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Abstract

Two subspaces of a vector space are here called “nonintieiged they meet only in the zero
vector. The following problem arises in the design of nomgeht multiple-antenna communications
systems. How many pairwise nonintersectitfy-dimensional subspaces of andimensional vector
spacel” over a fieldF can be found, if the generator matrices for the subspacescaragin only
symbols from a given finite alphabgt C F? The most important case is whiiis the field of complex
numbersC; then MM, is the number of antennas. f = F = GF(q) it is shown that the number of
nonintersecting subspaces is at m@gt — 1)/(¢* — 1), and that this bound can be attained if and
only if m is divisible by M;. Furthermore these subspaces remain nonintersecting ‘lifted’ to the
complex field. Thus the finite field case is essentially comepfesolved. In the case whdh = C
only the casé\l; = 2 is considered. It is shown that i is a PSK-configuration, consisting of thé

complex roots of unity, the number of nonintersecting piaiset leas’(™~2) and at mosg”("—1)~1
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(the lower bound may in fact be the best that can be achieved).

1. Introduction

In [6], [25] it was shown that the capacity of the multiple-antenna okeagrows linearly as a function
of the minimum of the numbers of transmitting and receivingeanas. The proof assumed that the
receiver has complete information about the channel.24 the emphasis was placed on reducing
error probability by introducing correlation between sigtransmitted from different antennas. These
points of view can be combined by observing that there isdetaff between rate and reliabilit24],
[29].

Most of the early work on multiple-antenna communicatiossuaned that the receiver was able
to track the channel perfectly—i.e. used coherent detectibcoherent detection is difficult or too
expensive, one can use noncoherent detection, as studied.imhe main result from this work is that
the capacity is still (almost) linear in the minimum numbétransmitting or receiving antennas(,
[28]. Hence, both in the coherent and noncoherent cases, it stalslished that the use of multiple-
antennas leads to a gain in information transmission rate.

In [11], the error probability of multiple-antenna noncoheremnenunication channels was inves-
tigated. It was shown there (and iad]) that if the channel is not known to the receiver, the coding
problem is equivalent to one of packing subspaces (whictesgmt codewords) according to a certain
notion of distance. The diversity order (the slope of th@mreprobability with respect to SNR) was
shown to depend on the dimension of the intersection of themaces.

In particular, to obtain maximal diversity, one wishes tmstouct a family of subspaces which
intersect only at the origin. By a slight abuse of notationwiksay that two vector spaces are “non-
intersecting” if their only common point is the zero vectérsimilar problem has been studied in the
context of designing differential codes for the multiplgenna channellp], [14], [23]. An extensive
characterization and classification of group differendjghce-time codes was given #il]. The focus
of much of this work is on constructing codes which have theimersecting subspace property with-
out imposing any constraints on the number of different syisbsed to define the codewords—that
is, the codewords are allowed to use a signal constellatianis larger than the minimum possible.

The main question addressed in the present paper is thewditt of nonintersecting subspaces,
subject to the constraint that the codewords are defined sgimbols from a fixed, small constellation.
We focus on two cases: one in which the symbols are taken friamite@field and the other where they

are taken from a PSK arrangement, i.e. are complex rootsityf u@ur aim is to find constructions



that give the largest number of nonintersecting subspaeesh@ave the highest rate) subject to these
constraints.

It is worth remarking that a recent paper by Lusina et &f] fliscusses an analogous problem for
the case of coherent decoders. Another related paper isd_K@amar [L7] explores code constructions
with fixed alphabet constraints for achieving differentrgsion the rate-diversity trade-off. Again,
only coherent decoders are considered. A very recent pgpkaimmoun and Belfiorel] directly
addresses the problem of constructing codes for non-cohsystems with a large value &f X, X')
(see b)) between subspaces. However, their approach is quiterelift from ours.

The present paper is organized as follows. In Sectiowe establish notation and formalize the
guestion being studied. In SectiBnwe study the case when the symbols are taken from a finite field
and in Sectiort when they are complex roots of unity (i.e. PSK constella)orSections compares

the different constructions and mentions some directionfufther research.

