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A generalized skew information and uncertainty
relation
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Abstract— A generalized skew information is defined and a (1) If (f,g) is a monotonic pair, then
generalized uncertainty relation is established with the blp of
a trace inequality which was recently proven by J.I.Fujii. In Tr(f(A)Xg(A)X) <Tr (f(A)g(A)XQ).
addition, we prove the trace inequality conjectured by S.Lw
and Z.Zhang. Finally we point out that Theorem 1 in SLuo and
Q.zZhang, |IEEE Trans.IT, Vol.50, pp.1778-1782 (2004) is incorrect
in general, by giving a simple counter-example.

(2) If (f,g) is an antimonotonic pair, then

. . . » Tr(f(A)Xg(A)X) > Tr(f(A)g(A)X?).
Index Terms— Skew information, trace inequalities and uncer-

tainty relation. From this lemma, we can obtain the following lemma.

|. INTRODUCTION Lemma 1.2 For any selfadjoint matriced and B, and any

As one of the mathematical studies on entropy, the ske(W"mXX’ we have the following trace inequalities.

entropy [14], [15] and the problem of its concavity are famou (1) If (f,g) is a monotonic pair, then

The concavity problem for the skew entropy generalized by

F.J.Dyson, was solved by E.H.Lieb in [9]. It is also knownttha Tr(f(A)X g(B)X + f(B)Xg(A4)X"

the skew entropy represents the degree of noncommutativity <Tr(f(A)g(A)X*X + f(B)g(B)XX™).
between a certain quantum state represented by the density

matrix p (which is a positive semidefinite matrix with unit (2) If (f,g) is an antimonotonic pair, then

trace) and an observable represented by the selfadjoimixmat

X. Quite recently S.Luo and Q.Zhang studied the relation Tr(f(A)X"g(B)X + f(B)Xg(A)X™)
between skew information (which is equal to the opposite >Tr(f(A)g(A)X*X + f(B)g(B)XX™).
signed skew entropy) and the uncertainty relation in [10].

Inspired by their interesting work, we define a generalizefoof : Define onH © H

skew information and then study the relationship between it )

and the uncertainty relation. In addition, we prove thedrac A= ( A0 ) 7)? = ( 0 X ) ,
inequality conjectured by S.Luo and Z.Zhang in [11]. 0 B X0

where A, B and X' act on a finite dimensional Hilbert space
[l. PRELIMINARIES ‘H. Then A and X are selfadjoint. Therefore one may apply

LemmalIL] to get
Let f andg be functions on the domai® C R. (f,g) is g

called a monotonic pair if f(a) — f(b))(g(a) — g(b)) = 0 Tr(f(A)X*g(B)X + f(B)Xg(A)X*)
: . 4 - 9 g

for all a,b € D. (f,g) is also called an antimonotonic pair if F(4) 0 0 X*
(f(a) — £(5))(g(a) — g(6)) <0 for all a,b € D. (1 ) (%)

In what follows we consider selfadjoint matrices whose ;
spectra are included i so that functional calculus makes < 9(4) 0 > < 0 X >)
sense. 0 g(B) X0

=Tr (F(D)Xg(A)X)

Lemma 1.1 ([1], [2]) For any selfadjoint matriceda and X, ~ 5o
we have the following trace inequalities. =T (f(A)g(A)X )
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I1l. GENERALIZED UNCERTAINTY RELATION If A and B are selfadjoint, the generalized skew correlation

For a density matrix (quantum staeand arbitrary matrices is defined by
X andY acting on, we denoteX = X —Tr (pX) I andY = c A B) = A B
Y — Tr(pY) I, whereI represents the identity matrix. Then Ofy.c (3 4, B) = pelp; 4, B).
we define the covariance by G\, Y) = Tr (pxy), Each The generalized skew information is defined by
variance is defined by/,(X) = Cov,(X,X) andV,(Y) = e (p; A) = Cor, . (p; A, A) = eV, (A) +Ip(p;ﬁ)
Cov,(Y,Y).

The famous Heisenberg’s uncertainty relation [6], [12] caso that
be easily proven by the application of the Schwarz inequalit ~ 1~ 1~
and it was generalized by Schrodinger as follows: Ipolp; A) = Iy(p; A) = V,(A) = Tr (ppApp A) :

Proposition 1.1 (Schrodinger [13]) For any density matrix 1hen we have the following theorem.

p and any two selfadjoint matriced and B, we have the
uncertainty relation : Theorem Ill.4 For any two selfadjoint matriced and B, any

density matrixo, anyp € [1, +oo] with p* such that%—i—% =1

V,(A)V,(B) —|Re(Cov, (A, B)) |* > %ITY (p[A,B]) |, (1) ande > 0, we have a generalized uncertainty relation :
where[X,Y] = XY — Y X. I (p;A) I, (p; B) — |Re (Cort, . (p; A, B))|?
Definition 111.2 For arbitrary matricesX andY, we define > % ITr (p[A, B])|” .

