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A Synthesis of a 1=f Process Via Sobolev Spaces and
Fractional Integration

Juan Miguel Medina and Bruno Cernuschi-Frías, Senior Member, IEEE

Abstract—We provide an almost-sure convergent expansion of
a process with power law of fractional order by means of some
known theorems from harmonic analysis and rather simple prob-
ability theory results.

Index Terms—Fractional integration, 1 process, Sobolev
spaces, stochastic processes.

I. INTRODUCTION

THE family of random processes with spectral be-
havior, first introduced by Kolmogorov in the context of

turbulent flows, have numerous applications in engineering,
general science, and wherever strong long-range (long memory)
dependence phenomena appear.

A long memory process with spectral density
satisfies the spectral condition (see [2] and [23]): there exists

and such that

(1)

As pointed out by some authors ([15], [5], [1], [21]) this sug-
gests to look for a relation between these processes and certain
fractional integration operators (see (9), (10)). For example, in
[1] by means of the Riesz–Bessel fractional integration opera-
tors a nonconstructive proof is given of the existence of, not nec-
essarily Gaussian, fractional generalized random fields, namely,
Riesz–Bessel motions; these random fields display long-range
dependence and have spectral densities of the form

(2)

where .
Random fields with this power spectrum are very important

in the study of partial differential equations with random initial
data; in particular, the Burgers equation in the study of turbu-
lence which is extensively discussed in, for example, [25], [6].
In [12], spectral properties of the scaling limit of solutions of a

Manuscript received January 9, 2004; revised June 18, 2005. This work was
supported in part by Universidad de Buenos Aires under Grant I-028 and by
CONICET.

J. M. Medina is with the Faculty of Engineering, University of Buenos Aires,
1012 Buenos Aires, Argentina (e-mail: jmedina@fi.uba.ar).

B. Cernuschi-Frías is with the Faculty of Engineering, University of Buenos
Aires,1012 Buenos Aires, Argentina, and the CONICET, Buenos Aires, Ar-
gentina (e-mail: bcf@ieee.org).

Communicated by X. Wang, Associate Editor for Detection and Estimation.
Digital Object Identifier 10.1109/TIT.2005.858933

multidimensional Burgers equation under Gaussian initial con-
ditions with long-range dependence are derived. In continuous
mechanics, generalized Burgers-type equations defined as frac-
tional powers of the negative Laplacian are considerered, as for
example in [3]; random fields with power spectrum as in (2) are
of interest when these equations have to be solved with random
initial data [16]. The power spectrum of (2) is isotropic, since it is
a function only of the radial spatial frequency . The
motivation of this generalization not only comes from the theory
of stochastic differential equations, other applications include:
models of natural (fractal) landscapes [27], texture discrimina-
tion [13], [20], and other applications in image processing. In
this work, we discard the intermittency term in
(2). We are interested in analyzing the term which characterizes
long-range dependence, so in the following we will just consider
the case for (2) when

(3)

The main goal of this work is to show that given ,
a sequence of independent random variables such that :

and an orthonormal basis
of and a fractional integration
operator (a fractional negative power of a Laplacian), then
it is possible to build an almost-sure convergent sequence of
elements

(4)

such that the limit is a -dimensional process (random field)
with a power spectrum as in (3). Additionally, this series re-
sembles the ordinary Karhunen–Loéve orthonormal expansion.
Similar one-dimensional expansions are studied in other con-
texts in [17] and [10] using wavelets. Some constructions as
in [17] only use second-order properties [9] and then the value
of the covariance function is not changed. We will extend this
construction and obtain a -type process (field) which is sta-
tionary at the second order.

Since a power spectrum which satisfies (3) is not valid in the
theory of stationary processes because it is a nonintegrable func-
tion, but it can be considered as a generalized spectrum. Through
this interpretation, we will use the theory of distributions which
provides a suitable frame to work with this class of spectrum.
So, the limit of (4) must be understood as a distribution and not
as a point process. We need the following definitions.
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II. SOME DEFINITIONS

In the following, if we will denote its usual
norm by and .

The Schwartz class of functions is defined as the
linear space of smooth functions rapidly decreasing at infinity,
together with its derivatives; this means that when-
ever and

We will denote the space of functions which are in
and have compact suport. Both spaces are topological

vector spaces [29], and their duals are denoted as: (tem-
pered distributions) and (distributions), respectively.
Clearly, and then .