2. Preliminaries

Let the number of transmitting antennasMeand the number of receiving antennasiig If y (k) €

C M is the received (column) vector at tinkewe can write

y(k) = VE,H(k)x(k) + z(k) , (1)

where the matrixH (k) € €M represents the channel, the column veet@k) € C is the
channel input,E, is the signal power per transmitting antenna, atk) ¢ C* is zero mean i.i.d.
Gaussian noise witft[z(k)z(k)] = NoI. We assume a Rayleigh flat fading model, i.e. that the
elements ofti(k) are i.i.d. with a zero mean complex Gaussian distributiomraf variance. The
channel is assumed to be block time-invariant, thaHigk) is independent ok over a transmission
block of m symbols, sayH (k) = H (althoughH(k) may vary from block to block). Looking at a

single block of lengthm, during which the channel is assumed to be time-invariaatcan write

Y =[y(1),...,y(m)] = VE,H[x(1),,...,x(m)] + [z(1),...,2(m)]| = VEHX +Z. (2

The focus of this paper is on constructing the space-timewoddsX, subject to the constraint that

the elements oK are selected from a particular alphabkt

2.1. Criteria for code design

In this paper we assume that the receiver will not attempstionate the channel matrid, i.e. that

we have a noncoherent receiver. Therefore, the maximurihidad detection rule without using the
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channel state informationi({], [ 14]) is that we should decod¥ as that codeworX which maximizes

exp(— Trace[Y ¥~ 1Y H))
| W |Mr ’

®3)

where¥ = I+ E, XX, H denotes the transposed complex conjugate or adjoint matri¥-| denotes
a determinant. In the absence of channel state informatitireaeceiver, Hochwald and Marzettel]
argue that for high SNR, the one should use unitary codewXrdsatisfyingX X = mI. Using this

in (3) and the matrix inversion lemmal, p. 19]), it follows thatX should be chosen to maximize
Trace[YXZXYH] . (4)

This implies that the decoder should project the receivgaladionto the subspace defined by each of the
codewords and declare the codeword with the maximal piiojetd be the winner. Using a Chernoff
bound argument, we find that the probability that a transmtittodewordX is decoded as the codeword

X is bounded above by1[])

5)
- e (
ag, + 4(1+pm) Mo, — S XXHXXT]|Mr

wherep = f,—o is the signal-to-noise ratio (SNR). If the SNR is large, thésrwise error probability

behaves likg 22)=+¥, wherev is the rank of I, — -L, XX XX],
N 1 -~ HooH L
A = AX,X) = |y, - —XXTXX"];

and| - |+ denotes the product of the nonzero eigenvalues. Note that

Hi} [xi X" H=|m2IMt—XXHXxH|,
which shows that = M, is equivalent to the condition that the rowsXf X are linearly independent
([14]). For this to happen we must hawe > 2M,.

Another interpretation can be given in terms of the princigagles between subspaces corre-
sponding to pairs of codewords. The principal angles batwsdspaceX and X’ are given by
cosf; = %al-(X’XH) whereo;(+) is thei-th singular value of the matrix4], [7]). Using this we
obtain

=m H[l —cos? ;] =m Hsin2 0; . (6)

This provides a better measure of how good a code is: not bolyld the subspaces be nonintersecting,

the value ofA (X, X’) should be large for every pakX, X’ of distinct subspaces. The error probability
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will be dominated by the pair of codewords with the least rardnd the least “distanceX (X, X).

For well separated subspaces this “distance” can also bexapated by

> sin®0; (7)
i=1

which is the the notion of distance between subspaces ugétiand [2].

Another way to compare these codes is by using the notiorvefsity order (cf. 4]).

Definition 2.1. If the average error probability®.(p) as a function of the SNRsatisfies

log(P:(p))

P loglp) ®

the coding scheme is said to hadigersity orderd.

It follows from (5) that the diversity order of the coding scheme is equalito. The maximal diversity
order that can be achieved is therefdig ;. We call codes that achieve this bountly diversecodes.

In brief, to get a diversity order a¥/,.M;, we need to construct nonintersecting subspaces which
are far apart in the metric defined b§)( In this paper we will focus on obtaining maximal diversity
order by constructing families of subspaces which are riersacting. In order to further improve
performance we need to maximiz¢ X, X') over all pairsX, X' of distinct subspaces. The rate of a
codeCis R = % log(|C]). In trying to construct the maximal number of non-interserisubspaces,

we attempt to get the highest rate codes that achieve masglineakity order.

