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Abstract— Applying the Riemann geometric machinery of
volume estimates in terms of curvature, bounds for the mininal
distance of packings/codes in the Grassmann and Stiefel man
folds will be derived and analyzed. In the context of space e
block codes this leads to a monotonically increasing minima
distance lower bound as a function of the block length. This
advocates large block lengths for the code design.

Index Terms— Sphere packings, space-time codes, Gilbert-
Varshamov/Hamming bounds, Stiefel/Grassmann manifold

|I. INTRODUCTION

This work is inspired by Barg and Nogin's paper [1] forbo
asymptotic packing bounds in the Grassmann manifold, bastﬁdg
on an asymptotic expression for the volume of metric balls.

The basic estimates defining the bounds are given by the

known Gilbert—Varshamov and Hamming (or sphere packin

inequalities: In a compact manifold/ without boundary
furnished with a topological metri¢, let us denote the volume
of the metric ball of radiug) asvol B4(0) (this quantity is

presupposed to be independent of its center). Then for any

given dy there exists a packing (or cod€) C M with the
prescribed minimal distanc&, and cardinality|C| such that

vol M

— < volB,(d
C] < vol By(do)

(Gilbert-Varshamov)

@)

while for any packing/cod€ c M with data(dy, |C|)

vol M

VOle(%do) S T

(Hamming)

(2)

holds.

Taking for M the complex Grassmann manifolef ,, of
k dimensional complex subspaces ©f, Barg and Nogin
derived closed form expressions

. s 2nk+o(n)
(Sln ﬁ)

(%) 2nk+o(n)
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(geodesic distance)
vol By(6) = 3

(chordal distance )

asn — oo, leading to
1 1
Vk arcsin (W) < dy < 2Vkarcsin <W> (4)

Eo_o 1\

for geodesic, respectively chordal distance (defined latgr
whereasR denotes the rate

1
R = —log,|C| (6)
n

Furthermore Han and Rosenthal [2] recently derived upper
nds on the minimal distance (more general: on the diyersi
pace time codes) for packings on the unitary grbiip).
general capacity and performance analysis of space time
es in Rayleigh flat fading MIMO scenarios without channel

W
gate information at the transmitter [3], [4], [5], [6] renled

that the appropriate coding spaces are indeed

« the (scaled) complex Grassmann manifdlﬁn (set of

k dimensional linear subspaces ©f), if the channel is

unknown at the receiver

. the (scaled) complex Stiefel manifold,® (set of k
orthonormal vectors irC") if the channel is known at
the receiver.

Herek corresponds to the number of transmit antennasrand
to the block length of the codes and the work in [1] refers to
G, @sn — oo while [2] refers toV," ask = n.

The aim of this work is to close the gap between those
two results by deriving bounds on the minimal distance for
codes/packings ir¢ , V¥ for arbritrary(k, n) (section IlI):
Applying the bounds (1): (2) with equality, the main task is
to solve the equation

By(d)=c, ceR @)

for (minimal) distancess in G, V¥, with respect to
some appropriate distance measdteTo this end volume
estimates for the volume of (small) bal3;(¢) induced by
curvature bounds faff,,, andV,", come into play. Associated
comparison spaces with constant curvature and simple wwlum
forms provide bounds foB;(d). In particular the lower bound
turns out to permit a simple closed form expression with
respect to(k, n). Its analysis culminates in Theorem IV.1 for
the geodesic minimal distance lower bound and Corollarg V.
for the minimal distancel, of the corresponding space time
codes. Surprisingly it turns out, that the minimal distadge
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grows at least proportional tg'n, while keeping the rate and and

the transmit power per time step constant. That is, incngasi vol V€. = vol U(n)/vol U(n — k)
the block length enhances the possible minimal distanees, th kun n n ;
in coding spaces with large block lengths there exists codes _ H 521 = H 27 (11)

with potentially better error performance than in 'smatiding

spaces. Since most of the space time coding research efforts ¢ ) ) ) )

the literature deal with small dimensional coding spaceh suFor Vy,, s a Riemannian manifold the concept of geodesics

asU(k) (e.g. [6]), future research in the more gene@4l and geodesic distance can be applied to obtain a canonical
1 nl

)

Vk(:’n promises performance gains. distance measurée’: Denoting the tangent space of the unitary

Apart from space time codes recent developments in tHEPUP U(n) by u(n) consisting of skew-Hermitiam-by-n
design of space frequency codes [7], [8] also indicate thE@UICeS, tangents df,,, may be represented as
the relevant coding spaces are subspaces of large dimahsion A Bt
Stiefel and Grassmann manifolds. Thus the achieved resultgn) > X = <B 0
here may be of considerable importance for space frequency
code design. and 1 )
This article proceeds as follows. Section Il deals with nota (rV)? = 2| X|12 = < ||AlI2 + || B||? (13)
tional conventions and basic definitions concerning thef&ti 2 2
and Grassmann manifolds (the coding spaces for space timéSofhe squared geodesic length of the geodesic connecting
space frequency codes). In section Ill explicit bounds fer t ¥ = (§) € Vi, with @ = (expX)(§) € V,”,. Here
minimal distance will be calculated and compared to resuftgP denotes the matrix exponential and the geodesic distance
obtained elsewhere. Further analysis on the lower bourld viEtween arbitrary pointsl’, &’ ¢ V7 follows from the
be performed in section IV, culminating in Theorem IV.1. [téSometric transformatiow = ¥'~'¥’ and® = ¥'~'¢".
implications for the minimal distance in coding theory will The canonical embedding (8) &, into the vector space

be pointed out in Corollary IV.2. Finally section V gives a(C"**, <-,->¢) motivates the definition of another topologi-
summary of the results. cal ('chordal’) metric/distance