A. Fourier Transforms

The Fourier transform of is defined as

From this, can be extended, as usual, as a linear map
, or as an isometry on and by duality

over the class of tempered distributions, that is,
.

Definition 1: The Sobolev spaces ([22], [7]) are the fol-
lowing linear spaces defined as:

(5)

Remark: Let , then is a Hilbert space with the
product

(6)

For , we define the pairing

as

this can be extended by a density argument over
(when this is the usual inner product) or .

B. Generalized Stochastic Processes

In the following, will denote a probability space. A
generalized stochastic process is a random functional in
(or in ), [9]. This means that if then a gener-
alized stochastic process is defined by the random variable

[26]

So in the following, for a fixed , the formula defined
by (4) will be understood as a functional defined on .
Therefore, if is the limit process, we want to prove

The covariance functional is defined by the bilinear form

where may be a generalized function. Sometimes, we
write unformally . For example, if

is white noise, in the sense of ,
then

for all and in . If , it is also possible to
define the spectral density of the process as .

III. PRELIMINARY RESULTS

A. Variants of Two Theorems of Kolmogorov

Several classical results for sums of random variables can be
extended to the context of Hilbert (or Banach) spaces ([30] and
[18] contain many examples). The following mimic two cel-
ebrated theorems by Kolmogorov (the original theorems can
be found in [4]) on the convergence of sums of independent
random variables. The proofs of these theorems are included in
the Appendix.

Theorem 3.1: Let be a sequence of independent
random variables in such that and

is a sequence in a Hilbert space . If and
, then

(7)

This last result enables us to prove the following.
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Theorem 3.2: Let be a sequence of independent random
variables in such that and is a se-
quence in a Hilbert space . If

(8)

then converges in almost surely (a.s.), where
and .

B. Remark

The and its limit are well defined random elements in the
following sense (this can be found for example in [30, Ch. II,
Definition 2.1.1.]): let be a probability space, and let

be a topological space, then we will say that is a random
element in provided that for each

, where is the Borel -algebra containing the
open sets of .

C. Some Results From Harmonic Analysis

Let us consider the usual Laplacian of [22]

Then, at least formally: . From this
we can define the operators as

(9)

The formal manipulations have a precise meaning [28] as fol-
lows.

Definition 2: Let . For we can define
its Riesz potential

(10)

where .

This linear operator has the following properties [28].

Proposition 3.1: Let , then
a) the Fourier transform of is in

the sense that

for all ;

b) the Fourier transform of is in
the sense that

for all .

It is easy to check the following.

Proposition 3.2: : If then
; and with .

We recall the following bound for these operators acting in
, [8], [28].

Theorem 3.3: (Hardy, Littlewood, and Sobolev) Let
and , then

a) , the integral that defines converges
almost everywhere (a.e.);

b) if then

(11)

where is a constant depending on and .

We will need the following straightforward result which is a
consequence of the previous theorem and Proposition 3.2.

Proposition 3.3: Let , then we have the fol-
lowing.

a) If and are such that
then .

b) If and are such
that then .

Proof: Part a): From Hölder’s inequality and Theorem 3.1
we have

(12)

(13)

Then by Fubini’s theorem, (14) equals

(14)

Part b): By means of a density argument and Proposition 3.2 we
have that for . Now the result
will follow from part a), write

and we get the desired result.

Remark: These operators are the inverses of the (positive)
fractional powers of the Laplacian operator. On the class

is given by

This expression follows from [28, Sec. 6.10] and from this for-
mula we can give a short proof of the existence of the fractional
Brownian field with exponent [5].

We will need the following result.

Theorem 3.4: (variant of Shannon’s theorem) If
is such that with , there exists

such that

(15)

Proof: Let be the periodization
of . As usual, can be identified with a function defined on
the torus, which verifies .

If then
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and in for a suitable domain . Now, we can
take such that

and define .
is nothing else but a low-pass filter; to fix the idea assume

that , then as vanishes outside the behavior
of in is not relevant. On the other hand, .
Then, it is easy to show that

This implies

but (see [29]) , then

Then (15) follows immediately from this.

Then it is possible to prove the following proposition.

Proposition 3.4: Consider under the same hy-
potheses of the previous theorem then

Remark: This result which is a straightforward generaliza-
tion of a result in [17], is a consequence of the last sampling
theorem, which identifies band-limited functions with periodic
functions and is related to the fact that the right-hand side of the
last inequality defines a norm in the Sobolev spaces of periodic
functions [11].