2.2. Statement of the problem

Definition 2.2. LetF be a field. Acodewordor subspacevill mean anM;-dimensional subspace of
F™. Two subspacel; andIl, are said to benonintersectingverF if their intersection is trivial, i.e.

if IT; N1y = {0}

Supposell; is generated by (row) vectors,, ..., uy, € F™, andIly is generated by vectors
IT o
vi,...,00, € FLetP = { 1‘[1 ] denote th&M; x m matrix with rowsu;, ..., uns,, v1, ..., V-
2

Then the following lemma is readily established.

Lemma 2.1. The following properties are equivalent: (i}; andII, are nonintersecting, (ii)° has

rank 2, overF, and (iii) if m = 2M; the determinant oP is nonzero.

Suppose now that instead of allowing the entries in the gegli; andlIl, to be arbitrary elements

of IF, we restrict them to belong to a finite subsétC F, called thealphabet In other words, the
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vectorsuy, ..., un,, v1, - .., vy, Must belong ta4™. The question that we address is the following:
given M;, m and a finite alphabetl C F, how many subspaces can we find which are generated by
vectors fromA™ and which are pairwise nonintersecting ot Furthermore, if the size ofl is
specified in advance, which choice dfpermits the biggest codes?

We first dispose of the trivial case whéi, = 1. Two nonzero vectors, v are said to be@rojec-
tively distinctover a fieldF if there is noa € F such thatu = av. Then if M; = 1, the maximum
number of nonintersecting subspaces is simply the maximumber of projectively distinct vectors in
A™.

In the following sections we will investigate the first questfor two kinds of alphabets: (&4 is a
finite field F (Section3), and (b)M; = 2 and. A C C™ is a set of complex roots of unity (Sectidh

Of course, for the application to multiple-antenna codegiteshe subspaces need to be disjoint
over C. In Theorem3.4 of Section3 we translate the results obtained o¥eto this case by “lifting”
the subspaces to the complex field. Furthermore, for thiicapion, the casen = 2M; is the most

important.

3. Finite Fields

In this section we assume that the alphallednd the fieldF are both equal to the finite field F'(q),
whereq is a power of a prime. At the end of the section we show how to “lift” these planesht®
complex field (see Theore®4). In this case there is an obvious upper bound which can hbiewath

in infinitely many cases. L&t denote the vector spaceF'(q)™.

Theorem 3.1. The number of pairwise nonintersectind,-dimensional subspaces Wfis at most

q" -1
gMt —1°

9)

Proof: There areg™ — 1 nonzero vectors iV and each subspace contaif$: — 1 of them. No
nonzero vector can appear in more than one subspace. [

It is convenient here to use the language of projective gégnef. [19, Appendix B]. Recall that
the points of the projective spad®(s, q) are equivalence classes of nonzero vectors ftaR{q)*+!,
where two vectors are regarded as equivalent if one is a nmiszalar multiple of the other.

A spread[9] in PG(s, q) is a partition of the points into copies &fG(r, q).

Theorem 3.2. Such a spread exists if and onlyrifi- 1 dividess + 1.



Proof: This is a classical result, due to André&]([[9, Theorem 4.1.1]). |
Corollary 3.3. The bound9) can be attained whenevét, dividesm, and only in those cases.

Proof: This is immediate from the theorem, since a set of points irogeptive space represents a set
of projectively distinct lines in the corresponding vectpace. |

Note that the condition is independentqofif a set of nonintersecting subspaces meet#)gxists
over one finite field then it exists over every finite field.

Furthermore, it is straightforward to construct the nasisecting subspaces meeting the bound in
(9), as we now show. The nonzero elements of a finite fiefdrm a multiplicative group which will
be denoted b¥*. This is a cyclic group16, Chap. 2].

SupposeM; dividesm, and consider the fieldsy = GF(q), F1 = GF(¢™), F, = GF(¢™).
ThenFy C F; C Fy. By regardingGF(¢™) as a vector space of dimensienover GF(q) we can
identify F» with V. Similarly we can regard; as aM;-dimensional subspace &f. The desired

spread is now obtained by partitionidg into (multiplicative) cosets of 7.

Example 3.1. We consider the cas®/; = 2, m = 4 and A = GF(2) = {0,1}. ThenF, =
GF(2),F;, = GF(4),F, = GF(16). Each plane inGF(2)* contains three nonzero vectors, and
GF(2)* itself contains 15 nonzero vectors. We wish to find a sprealt@f1, 2)’s inside PG(3, 2),
that is, a partitioning of the 15 vectors into five disjointssef three, where each set of three adds to the
zero vector.

