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On uniqueness theorems for Tsallis entropy and
Tsallis relative entropy

Shigeru Furuichi,Member, IEEE,

Abstract— The uniqueness theorem for Tsallis entropy was
presented inH.Suyari, IEEE Trans. Inform. Theory, Vol.50, pp.1783-
1787 (2004)by introducing the generalized Shannon-Khinchin’s
axiom. In the present paper, this result is generalized and
simplified as follows: Generalization: The uniqueness theorem for
Tsallis relative entropy is shown by means of the generalized
Hobson’s axiom. Simplification: The uniqueness theorem for
Tsallis entropy is shown by means of the generalized Faddeev’s
axiom.

Index Terms— generalized Faddeev’s axiom, generalized Hob-
son’s axiom, generalized Shannon-Khinchin’s axiom, Tsallis en-
tropy, Tsallis relative entropy, uniqueness theorem.

I. I NTRODUCTION

Shannon entropy is uniquely determined by the Shannon-
Khinchin’s axiom [1], which is referred to as the uniqueness
theorem for Shannon entropy. The Shannon-Khinchin’s axiom
was improved by A. D. Faddeev [2] in the sense that the
conditions of his axiom are simpler than those of the Shannon-
Kinchin’s axiom. (For details, see [3], [4], [5], [6].) As a
generalization of the axiomatic characterization of relative
entropy, the uniqueness theorem for relative entropy was
proven by A. Hobson [7]. Moreover, recently, the nonextensive
entropies, including Tsallis entropy, were characterizedby H.
Suyari in terms of the generalized Shannon-Khinchin’s axiom
[8]. The uniqueness theorem obtained by a generalization of
the Shannon-Khinchin’s axiom for the structurala-entropy,
which is one of the nonextensive entropies, was the first
appearance of such generalized results [9].

The present paper proves the uniqueness theorem for Tsallis
relative entropy by combining the axioms of Hobson and Su-
yari. This uniqueness theorem is a simultaneous generalization
of their results with respect to the following two points. The
Hobson’s theorem is generalized as a parametric extension,
and the Suyari’s theorem is generalized in the sense that the
relative entropy function is an extension of the entropy func-
tion. In addition, the uniqueness theorem for Tsallis entropy
is proven by the simplification of the generalized Shannon-
Khinchin’s axiom in the sense that the Faddeev’s axiom is
simpler than Shannon-Khinchin’s axiom.

This paper is organized as follows. In Section II, a brief
review of Tsallis entropy and Tsallis relative entropy is pre-
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sented. In Section III, the generalized Shannon-Khinchin’s
axiom introduced by H. Suyari and the uniqueness theorem
for Tsallis entropy are reviewed. In Section IV, the uniqueness
theorem for Tsallis relative entropy by means of the general-
ized Hobson’s axiom is shown, and the functionφ(q), which
will be described in Theorem IV.3, is characterized. In Section
V, the uniqueness theorem for Tsallis entropy is shown by
means of the generalized Faddeev’s axiom. Finally, a theorem
on the relation among the generalized Shannon-Khinchin’s
axiom, the generalized Faddeev’s axiom, and Tsallis entropy
is presented.

II. T SALLIS ENTROPY AND TSALLIS RELATIVE ENTROPY

A. Tsallis entropy

Several extensions of entropy have been formulated and
investigated [10], [11], [12], [13], [14], [15]. Prevalentamong
these extensions is the Rényi entropy [10], [11], [13]:

Rq (X) =
1

1− q
log

n∑

i=1

p
q
i , (q 6= 1), (1)

which has the additivity property

Rq(X × Y ) = Rq(X) +Rq(Y ), (2)

for two independent random variablesX and Y . Tsallis
entropy introduced in [14], the definition of which is presented
herein, the structurala-entropy [9], and the entropy of typeβ
introduced in [12] are referred to as nonadditive (nonextensive)
entropies because these entropies do not have an additivity
for two independent random variables, whereas the Rényi
entropy introduced in [10] and Shannon entropy are referred
to as additive (extensive) entropies, due to Eq.(2). The present
study examines the nonextensive entropies, including Tsallis
entropy as a typical example. Tsallis entropy was defined by
C. Tsallis in the field of the statistical physics for the purpose
of analyzing multifractal systems [14].

Definition II.1 (Tsallis [14]) For any nonnegative real num-
ber q and the probability distributionpi ≡ p(X = i), (i =
1, · · · , n) of a given random variableX , Tsallis entropy is
defined as follows:

Sq(X) = −

n∑

i=1

p
q
i lnq pi, (3)

with parameterq as an extension of Shannon entropy, where
the q-logarithm is defined aslnq(x) ≡ x1−q

−1
1−q

for any non-
negative real numbersq andx, and the convention0 lnq(·) ≡ 0
is set.

http://arxiv.org/abs/cond-mat/0410270v2
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The Tsallis entropySq(X) converges to Shannon entropy
−
∑n

i=1 pi log pi asq → 1, because theq-logarithm uniformly
converges to a natural logarithm asq → 1. Tsallis entropy
plays an essential role in nonextensive statistics, which is
often called Tsallis statistics, so that several importantfindings
have been published [15]. In addition, since theq-logarithm
function lnq(x) has the pseudoadditivity property forq 6= 1:

lnq(xy) = lnq(x) + lnq(y) + (1− q) lnq(x) lnq(y), (4)

Tsallis entropy has the pseudoadditivity property forq 6= 1:

Sq(X × Y ) = Sq(X) + Sq(Y ) + (1− q)Sq(X)Sq(Y ). (5)

Remark II.2 Although a simple transformation exists be-
tween the Tsallis entropy and the Rényi entropy, such that

Rq (X) =
1

1− q
log {1 + (1− q)Sq (X)} , (6)

their structures differ with respect to their additivities(cf.
Eq.(2) and Eq.(5)).

