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On uniqueness theorems for Tsallis entropy and
Tsallis relative entropy
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Abstract— The uniqueness theorem for Tsallis entropy was sented. In SectiofiJll, the generalized Shannon-Khinghin’
presented inH.Suyari, IEEE Trans. Inform. Theory, Vol.50, pp.1783axjom introduced by H. Suyari and the uniqueness theorem
1787 (2004)by introducing the generalized Shannon-Khinchin’s for Tsallis entropy are reviewed. In Sectigd IV, the unigess

axiom. In the present paper, this result is generalized and th for Tsalli lati i b f th |
simplified as follows: Generalization The uniqueness theorem for N€Or€mM for 1sallis relative entropy by means or (ne genera

Tsallis relative entropy is shown by means of the generalize 1ze€d Hobson’s axiom is shown, and the functiofy), which
Hobson’s axiom. Simplification The uniqueness theorem for will be described in TheorefnIM. 3, is characterized. In ®ect
Tsallis entropy is shown by means of the generalized Faddeev [7] the uniqueness theorem for Tsallis entropy is shown by
axiom. means of the generalized Faddeev’s axiom. Finally, a tmeore
on the relation among the generalized Shannon-Khinchin’s

Index Terms—generalized Faddeev's axiom, generalized Hob- ayiom, the generalized Faddeev's axiom, and Tsallis egtrop
son’s axiom, generalized Shannon-Khinchin's axiom, Tsall en- is presented

tropy, Tsallis relative entropy, uniqueness theorem.

Il. TSALLIS ENTROPY AND TSALLIS RELATIVE ENTROPY

|. INTRODUCTION A. Tsallis entropy
Shannon entropy is uniquely determined by the Shannqn-seYera| extensions of entropy have been formulated and
Khinchin's axiom [1], which is referred to as the uniquened§vestigated [10], [11], [12], [13], [14], [15]. Prevaleamong
theorem for Shannon entropy. The Shannon-Khinchin's axiofese extensions is the Rényi entropy [10], [11], [13]:
was improved by A. D. Faddeev [2] in the sense that the 1 n
q
log» pl, (g#1), @
1=1

conditions of his axiom are simpler than those of the Shannon R, (X) =

Kinchin's axiom. (For details, see [3], [4], [5], [6].) As a

generalization of the axiomatic characterization of reéat which has the additivity property

entropy, the uniqueness theorem for relative entropy was

proven by A. Hobson [7]. Moreover, recently, the nhonexteasi Rg(X xY) = Ry(X) + Ry (Y), 2)

entropies, including Tsallis entropy, were characterizgdH. for two independent random variable¥ and Y. Tsallis

Suyari in terms of the generalized Shannon-Khinchin's xioentropy introduced in [14], the definition of which is presah

[8]. The uniqueness theorem obtained by a generalizationt@rein, the structural-entropy [9], and the entropy of type

the Shannon-Khinchin's axiom for the structuraentropy, introduced in [12] are referred to as nonadditive (nonesitex)

which is one of the nonextensive entropies, was the firghtropies because these entropies do not have an additivity

appearance of such generalized results [9]. for two independent random variables, whereas the Rényi
The present paper proves the uniqueness theorem for Tsalligropy introduced in [10] and Shannon entropy are referred

relative entropy by combining the axioms of Hobson and Stb as additive (extensive) entropies, due to Hq.(2). Thegme

yari. This uniqueness theorem is a simultaneous genetializa study examines the nonextensive entropies, includingli§sal

of their results with respect to the following two points.€Th entropy as a typical example. Tsallis entropy was defined by

Hobson’s theorem is generalized as a parametric extensign,Tsallis in the field of the statistical physics for the pesp

and the Suyari's theorem is generalized in the sense that #feanalyzing multifractal systems [14].

relative entropy function is an extension of the entropycfun

tion. In addition, the uniqueness theorem for Tsallis gmtro Definition Il.1 (Tsallis [14]) For any nonnegative real num-

is proven by the simplification of the generalized Shannober ¢ and the probability distributiom; = p(X = ), (i =

Khinchin’s axiom in the sense that the Faddeev’s axiom is-.. n) of a given random variablel, Tsallis entropy is