Let GF(16) = GF(2)[a], wherea* + a +1 = 0. A table of the elements of this field and
their binary representations can be found for examplel® Fig. 3.3]. ThenGF(4) is the subfield

{1,a%,a'%}, soF} = {a®, a!’}, and we obtain the desired partition
4 .
Fy=|JdFy.
=0

Only two of the three vectors are needed to define each plarvee fiave the following generators for
the five planes:

(l,a),(a,oﬁ),(az,a7),(a3,a8),(a4,a9).

Using the table in 9], we convert these to explicit generator matrices for the fienintersecting

1000 0100 0010 0001 1100
0110 |’ | o011 |’| 1101 |’| 1010 |’| O101 |~

planes:



The problem is therefore essentially solved as long/dividesm. If not, we can use partial
spreads—see the surveys i énd [22].

We end this section by observing that a set of nonintersgdirbspaces over a finite field =
GF(q), ¢ = p", p prime, can always be “lifted” to a set of nonintersectingspazes over a complex
alphabetA of the same size.

This can be done as follows. SuppoSé'(q) = GF(p)[a], wherea is a root of a primitive
irreducible polynomialf (X) € GF(p)[X]. Letn = p* — 1 and lety, = >/, Adjoining u,, to the
rational numberg), we obtain the cyclotomic fiel@ (., ), with ring of integersZ|u,,]. It is a classical
result from number theory that the ideal) in Z[u,,] factors intog = ¢(n)/k distinct maximal prime
idealsypy, pa, ..., py, Wherep(-) is the Euler totient function. Furthermore, for egch the residue
class ringZu,,]/p; = GF(q) (see for exampled, Theorem 10.45],40, Chap. 10§3B], [26, Theorem
2.13], [27, Theorem 7-2-4]). If we choosg; to be the ideal generated byand f(u,,), thenZi,]/p;
is exactly the version of/ F'(¢) that we started with. Note that singgecontains(p), it acts as reduction

modp onZ. We therefore have a ring homomorphism fréiu,,| to GF(q) given by

mod p

¢ L) "5 Ll s = GF(q) . (10)

In this way we can lift vectors over F'(q) to vectors over the alphabdtconsisting of) and theg — 1
powers ofi,,.

Example: LetGF(8) = GF(2)[a] wherea is a root of X? + X + 1. Theng = 8, n = 7,
pr = 2™/, To lit GF(8) to € we write GF(8) = {0,1,a,a?,...,af}, and lift 0 to 0 anda’ to 12
forj =0,...,6.

Let IT be anM;-dimensional subspace 6fF'(¢)™. By lifting each element of a generator matrix

we obtain anV/;-dimensional subspadé C C™, defined over an alphabet of sizeq.
Theorem 3.4. If two subspacesl;, I1; of GF(q)™ are nonintersecting, so are their lifi$;, IT5.

Proof: LetP := [ g; ] andP := [ % ] By Lemma2.1, P has &M, x 20, invertible submatrix.
Sinceg is a ring homomorphism, the lift of this submatrix is alsoartible. |

It follows that the subspaces constructed in CorolaBare also nonintersecting when lifted to the
complex field.

This construction gives full diversity order non-cohergptace-time codes when the elements of

the codewords are restricted to belong to a finite field. Tizede is
R =1 log(g" — 1) — — log(¢™ — 1) < log(g)
m m ’
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which according to Theorei®.1is the maximal achievable rate for diversity orddgM,.. Moreover,
the above relationship implies that for fully diverse codesstructed from a finite field, we cannot

achieve a rate higher thaog(|.A|).

4. PSK constellations

Throughout this section we assume that the alphabebnsists of the set of compleX-th roots of
unity, that is, A = {e2™9/2" 0 < j < 2"}, for somer > 1. Let u = ¢*™/?" be a primitive2” -th root
of unity; A is a cyclic multiplicative group with generatar. In this section we assume that, = 2,

that is, the code consists of a set of pairwise nonintersggtianes.
Example 4.1. Some examples of roots of unity:

1. If r =1, p = —1 and the alphabet id = {1, —1}.

2. If r =2, u =i and the alphabet ig = {1,7,—1, —i}.

3. Ifr =3, u = (1+i)/v2 and the alphabet isl = {¢™/4 0 < j < 7}. This is the 8-PSK

constellation.