B. Tsallis relative entropy

A relative entropy based on Tsallis entropy which is a
typical nonextensive entropy, was formulated and discussed in
[16], [17], [18] from a physical point of view. The fundamental
properties of Tsallis relative entropy in both classical and
quantum systems were investigated in [19] from a mathemat-
ical point of view.

Definition II.3 Here, probability distributionsaj and bj are
assumed to satisfyaj ≥ 0, bj ≥ 0 and

∑n

j=1 aj =
∑n

j=1 bj =
1. Tsallis relative entropy betweenA = {aj} andB = {bj},
for any q ≥ 0, is then defined as

Dq(A|B) ≡ −

n∑

j=1

aj lnq
bj

aj
. (7)

Note that limq→1 Dq(A|B) = D1(A|B) ≡
∑n

j=1 aj log
aj

bj
,

which is known as relative entropy (often referred to as
Kullback-Leibler information, divergence or cross entropy).
For Tsallis relative entropy, several fundamental properties,
which are listed below, hold as parametric extensions of
relative entropy (for example, [19]).

Proposition II.4 (1) (Continuity)Dq(A|B) is a continuous
function for aj andbj .

(2) (Nonnegativity)Dq(A|B) ≥ 0.
(3) (Symmetry)

Dq

(
aπ(1), · · · , aπ(n)

∣∣bπ(1), · · · , bπ(n)
)

= Dq (a1, · · · , an |b1, · · · , bn ) .

(4) (Possibility of extension)

Dq (a1, · · · , an, 0 |b1, · · · , bn, 0)

= Dq (a1, · · · , an |b1, · · · , bn ) .

(5) (Pseudoadditivity)

Dq

(
A(1) ×A(2)

∣∣∣B(1) ×B(2)
)

= Dq

(
A(1)

∣∣∣B(1)
)
+Dq

(
A(2)

∣∣∣B(2)
)

+(q − 1)Dq

(
A(1)

∣∣∣B(1)
)
Dq

(
A(2)

∣∣∣B(2)
)
,

where

A(1) ×A(2) =
{
a
(1)
j a

(2)
j

∣∣∣a(i)j ∈ A(i), i = 1, 2
}
,

and

B(1) ×B(2) =
{
b
(1)
j b

(2)
j

∣∣∣b(i)j ∈ B(i), i = 1, 2
}
.

(6) (Joint convexity) For0 ≤ λ ≤ 1, any q ≥ 0 and the
probability distributionsA(i) =

{
a
(i)
j

}
,B(i) =

{
b
(i)
j

}
,

(i = 1, 2), we have

Dq

(
λA(1) + (1− λ)A(2)|λB(1) + (1− λ)B(2)

)

≤ λDq

(
A(1)|B(1)

)
+ (1− λ)Dq

(
A(2)|B(2)

)
.

(7) (Additivity)

Dq (a1, · · · , ai−1, ai1 , ai2 , ai+1, · · · , an|

b1, · · · , bi−1, bi1 , bi2 , bi+1, · · · , bn)

= Dq (a1, · · · , an |b1, · · · , bn )

+a
q
i b

1−q
i Dq

(
ai1
ai

,
ai2
ai

∣∣∣∣
bi1
bi

,
bi2
bi

)
,

whereai = ai1 + ai2 , bi = bi1 + bi2 .

(8) (Monotonicity) For a transition probability matrixW , we
have

Dq (WA |WB ) ≤ Dq (A |B ) .

Conversely, in the present paper, Tsallis relative entropyis ax-
iomatically characterized by the generalized Hobson’s axiom.

III. R EVIEW OF THE GENERALIZED

SHANNON-KHINCHIN ’ S AXIOMS AND THE UNIQUENESS

THEOREM FORTSALLIS ENTROPY

The generalized Shannon-Khinchin’s axiom introduced
by H. Suyari is reviewed in the following. The function
Sq(x1, · · · , xn) is assumed to be defined for then-tuple
(x1, · · · , xn) belonging to

∆n ≡

{
(p1, · · · , pn)

∣∣∣∣∣

n∑

i=1

pi = 1, pi ≥ 0 (i = 1, · · · , n)

}

and to take a value in R+ ≡ [0,∞).

Axiom III.1 (Generalized Shannon-Khinchin’s axiom)

(G1) Continuity: The function

Sq : ∆n → R+

is continuous.
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(G2) Maximality:

Sq

(
1

n
, · · · ,

1

n

)
= max {Sq(x1, · · · , xn) : xi ∈ ∆n} > 0.

(G3) Generalized Shannon additivity: For xij ≥ 0, xi =∑mi

j=1 xij , (i = 1, · · · , n; j = 1, · · · ,mi),

Sq(x11, · · · , xnmn
) = Sq(x1, · · · , xn)

+

n∑

i=1

x
q
iSq

(
xi1

xi

, · · · ,
ximi

xi

)
.

(G4) Expandability:

Sq(x1, · · · , xn, 0) = Sq(x1, · · · , xn).