—_ 1\
i=n—k+1 i=n—k+1 (2 )

) , Aecu(k), Be CmRxk (12)

dV(®,0) = ||® - T, &, T e VT (14)
Il. THE COMPLEX STIEFEL AND GRASSMANN MANIFOLDS ’
The complex Stiefel and Grassmann manifolds togeth@hich is important for space time coding, where it represent
with their topological metrics (coding distance functionthe the decision _crlterlon at the maxmum-hkehhood recejviér
language of coding theory) considered in this work contgituth® channel is known at the receiver (‘coherent’ case), see
the focus of this section. For the analysis in later sectivas [4], [6]. Note, thatd"" is entirely different from the geodesic
also need some explicit curvature computations and rigx)rdél'Stancerv- Nevertheless we hatle
proofs, which can be found in the appendices A and B. -

Readers who are mainly interested in the results concernfgpposition 11.1
packings/coding and who are willing to accept the (quite FOr k = n or k < % the metricsd” and " are locally
standard) differential geometric facts can read this eacti  €quivalent, thus in sufficiently small neighborhoods there
without reference to the appendices, where further detaits ~ €Xist constants:"’” > 0, 5¥ > 0 such that
be found. V 43V 1% vV 3V

A survey of the geometry of theeal Stiefel and Grassmann prd-sri sad (15)
manifolds aimed at non-specialists can be found in?[9] holds

and for an elementary introduction to differential georicetr . ] ] ]
concepts see e.g. [10]. This equivalence links the abstract (geodesic) sphereipgck

problem to space time coding. The restriction to the cases
. . k=mn andk < Z is mainly for convenience, since the main
C =3 '
A. The Stiefel manl_foldfk,n . analysis will concentrate oh < n.
The (complex) Stiefel manifold Proof: Lemma B.1, B.2, B.3 in Appendix B [ ]
Ve, ={®c0F|old =1 8
" { | J ®) Remark 11.2
(1 denotes the identity matrix) can be equipped with the struc- While it is an easy exercise to figt' = % (Lemma B.1),
ture of anU(n)-normal homogeneous space, which justifies 4 concrete values farV have been obtained rigorously.

the coset representation However, fork = 2, n = 4,6, 8 numerical simulations led
C ~ 1 0 ~ F Vo _=x
Vk-,n = U(n) /(0 U(n—k)) , P=0 ( (1)) (9) o« 2:0.9°
((i) € U(n)), in particular 2At first sight the proposition seems obvious, but one has ke iato

account thatl" is expressed in terms &, ¥ € V,C , while r"" is expressed
dimg V,Sn = dim¢ U(n) —dim¢ U(n— k) = k(n—£) (10) interms of the space of tangents and these two Spaces agel lyithe matrix
exponential which can not be written in closed form compappeéndix B.

DThe complex case considered here is similar to the real aztsim some Furthermore unliked"', Y is NOT induced by (geodesics with respect to)
places certain peculiarities of the complex structure cam play the seemingly canonical embeddih’an C €"**, compare Appendix A-1.2



B. The Grassmann manifoldy , (@, € V;£,). Comparingd® with the geodesic distancé’

The (complex) Grassmann manifold (21) between two subspaces we observe

Gl ={(@) [®eVS,} (16)  Proposition 1.3

of all k-dimensional linear subspacé®) of C™ also carries
the structure of & (n)-normal homogeneous space with coset

representation whereas3® =1 and o€ = z.
o k ~ -1
G, =Um) /(U ) @ =eet ™ a7)

(with ®! := (1,0)d) and

BYdY < r¢ < a%d” (25)

I1l. BOUNDS FOR THE MINIMAL DISTANCE
Now let us specialize the general packing/coding bounds

dime GY | = k(n — k) (18) (2),(2). Set oo
' Vi . d
The total volume ofGY, is (M, d) := {EG%” dG)) (26)
vol ng = vol qu,]n/ vol U(k) and (compare (10), (18))

n ; k :
27t 277 (29)
=1 — = ) k2n—k), M=V
—1!/H —1) D := dimg M = ’ Fon 27
i=n—k+1 (i ) j=1 G ) 1R, {2k(n —-k), M= G‘E,n @

Tangents become for the two cases of interest. In the sequel other symboés lik

0 -—RBf (n—k)xk « are used generically to denaté” or o when specialized
X={p o ) BE€C (20) o the corresponding spacey’,, Gy ,,. Denote by

with squared geodesic lengi| X ||? = | B||2, but there is an v(r) := vol B(r) (28)
alternative notation in terms of the vector of principal ksg
between subspaces: To simplify matters let us assurie:/2
whenever we are in contact with the Grassmann manifold. T
is no restriction, since fat > n /2 we can always switch to the
orthogonal complement. Then there are precigelyrincipal
anglesd; between the subspacés})) and ((exp X) (3))-
Performing a _singular value decomposition on the tangentsl, — 7Jq(vol M) <ro < 21}71(\/01 M) — 7 (29)
(20) one obtains (compare A-1.3)Bl; = ||9]|.2 thus the 2nR AR

geodesic distance” between((§)) and((exp X) (§)) reads o relaxed w.r.t. coding distancels using (15), (25)