1—g¢

simpler than Shannon-Khinchin’s axiom. defined as follows:
This paper is organized as follows. In Sectloh I, a brief n
review of Tsallis entropy and Tsallis relative entropy ig{pr Se(X) =— pr Ing ps, 3)
=1
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The Tsallis entropyS,(X) converges to Shannon entropy(5) (Pseudoadditivity)
— > pilogp; asq — 1, because the-logarithm uniformly

converges to a natural logarithm as— 1. Tsallis entropy Dy (A(l) x A ‘B(l) x B(Q))

plays an essential role in nonextensive statistics, whgch i B A | ) @) | p2)

often called Tsallis statistics, so that several importatings = Dq (A ‘B ) +Dq (A ’B )

have been published [15]. In addition, since gxogarithm +(q-1)D, (A(l) ‘B(l)) D, (A(2) ‘3(2)) ’

functionIn,(z) has the pseudoadditivity property for 1:
Ing(zy) = Ing(x) +1Ing(y) + (1 — q) Ing(x) Ing(y),  (4)

Tsallis entropy has the pseudoadditivity property §of 1:
Sg(X xY) = 85,(X) 4+ 54(Y) + (1 —¢)Sq(X)S(Y). (5)

where

AN x AR = {ag-l)af) ‘ay) e AW ;= 1,2} ,
and

B x B — {b§1>b§2> ‘bgf') e BO =1, 2} .

_ _ _ (6) (Joint convexity) For0 < A < 1, anyq¢ > 0 and the
Remark 11.2 Alt_hough a simple trapsfgrmaﬂon exists be- probability distributionsA® = g }
tween the Tsallis entropy and the Rényi entropy, such that .

(i =1,2), we have

q log {1+ (1 —¢q)5¢(X)}, (6) D, (/\A(l) +(1—=2X) A(2)|)\B(1) + (=X 3(2))

Rq(X):li

their structures differ with respect to their additivitiést. < AD, (A(1)|B(1)) +(1-)\) D, (A(2)|B(2)) .

Eq.[@) and Eq5)).
(7) (Additivity)

B. Tsallis relative entropy

A relative entropy based on Tsallis entropy which is a Dy (ar, -, ai-1, iy, Qiy, Qig1, -, Gl
typical nonextensive entropy, was formulated and disaigse b1,y bi—1,biy, bigy b1, bn)
[16], [17], [18] from a physical point of view. The fundamant =D, (a1, -, an|br, -, bn)
properties of Tsallis relative entropy in both classicad an L C
. . : q1.l1—q iy Qi bil biz
guantum systems were investigated in [19] from a mathemat- +aib; "Dy | —, — g )
ical point of view. @i G [0
Definition 11.3 Here, probability distributions,; and b; are wherea; = a;, + ai,, b = bi, +bi,.
assumed to satisfy; > 0,b; > 0andY"_, a; = Y7, b — (8) (Monotonicity) For a transition probability matri¥’, we
= J = Jj= Jj=
1. Tsallis relative entropy betweeA = {a;} and B = {b } have
for any ¢ > 0, is then defined as D,(WA\WB)<D,(A|B).
; Conversely, in the present paper, Tsallis relative entis@x-
—_ J
Dq(A|B) = ~ Z a; Ing a_j‘ @ iomatically characterized by the generalized Hobson'smxi
j=1
Note thatlim, 1 D,(A|B) = D1(A|B) = Z;‘ L a;log 3% 5 I1l. REVIEW OF THE GENERALIZED
which is known as relative entropy (often referred 0 as SHANNON-KHINCHIN’S AXIOMS AND THE UNIQUENESS
Kullback-Leibler information, divergence or cross enypp THEOREM FORTSALLIS ENTROPY

For Tsallis relative entropy, several fundamental prapsrt The generalized Shannon-Khinchin's axiom introduced

which are listed below, hold as parametric extensions 8{/ H. Suyari is reviewed in the following. The function
relative entropy (for example, [19]). Sq(x1,---,z,) is assumed to be defined for thetuple
(z1,---,z,) belonging to

) Zpi—l,piZO(i—l,-~-,n)}

=1

Proposition 11.4 (1) (Continuity) D,(A|B) is a continuous

function fora; andb;. B
(2) (Nonnegativity)D,(A|B) > 0. An =4 (1, 5pn
(3) (Symmetry)

and to take a value in R= [0, c0).

Dy (ar(1ys s @n(n) [br(),*+ brny)
=Dq(ay, - an by, -+, bn). Axiom 1ll.1 (Generalized Shannon-Khinchin’s axiom)
(4) (Possibility of extension) (G1) Continuity The function
Dy (ay, -+, an,0lby, -+, by, 0) S, A, - R

=Dy (a1, -, an b1, -, bn). is continuous.