Note that condition (G4) is altered slightly from [GSK4] of
the original axiom [8]. In condition (G2), the strict positivity
of the maximum value of Tsallis entropySq(x1, · · · , xn) is
also imposed, in addition to [GSK2] of the original axiom [8].
This adoption excludes a trivial situation that Tsallis entropy
is constant zero. Then, the following theorem was shown by
H. Suyari [8].

Theorem III.2 (Suyari [8]) Conditions (G1) to (G4) deter-
mine the functionSq such that

Sq(x1, · · · , xn) =
1−

∑n

i=1 x
q
i

φ(q)
, (8)

whereφ(q) is characterized by the following conditions:

(i) φ(q) is continuous andφ(q)(q − 1) > 0 for q 6= 1.
(ii) limq→1 φ(q) = 0 andφ(q) 6= 0 for q 6= 1.
(iii) There exists(a, b) ⊂ R+ such thata < 1 < b andφ(q)

is differentiable on(a, 1) and(1, b).
(iv) There exists a positive constant numberk such that

limq→1
dφ(q)
dq

= 1
k

.

IV. A XIOMATIC CHARACTERIZATION OF TSALLIS

RELATIVE ENTROPY BY THE GENERALIZEDHOBSON’ S

AXIOM

A. Uniqueness theorem for Tsallis relative entropy

The uniqueness theorem for relative entropy was shown by
A. Hobson as follows [7]:

Theorem IV.1 (Hobson [7]) The functionD1(A|B) is as-
sumed to be defined for any two probability distributions
A = {aj} and B = {bj} for j = 1, · · · , n. If D1(A|B)
satisfies the following conditions, then it is given by the form
k
∑n

j=1 aj log
aj

bj
with a positive constantk.

(H1) Continuity: D1(A|B) is a continuous function of2n
variables.

(H2) Symmetry:

D1 (a1, · · · , aj , · · · , ak, · · · , an|b1, · · · , bj , · · · , bk, · · · , bn)

= D1 (a1, · · · , ak, · · · , aj , · · · , an|b1, · · · , bk, · · · , bj, · · · , bn) .

(H3) Grouping axiom:

D1 (a1,1, · · · , a1,m, a2,1, · · · , a2,m

|b1,1, · · · , b1,m, b2,1, · · · , b2,m)

= D1 (c1, c2 |d1, d2 )

+c1D1

(
a1,1

c1
, · · · ,

a1,m

c1

∣∣∣∣
b1,1

d1
, · · · ,

b1,m

d1

)

+c2D1

(
a2,1

c2
, · · · ,

a2,m

c2

∣∣∣∣
b2,1

d2
, · · · ,

b2,m

d2

)

whereci =
∑m

j=1 ai,j anddi =
∑m

j=1 bi,j .
(H4) D1(A|B) = 0 if aj = bj for all j.
(H5) D1(

1
n
, · · · , 1

n
, 0, · · · , 0| 1

n0

, · · · , 1
n0

) is an increasing func-
tion of n0 and a decreasing function ofn, for any integers
n andn0 such thatn0 ≥ n.

The functionDq is defined for the probability distributions
A = {aj} andB = {bj} on a finite probability space with
one parameterq ≥ 0. Tsallis relative entropy is characterized
by means of the following triplet of the generalized conditions
(R1), (R2) and (R3).

Axiom IV.2 (Generalized Hobson’s axiom)

(R1) Continuity: Dq(a1, · · · , an|b1, · · · , bn) is a continuous
function of 2n variables.

(R2) Symmetry:

Dq (a1, · · · , aj , · · · , ak, · · · , an|b1, · · · , bj, · · · , bk, · · · , bn)

= Dq (a1, · · · , ak, · · · , aj , · · · , an|b1, · · · , bk, · · · , bj , · · · , bn) .

(R3) Generalized additivity:

Dq (a1,1, · · · , a1,m, · · · , an,1, · · · , an,m

|b1,1, · · · , b1,m, · · · , bn,1, · · · , bn,m)

= Dq(c1, · · · , cn|d1 · · · , dn)

+

n∑

i=1

c
q
id

1−q
i Dq

(
ai,1

ci
, . . . ,

ai,m

ci
|
bi,1

di
, . . . ,

bi,m

di

)
, (9)

whereci =
∑m

j=1 ai,j anddi =
∑m

j=1 bi,j .

Then, we have the following theorem:

Theorem IV.3 If conditions (R1), (R2) and (R3) hold, then
Dq(A|B) is given in the following form:

Dq(A|B) =
1−

∑n

i=1 a
q
i b

1−q
i

φ(q)
(10)

with a certain functionφ(q).

Proof: We prove the theorem by using conditions (R1), (R2)
and (R3). First, we define

fq(s, t) ≡ Dq

(
1

s
, · · · ,

1

s
, 0, · · · , 0|

1

t
, · · · ,

1

t

)
(11)
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for any natural numberss and t such thatt ≥ s. From
condition (R2), we have

Dq

(
1

su
, · · · ,

1

su
, 0, · · · , 0, · · · · · · ,

1

su
, · · · ,

1

su
,

0, · · · , 0|
1

tv
, · · · ,

1

tv

)

= Dq

(
1

su
, · · · ,

1

su
, · · · · · · ,

1

su
, · · · ,

1

su
,

0, · · · , 0, · · · · · · , 0, · · · , 0|
1

tv
, · · · ,

1

tv

)
.