1
G 1 vol M 2 vol M -
" = —||X|le = ||B|le = |9,z 21 — gt 2ot —.
251Xl = 18]l = 19 @) o= ot (Y5 ) Sdo< S0 (Yo ) = o (290)
As for V,fn there is also a different distance measdfein  So packing bounds are related to the coding bounds by simply
ng induced by the maximum-likelihood receiver, which casettinga = g = 1, thus replacing the (topological) metric

be derived from the following geometric picture: distances by geodesic distances. Due to the rather difficult

. " v o
Spherical embeddindJnlike for the Stiefel manifold, there to Ol?ta'“ explicit value fora™ in (15) we foF‘%S on the.
is no canonical embedding ofC . into Euclidean space packing bounds (29a) for most of the remaining analysis,

unless choosing a representing7 unitary framhe in each keeping in mind the simple relationship between statements

subspacg®) € GY . Nevertheless there exists an interestinﬁbOUt packings and statements about space time coding.

embedding ofG¢, into Euclidean space given in [11]: For To_ obtain the desired bounds for the minim_al distance
c . o . g,’owded by (29) we need closed form expressions for the

® < V., there is an well-defined associated orthogon . L

projectiof;l volumewv of small balls inM. As has been already indicated

" in the introduction, this is a difficult task in general: The
Py = 227: C" — (2) (22) " canonical volume forms o6'¢ and V;C are elaborate to
of norm ||P — k/n1||? = k(n — k)/n andtr P = k, which calculate. Alternatively a common tool to compute volumes
justifies the embedding in Riemannian geometry arises from curvature, using Jacobi
, , vector fields (see e.g. [12] for details). Unfortunately eedi
G = S" 2(Vk(n—k)/n) CR* 7', (23) @pplication can not be performed since we would have needed
(®) — Pp — % 1 a diagonalization ofXY — Y X for each horizontal (compare
A-1.1) | X|| = ||[Y]] = 1 in u(n) written in closed form. But
there are simple volume estimates which will be presented in
[lI-A. In 1lI-B the results will be compared to those already
obtained in [1], [2], in a few (computational simple) cases.

the volume of the geodesic ball of radiusin M, which is
ﬂri“giependent of its center by left invariance of the Riemanni
metric. With this notation the Gilbert-Varshamov (1) and
Hamming bound (2) for packings on M can be compactly
rewritten as

This motivates the 'chordal’ topological metric
1

(@), (¥)) = [sind||,2 = 7

|Po — Pyl (24)



A. Bishop/G@inther volume bounds

Observe that in the lower rate regim@ still grows with n

The method for volume computations in Riemannian maH Gi,,.. but slowly decreases i, while in the high rate
ifolds using Jacobi vector fields can be looked up in [158gimer is strict monotone with respect to, expecting the

theorem 3.101]. For € R let

D—1 r
1 D— . D—

= <ﬁ) |S 1‘/0 (sin k)Pt dt  (30)

denote the volume of the geodesic ball of radiusn the

manifold of constant curvatureand letk < xk < &k be defined

by (compare (A.5), (A.4))

1
K= p— min Ric(e;, ;)

o (r)

Lo (31)
= max K(X)Y)
IX1=Y =1
then we obtain monotone volume boundgr) < v(r) <
vy (1) for arbitrary0 < r < 2= by
vi(r) =), vu(r) == v"(r) (32)

From\ <k = v"(r) < v*r) andK > 0 in M (A.6)

intervals to become disjoint.

So, while the high rate requirement is too restrictive, the
results for low rates are unsatisfactory in part. But theegeh
analysis of the lower bound in section IV will come up with
interesting results, supporting this approach. To clatifg
presentation let us summarize the results so far in the

Proposition IIl.1
The inequalities(35) provide approximate bounds on
the (geodesic) minimal distance for packings/space time
codes on the Stiefel (coherent case) and Grassmann (non-
coherent case) manifolds for any admissi@ten). In par-
ticular the lower bound irf{35) is computational simple and
guarantees the existence of corresponding packings/codes

Especially for the Stiefel manifold these explicitly caeted
bounds appear to be new in the context of coherent space time

we can further relax to zero, which yields the simple uppercoding.

volume bound

vu(r) =00(r) = ‘BD| rP (33)

A lower volume bound comes from an upper bountbr K.

Inserting tangents, Y (12), (resp. (20)) into (A.4) subject to chordal distanceA -

[ X1 = [IY]] = 1 yields

2 (Uk)= Vkﬂ?k)
K(X,)Y)<k=43 (V& k<n) (34)
1 (GY,)
Plugging this bounds into (29a) we we end up with
L oy_1(/Vol M < po < 9(pF)-1 vol M\
ro = (v") ( onF )_7’0_2(” ) ( onFR )—7’0 (35)
With these settings an explicit (Maple-) calculation rdeda
E\n| &k 2k 3k 4k
1 [1.57,3.14] [1.06,3.49] [0.941, —1] [0.886, 1]

{0.500,1.05}{0.595, 1.40}{0.630, 1.71}

2 |[1.58,—1] [1.38,—1] [1.32,—1] [L.29,—1]
{0.771, -1} {0.909, -1} {0.973,—1}
3 |[1.74, —1] [1.66,—1] [1.63,—1] [L61,—1]
{0.977, -1} {1.15,—1} {1.24,-1}
I ([1.92,—1] [1.92,—1] [1.89,—1] [1.88,—1]

{1.15,-1} {1.36,—1} {1.46,—1}

[ro,70] for Vi€, and {ro, 70} for Gf , with respect to (35) forR = 1

k\n) k 2% 3k 4k

1 [[0.0031, 0.0061] [0.0165, 0.0330] [0.0223, 0.0446] [0.0251,0.0502]
{0.001,0.002} {0.0055,0.0110}{0.0098,0.0197}