There is a trivial upper bound.

Theorem 4.1. Let. A be the set 02" roots of unity, > 1. Then the number of pairwise nonintersecting

planes is at most|A|" ! = o(m—1)r—1.

Proof: If v1,v, € A™ are the generators for a plane, that plane also containsudtiptes /v, and
1 vy, a total of2|.A| vectors. Since these sets of vectors must all be disjoiathtimber of planes is at
most|.A|"™ /(2| A|). [ |

The same argument shows that there are at rﬁ?wm—l nonintersecting\/;-dimensional sub-
spaces of complex-dimensional space for any finite alphabkt The implication of this in terms of
rate is that

Rgm—l

log(14]) — - -log(M;) < log(|A]) .

Hence, for fully diverse codes constructed from PSK coladtehs, we cannot achieve a rate exceeding
log(|.Al).

Example 4.2. Let A be the sef{1,i, —1, —i} and takem = 4. The total number of vectors id* is
4*. Each vector has 4 multiples, so each plane accounts foasit $evectors. Therefore there are at

most% = 32 planes.



In the other direction we will prove:

Theorem 4.2. Assume- > 1 and thatm > 2 is even. There exisV = |A|™2 = 2("=2)" pairwise

nonintersecting planes i@ ™ defined using the compléX-th roots of unity.

Note that the upper and lower bounds coincide in the easd, that is, whend = {1, —1}.

The proof is simplified by the use of valuations (@))[ If z € Q, z = 2¢ g with a,b,c € Z,c # 0,
b andc odd, then th&-adic valuation of: is v»(x) = a. Similarly, suppose: belongs to the cyclotomic
field Q(u). Sincel — p is a prime inZ[u|, we can writex uniquely as(1 — u)“% with a € Z,
b,c € Z[ul], c # 0, bandc relatively prime tol — .. The(1—p)-adic valuation of: is thenv, _,(z) = a.
It is easy to check that fok € Z, k # 0, v1_,(1 — p*) = 2»2()_ In particular, ifk € Z is odd,
viep(1—p¥) = 1.

We will also need a lemma:

Lemma 4.3. LetIl be a plane inC™ generated by vectors;, v2, and denote by

~ v X T
m, = 1 11 12
V2 T21 T22

and

1:[2: |:’U1 Y11 Y12 ]
V2 Y21 Y22

two different embeddings of into € ™2, ThenIl; N1, = {0} if and only if

£0.

Y11 — 11 Y12 — T12
Y21 — 21 Y22 — X22

Proof: By LemmaZ2.l, it is necessary and sufficient that the matix:= { gl ] have rank 4.
2

Subtracting the first and second rowsidfrom the third and fourth rows, we get the matrix

vy 11 T12
() T91 T2
0 w11 —711 Y12 — 712
0 w21 — @21 Yoo — T2

and the result follows. [ |

We now give the proof of the theorem, for which we use indurctia even values oh. Form = 2
1 1
1 —11]"

10
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Suppose the result is true for. For each of the.4|™ 2 pairwise nonintersecting planes @™ we
will construct|.A|? planes inC™"2, such that full set of planes so obtained is pairwise norsetging;
this will establish the desired result.

If two planes are nonintersecting €& then they are certainly nonintersecting when embedded in
any way inC™*"2. So we need only show that thd|> embeddings of any single plane are pairwise
nonintersecting.

LetIl be a plane iflC™ generated by vectors, vs, and denote bﬁ(a, b) the plane inC™*2 with
generator matrix

v pt b

V9 #a+b a+2b+1 s

o
fora,b=0,1,...,2" — 1.
We will use Lemma4.3 to show that all the planefli(a,b) | « € A, b € A} are pairwise

nonintersecting. For this we must show that

‘ Nc o Ma /j’d o ,ub 0
'uc-i-d _ Iua-i-b #c+2d+1 _ Iua-i-2b+1
if and only ifa = candb = d.
The above determinant is equal to
Iu2c+2d+1(1 _ Na—C)(l N M(a—c)+2(b—d)) _ Mc+2d(1 _ ,ub_d)(l _ N(a—c)-i—(b—d)) ) (11)