Also, from condition (R3), we have

Dq

(
1

su
, · · · ,

1

su
, 0, · · · , 0, · · · · · · ,

1

su
, · · · ,

1

su
,

0, · · · , 0|
1

tv
, · · · ,

1

tv

)

= Dq

(
1

u
, · · · ,

1

u
, 0, · · · , 0

∣∣∣∣
1

v
, · · · ,

1

v

)

+u

(
1

u

)q (
1

v

)1−q

Dq

(
1

s
, · · · ,

1

s
, 0, · · · , 0

∣∣∣∣
1

t
, · · · ,

1

t

)
.

From the above two equations, we have

Dq

(
1

su
, · · · ,

1

su
, · · · · · · ,

1

su
, · · · ,

1

su
, 0, · · · ,

0, · · · · · · , 0, · · · , 0|
1

tv
, · · · ,

1

tv

)

= Dq

(
1

u
, · · · ,

1

u
, 0, · · · , 0|

1

v
, · · · ,

1

v

)

+u

(
1

u

)q (
1

v

)1−q

Dq

(
1

s
, · · · ,

1

s
, 0, · · · , 0|

1

t
, · · · ,

1

t

)
.

Thus, we have

fq (su, tv) = fq (u, v) +
(u
v

)1−q

fq (s, t) .

Using a method similar to that used for Lemma 5 in [9], we
find that there exists a certain functionφ(q), which depends
on the parameterq only, such that

fq (s, t) =
1−

(
s
t

)1−q

φ (q)
.

Here, all ai and bi, (i = 1, · · · , n) are assumed to
be rational numbers. Then, settingci = li

n∑
k=1

lk

, di =

mi
n∑

k=1

mk

, (i = 1, · · · , n) for some natural numbers

li and mi such that li ≤ mi, and we set
ai,j = 1

n∑
k=1

lk

(i = 1, · · · , n; j = 1, · · · , li) , bi,j =

1
n∑

k=1

mk

(i = 1, · · · , n; j = 1, · · · ,mi) . Substituting into

condition (R3), we have

Dq




1
n∑

k=1

lk

, · · · ,
1

n∑
k=1

lk

, 0, · · · , 0, · · · · · · ,
1

n∑
k=1

lk

,

· · · ,
1

n∑
k=1

lk

, 0, · · · , 0

∣∣∣∣∣∣∣∣

1
n∑

k=1

mk

, · · · ,
1

n∑
k=1

mk




= Dq (ci, · · · , cn |d1, · · · , dn )

+

n∑

i=1

c
q
id

1−q
i Dq

(
1

li
, · · · ,

1

li
, 0, · · · , 0

∣∣∣∣
1

mi

, · · · ,
1

mi

)
.

Thus, we have

Dq (ci, · · · , cn |d1, · · · , dn )

= fq

(
n∑

k=1

lk,

n∑

k=1

mk

)
−

n∑

i=1

c
q
id

1−q
i fq (li,mi)

=

1−

(
n∑

k=1

lk

)1−q ( n∑
k=1

mk

)q−1

φ (q)

−

n∑
i=1

c
q
id

1−q
i

(
1− l

1−q
i m

q−1
i

)

φ (q)

=

1−
n∑

i=1

c
q
i d

1−q
i

φ (q)
.

From condition (R1) and the fact that any real number can
be approximated by a rational number, the above result holds
for any positive real numbersai andbi satisfying

∑n

i=1 ai =∑n

i=1 bi = 1.

We give a remark on the conditions of Axiom IV.2 in the
following proposition.

Proposition IV.4 The following conditions (R3’) and (R4),
and the symmetry (R2) imply the condition (R3).

(R3’) Generalized grouping axiom:

Dq (a1,1, · · · , a1,m, a2,1, · · · , a2,m

|b1,1, · · · , b1,m, b2,1, · · · , b2,m)

= Dq (c1, c2 |d1, d2 )

+c
q
1d

1−q
1 Dq

(
a1,1

c1
, · · · ,

a1,m

c1

∣∣∣∣
b1,1

d1
, · · · ,

b1,m

d1

)

+c
q
2d

1−q
2 Dq

(
a2,1

c2
, · · · ,

a2,m

c2

∣∣∣∣
b2,1

d2
, · · · ,

b2,m

d2

)

whereci =
∑m

j=1 ai,j anddi =
∑m

j=1 bi,j .
(R4) Dq(A|B) = 0 if aj = bj for all j.

Proof: Here, the notation D̃q(a1, · · · , an|∗) ≡
Dq(a1, · · · , an|b1, · · · , bn) is introduced in order to simplify
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the proof. From condition (R3’), we have

D̃q (a1, · · · , an |∗ ) = D̃q (A, an−1 + an|∗)

+AqB1−qD̃q

(a1
A
, · · · ,

an−2

A
|∗
)

+(an−1 + an)
q
(bn−1 + bn)

1−q

×D̃q

(
an−1

an−1 + an
,

an

an−1 + an
|∗

)
(12)

and

D̃q (a1, · · · , an−2, an−1 + an |∗)

= D̃q (A, an−1 + an| ∗)

+AqB1−qD̃q

(a1
A
, · · · ,

an−2

A
|∗
)

+(an−1 + an)
q
(bn−1 + bn)

1−q
Dq (1 |1) (13)

whereA = a1+ · · ·+an−2 andB = b1+ · · ·+bn−2. Thus the
condition (R4) and the above equations Eq.(12) and Eq.(13)
imply

D̃q (a1, · · · , an |∗)

= D̃q (a1, · · · , an−2, an−1 + an |∗)

+ (an−1 + an)
q
(bn−1 + bn)

1−q

×D̃q

(
an−1

an−1 + an
,

an

an−1 + an
|∗

)
(14)