2 [[0.0700,0.140] [0.172,0.348] _ [0.203,0.412] _ [0.217, 0.441]
{0.0341,0.0682} {0.0877,0.176} {0.122,0.245}

3| [0.217,0.440] [0.416,0.808] _ [0.467,1.04] _ [0.490, L.11]
{0.122,0.246}  {0.242,0.504} {0.309,0.664}

1 [0.403,0.847] _ [0.678, —1] [0.743, 1] [0.771, —1]
{0.242,0.504} {0.422,0.992} {0.517,1.75}

[ro,7o] for Vkon and{ro, 7o} for Gk ” with respect to (35) folR = 10

(=1 in the tables means, that Maple could not find

solution, due to approximation error/too large sphereiyadi

B. Comparisons with related results in the literature

Han and Rosenthal [2v] obtained bounds on the scaled

d—k in the unitary casek

V% = U(k). Based on a numerically calculated exact volume
they extracted three upper bounds. The following table show
their (best) upper bounds (2nd row) fdr = d¥'/(2v/2) in
U(2) (in part relying on the results in [13]) for different rates
R (1st row) together with the upper bounds obtained here (3rd
row)

n,

R | 229 279 30 316 332 345 350 4.98
A 0675 0.619 0.597 0.580 0.558 0.542 0.535 0.327
% | 140 1.01 0.909 0.843 0.785 0.742 0.727 0.409

. . . \4 \%
Note, that equality in the (rough) estima < =

(Lemma B.1) has been forced in the third row of the table to
convert the geodesic distances computed by a Maple program
into chordal distances. Consequently the bounds of [2] are
tighter than the bounds obtained here, since in the case of
unitary matrices there are more specialized (but less géner
methods available to obtain bounds.

As already stated in the introduction another (asymptotic)
result has been obtained by Barg and Nogin. For the non-
asymptotic case they presented an exact volume formula [1,
eq. (11)] for regions in the (real and complex) Grassmann
manifold.

vol B(r

k ”—Z)'
) =2"1GK ”'H 2(n—k — i)

/0<191<"'<19k<77/2 d¥y . ..dJ0 x (36)

19ll2<r

k
a H sin ;)
=1

(n=2k)+1 (599, H(sin2 v — sin? 9;)?

j<li



which can be computed in polar coordinates, compare A-for n > k, resp.n > k + 1. The proof of (40) relies on the

Although (36) is exact, it does not provide a closed form fa@imple estimate

varying dimensions. Moreover the computations are elabora T(M +1)

compared with the ones done here, such that the evaluation of —~=m+1)(m+2)-... - M

(29) become intractable. P(m +1) (43)
> (m + 1)A4—m > m]W—m

IV. ANALYSIS OF THE LOWER BOUND 1 . . :
form, M € ;IN.M —m € N. SinceD,, ; > 0 it suffices to

The lower bound for the (geodesic) minimal distange hokan :7 pPrk > 1 for all adm|35|ble(k n). This will
guarantees the existence of corresponding packings/dodes |, proven by induction ovek andn.

to (33) we can explicitly solve the lower bound in (35):

Dy 1 vol M

To ~ onR ’ |BD")’C|

with D,, ;, defined asD in (27), thus

C

k,n °
B7) 1) Bii=2/a0(3/2)=7>1
2) Induction overk

M
1 V(D —— N
Dn,k _ 2nk _ 6]€2 , €= {2’ Gkén (27’) Bk+1,k+1 _ 2\/7—TF(]<;2/2 + (IC + 1/2) +1)
Tk By k L(k?/2+ 1Tk +1)
Then k2/2 4 1)kt+1/2
> - g 724D
@3
Theorem IV.1
The (geodesic) minimal distaneg in M can be lower k2/§r1>k 2VmV/E2 /2 41
bounded by
1\ 75 > Vér > 1
ro 2 (5) 7 (38) k=1
ThUSBkyk > lvkzl
with the right hand side monotonically increasing as a 3) Induction ovemn > k
function ofn for n > k. Asymptotically .
[k ~
lim ro = T (39) B ont1 _ Pk/22n—k)+k+1)T(n—k+1)
n=oo 2 Bim T(k/2(2n—k)+1)  T(n+1)
holds. —_—
In particular this establishesraonotonically increasingpwer = (Tf‘ 1) ... (mtk) >1
estimate forr, common for V¢, and G§,, which is not @3 (m+1)- ... (M +k)
obvious from the picture drawn from the explicit calculato sincem —m = n(k — 1) — k?/2 + k > k2/2 > 0.

of ro for rate R = 1 in the previous sections. Of course,

the theorem also holds for the (topological) minimal distan Thus for everyk > 1 we haveBy,, > 1V">’f

do = Lry, connecting this result with space time codm@kn:
theory. 1) By = F(Ig)(g)(l) -1
2) Induction overk
Proof: -
Setq := 27 "8/Dnr gndb := (I;"lnj‘i‘)1/D””c Thenrg = a-b Bijikra _ Dk + 2)F(k " 1)1_[ o I'(4) 1
and from (27")a is monotonically increasing as a function of B k41 Lk +1) Hfj; (%)
— 9—R/2k
n with lim,, oo a = 2~ Thus By i1 = 1 Vi
Forb we show 3) Induction overn > k + 1
b>1 (40) = "
—~
and Brnt1 Fk(n—k)+k+1)T(n—k+1)
lim b=k (41) Bin  Dk(n—k)+1) T(n+1)
n—oo H,—/
and the theorem follows. m
. Do . (m+1)~...~(m—|—k)>1
n,k — = ~
For the two cases of interest is given as (using @Ml ... (k) —