(G2) Maximality. (H3) Grouping axiom

1 1
Sq (—, cee —) =max {Sg(x1, -, Tn) 1 T € Ap} > 0. Dy (ar,1, -+ a1,m, a2, a2,m
" " |b1,17'"7b1,m7b2,17"'ab2,m)
(G3) Generalized Shannon additivitfFor z;; > 0, z; = = D (c1,co|dy,dy)
ZTll Lij, (Z: 177”3.]: 13"'7mi)! a1 a1,m b1_1 bl.m
e\ T T
Sq(xlla" Inmn):Sq(Ila "axn) ! ! ! !
+02D1(%... a2,m b2_1 b2_m
qS Ti1 m ) e 9 ) o d ) ) d
—|—Z < i ) 2 2 2 2

. Whereci = Zm:1 ;5 and d; = Zm:1 b@j
(G4) Expandability (H4) Di(A|B) = 0if a; = b; for all j.
B (H5) Dy(%,---,1,0,---,0/-%,---, L) is an increasing func-
Sq(@r, s 2, 0) = Sq(@1, -+, ). tion of ng and a decrea?sing function of for any integers

Note that condition (G4) is altered slightly from [GSK4] of ™ @ndno such that, > n.

the original axiom [8]. In condition (G2), the strict posity
of the maximum value of Tsallis entrop§,(z1,---,z,) is
also imposed, in addition to [GSK2] of the original axiom.[8] _ . X .
This adoption excludes a trivial situation that Tsallisrepy one parameteq = 0. Tgalhs _relatlve entropy |s.character_|;ed
is constant zero. Then, the following theorem was shown means of the following triplet of the generalized corati
H. Suyari [8]. 1), (R2) and (R3).

The functionD, is defined for the probability distributions
A = {a;} and B = {b;} on a finite probability space with

Theorem 1.2 (Suyari [8]) Conditions (G1) to (G4) deter- Axiom V.2 (Generalized Hobson’s axiom)

mine the functionS, such that (R1) Continuity D,(ai,--+,an|b1,---,b,) is a continuous
q function of 2n variables.
1- Zz 1 CC

o0 , (8) (R2) Symmetry

where¢(q) is characterized by the following conditions:

(i) #(q) is continuous and(q)(q — 1) > 0 for ¢ # 1.
(i) limg—1 ¢(q) =0 and¢(q) # 0 for g # 1. .
(iii) Theqre exgst)s(a,b) C Rgr )such thate < 1 < b and¢(q) (R3) Generalized additivity

is differentiable on(a, 1) and (1,b). Dy (@11 @iy sty @
(iv) There exists a positive constant numbersuch that g \*LL T Blmy T A, 71 Bn,m
dé(a) _ 1 b11, bims bty s bm)
ot = Dyfer,osealdr =)

Sq(Ila' "wrn) -

Dq(al’...7aj7...7ak’...’an|b1’...’blj7...7bk’...’bn)
:Dq(al’...7ak7...’alj’...’anlbl’...7bk7...’bj’...7bn)_

IV. AXIOMATIC CHARACTERIZATION OF TSALLIS Z ¢ld; 79D, <a1 Lo dim |bi_=1, e bivm) ’ 9)
RELATIVE ENTROPY BY THE GENERALIZEDHOBSON'S i ¢ d; d;
AXIOM

wherec; = > a;; andd; = >0 by
A. Uniqueness theorem for Tsallis relative entropy ' g=t ’ =

The uniqueness theorem for relative entropy was shown byThen, we have the following theorem:
A. Hobson as follows [7]:

Theorem IV.3 If conditions (R1), (R2) and (R3) hold, then
Theorem IV.1 (Hobson [7]) The functionD;(A|B) is as- D,(A|B) is given in the following form:
sumed to be defined for any two probability distributions
A = {a;} and B = {b;} for j = 1,---,n. If D;(A|B) D(A|B)71_Z?1 alb) 1 (10)
satisfies the following conditions, then it is given by thenfio a o #(q)
kY75, ajlog Z_j with a positive constant.

(H1) Continuity D;(A|B) is a continuous function oRn with a certain functiony(q).

variables.

(H2) Symmetry Proof: We prove the theorem by using conditions (R1), (R2)

and (R3). First, we define

(11)

Dl (ala'"aaja'"7a/€7"'7an|b11'"ablja"'abka"'abn)
o 11
=Dy (a1, -y @y anlbr, o by by, ) fq(s,t) = Dy



for any natural numbers and ¢ such thatt > s. From condition (R3), we have
condition (R2), we have