Next, we derive condition (R3) by induction onn. Assuming
that condition (R3) holds for some natural numbern, we have

D̃q (a1,1, · · · , a1,m, · · · , an+1,1, · · · , an+1,m |∗ )

= D̃q (c1, · · · , cn−1, cn + cn+1 |∗ )

+

n−1∑

i=1

c
q
i d

1−q
i D̃q

(
ai,1

ci
, · · · ,

ai,m

ci
|∗

)

+(cn + cn+1)
q (dn + dn+1)

1−q

×D̃q

(
an,1

cn + cn+1
, · · · ,

an,m

cn + cn+1
,

an+1,1

cn + cn+1
, · · · ,

an+1,m

cn + cn+1
|∗

)
, (15)

by the use of (R2), (R4) and Eq.(14). By Eq.(14), the first
term in the right-hand side of Eq.(15) can be written as

D̃q (c1, · · · , cn−1, cn + cn+1 |∗ )

= D̃q (c1, · · · , cn, cn+1 |∗)

− (cn + cn+1)
q
(dn + dn+1)

1−q

×D̃q

(
cn

cn + cn+1
,

cn+1

cn + cn+1
|∗

)
. (16)

By condition (R3’), the last term in the right-hand side of
Eq.(15) can be written as

(cn + cn+1)
q
(dn + dn+1)

1−q

×D̃q

(
an,1

cn + cn+1
, · · · ,

an,m

cn + cn+1
,

an+1,1

cn + cn+1
, · · · ,

an+1,m

cn + cn+1
|∗

)

= (cn + cn+1)
q
(dn + dn+1)

1−q

×D̃q

(
cn

cn + cn+1
,

cn+1

cn + cn+1
|∗

)

+cqnd
1−q
n D̃q

(
an,1

cn
, · · · ,

an,m

cn
|∗

)

+c
q
n+1d

1−q
n+1D̃q

(
an+1,1

cn+1
, · · · ,

an+1,m

cn+1
|∗

)
. (17)

Substituting Eq.(16) and Eq.(17) into Eq.(15), we have

D̃q (a1,1, · · · , a1,m, · · · , an+1,1, · · · , an+1,m |∗ )

= D̃q (c1, · · · , cn, cn+1 |∗)

+

n−1∑

i=1

c
q
i d

1−q
i D̃q

(
ai,1

ci
, · · · ,

ai,m

ci
|∗

)

+cqnd
1−q
n D̃q

(
an,1

cn
, · · · ,

an,m

cn
|∗

)

+c
q
n+1d

1−q
n+1D̃q

(
an+1,1

cn+1
, · · · ,

an+1,m

cn+1
|∗

)

which means that condition (R3) holds forn + 1. Thus, the
proposition is proven.

From Proposition IV.4, we find that we may adopt the axiom
composed of the set of{ (R1),(R2),(R3’) and (R4)} instead
of the set of{ (R1),(R2) and (R3)} in Theorem IV.3.

Condition (R3’) of the present paper is a generalization of
(H3) in the sense that the factorcqid

q′

i of the second term in
the right-hand side of Eq.(9) is a parametric extension of the
factor c1i d

0
i of that of Eq.(9), satisfyingq + q′ = 1. Condition

(R3’) of the present study contains the information ondi as
a factor of each functionDq in the second term in the right-
hand side of Eq.(9), whereas the original condition (H3) does
not, because it is eliminated byd0i = 1 in such a special case.

B. Characterization ofφ(q)

In this subsection, the functionφ(q) appeared in Theorem
IV.3 is characterized.

Proposition IV.5 The property whereby Tsallis relative en-
tropy is one parametric extension of relative entropy:

lim
q→1

Dq(A|B) = k

n∑

j=1

aj log
aj

bj
(18)

characterizes the functionφ(q) such as
(c1) limq→1 φ(q) = 0.
(c2) There exists an interval(a, b) such thata < 1 < b, and

φ(q) is differentiable on the interval(a, 1) ∪ (1, b).
(c3) There exists a positive numberk such that

limq→1
dφ(q)
dq

= − 1
k
.

Proof: Eq.(18) implies condition (c1), since
limq→1

(
1−

∑n

i=1 a
q
i b

1−q
i

)
= 0. If we differentiate

1 −
∑n

i=1 a
q
i b

1−q
i by q, then we obtain condition (c2).

Moreover, by l’Hopital’s formula, we have

lim
q→1

Dq(A|B) = lim
q→1

−
∑n

i=1 a
q
i b

1−q
i (log ai − log bi)
dφ(q)
dq
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which implies condition (c3).

Proposition IV.6 The condition wherebyDq(A|U) takes the
minimum value for a fixed posterior probability distribution
as a uniform distributionU =

{
1
n
, · · · , 1

n

}
:

(R5) Minimization :

Dq(a1, · · · , an|
1

n
, · · · ,

1

n
) ≥ Dq(

1

n
, · · · ,

1

n
|
1

n
, · · · ,

1

n
)

implies
(c4) φ(q)(1 − q) > 0 for q 6= 1.

Proof: Since1− nq−1
∑n

i=1 a
q
i is concave inai for q > 1

and convex inai for 0 ≤ q < 1, we obtain condition (c4) in
order to satisfy the condition thatDq(A|U) takes a minimum
value.