(A.10),(11),(19))

\ i —m=nk-1)—-kK+k > k—-1>
vol VE, B Tk — k)24 1) sincem — m = n( ) + 1 >0
W = (2v/1) - T() and it follows for everyk > 1, that B ,, > 1V, >¢41
pPnk = ek , as desired.
vol GY, , L2k(n—k)/2+ 1) [[;2, T()

Let us now prove (41). At firs{2/x7)*/P»* — 1 and
n—oo

B2k(n—k)| i NG
| | i T (42) H;?:l L(j)Y/ Pror —> 1 holds. So it remains the evaluation



of With respect to the coding distancésve obtain instead
L(Dy /24 1)

1/Dn ke
iy (D2esl2 1) " oo dstnee
n=o0 \ T[iy—py1 I'(2) (\/;M, d) = (]Vf, \/HE d) ,
Stirling’s formula reads either £’ denotes asymptotic equiv- e 1, M=V (45)
alence) : % M =GS,

T(m+1) ~ %(%)m or T'(m) ~ \/%(%)m whereasgu% (p > 1 denoti_ng the signal to noise ratio)
is (a lower bound of) the first order term (the so called
and by D,, , ~ 2nk we deduce diversity sum, our metric here) in the expansion of the Cbern
’ bound for the pairwise error probability, compare [4, fotasu
1/Dns (17)(18)(19)(20)]: The factor of for G stems from the

Dn k
D, ’
(F(Dn,k/2+ 1) )”D"ﬁ V21 Dni/2y) =57 slightly different ’effective’ transmit powep := 4((1'17%

[T ey T I 2 (1)? compared to the known channel effective transmit power
i=n—k+1 i \e - ._ pn : ; 1-— -
0 := 4z, satisfying 50 < 0o <0 whereasp > 1,n > k
! is understood. Collecting all formulas we finally infer from
B —1/Dn 4 Dmkl/D""“ Dk Theorem IV.1:
TVeF Vae [ L2yl
[ | | E— W(z) Corollary V.2
1 -t 1 Givenp > 1 andn > 2k, there exist space time block
~ 7 - /P X codes with minimal distancé, lower bounded by
(Hi:nkarl ﬁ) \/— \/_ 1 L;n—R
~ /,L n /,L n n,k
4 do=~"—1/7102> /7|5 (46)
« k « k\2

\/me_l/Dn,k Z?:n7k+1“né ] ) ) )
’ whereasy is determined byl15), resp.(25), D,, ;. is defined
—V2ek in (27) (resp.(27’)), and p in (45).
~Vk Thus the performance (which scales wifgl) potentially
_ increases monotonically at least proportionally o
This proves (41) ]
The last statement in the corollary follows from the observa
tion, that the diversity (essentially the inverse of the Qg
bound for the pairwise error probability) as a basic perfor-
A remarkable coincidence arises from Barg/Nogin’s resultaance measure for space time codes [4] is a homogenous
for the chordal distance i}, . Denoting the lower bound in polynomial. The first order term coincides with the metffc
(5) by é¢ we find while all higher order terms scale with a power@f when
8o = lim ro (44) code design is interpreted as a constrained packing problem
nreo (considering the higher order terms as constraints aaegrdi
therefore, the geodesic lower bounglobtained from the flat to a normalized distance distribution).
geodesic volume estimat€ (r) < v(r) asymptotically equals
the (asymptotic) exact chordal lower bound (5). This seems
reasonable since in flat space the geodesic distance cefncid V. CONCLUSIONS

with the Euclidean (chordal) distance. The framework in [1], [2] had been successfully generalized
Apart from the asymptotics, let us consider the lower boung ine stiefel manifold/C | n > k, and oG, co > n >

(38) of Theorem IV.1. It guarantees the existence of packys ysing the completely different method of Riemannian
ings with minimal distance:, bounded monotonically from \,jyme bounds (Proposition 111.1). Unlike the exact volume
below in Vi 1esp.Gy whenn grows. In coding theory formyla the lower bound can be relatively simple analyzed as
(V,fn =VEVE,, dV), resp. (G}Em = /EGE, . d%), function of (k,n) for bothGY, andV,’,, leading to Theorem
represent the coding spaces for space time block codes &, resp. Corollary IV.2. Although the used estimates aver
the Rayleigh flat fading channel unknown to the transmittéiuite conservative they apply (in principle) in any Riemiann
and known, resp. unknown, channel at the receiver. Therfack®mogeneous spaces.

\/% serves as a constraint, holding the transmit power atThe connection to the coding theory of space time block
each time step constant for different choices(bfn), thus codes advocates further efforts in finding codes in the space
provide a fair comparison of codes from different coding’,. resp.Gy,,, for n much larger thark. Since the minimal
spaces. In a Riemannian manifoltd with metric g the distances grow proportionallytg/% while the transmit power
mapping(AM, g) — (M, \2g), A > 0, is isometric, leading per time step remains constant, there is a considerablerperf
immediately to the scaled geodesic minimal distafice- \rq. mance impact to expect, when codingw;jfn (resp.G}E,n) as

