the same as the mutual information between {X(tη)}ν<η≤κ and Ỹ where

Ỹ =

κ
∑

η=ν+1

h(rν , tη)X(tη) +W (98)

and where
W ∼ NC

(

0, 1 + ǫ2|x(tν)|
2
)

is independent of {X(tη)}ν<η≤κ. Now

E





∣

∣

∣

∣

∣

κ
∑

η=ν+1

H(rν , tη)X(tη)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

{H(rν , tη)}ν<η≤κ, X(tν)



 =

κ
∑

η=ν+1

|H(rν, tη)|
2
E
[

|X(tη)|
2
]

(99)

because the components of X are independent and circularly symmetric (and hence
of zero mean). By the data processing inequality and the Gaussian channel capacity
formula we now obtain:

I
(

{X(tη)}ν<η≤κ; Y (rν)
∣

∣ {H(rν, tη)}ν<η≤κ, X(tν)
)

≤ E

[

log

(

1 +

∑κ
η=ν+1 |H(rν, tη)|2E[|X(tη)|2]

1 + ǫ2 · |X(tν)|2

)]

≤ E

[

log

(

1 +

∑κ
η=ν+1 |H(rν, tη)|

2
E[|X(tη)|

2]

1 + ǫ2 · x2
min,ν

)]

≤ log

(

1 +

∑κ
η=ν+1 E[|H(rν, tη)|2]E[|X(tη)|2]

1 + ǫ2 · x2
min,ν

)

≤ log

(

1 +
E[‖H‖2F ] · (κ− ν) ·maxν<η≤κ{x

2
max,η}

1 + ǫ2 · x2
min,ν

)

→ 0 (100)

where the second inequality follows because |X(tν)| ≥ xmin,ν with probability one;
the third inequality follows by Jensen’s inequality; and the final limiting behavior
follows because we have chosen {xmin,η, xmax,η} so that (89) hold.

The upper bound (97) and (100) now combine to prove (96).
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4 Discussion and Summary

In this paper we considered non-coherent fading networks with additive and mul-
tiplicative noises. We have shown that, at high SNR, the capacity of the network
grows like an integer multiple of log log SNR. This integer multiple is determined
by the location of the deterministic zeroes of the fading matrix. Loosely speaking,
this integer can be viewed as the effective number of parallel channels that can be
supported by the network, i.e., as the maximal number of point-to-point single-user
scalar channels that can be supported by the network in a manner that will allow,
with proper power allocation, negligible cross-interference.

It is felt that this integer is an important parameter of the network, but that far
more parameters are needed to obtain more precise approximations of the system’s
throughput.

It has been pointed out to me by Shlomo Shamai that in some broadcast scenarios
the fading levels experienced by the different users may be highly correlated so that
the assumption that the non-zero components of the fading matrix are of finite joint
differential entropy may be violated. Such scenarios can be nevertheless sometimes
addressed using our results by noting that in broadcast scenarios the achievable
rates are determined by the marginals of the network law [5]. Thus, in some such
scenarios one can replace the fading matrix with a fading matrix whose rows are
independent, but such that each row is of the same law as that in the original matrix.

A On Memory and Feedback at High SNR

In this appendix we show that if the stationary and ergodic fading process {Hk}
satisfies (9) and (14) then the difference between the channel’s capacity and the
capacity of the memoryless channel of IID fading {H̃k}, where the law of H̃k is
identical to the law of H1, is bounded in the SNR.

This proof is taken almost verbatim from [4] and is included here only for the
sake of completeness. We denote the message to be transmitted by M , and we
assume that the time-k transmitted input Xk is now a function of M and of the
previous outputs Yk−1

1 . The proof, as in for example [5, Section 8.12], is based on
Fano’s inequality and on an upper bound on n−1 · I(M ;Yn

1 ).

1

n
I
(

M ;Yn
1

)

=
1

n

n
∑

k=1

I
(

M ;Yk

∣

∣Yk−1
1

)

(101)

=
1

n

n
∑

k=1

(

I
(

M,Yk−1
1 ;Yk

)

− I
(

Yk−1
1 ;Yk

)

)

(102)

≤
1

n

n
∑

k=1

I
(

M,Yk−1
1 ;Yk

)

(103)

≤
1

n

n
∑

k=1

I
(

M,Yk−1
1 ,Hk−1

1 ;Yk

)

(104)
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=
1

n

n
∑
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I
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1 ,Hk−1

1 ,Xk;Yk

)

(105)

=
1

n

n
∑
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(
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k−1
1 ,Xk;Yk

)
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(
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1 ;Yk
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k−1
1 ,Xk

)

)

(106)

=
1

n

n
∑

k=1

I
(

H
k−1
1 ,Xk;Yk

)

(107)

=
1

n

n
∑

k=1

(

I
(

Xk;Yk

)

+ I
(

H
k−1
1 ;Yk

∣

∣Xk

)

)

. (108)

Here the first two equalities follow from the chain rule; the subsequent inequality
from the non-negativity of mutual information; the following inequality from adding
random matrices; the subsequent equality follows sinceXk is a deterministic function
of M and Yk−1

1 ; then we have used the chain rule again; (107) follows since

I
(

M,Yk−1
1 ;Yk

∣

∣H
k−1
1 ,Xk

)

= 0; (109)

and finally we have used the chain rule once more.
The term I(Xk;Yk) does not depend on the memory in the fading process and

is thus identical for {Hk} and for {H̃k}. As for the other term, we upper bound it
as follows:

I
(

H
k−1
1 ;Yk

∣

∣Xk

)

≤ I
(

H
k−1
1 ;Yk,Hk

∣

∣Xk

)

(110)

= I
(

H
k−1
1 ;Hk

∣

∣Xk

)

+ I
(

H
k−1
1 ;Yk

∣

∣Xk,Hk

)

(111)

= I
(

H
k−1
1 ;Hk

∣

∣Xk

)

(112)

≤ I
(

H
k−1
1 ,Xk;Hk

)

(113)

= I
(

Hk;H
k−1
1

)

+ I
(

Hk;Xk

∣

∣H
k−1
1

)

(114)

= I
(

Hk;H
k−1
1

)

. (115)

The feedback capacity of the channel with fading {Hk} can thus exceed the capac-
ity of the memoryless fading channel with equal-marginal fading {H̃k} by at most
I
(

Hk;H
k−1
1

)

, which does not depend on the SNR and which, by assumption (14), is
finite.
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