As a simple example ofφ(q) satisfying the conditions (c1)
to (c4), we takeφ(q) = 1 − q and k = 1, and then obtain
the Tsallis relative entropy defined in Eq.(7). Also, setting
φ(q) = 1− 21−q andk = 1, we obtain the relative entropy of
type β

Dq(A|B) =
1−

∑n

j=1 a
q
jb

1−q
j

1− 21−q
,

which appeared in Eq. (7.2.46) of [13]. See [20], [21] for
different approaches to the axiomatic characterization for the
relative entropy of typeβ.

V. GENERALIZED FADDEEV’ S AXIOM AND UNIQUENESS

THEOREM FORTSALLIS ENTROPY

A. Simplification of the uniqueness theorem for Tsallis entropy

The functionSq(x1, · · · , xn) is assumed to be defined for
then-tuple (x1, · · · , xn) belonging to∆n and to take a value
in R+. In order to characterize the functionSq(x1, · · · , xn), we
introduce the following axiom, which is a slight generalization
of the Faddeev’s axiom.

Axiom V.1 (Generalized Faddeev’s axiom)
(F1) Continuity: The function fq(x) ≡ Sq(x, 1 − x) with

parameterq ≥ 0 is continuous on the closed interval
[0, 1] andfq(x0) > 0 for somex0 ∈ [0, 1].

(F2) Symmetry: For arbitrary permutation{x′

k} ∈ ∆n of
{xk} ∈ ∆n,

Sq(x1, · · · , xn) = Sq(x
′

1, · · · , x
′

n). (19)

(F3) Generalized additivity: Forxn = y+z, y ≥ 0 andz > 0,

Sq(x1, · · · , xn−1, y, z) = Sq(x1, · · · , xn)

+xq
nSq

(
y

xn

,
z

xn

)
. (20)

Conditions (F1) and (F2) are identical to the original Fad-
deev’s conditions, except for the addition of the parameterq.
Condition (F3) is a generalization of the original Faddeev’s
additivity condition in the sense that condition (F3) of the
present paper usesxq

n as the factor of the second term in
the right-hand side, whereas the original condition usesxn as

this factor. Note that condition (F3) of the present paper is
a simplification of condition (G3) in [8], because condition
(F3) of the present paper does not require the summation on
i from 1 to n. Moreover, the present axiom does not require
the maximality condition (G2) in [8]. Therefore, the present
axiom improves the generalized Shannon-Khinchin’s axiom
introduced in [8] for the characterization of Tsallis entropy. For
the above generalized Faddeev’s axiom, we have the following
uniqueness theorem for Tsallis entropy:

Theorem V.2 Conditions (F1), (F2) and (F3) uniquely give
the form of the functionSq : ∆n → R+ such that

Sq(x1, · · · , xn) = −λq

n∑

i=1

x
q
i lnq xi, (21)

whereλq is a positive constant that depends on the parameter
q ≥ 0.

Proof: For the special case ofq = 1, the present theorem
directly follows from the theorem shown in [4]. Thus,q 6= 1 is
assumed. The proof of this theorem is similar to that presented
by H. Tveberg [4]. From conditions (F2) and (F3), for any
x, y, z satisfyingx, y ≥ 0, z > 0 andx+y+z = 1, Sq(x, y, z)
is expanded into separate equations:

Sq(x, y, z) = Sq(x, y + z) + (y + z)qSq

(
y

y + z
,

z

y + z

)

= Sq(y, x+ z) + (x+ z)qSq

(
x

x+ z
,

z

x+ z

)
.

Therefore, we have

fq(x) + (1− x)qfq

(
y

1− x

)

= fq(y) + (1 − y)qfq

(
x

1− y

)
(22)

Since Eq.(22) is defined for any0 ≤ x < 1 and 0 ≤ y < 1,
by settingx = 0 andy > 0, we have

fq(0) + fq(y) = fq(y) + (1− y)qfq(0).

Thus, we have
Sq(0, 1) = fq(0) = 0. (23)

Integrating both sides of Eq.(22) with respect toy from 0 to
1− x, we have
∫ 1−x

0

fq (x) dy + (1− x)q
∫ 1−x

0

fq

(
y

1− x

)
dy

=

∫ 1−x

0

fq (y) dy +

∫ 1−x

0

(1− y)
q
fq

(
x

1− y

)
dy,

which can be deformed as follows:

(1− x) fq (x) + (1− x)
q+1

∫ 1

0

fq (t) dt

=

∫ 1−x

0

fq (t) dt+ xq+1

∫ 1

x

t−q−2fq (t) dt. (24)

Since the functionfq(x) is continuous on the closed interval
[0, 1] due to condition (F1), it is differentiable on the open
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interval x ∈ (0, 1). By differentiating both sides of Eq.(24)
and applying the relation

fq(x) = fq(1− x) (25)

due to condition (F2), we have

(1− x) f ′

q (x) = (q + 1) (1− x)q
∫ 1

0

fq (t) dt

+(q + 1) xq

∫ 1

x

t−q−2fq (t) dt−
fq (x)

x
. (26)

Sincef ′

q(x) is also differentiable on(0, 1), by again differen-
tiating both sides of Eq.(26), we have

(1− x) f ′′

q (x) = −q (q + 1) (1− x)
q−1

∫ 1

0

fq (t) dt

+q (q + 1) xq−1

∫ 1

x

t−q−2fq (t) dt

−
qfq (x)

x2
−

f ′

q (x)

x
+ f ′

q (x) (27)

Multiplying both sides of Eq.(27) byx, we have

x (1− x) f ′′

q (x) = −q (q + 1) x (1− x)
q−1

∫ 1

0

fq (t) dt

+q (q + 1)xq

∫ 1

x

t−q−2fq (t) dt

−
qfq (x)

x
+ (x− 1) f ′

q (x) . (28)