A. Final remarks and application to coding theory



opposed to coding i/ (k). Furthermore, as already pointed 2) Supplements for the Stiefel manifold@he (complex)
out in the introduction the developments in space frequenS&yiefel manifold (8) is canonically & (n)-normal homoge-
coding indicate, that the relevant coding spaces are subsetneous space: The canonical left multiplication /oframes
somer‘?n (resp.G‘,[j,n) whereas the number of subcarriers in C" by unitary n x n matrices transforms each pair of
satisfiesn > k, thus the results proven here may apply té-frames into each other. Thus the group actionl&fn)
space frequency codes as well. on V&, is transitive with isotropy groug = (g p(rs))

and establishes the canonical diffeomorphism (9). Thea

(8 u(no_k)) and tangent € h* have the form (12), and (13)
follows for the geodesic distano€’. Note that this distance
I'would like to thank Peter Jung for many helpful discusis not induced by the length of the geodesics obtained from
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sions. the canonical embedding 6, into €"**, compare [9] in
the real case and additionally [15, Example 6.61(b)] in the
APPENDIX A complex case.
DIFFERENTIAL GEOMETRIC CALCULATIONS 3) Supplements for the Grassmann manifolthe (com-

plex) Grassmann manifold (16) carries the structure of a
U(n)-normal homogeneous space by forgetting not only the
For the theoretical background, common notation and cuw@tthogonal complement o € U(n) (which has been done

I. U(n)-normal homogeneous spaces

vature formulas | refer to [15] as a reference. for Vk‘[fn) but also the particular choice of the spannihg
1) The unitary group: frame. ThusH = (Ué’“) U(noik)) and this leads to (17). Note
Un) ={® e C™*"| PP = 1} (A.1) that the coordinate representatioh) = dd' ' holds only

locally in general, but it turns out, that this represeotati
is a compact, connected Lie group and a real manifold ebvers all but a set of measure zero, hence we abandon this
dimensiondimg = n?. The corresponding Lie algebra (i.edistinction between local and global properties in this kvor
the tangent space @f (n) at 1) is and drop the distinction betwee@§, and its coordinate
domain. Calculatingy* leads to tangénts of the form (20).

u(n) = {X € €V [ XT = —X}) A2 Given two elements(®), (¥) € GY  then thek sta-
and the matrix exponentiakp mapsu(n) into U(n). Onu(n) tionary anglesd < ¢ < ... < 9, < 7/2 between
the (bi-invariant) Riemannian metric f@f (n) is defined as  (®) and (V) are defined successively by the critical values

arccos|< v, w; >|, ¢ = 1,...,k (in increasing order), of
<X, V>= Lo xiy (A.3) (v, w) — arccos|<v,w>| where the unit vectors, w vary
2 over{vy,...,v;_1}+ C (®), respectivelfwy, ..., w;_1}+ C
thus <X, X>= £/ X||? (Frobenius norm) holds. (). It is well known that the stationary angles can be

A manifold M is a U(n)-homogeneous space, if there i£omputed by the formula (any representigrame will do)
a transitiveU (n) action onM such thatM = U(n)/H for
some isotropy subgrougl C U(n). If h C u(n) denotes
the Lie algebra offf there is a canonical decomposition ofyhereass; (M), i = 1,.. .,k denotes the-th singular value

tangent vectord) ® h* = u(n) > X = X' + X and we of the matrix M in decreasing order.
can identify tangents a#/ with so called 'horizontal’ tangent Given a tangentY — (0 ,BT) B e CnRxk the

costd; = oy (®TW), i=1,... k (A7)

vectorsX € h+. With this identification)M is called normal \B 0
homogeneous. singular value decompositio? = VEWT = V;SWT,
Then the sectional curvatud€ and the Ricci curvaturBic g - ém’(‘/?) € Ug” _'ellii)s’, )V(V = ggf(% E't: U(g),
of M are given as = diag(oi,...,0k), Yl = \ wi =
. ; (Wo9), A = (P9), and ZVDV(zs)(V%T ). From this
K(X,Y) = ZIX Y2+ 1Y) (Ad) Or(1€ calculates{epr))((l)) - (Vl(zfjs)wf), and cos 9 —
icles o) — e o((10)(expX)(§)) = cosS, thusy = o and (21) follows.
Ric(es, 1) = ZK(e“eJ) A5 e space of orthogonal projectiods, := {Ps|® €

J

V,Z,} (compare (22)) can be identified wig; . In particular
whereagX,Y] = XY-Y X, X andY are normalized tangentwe havell,, = II,, with '

vectors and{e;} denotes a orthonormal basefin. Note that nxn | 9
the sectional curvatur&’ is always non-negative My :={PeC”" P! =P, P* = PtrP =k,

9 (A.8)
IP = k/n1|Z = k(n—k)/n}
K>0 (A.6)
as one can see by picking an appropriate representatize
INote that this does not contradict the (converse) conatssio[14], which  (®) (e.g.® = (}) due to invariance ofl; under the left and

do not apply here: The error probability computations ddreze with respect right unitary action). Since eacR < I, is Hermitian with
to increasing block length. — oo are constrained by a fixed total number of

. R . 2
code symbols sent. This is a different scenario, not retefamthe analysis constant tracel, is _can_olnlcally areal Supmameld & 7,
performed here. the constant norm justifies the embedding (23)