L(p X,Y) =Tr (pXY) —Tr (p%XpPL*Y) , Proof : By Lemmalll:2, 6, . (p; X, X) > 0. Furthermore it is
where_p E 1, +o0)] _and withp* such that% + pL = 1. I.f Alis SJzar:;\tl:t%g(p; X,Y) is sesquilinear and Hermitian. Then
selfadjoint, the Wigner-Yanase-Dyson information is dedin
by [p.2(03 X, V)2 < e (03 X, X) (5 Y, Y)

LpiA) = IL(p A A) =Tr(pA?) —Tr (P%APPL*A) by the Schwarz inequality. It follows that

= —%Tr ([p%,A][pPL*,A]) : |Corr, - (p; A, B)|* < Corr, (p; A, A)Corr, .(p; B, B)

We use the parametegsand p*, since many papers [3], [4], for any two selfadjoint matriced and B. Then
[5], [7] in this field use such notations. The Wigner-Yanase

skew information is Corn.c(p; A, B)|? < e (p; AL, (p; B) 3)
I(p;A) = DL(pA)=Tr(pA*) = Tr (p%Ap%A) Simple calculations imply
- —%Tr ([péjA]z) _ Cort, . (p; A, B) — Corr, . (p; B, A)
An interpretation of skew information as a measure of =t (p {A’B ) =eTr(p[4, B]), )

quantum uncertainty is given in [10] by S.Luo and Q.Zhang. Corry,,. (p; A, B) + Corr,  (p; B, A)

They claimed the following uncertainty relation : = 2Re(Corr, . (p; 4, B)). (5)
I(p, A)I(p, B) — |Re(Cor,(4, B)) | Summing both sides in the above two equalities, we have

1 2

2 [T (oA, B) %, @) 2Corr, . (A, B) = €Tr(p[A, B])

for two selfadjoint matricesd and B, and density matrix, +2Re (Corr, . (p; A,B)). (6)

where their correlation measure was defined by ) i . i ) ,
Since[A4, B] is skew-adjoint, T(p [A, B]) is a purely imagi-

Corr,(A, B) = Tr (pAB) — Tr (pl/zApl/QB) : nary number, we have
However, we show the inequalit{d (2) does not hold in general. . s € 2
We give a counter-example for inequalitfyd (2) in the final |Corty.e (p: 4, B)I” = a4 [Tr (p[4, B])|
section. + |[Re(Cort,. (p; A, B))*. (7)
We define the generalized skew correlation and the gener-
alized skew information as follows. Thus the proof of the theorem is completed by the use of
inequality [3) and EJ7).
Definition 111.3 For arbitraryX andY’, p € [1, +o0] with p* [ ]
such that% + z% =1 ande > 0, set We are interested in the relationship between the left hand

sides in Propositiofi 1M1 and Theorem 1ll.4. The following

Opelp X, Y) proposition gives the relationship.

£Cov,(X*,Y)
1 | -
+ §Ip(p,X*,Y)+§Ip(p,Y,X*)



Proposition IIl.5 For any two selfadjoint matricegd and B, Proposition IV.1 For any two selfadjoint matriced and B,
any density matrixp, any p € [1,4o00] with p* such that any density matrixp and anyp € [1, +o0] with p* such that

L+ L =1ande >0, we have 141 =1, we have
Ip.e (p; A) I« (p; B) — |Re (Corm,- (p; 4, B))|” V, (A)V, (B) - [Re (Cov, (4, B))|”
> e2V, (A)V, (B) — % |Re (Cov, (4, B))|*. > 1,0 (p; A) Lo (p; B) — [Re (Corr, o (p; A, B))|*. (10)
Proof : From Propositior II[IL, we havé/,(4)V,(B) > Proo?c : Let {¢;} be a complete orthonormal basis composed
|Re(Cov, (A, B))|?, that is, by eigenvectors op. Then we calculate
) R e M R G RO W

By puttinge = 0 in @), we have

whereq;; = <E<pi lp;) andaj; = @;;. Thus we get
[Cort,o(p; A, B)|* < Io(p; A)Lpo(p; B).