1 1 1 1 1 1 1
Dq(_,...,_70,...70,......,_7...7_, Dy| —— =30, 0, , =
SUu SUu SUu SUu
Ik Ik Ik
1 1 1;::1 kzzjl 1;::1
0,--+,0]—, -, —
tv tv
1 1 1
1 1 1 1
_Dq(_’...7_7 ...... S, — Ty Tn ) 7"'70 n sy T
su su su su Z I Z my Z mp
1 1 k=1 k=1
07...’07 ...... 70’...70|57...7%)' D (C“" cn|d17 7d77,)
t 1 1 1 1
Also, from condition (R3), we have Z cid; "Dy ( L -,l—i,O,---,O m e )
Dq<i’...’i70’...70’ ...... ,i,"',i, Thus, we have
sSu su su sSu
1 1 L e
0,---,0]—, -, — Dy (ci, Cn|d17 ydn)
t tv n n -
1 1 1 1 = Zlk,zmk = el g (1, ma)
:Dq(_7 7_701 70 _a"'a_> k=1 = =1
U ) U v v 1 P g—1
N /1y 1 1 1 1 1 (Zlk) (ka)
+u (5) <;) D, <57 757(), 70‘? a?) _ r=1 i=1
¢ (q)
From the above two equations, we have 2": dl q ( llfqmqfl)
i=1
1 1 1 -
Dq<—,-- e ,— ,—,0,- -, o (q)
su sSu sSu sSu n 1—q
1 1 -y dd
0, L0, -, |t S ) _ i=1
X X v X Y ¢ (q)
=g (;a T 5,07 " ',0|;7 Ty From condition (R1) and the fact that any real number can
1— be approximated by a rational number, the above result holds
1\ /1 1 1 1 1 1 . PP n
4o = - Dy(=,---,=,0,---,0|=,---,= ). for any positive real numbers; andb; satisfying) " ; a; =
U v T\s s t t 27} b, =1
=1 "7 )
Thus, we have -
un1-q We give a remark on the conditions of Axidm1IV.2 in the
fq (su,tv) = fo (u,v) + (5) fq(s:1). following proposition.

Using a method similar to that used for Lemma 5 in [9], w . . " ,
find that there exists a certain functi@riq), which depends E’roposmon V4 The following conditions (R3") and (R4),

on the parametey only, such that and the symmetry (R2). |mply. the condition (R3).
(R3) Generalized grouping axiom

-3
fq(S,t):th). Dq(alylv"'aal,m7a2,1a"'7a2,m
1b1,15 5 bim, b2,1, -+, ba,m)
Here, all a¢; and b;, (i = 1,---,n) are assumed to =D, (c1,c2|dy,d2)
H i _ L L
be rational numbers. Then, setting = il di = Letdi-ip, <a1 L aum |bia bl,m)
. ' = k 1 1 ) ) 1 dl ) ) dl
Z”: i~ (¢ = 1,---,n) for some natural numbers +qu1 "D, <a2 1 az,m |b2.1 b2_,m)
m g e =l 2,
k=1 * Co Co dg dg
l; and m; such that [; < m;, and we set .
CLl'_’j = nl (’L— 1 . 7”,,]: 1,-~-,li), bi,j = Wherecl - Zj 10‘1] andd - Zg_l bivj‘
Sl (R4) D,(A|B) =0 If a; = b, for all j.
k
1 . o ) T : ) —
0 (=1,---,mj=1,---,m;). Substituting o proof  Here, the notation Dy (ay,---,an|* =
Z q
kzlm’“ Dy(a1,---,anlb1,---,by,) is introduced in order to simplify



the proof. From condition (R3’), we have

El(alv""anl*):EJ(Avan—l+an|*)
apl—qpy (%1 . 9n—2
LAIB Dq(A, 2 |*)

+ (anfl + an)q (bnfl + bn)liq

Gn—1 Qn,
D 12
. q<an—1+an’an—l+an |*) ( )
and
a}(ala"'aan—Qaan—l +an|*)
=Dy (A an—1+ an|*)
apl-a .. OGn=2 )
+AIBI-ID, (A, A
+ (an-1 +an) (bn—1+bn)l_qu (1]1) (13)
whereA =a1+---+an_oandB = by +---+b,_s. Thus the

condition (R4) and the above equations EJ.(12) and[Eq.(13)

imply
El(ala"'aanl*)
= Dq (ala"'aan—%an—l +an|*)
+ (an—l + an)q (bn—l + bn)l_q
x Dy ( n1 , an |>k>
Ap—1+ 0 An-1+an

Next, we derive condition (R3) by induction on Assuming
that condition (R3) holds for some natural numbemwe have

(14)

Dq (al,lv al,mv"'aan+1,17"'7a/n+l,m|*)
( C1, Cn7170n+cn+l|*)
—1
1—q7y [ @1 Qj,
cjd; qu< Lo Zm|>")
=1 Ci &

(Cn + Cn+1) (dn + dnJrl)l_q

an, 1 An,.m
<D, ( . ,
Cn + Cn+41 Cn + Cn+41
anJrl,l anJrl,m
e +). s
Cn, + Cn+41 Cn + Cn+41