[I. Volume computations whereas(p, a, ) denote ¢ dimensional) polar coordinates

1) Total volume:The unitary groud/(n) C GL(n,C) can % = pcos Pr_z...cos B cosa
be equipped with the induced Lebesgue measure from the Yo = pcosPr_z...cos B sinw
ambient spac®?" . The Stiefel manifold inherits its volume
. . (A.14)
measure from its total spadé(n): We get from the familiar )
volume formulas Vg1 = cos B—2sin B3
1 1 2/ 2 Ui = sin f—s
‘Smf ‘ = vol S = T(m/2) (A9) The factor;; removes the ordering condition on the simplex,
m . m o am—1 such that the domain of angle integration is the whole region
| B := vol B™ = ‘S ’/m (A-10) [0, 7/2]*~1. Eventually,.Jy denotes the Jacobi matrix of the
for the unit spheres™ ! and the unit ballB™ in R™ and coordinate transformatiofp, . ) — 4.
the canonical homogeneous famifif™~* =~ U(m)/U(m — APPENDIX B
1) the following recursive formularolU(1) = St = 2m, THE LOCAL EQUIVALENCE OFd AND 7 IN V&,
Zfé)U(m) =13 | volU(m — 1), and therefore (11) and In this appendix the proof of Proposition 11.1 will be cadie

out. Let us recall, what we want to show. Givdn ¥ in

. . . _ "' _the complex Stiefel manifold/C < C™**, the topological
regions in the complex Grassmann manifold will be der'vegistanced motivated from coding theory is given ab —

based on [1,-eq. (17)) o |[® — T (we drop the upper indeX” in this appendix).
Starting with formula [16, (A.18)] for the distribution of = At the same time, locally there is a unique geodesim

erigenvlalues)\é, with A, ZEOSQ Vi of (|1,3)<1><_1>T (g) we obtain V2, joining ® and ¥, and the geodesic distaneeis simply
the volume density as the marginal density defined as its length, = f01|\7(t)||th, 4(t) being the parallel

k transported horizontal tangent vect8i(y(¢)) along~. Thus
w=C(k,n)- H(l — )Tk H()\l — )% d\ ...d\,  we obtainr = || X (v(0))[s. Since bothd andr are invariant

2) Volume for regions irGy,,, : The volume formula for

i=1 i<l under the action of thé/(n) we can set? = (}) without
k loss of generality. Recalling the general forkn= (g —gﬂ )

= C(k,n) - 2°k! - [ [(sin9;)*" 2P+ cos v,
=1
[[(sin® 0, —sin®3,)* - d; ... doy
i<l

A € u(k), B € C»=F)*k of horizontal tangent vectors in
u(n) (12) we arrive at

d* =@ - (§)IIF (B.1)
All 1 1

(A1D r = SIX[2 = ZI AR + 1] (B.2)
whereas the Jacobi determinazﬁ]_[le sind; cos; of the whereash = exp X (§). Unlike the cased = 0 (representing
mapping\ — ¥ has been introduced in order to express thangents fmGEyn) there is no closed form expression fbrin
volume density in terms of, andk! establishes the orderingterms ofX in general (compare [9]), so it remains a non-trivial

condition on the (open) simple® = {0 < ¥; < --- < task to find constants, 3 > 0 satisfying
¥, < m/2} of stationary angles. The constafit is just a ,
normalization factor, which reads in our case (15)

c o1k expressing the equivalence éfandr.
Ok.m) = (€55 H (n —1)! (A12) To begin with the easy cases, the constaig easily found,
’ k! (i — D)!2(n — k —i)! ' as well asa whenk = n: Both are simple consequences of
the two sided inequalitginz < = < (7/2)sinz, whereas
(without the factor|GS | | this would give the Haar measurer € [0,7/2] is understood in the second inequality.
usedin [1] onG‘}j,n). The volume of sufficiently small geodesic

i=1

. ; Lemma B.1
balls is now given as
g In Vi, —5d < r always holds, thus we have= .
vol B(r) :/ w(®)
on{||9]l2<r} Proof:
" 1 Since X € u(n) there existV € U(n) such thatX =
[ —w(9(p. . B))ldet Jo (p. . B) .
/o a,Biefo,7/2) k! Vdiag(:6)VT, thusr? = 1[I¢]2, € = (&,...,&) € R™
dadBy . ..dBj—» Now we can estimate as follows
(A13) & =1 —expX) (§)[7 <11 - exp X|I?
— _ 3 2 _ €512
4Unfortunately (in their first paper version) their formukarot correct in - Hl exp(dlag(zf))HF - le € |
the complex case (private communication). Fortunately dioes not affect the J

(asymptotic) results obtained in [1]. An erratum has alyebhden produced, L0 &
thus the derivation here is only for completeness of thegmiagion and the =2 Z(l — COS 57) =4 Z sin’ EJ < H§H2 = 272
convenience of the reader J ;



(sincesin® z/2 < 2% /4) B holds, thus our 'missing link’ is given by the Baker-Camgbel
Hausdorff formula expressing’ € u(n) given byexp W =

Lemma B.2 expUexpV, (U, V) € u(n), x u(n), by

If £k =n thenr < 75 holds, thusa = 5 .

W=V + / f(etadveadvyar
Proof: R nr
k = n implies B =0, X = A and we can estimate =U+V+ Z (= )1 ~
r+
2 _ 2 _ 2 4 4 2_ 8 o r=1 (B.8)
P =1 AR =43 sin® 5> Sl = S (S st ot
J p1! q1! pr! qr! ( )
(sincex?/4 < (w%/4)sin’® x/2 for x € [~ 7]), whereasa = Z - prt+-tprt1
1(as,...,a,) denotes the vector of eigenvalues.fc u(n). P
u Vi=1..r Pit+q; >0