Also, multiplying both sides of Eq.(26) byq, we obtain

q (1− x) f ′

q (x) = q (q + 1) (1− x)q
∫ 1

0

fq (t) dt

+q (q + 1)xq

∫ 1

x

t−q−2fq (t) dt−
qfq (x)

x
. (29)

From Eq.(28) and Eq.(29), we have the following differential
equation:

xf ′′

q (x) = (q − 1) f ′

q (x)− qλq (1− x)
q−2

, (30)

whereλq ≡ (q+1)
∫ 1

0
fq (t) dt. This differential equation has

the following general solution with constantsc1(q) andc2(q),
which depend only on parameterq:

fq (x) = c1(q) + c2(q)x
q +

λq (1− x)q

1− q
. (31)

The initial condition Eq.(23) impliesc1(q) =
λq

q−1 . In addition,

the condition Eq.(25) impliesc2(q) =
λq

1−q
. Substitutingc1(q)

andc2(q) into Eq.(31), we have

fq(x) = −λq {x
q lnq x+ (1 − x)q lnq(1− x)} , (32)

after the calculations. Since there exists somet0 ∈ [0, 1] such
that fq(t0) > 0, due to condition (F1), and the range ofSq

is R+, we haveλq > 0 for any q ≥ 0. Therefore, Eq.(21) is
proven forn = 2. Finally, Eq.(21) is proven for the general

n ≥ 3 by induction onn. Assuming that Eq.(21) is true for
anyn ∈ N, we obtain the following calculations:

Sq (x1, · · · , xn, xn+1) = Sq (x1, · · · , xn + xn+1)

+ (xn + xn+1)
q
Sq

(
xn

xn + xn+1
,

xn+1

xn + xn+1

)

= −λq

n−1∑

i=1

x
q
i lnq xi − λq (xn + xn+1)

q
lnq (xn + xn+1)

−λq (xn + xn+1)
q

{(
xn

xn + xn+1

)q

lnq

(
xn

xn + xn+1

)

+

(
xn+1

xn + xn+1

)q

lnq

(
xn+1

xn + xn+1

)}

= −λq

n−1∑

i=1

x
q
i lnq xi − λq (xn + xn+1)

q
lnq (xn + xn+1)

−λqx
q
n lnq

(
xn

xn + xn+1

)
− λqx

q
n+1 lnq

(
xn+1

xn + xn+1

)

= −λq

n−1∑

i=1

x
q
i lnq xi + λq (xn + xn+1) lnq

1

xn + xn+1

−λqx
q
n

(
lnq xn + x1−q

n lnq
1

xn + xn+1

)

−λqx
q
n+1

(
lnq xn+1 + x

1−q
n+1 lnq

1

xn + xn+1

)

= −λq

n+1∑

i=1

x
q
i lnq xi.

This shows that Eq.(21) is also true forn+1. Thus, the proof
of this theorem is completed.

Remark V.3 If further conditions are imposed on Axiom V.1
such thatSq(

1
2 ,

1
2 ) = 1, which is the normalization condition

to characterize the structurala-entropy in [9], then we obtain
λq = 1

lnq 2 from Eq.(32). Thus, we straightforwardly obtain
the structurala-entropy [9]:

Sq(x1, · · · , xn) =
1−

∑n

i=1 x
q
i

1− 21−q
,

in a manner similar to the induction of the proof in Theorem
V.2. This means that the present theorem includes the Havrda-
Charvát’s axiom as a special case. Note that the present
axiom requires the symmetry condition, whereas the Havrda-
Charvát’s axiom requires the expandability condition.

B. A relation to the generalized Shannon-Khinchin’s axiom

Finally, the relationship between the generalized Shannon-
Khinchin’s axiom introduced in [8] and the generalized Fad-
deev’s axiom is studied.

Proposition V.4 Axiom III.1 implies Axiom V.1.

Proof: The fact that conditions (G1) and (G2) imply con-
dition (F1) is trivial, thus we show conditions (G1) and (G3)
imply condition (F2). If all xi, (i = 1, · · · , n) are positive
rational numbers, then eachxi can be represented byli

m
,
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(2 ≤ li ≤ m, li,m ∈ Z). Applying condition (G3), since
xi =

li
m

=
∑li

j=1
1
m

, we have

Sq (x1, · · · , xn) = Sq

(
l1

m
, · · · ,

ln

m

)

= Sq




1

m
, · · · ,

1

m︸ ︷︷ ︸
l1

, · · · ,
1

m
, · · · ,

1

m︸ ︷︷ ︸
ln




−
m∑

i=1

x
q
iSq

(
1

li
, · · · ,

1

li

)
.

The first term in the right-hand side of the above equation
does not depend on the order of(l1, · · · , ln). In addition, the
method how to take the summation in the second term of the
right-hand side of the above equation is arbitrary, so that the
above equation is equivalent to

Sq




1

m
, · · · ,

1

m︸ ︷︷ ︸
l′
1

, · · · ,
1

m
, · · · ,

1

m︸ ︷︷ ︸
l′n


−

m∑

i=1

x′

i
qSq

(
1

l′i
, · · · ,

1

l′i

)

for the permutation{x′

i} from {xi} where x′

i =
l′i
m

, (2 ≤
l′i ≤ m, l′i,m ∈ Z). That is, condition (F2) holds for any
rational numbersxi. If xi is not a rational number, then the
continuity of condition (G1) after the approximation ofxi by
a rational number is used, and then we have condition (F2).
Finally, conditions (G3) and (G4) are applied to imply (F3).
From conditions (G3), (G4) and (F2), we have

Sq

(
1

2
,
1

2

)
= Sq

(
1

2
,
1

2
, 0, 0

)
= Sq

(
1

2
, 0,

1

2
, 0

)

= Sq

(
1

2
,
1

2

)
+

1

2q
Sq (1, 0) +

1

2q
Sq (1, 0) .