— C Cn+1
x Dy ( n , nt |>k)
Cnp, + Cn+1 Cn + Cn+1

an .1 a
chl qD n, ’...’_"7m|*
Cn Cn
an-l—l,l an-l—l,m
T |>’< :
Cn+1 Cn+1

Substituting EqI{116) and Ef.{17) into Hgl15), we have

q 1—q
+Cn+1dn+1D

(17)

Dy(a1,1, - ,01,my s Qng1,1, s Gngl,m |*)
:Dq(cl7"'7cnacn+1|*)
n—1 a a
1—q7 [ Qi1 i,m
+ 3 cld] D (2
=1 Ci Ci

Qn,1
chl qD ( Ud) S,

an,m
)
Cn Cn
(an-l—l,l . an-l—l,m |*)
Cn+1 ’ ’ Cn+1
which means that condition (R3) holds far+ 1. Thus, the
proposition is proven. ]

1
+c n+1dn+q1D

From Propositiof TV, we find that we may adopt the axiom
composed of the set df (R1),(R2),(R3’) and (R4} instead
of the set of{ (R1),(R2) and (R3)} in TheorenTI\/B.
Condition (R3") of the present paper is a generalization of
(H3) in the sense that the factofd! of the second term in
the right-hand side of EqJ(9) is a parametric extension ef th
factor ¢} d? of that of Eq®), satisfying + ¢’ = 1. Condition
(R3’) of the present study contains the information dynas
a factor of each functiod, in the second term in the right-
hand side of Eq9), whereas the original condition (H3)sdoe
not, because it is eliminated ki = 1 in such a special case.

B. Characterization ofj(q)

In this subsection, the functiof(q) appeared in Theorem
[\V.3 is characterized.

Proposition IV.5 The property whereby Tsallis relative en-

by the use of (R2), (R4) and EG14). By HGI(14), the firdfopy is one parametric extension of relative entropy:

term in the right-hand side of EE{15) can be written as

Dy (1, cn_1,Cn + Cny1 %)
= EI(Clv"'vcnvcn-H |*)
- (Cn + Cn+1)q (dn + dn+1)1_q
xﬁ ( Cn Cntl
Cn + cn+1 Cn + Cnt1

|*> . (16)

o
By condition (R3’), the last term in the right-hand side o(f

Eq.(I3) can be written as

(Cn + CnJrl)q (dn + dn+1)17

~ an,1 An,m
<D, < ,
Cn + Cn+1 Cn, + Cn+1
an+1,1 an+1,m |*)
3 3
Cn + Cn+1 Cn, + Cn+1

= (Cn + Cn+1)q (dn + dn-l—l)l_q

lim Dy(A|B) =k 1 18
im Dy(A|B) Z%%b (18)

q—1

characterizes the functiof(q) such as

(c1) limg—1 ¢(q) =0
(c2) There exists an intervah, b) such thate < 1 < b, and

#(q) is differentiable on the intervele, 1) U (1,b).
3) There exists a positive number such that
limq_>1 %EIQ) = —%.
Proof: Eq.[I8) implies conditon (cl), since
limg 1 (1— 327, a%b)™ q) = 0. If we differentiate

1 — 3" a%!™ by g, then we obtain condition (c2).
Moreover, by I'Hopital’s formula, we have

— > afb; " (log a; — logb;)
d¢(q)
dq

lim D, (A|B) = lim



which implies condition (c3). this factor. Note that condition (F3) of the present paper is
B a simplification of condition (G3) in [8], because condition

(F3) of the present paper does not require the summation on

Proposition 1V.6 The condition whereby),(A|U) takes the i from 1 to n. Moreover, the present axiom does not require
minimum value for a fixed posterior probability distributio the maximality condition (G2) in [8]. Therefore, the presen

as a uniform distributio/ = {%, e ,% : axiom improves the generalized Shannon-Khinchin’s axiom
(R5) Minimization: introduced in [8] for the characterization of Tsallis efyoFor
the above generalized Faddeev’s axiom, we have the folpwin
D,(a1, -, a |l l) >D (l l|l l) uniqueness theorem for Tsallis entropy:
AL O ) =y e g Py:
implies Theorem V.2 Conditions (F1), (F2) and (F3) uniquely give
(c4) &(q)(1 —¢) >0 forg#1. the form of the functionS, : A,, — R™ such that
Proof: Sincel —n4~! 3"  al is concave ina; for ¢ > 1
and convex ing; for 0 < ¢ < 1, we obtain condition (c4) in Sg(m1, - mn) = =Ag Y allng m, (21)
order to satisfy the condition thd?,(A|U) takes a minimum '
value. where ), is a positive constant that depends on the parameter
B ¢>0.