Proof: Recall Peetre’s inequality [24]

and by Theorem 3.4 we can find such that

where and

Since , we have

We remark that is a constant which is independent of : As
then then, there exist

such that for all . From these
facts is easy to find a radial decreasing such that

then

And then

Finally

IV. ON THE GENERATION OF A LONG MEMORY PROCESS IN

In the following, we construct a series which converges a.s.
in the sense of distributions to a process.

A. Existence of the Process

First, we prove the following existence result.

Proposition 4.1: Let be a sequence of
independent random variables such that and

If is an orthonormal basis of and ,
then

(16)

converges to a generalized process a.s.
Proof: Let be a denumerable family of disjoint

cubes such that by some translation equals . Then

with
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and . By Proposition 3.4

As and
by Proposition 3.3, the last term equals

(17)

(18)

Let if by Theorem 3.3 then

A similar bound is obtained from the fact that

(where is the adjoint of and ) is a bounded
linear operator.

Since are independent random variables with
then

By Theorem 3.2, we have a.s.
But convergence in implies convergence in

. Taking and calling
the limit of we have

(19)

for all .
As then

defines an element in .

B. Remark

In the previous result, the condition that be an or-
thonormal basis of is sufficient. The completeness of
the system can be avoided, but in the following it is necessary
to obtain the desired result.

C. Covariance of the Limit Process

We will prove that the process we have constructed (16) has
the same power spectrum as that described in (3).

Theorem 4.1: Let be a sequence of in-
dependent random variables such that and

. If is an orthonormal basis of such that

converges to a generalized process a.s., for , then

a) the covariance of is ;
b) the spectral density is .

Proof:
(Part a) Given , let us define the bilinear form

as follows: let

and given define

Define the bilinear form as

From these facts we have

Since is a sequence of independent random vari-
ables with and , then .
Then

Taking and then by Proposition 3.3

(20)

for all .
If and then, by Proposition 3.3, we have

. Defining , if
we take , we can write

(21)
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On the other hand, again by Proposition 3.3,
, and from these facts it follows that

(22)

Then

and given such that

Hence,

as . Then from (21) and (22) it follows that
. Hence,

(Part b) Since we can calcu-
late its Fourier transform, then the result follows immediatly by
Proposition 3.1 and (Part a).

V. CONCLUSION AND SOME COMMENTARIES

We constructed a series that converges a.s. in the sense of
distributions to a process with a spectral behavior.
Moreover, it converges in the norm of some Sobolev spaces over
a bounded set. Just for illustration, we include some synthetic
figures obtained by the simulation of approximations of these
processes for several values of . These approximations were
obtained by truncation of these series. On the other hand, two-
dimensional orthonormal bases are easily obtained by means
of the tensor product of one-dimensional basis, taking, for ex-
ample, a Shannon wavelet basis. Fractional differencing or inte-
gration can be performed in the frequency domain as proposed
in other works, such as [19]. This suggests certain advantages in
the use of basis with band-limited elements. Truncation errors
and convergence rates will be studied elsewhere. In the two-di-
mensional case, it is useful to obtain textures with special spa-
tial patterns or to construct a fractional Brownian field. As ex-
pected, the parameter governs the long-term dependence. If
is near to , as in the case of Fig. 3, we have a highly corre-
lated process, as decreases, the long-range dependence phe-
nomena becomes weaker, see Fig. 2, finally, when approches

we have a process which is near to white noise, see Fig. 1;
moreover if this is exactly a white noise, and if we con-
sider the one-dimensional case we obtain the same construction
of generalized white noise developed in [17].

Fig. 1. A sample of a two-dimensional process (� = 0:001).

Fig. 2. A sample of a two-dimensional process (� = 0:5).

Fig. 3. A sample of a two-dimensional process (� = 0:99).

APPENDIX I
PROOFS OF THEOREMS 3.1 AND 3.2

Proof of Theorem 3.1: Define

which verify if , since if we assume
that and take , then by the definition
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of these sets we have and and then
we would have a contradiction. Hence they are disjoint. Now we
have

(23)

But , then

and using the independence of the random variables we have

(24)

This is so, since for

because is a random variable that only depends on for
and is independent of all these variables. Finally,

from (23) and (24) and the definition of the ’s

(25)

Proof of Theorem 3.2: We need to find a bound for

(26)

Since then

(27)

and since , and from the independence of the sequence,
(27) equals

(28)

Then by (26), (28), and Theorem 3.1

(29)
so that

(30)
and from the condition we get

Taking we obtain

If

then we have and , and then
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