We therefore obtainSq(1, 0) = 0, and thus it follows that

Sq (x1, · · · , xn−1, y, z)

= Sq (x1, 0, x2, 0, · · · , xn−1, 0, y, z)

= Sq (x1, · · · , xn) +
n−1∑

i=1

x
q
iSq (1, 0) + xq

nSq

(
y

xn

,
z

xn

)

= Sq (x1, · · · , xn) + xq
nSq

(
y

xn

,
z

xn

)
,

which implies condition (F3).

In addition, we have the following proposition:

Proposition V.5 Sq(X) = −λq

∑n

i=1 x
q
i lnq xi satisfies Ax-

iom III.1.

Proof: Conditions (G1) and (G4) are trivial. Condition
(G2) is proven using the non-negativity of the Tsallis relative
entropy:

Dq(X |Y ) ≡ −

n∑

i=1

xi lnq
yi

xi

for two random variablesX and Y , where{xi} and {yi},
(i = 1, · · · , n) are probability distributions ofX and Y ,

respectively. See [19] for the mathematical properties of the
Tsallis relative entropy. Its non-negativity can be easilyproven
by the convexity of the function− lnq(x). The non-negativity
implies Sq(X) ≤ lnq n by setting a random variableU ={

1
n
, · · · , 1

n

}
having a uniform distribution, as a special case

of Y . The maximum value is attained whenX =
{

1
n
, · · · 1

n

}
.

Note thatλq does not depend on the method used to take the
maximum ofSq(X). Thus, condition (G2) is proven. Finally,
condition (G3) is proven by direct calculation.

Sq (x1, · · · , xn) +

n∑

i=1

x
q
iSq

(
xi1

xi

, · · · ,
ximi

xi

)

= −λq

n∑

i=1

x
q
i lnq xi + x

q
1Sq

(
x11

x1
, · · · ,

x1m1

x1

)

+ · · ·+ xq
nSq

(
xn1

xn

, · · · ,
xnmn

xn

)

= −λq

n∑

i=1

x
q
i lnq xi

−λqx
q
1

{(
x11

x1

)q

lnq
x11

x1
+ · · ·+

(
x1m1

x1

)q

lnq
x1m1

x1

}

− · · ·

−λqx
q
n

{(
xn1

xn

)q

lnq
xn1

xn

+ · · ·+

(
xnmn

xn

)q

lnq
xnmn

xn

}

= −λq

n∑

i=1

x
q
i lnq xi − λq

(
x
q
11 lnq x11 + x11 lnq

1

x1
+ · · ·

+x
q
1m1

lnq x1m1
+ x1m1

lnq
1

x1

)
− · · ·

−λq

(
x
q
n1 lnq xn1 + xn1 lnq

1

xn

+ · · ·

+xq
nm1

lnq xnm1
+ xnm1

lnq

1

xn

)

= λq

(
x1 lnq

1

x1
+ · · ·+ xn lnq

1

xn

)

+Sq (x11, · · · , x1m1
, · · · , xn1, · · · , xnmn

)

−λq

{
(x11 + · · ·+ x1m1

) lnq
1

x1
+ · · ·

+(xn1 + · · ·+ xnmn
) lnq

1

xn

}

= Sq (x11, · · · , x1m1
, · · · , xn1, · · · , xnmn

) .

From Theorem V.2, Proposition V.4 and Proposition V.5,
we have the following equivalent relation among Axiom V.1,
Axiom III.1 and Tsallis entropy:

Theorem V.6 The following three statements are equivalent.

(1) Sq : ∆n → R+ satisfies Axiom III.1.
(2) Sq : ∆n → R+ satisfies Axiom V.1.
(3) For (x1, · · · , xn) ∈ ∆n, there existsλq > 0 such that

Sq(x1, · · · , xn) = −λq

n∑

i=1

x
q
i lnq xi.
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VI. CONCLUSIONS

The uniqueness theorem for Tsallis entropy introduced by
Suyari [8] was generalized to the case of Tsallis relative en-
tropy and was simplified according to the manner of Faddeev
[2], [4].

Tsallis relative entropy was characterized by the generalized
Hobson’s axiom. The present result includes the uniqueness
theorem proven by Suyari as a special case, in the sense that
the choice of a trivial distribution forB = {bj} of Tsallis
relative entropy produces the essential form of Tsallis entropy.
However, note that the present theorem requires the symmetry
of condition (R2), whereas that of Suyari does not.

Moreover, Tsallis entropy was characterized by the gen-
eralized Faddeev’s axiom, which is a simplification of the
generalized Shannon-Khinchin’s axiom introduced in [8], and
the uniqueness theorem proved in [8] was slightly improved
by introducing the generalized Faddeev’s axiom. At the same
time, the present result provides a generalization of the unique-
ness theorem for Shannon entropy by means of the Faddeev’s
axiom.
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[11] A.Rényi, Wahrscheinlichkeitsrechnung. Mit einem Anhang über Infor-
mationsteorie., VEB Deutscher Varlan der Wissenschaften,Berlin, 1962.
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