I, )\ Ap i5 @i
It follows from @) and [b) that o(p;A Z @iy aji
Corr, o(p; A, B) = Re (Corr, o(p; A, B)) . Lo (p;B) = Z)‘ /\p bijbji,
Thus
IRe (Cortyo(p; A, B)) |2 < L.o(p; AL, o(p; B).  (9) wtr:ereb” = <B<pZ l;) andbj; = b;;. In a similar way, we
obtain
Using EqI®), Eq9) and direct calculations, we get the fol
lowing: Re (Corm, 0 (p; A, B)) = Re (Cov, (4, B))
1 1o 1 1L
L.H.S.~ R.H.S. =5 DA A Re (aigbii) = 5 D AT Re (bigaj).
= eTr (pA?) I, o(p; B) +Tr (pB?) Lo (p; A I "
-€ (p ) Tpolpi B) + (p ) volpid) In order to prove the present proposition, we have only to
—2:Re (Tr (pAB)) Re(Cort, o(p; A, B)) show the inequality > 7, where,
+1,0(p; A)1,0(p; B) — {Re(Corr, o(p; A, B))}? E=V,(A) Z AP AT bijbji + V, (B) Z A AT aija;;
>eTr (pA ) Ipo(p; B) +€Tr (pBg) Ipo(p; A) "

~2:Re(Tr (pAB ) ) Re(Corm, o(p; 4, B)) - (Z AN aijaﬁ> (Z AN biﬂ'bﬂ'i) !
> eTr (pA :B) +&Tr (pB2) Lo (p; A v "
elr (P ) P, O(P ) elr (P ) p,O(P ) n = Re (COVp (A, B)) Z ,\Z.; )\;’_*Re (aijbji)

—25\/Tr (PEQ) i (PEQ) \/Ip,O(P; A)L,0(p; B) v

+Re (Cov, (4,B)) Y AP AT Re (bjja;q)

2
W T (p42) Lo(p: B) \/Tr (p5) Lo (p: A)} & 2
=0 —i (Z )‘i%/\;%*Re (aijbji) + Z/\i%/\;%Re (bijaji)) :

u .3 4]

SinceV, (A) = Tr (pA2) = L ST (N + A)) agazi, V, (B) =
Remark 111.6 TheorenfII[4 can be also proven by Proposi- () ( ) 21‘%( i) eigasi- Vo (B)

~ R
tion [ and PropositiofITk. Tr(pB2) = 35 0u +20) bibyis and (4 4 AN +
1 L i 1 1 1
IV. AN INEQUALITY RELATED TO THE UNCERTAINTY (A + ) AP )\Jp — 2\ )\JP* )\p/\p* > 0, we calculate
RELATION
1 1
The trace inequality §= 1 Z {(/\i + A ))\ )\ + Ak + M)A A

V, (A)V, (B) — [Re (Cov, (4, B))|? B3,k

e
> Ino (p; A) Io,0 (p; B) — [Re (Corryo (p; A, B))[. TINAT AN } (aijajibutbus + bigbgiaxicie)

of Theorem 2 in [10], we prove a one-parameter extention of ikl
the above inequality.

. . . L 1 Lo 1L
was conjectured in [11] and proven in [10]. As a generalarati > 5 Z i+ ) AT + (A + ) AP A7

i 1 1 1
—2ATAT AN }|aijbji| |lakibig] - (11)



Since Re (bklalk) Re (ﬂa_kl) Re (blkakl)
Re (aklblk) ,Re (bijaji) = Re (aijbji), we calculate

>

ijikil

n= {(/\i FX) AN A e+ M) ATAT

SIS T R
2N AT AN }Re (aijbji) Re (akibu) -
Thus we conclude¢ > n, since |a;;bji| lawibi] >
|Re (aijbji) Re (aklblkﬂ.
]

The inequality [ID) was independently proven by H.Kosal
in [8]. Our proof is simpler than Kosaki's one.

As a concluding remark, we point out that Theorem 1 i
[10] is incorrect in general.

Remark V.2 Theorem 1 in [10] is not true in general. A
counter-example is given as follows. Let

4394

4\ 01 i
Then we have,l (p, A)I (p, B) — [Re(Corr, (4, B))]* =
1-4V3 and|Tr(p[A, B])|> = 1. These imply

01
10

1
0

p

1(p. A)1(p, B) ~ [Re (Corr, (A, B)I* < £ [Tr (p[4, B
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