If the determinant is zero, th@ — 1)-adic valuations of the two terms on the right must be egbal, t
is,

gra(a—c) 4 gra(a—c+2(b—d)) _ gua(b=d) | gua(a—c+b—d) (12)

We must show that this is true if and onlyif= ¢ andb = d. We consider four cases, depending on

the parity ofa—candb—d. If a—c = 1,b—d = 1(mod2) then (L1) readsl +1 = 14-2v2(a—ctb=d) > 3
(sincea — ¢ + b — d is even), a contradiction. Similarly, f — ¢ = 1,b — d = 0(mod2) we get
1+1=2»0-9 11 andifa —c=0,b—d= 1(mod2) we get2v2(¢—¢) 4 gra(a—c+2(b=d)) — 1 4 ],
which are also contradictions. The fourth possibilityiis ¢ = b — d = 0 (mod 2). Leta — ¢ = 2°z

andb — d = 2!y, wherezr andy are odd,s, t > 1. We have

5 if s <t
va—c+20b—d)=<¢ s ifs=t
>t ifs>t
and
s if s <t
ra—c+2(b—d)=< >s ifs=t
t if s>t

11



Substituting these valuations in equatid2)(again gives a contradiction. This concludes the proof of

Theorem4.2.

5. Discussion

The following table compares the codes constructed in &&= and 4 in the cadd; = 2, i.e. codes
which are pairwise nonintersectizgdimensional subspaces @f”, for m = 4, 6 and8, and alphabets
A of sizes 2, 4 and 8. The top entry in each cell gives the numbplaaes obtained from the finite
field construction (Corollang.3). The bottom entry gives the lower and upper bounds obtailsat
complex|.A|-th roots of unity, from Theorem.2and Theoremd. 1. Asymptotically, the rates of the two
constructions are very similar. Both satidfys( number of codewords/m = log(|.A|), for m large,
and so both asymptotically achieve the maximal rate paséivlfully diverse codes.

Note that the construction via finite fields results in coaesnhich alphabet consists 6fand the
complex(|A| — 1)-st roots of unity, whereas the construction via PSK colattehs produces codes in

which the symbols are the complé#|-th roots of unity (and) is not used).

m =4 m=206 m =38
|A|l =2 5 21 85
4—4 16 — 16 64 — 64
|A|l =4 17 273 4369
16 — 32 256 — 512 4096 — 8192
Al =8 65 4161 266305
64 — 256 | 4096 — 16384 | 262144 — 1048576

Table I. Number of pairwise nonintersecting plane€ift for various

sizes of the alphabé#l| (see text for details).

We end by mentioning some topics for further research.

e We also used clique-finding algorithms to search for larggs sf planes than those given in
Theorem4.2, again takingA to be the set o2"-th complex roots of unity. These searches were
unsuccessful, and so we have not mentioned them elsewhiie praper. These negative results
lead us to conjecture, albeit weakly, that the lower boundsieoreny.2 cannot be improved. It
would be nice to have a better upper bound than that in Thedréfor the case- > 1. It would
also be a worthwhile project to do a more extensive compuarch for better codes, both for

the above alphabet and for other alphabets.
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It is straightforward to formulate the search as a cliqudifig problem. The first step is to
prepare a list of candidate subspaces, making sure thaetterajor matrices use only symbols
from A, and that the subspaces have the specified dimension anéstinetda subspace may
have many different generator matrices: only one versigoldsed on the list of candidates).
Then a graph is constructed with the candidate subspacesrtaes, and with an edge joining
two vertices if and only if the subspaces are nonintersgctifihen a good code is a maximal

clique in this graph.

Can the construction in Theorefn2 be generalized to the case whéf is larger thar2? In

particular, it would be interesting to do a computer seandé case\/; = 3 andm = 6.

This paper has focused only on the existence and constnucfidinite alphabet codes which
achieve maximal diversity order, and we did not consideodag complexity. The decoding
problem involves projecting the received mati¥xonto the candidate subspaces (s&g. (In
general this may require a search o2&f codewords, wherg& is the rate of the code. Since this
number grows exponentially with the code length, a natunaktion to ask is whether there are
codes which are optimally decodable in polynomial time, avehpolynomial time sub-optimal

decoders which perform satisfactorily.

In [4] (see also 2]) a large number of optimal or putatively optimal packingssabspaces in
C™ were constructed using’) as a measure of “distance” between subspaces. It would be

worthwhile repeating these calculations usiiifistead.
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