As a simple example af(q) satisfying the conditions (c1) _
to (c4), we takep(q) = 1 — g andk = 1, and then obtain  Proof: For the special case af = 1, the present theorem
the Tsallis relative entropy defined in HG.(7). Also, segtindirectly follows from the theorem shown in [4]. Thug 1 is
#(q) =1—2""9 andk = 1, we obtain the relative entropy ofassumed. The proof of this theorem is similar to that preskent

type 3 by H. Tveberg [4]. From conditions (F2) and (F3), for any
-3 alpt—a z,y, z satisfyingz,y > 0,z > 0 andz+y+z = 1, S¢(z,y, 2)
Dq(A|B) = — = 5 Jq I, is expanded into separate equations:
which appeared in Eq. (7.2.46) of [13]. See [20], [21] fog - g L) (g + 2)IS < Y z >
different approaches to the axiomatic characterizatiortfe a(@,9,2) a(@,y +2) + (y+2)"5 y+z y+z

relative entropy of types.

T z
- Sq(y,x+z)+(:z:+z)q8q <x+z’x+z)'

V. GENERALIZED FADDEEV’S AXIOM AND UNIQUENESS

Therefore, we have
THEOREM FORTSALLIS ENTROPY

A. Simplification of the uniqueness theorem for Tsallisatr folx) + (1 —2)f, ( Yy )
The functionSy(z1,-- -, z,) is assumed to be defined for l-w

the n-tuple (x4, - - -, ,,) belonging toA,, and to take a value = f,(y) + (1 —y)f, < r ) (22)
in R™. In order to characterize the functidh(z1, - - -, z,), we -y
introduce the following axiom, which is a slight generaliaa  Since EqI[2R) is defined for ay< =z < 1 and0 < y < 1,
of the Faddeev’s axiom. by settingz = 0 andy > 0, we have
Axiom V.1 (Generalized Faddeev’s axiom) fa(0) + fo(y) = fo(y) + (1 = y)? f4(0).
(F1) Continuity The function f,(z) = Sq(z,1 — z) with  Thus, we have

parameterg > 0 is continuous on the closed interval S,(0,1) = f,(0) = 0. (23)

[0,1] and f,(zo) > 0 for somez, € [0, 1]. _ _ _
(F2) Symmetry For arbitrary permutation{z}} € A, of Integrating both sides of Ef.{22) with respectytérom 0 to
{z1} € A, 1 —z, we have

1—z l1—zx

Sy(@1, -+ @y) = S, -, 2)). (19) / fq () dy—i—(l—x)q/ fa <1L> dy
— X

(F3) Generalized additivityFor x,, = y+z, y > 0 andz > 0, 0 0

B 1—z l1-—zx ‘ T
Sy(@1, - Zp1,y,2) = Sql@1, -, 2) —/0 fq(y)dy+/0 (1=y)"fy (ﬂ>dy,
+248, <_7 i) . (20) Which can be deformed as follows:
Conditions (F1) and (F2) are identical to the original Fad-(1 — ) fq (%) ﬁl/ fa(t
deev’s conditions, except for the addition of the parameter -
Condition (F3) is a generalization of the original Faddsev’ :/ fq (@) dt—i—:v‘”l/ t=I72f, (1) dt. (24)
additivity condition in the sense that condition (F3) of the 0 z

present paper uses! as the factor of the second term inSince the functionf,(x) is continuous on the closed interval
the right-hand side, whereas the original condition usess [0,1] due to condition (F1), it is differentiable on the open



interval z € (0,1). By differentiating both sides of E@.{P4)n > 3 by induction onn. Assuming that Ed{21) is true for

and applying the relation anyn € N, we obtain the following calculations:
fq((g):fq(l—x) (25) Sq (xl,---,xn,xn+1)=5'q (xla"'axn"'xn-l—l)
. q T Tp+1
due to condition (F2), we have + (@ + zn41)" S <wn ¥ Zn1 Tn ot wn+1>
n—1
(1_I)f ( ) (q+1 1_17 / .fq :_)‘qzxqunqxi_/\q(xn+xn+1)q1nq(xn+xn+1)
=1
—q— fq (2) x 1 T
+q+1xq/tq2ftdt——. (26) _ ) () g, (e
( ) ; g (1) - Ag (Tn + Tng1) p—— 14 paS—
Since f,(x) is also differentiable orf0, 1), by again differen- n ( Tpt1 )qln ( Tyt1 >}
tiating both sides of EQ.{26), we have Tn + Tnt1 T + Tp1
n—1
1 _ q A q
(=) £ ) = —aa+ ) 1= [, )06 = =0 3 g1 = Ay o +0) g o+ 2)
0 =
1 T q Tn41
+q(g+ 1)t /m £ fy (8) dt ot g (:cn + :cn+1) ~ AaPas Mg (:Cn + :cn+1)
n—1
afq(x)  fq(@) 1
_% — qx + fé (CC) (27) = —)\q Z (E;Z lnq T+ Aq (l'n + l’n+1) lnq m