The non-trivial task is to obtain some > 0, whenk < n. whereasf(z) = 122 andady : V s [U,V] = UV - VU
The rest of this section deals with this job. Let us assumgee [17] for that particular representation of the BCH folan
k < 4 since this |snthe relevant case for the analysis in thigynkin's formula in their terminology)). The second paft o
work (the case: > 3 should be similar). (B.8) is nothing but the term-wise integrated Taylor series
LetX =Y +ZwithY =(§9),andZ = (g —gﬂ ) then expansion of the integrand. Following [17] the domain of
we can write definition u(n), is the region ofu(n) in which the tangent
- map of exp is regular. It is the complement O{U €
— — v 0
®=expX = (expZ)(51) B3) y(n)| det(ady —2mz/1) = 0,2 = 7\ {0}} in u(n). In
since this is merely a factorization &= & (}) into a certain particular,u(n),_ contains a connected neighborhood
projection ontoGy, and the remaining 'phase’ itV (k) > wv. 7
The first factorexp Z can be calculated in closed forB: has D(80) = {U € u(m)[|[Ulle < 6o} (B.9)
a singular value decompositioB = V diag(¢*)u for some ¢ o Specializing toW =Y, U = -2, V=X =Y + Z

Ve U(n—k), ueUk) andd" := (Jy,..., 1) denotes yje|gs in multi-index notation (thup| = S pis o =11 pi!)
the vector of principal angles (in decreasing order) betweée

1 i diag(cosﬂi) — diag(sin 19¢) 0 5 0 (_1)r
<(0)> and <(I)> SettlngUﬂi = | diag(sin9t) diag(cos®¥) 0 |, Y :Y-|—Z X
0 1 = +1
1)

we arrive atexp Z = (¢ ) Ugs (§ )" So we have achieved
a quite explicit representation @f. In particular the principal

k x k-submatrix¢ = (10) ® (}) reads

> (—=1)PH! (ad¥ o ad% e ..o ady o ad%) (2)

p=(p1,pr)>0 (Ip| + 1)p'q!

q=(q1,..-,4+)>0

¢ = u diag(cos 9 )u'v (B.4) p+qa>0

o (B.10)
Now we can start estimating:

Note that every term contributes at least some factor irfrglv
P=[0— (I = 2(k—Ret . , ,
| (0)lz || ®|[2=k ( ¢t é) A (sinceadz(Z) = 0), hence in the norm estimate

k
= 2(k =) Re(u'vu);; cos vy ) lady > adi e ..o adg e adi (Z)]
2 i j (B.5) <alplHal) Z) P11 x ) ld
> Q(k — EZ [Re(ulvu); .}2 B EZCOSQﬁL) X—y1Z . lal lql ‘ _ (B.11)
TN 25 L < el Zptt Y < . >||Yllé|Z||F‘”
i

-~ o~ =0
Writing U(k) > v = exp A4, A € u(k) with eigenvalues
a = (g a A T . o - ]
= ola,...ay) of 4 we haveRe(u'vu)j; > 0 whenever o oroin (B.10) already), therefore With |, <
a € [—m/2,m/2]*. Demanding this mild locality restriction we s (thus [ Y]l ||Z]l < ) we can factor out ondY |, and
get [Re(ufvu);;]? < Re(ufou);;, thus 3 [Re(utvu) ;]2 < 0 0= 1719 120 = ]
Re tr(ufvu) = Retrv = >, cosa; and therefore

lql
Q 2 4 lq] i i
& > 223;51112 “2_J+Xj:sm2 0 = Sl + 9] ©.6) Z( : >IIY||F|ZIIF‘1

i=1

the term corresponding to= 0 has no counterpart in (B.10)

All what remains to do in order to comparewith r is to (Xq: <|Q|>”Y”i1||Z||Fq|—i)|y|F (B.12)
: .

find the link betweend and A, respectivelyy” = (4 9) and i
Y =(33) By(B3)

expY = (8 (1)) = exp(—Z)exp X (B.7)

™

("?') -1y, < 2lelgla-1) v,
A
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and thek x k principal submatrix of (B.10) of our interestto « in Lemma B.2), which can be achieved by setting

satisfies
A=A+4C (B.13)
ICle < &l Alle (B.14)
>© 1 9olpl+2lql glpl+lal
K= Z — Z _— (B.15)
Ig!
=l p=(p1,.,0r) >0 (Ipl + Dp'q!
q=(q1,--,¢r) 20
p+q>0

It is possible to rewrite (B.15) such that we can prove t

convergence of the multi-series, that is existence.ofjiven
some sub-multi-indice® ;, ¢; corresponding to somd C

s5)lpal s)lasl
{1,...,7} letus set\; := ﬁ andu; = %,then

(B.15) equalsy_,. %/@T with (J’ denotes the sdfl, ..., r}\

17| =s
{( 5 n) (S + (S5 m}
P = (B.16)

0 < 1, with k decreasing the smalletr has been chosen.
Unfortunately, the smaller we choo&gthe higher the required
corresponding rat® ensuring the validity of Lemma B.3. For
example, to obtain a numerical value Bf =~ 1.4 (by formula
(35) as a lower bound for the corresponding rate, with (),
which is still achievable for coding purposes in a practical
setting, one needs values 6f~ 1.25, which is quite large
in order to apply Lemma B.3, thus the estimates done here
e far to rough to accomplish that. The importance of the
emma actually lies in the fact, that it proves theistenceof
someca > 0 in (15). However, numerical simulations indicate
that the real world behaves much better than the estimates.
The histograms in Fig. 1 display — « drawn from 1000
random samples iW,L , n = 4,6,8 for § = 1.25: Although
there seems to be no rigorous and essentially sharper éstima
available than the one performed here, the numerical exasmnpl
indicate, that under still moderate rate constraintsx ~ 0.9
holds, thusa = m A ﬁﬂ in (15).
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