=1
Multiplying both sides of EGI{27) by, we have e (g + o, — L
$n+xn+l
_ 17 _ _ q 1
P00 @ =0l el -2 [ 10 Nt (e + ki g — )

) Ty + Tn41
1 q —q—2 ny n+1

+q(g+1)x /m g () dt =X Y allng ;.

_qqu@ -1 f (). (28) i

This shows that EQ.{21) is also true for+ 1. Thus, the proof

Also, multiplying both sides of Eq{26) by, we obtain of this theorem is completed.
[

¢(t=2) fi () =a(g+1) (1 -7) / Jalt Remark V.3 If further conditions are imposed on AxidmV.1
qf, () such thatS, (4, 2) = 1, which is the normalization condition
- (29) 1o charactenze the structuralentropy in [9], then we obtain

+q (q+1)xq/ tI2f, (1) dt
Ay = from Eq.[32). Thus, we straightforwardly obtain

x

From EqIZB) and EQ.(29), we have the following d|ﬁereht|atr;1e strlffctzurah -entropy [9]:
equation: oS g
" ’ q—2 S’q(ajl’”"x")_ﬁllql7
zff (@) =(q—1) fo(z) —gr 1 —2)" ",  (30)

in a manner similar to the induction of the proof in Theorem
where); = (¢ +1) fo fq (t) dt. This differential equation hasfZ7. This means that the present theorem includes the Havrda
the foIIowmg general 50|UU0” with constantg(q) andcz(q), Charvat's axiom as a special case. Note that the present
which depend only on parameter axiom requires the symmetry condition, whereas the Havrda-
A (1= )" Charvat’s axiom requires the expandability condition.

fq (@) = c1(q) + c2(q)a? + = (31)
B. A relation to the generalized Shannon-Khinchin’s axiom
The initial condition Eq[(23) imp”eSl( ) = 4. Inaddition,  Finally, the relationship between the generalized Shannon
the condition EqI{A5) implies:(q) = q Subst|tut|ngc1( ) Khinchin’s axiom introduced in [8] and the generalized Fad-
andcx(q) into Eq.[31), we have deev’s axiom is studied.

fo(@) = =X {29 Ingz 4+ (1 —2)?In,(1 —x)},  (32) Proposition V.4 Axiom I implies Axiom [Z.

after the calculations. Since there exists same [0, 1] such Proof: The fact that conditions (G1) and (G2) imply con-
that f,(to) > 0, due to condition (F1), and the range §f dition (F1) is trivial, thus we show conditions (G1) and (G3)
is RT, we have), > 0 for any ¢ > 0. Therefore, EqI{1) is imply condition (F2). If allz;, (i = 1,---,n) are positive
proven forn = 2. Finally, Eq.[Z1) is proven for the generalrational numbers, then each; can be represented bﬁt



l; < m, l;;m € Z). Applying condition (G3), since respectively. See [19] for the mathematical propertieshef t

x; lE é: l, we have Tsallis relative entropy. Its non-negativity can be eapilgven
; by the convexity of the function- In,(x). The non-negativity
(T1,,2Tn) = . ,_"> implies Sq(X) < In,n by setting a random variablg =
m L ..., 11 having a uniform distribution, as a special case
of Y. The maximum value is attained whén= {1 ... 1}
_ 11 Note that)\, does not depend on the method used to take the
'm’ 'm maximum ofS 7(X). Thus, condition (G2) is proven. Finally,
L, condition (G3) is proven by direct calculation.
- 1
— ZCqS ) q Ti1 ximi
Z l; Sq(z1,- -+, 2n) + Zx Sq ( - z )
The first term in the rlght—hand side of the above equation n
does not depend on the order @f,---,[,). In addition, the = —) ZI Ing z; + 18, (xll . M)
method how to take the summation in the second term of the i=1 z1 T1
right-hand side of the above equation is arbitrary, so that t Tnl Tnm,,
above equation is equivalent to +o S < T, ""’T>

1 1 1 1 =)\ fo Ing z;
S| =..... = ... ’qS R i=1
o m m ZI (l” 712) z11\? 1 T
‘ k ot { (5] et () )

for the permutation{z}} from {z;} wherez, = L (2 <
/ / ‘ H it 3 " Tnl a Tnl Tnm a Tnm
I < m,li,m € Z). That is, condition (F2) holds for any _Aqxg{<_) Ing— +---+ ( ") In, "}
rational numberse;. If z; is not a rational number, then the € Tn

n n n

continuity of condition (G1) after the approximation of by B - q q 1
a rational number is used, and then we have condition (F2).” g ZI Ing zi = Ag { @11 Ing 211 + 211 Ing N o
Finally, conditions (G3) and (G4) are applied to imply (F3). 1
From conditions (G3), (G4) and (F2), we have +af,, g T1m, + T1m, Ing 17_1) ...
11 11 1 1
Sel=z.z ] =5 0,0 Sq(=,0,-,0 1
(Y-5630)-5G08) it
11 1 "
- - 1
S, (2 2) + 549 (1,0) + 555, (1,0). 28, g Tnm, + Tnm, Ing —)
Tn
We therefore obtairb,(1,0) = 0, and thus it follows that 1 1
=)\ (wllnq— —l—---—l—:vnlnq—)
Sq (xla"'axn—layaz) Z1 Tn
= Sq ($170,$270, o 7xn—1701y72) +Sq (xlh T TImas s el axnmn)
n—l > g3 (T + -+ 21, ) In i-l—
=9, (381,--'7%)"'255?% (1,0) + = S, (i7x_) q 11 tma) Mg o
i=1 noom 1
5 +(a:n1—|—~-~—|—:cnmn)lnq—}
=S, (@1, x,) + 298, (— —), Tn
n In :Sq(x117...7x1m1’...7xn1’...’xnmn).
which implies condition (F3).
[ | [ |
In addition, we have the following proposition: From Theoren_Vl2, Propositidn V.4 and Proposit[on] V.5,

we have the following equivalent relation among AxiGmlV.1,
Proposition V.5 S4(X) = =X >, 2! Ing z; satisfies Ax- Axiom [l and Tsallis entropy:
iom [MLT
Proof: Conditions (G1) and (G4) are trivial. ConditionTheorem V.6 The following three statements are equivalent.
(G2) is proven using the non-negativity of the Tsallis ekt (1) S, : A, — RT satisfies Axion{TIL1.

entropy: . (2) S,: A, — R" satisfies Axion\VIL.
Dy(X|Y) = — in Ing Yi (8) For(z1,---,z,) € A, there exists\;, > 0 such that
i=1 g n
for two random variables and Y, where {z;} and {y;}, Sq(@1,-+,xn) = —Ag fo Ing z;.

(¢ = 1,---,n) are probability distributions ofX and Y,



VI. CONCLUSIONS [17] C.Tsallis, Generalized entropy-based criterion fansistent testing,
. . . Phys.Rev.E,Vol.58,pp.1442-1445(1998).
The uniqueness theorem for Tsallis entropy introduced Ips] A K.Rajagopal and S.Abe,Implications of form invari@ to the struc-

Suyari [8] was generalized to the case of Tsallis relative en ture of nonextensive entropies, Phys. Rev. Lett, Vol.8p,1p11-

. - . 1714(1999).
tropy and was simplified according to the manner of Faddeﬁ\é] S.Furuichi, K.Yanagi and K.Kuriyama, Fundamentalgedies of Tsallis

[2], [4] relative entropy, J.Math.Phys, Vol.45, No.12, pp. 4868482004).

Tsallis relative entropy was characterized by the germzdli [20] P.N.Rathie and Pl.Kannappan, A directed-divergemretion of types,
Information and Control, Vol.20, pp.38-45 (1972).

Hobson's axiom. The pre§ent reSUIt,InCIUdeS.the umquenTﬁ N.Muraki and T.Kawaguchi, On a generalization of Hax@harvat'sa-
theorem proven by Suyari as a special case, in the sense thakntropy to relativea-entropy and its properties in a continuous system,

the choice of a trivial distribution foB = {b,;} of Tsallis TENSOR, Vol.46, pp.154-167 (1987).
relative entropy produces the essential form of Tsalliscgayt
However, note that the present theorem requires the symmetr
of condition (R2), whereas that of Suyari does not.

Moreover, Tsallis entropy was characterized by the gen-
eralized Faddeev's axiom, which is a simplification of the
generalized Shannon-Khinchin’s axiom introduced in [8id a
the uniqueness theorem proved in [8] was slightly improved
by introducing the generalized Faddeev's axiom. At the same
time, the present result provides a generalization of theusn
ness theorem for Shannon entropy by means of the Faddeev’s
axiom.
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