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A generalized skew information and uncertainty
relation

Kenjiro Yanagi,Member, IEEE, Shigeru Furuichi,Member, IEEE, and Ken Kuriyama,

Abstract— A generalized skew information is defined and a
generalized uncertainty relation is established with the help of
a trace inequality which was recently proven by J.I.Fujii. In
addition, we prove the trace inequality conjectured by S.Luo
and Z.Zhang. Finally we point out that Theorem 1 in S.Luo and
Q.Zhang, IEEE Trans.IT, Vol.50, pp.1778-1782 (2004) is incorrect
in general, by giving a simple counter-example.

Index Terms— Skew information, trace inequalities and uncer-
tainty relation.

I. I NTRODUCTION

As one of the mathematical studies on entropy, the skew
entropy [14], [15] and the problem of its concavity are famous.
The concavity problem for the skew entropy generalized by
F.J.Dyson, was solved by E.H.Lieb in [9]. It is also known that
the skew entropy represents the degree of noncommutativity
between a certain quantum state represented by the density
matrix ρ (which is a positive semidefinite matrix with unit
trace) and an observable represented by the selfadjoint matrix
X . Quite recently S.Luo and Q.Zhang studied the relation
between skew information (which is equal to the opposite
signed skew entropy) and the uncertainty relation in [10].
Inspired by their interesting work, we define a generalized
skew information and then study the relationship between it
and the uncertainty relation. In addition, we prove the trace
inequality conjectured by S.Luo and Z.Zhang in [11].

II. PRELIMINARIES

Let f and g be functions on the domainD ⊂ R. (f, g) is
called a monotonic pair if(f(a) − f(b))(g(a) − g(b)) ≥ 0
for all a, b ∈ D. (f, g) is also called an antimonotonic pair if
(f(a)− f(b))(g(a)− g(b)) ≤ 0 for all a, b ∈ D.

In what follows we consider selfadjoint matrices whose
spectra are included inD so that functional calculus makes
sense.

Lemma II.1 ([1], [2]) For any selfadjoint matricesA andX ,
we have the following trace inequalities.
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(1) If (f, g) is a monotonic pair, then

Tr (f(A)Xg(A)X) ≤ Tr
(
f(A)g(A)X2

)
.

(2) If (f, g) is an antimonotonic pair, then

Tr (f(A)Xg(A)X) ≥ Tr
(
f(A)g(A)X2

)
.

From this lemma, we can obtain the following lemma.

Lemma II.2 For any selfadjoint matricesA andB, and any
matrix X , we have the following trace inequalities.

(1) If (f, g) is a monotonic pair, then

Tr (f(A)X∗g(B)X + f(B)Xg(A)X∗)

≤ Tr (f(A)g(A)X∗X + f(B)g(B)XX∗) .

(2) If (f, g) is an antimonotonic pair, then

Tr (f(A)X∗g(B)X + f(B)Xg(A)X∗)

≥ Tr (f(A)g(A)X∗X + f(B)g(B)XX∗) .

Proof : Define onH⊕H

Â =

(
A 0
0 B

)
, X̂ =

(
0 X∗

X 0

)
,

whereA,B andX act on a finite dimensional Hilbert space
H. Then Â and X̂ are selfadjoint. Therefore one may apply
Lemma II.1 to get

Tr (f(A)X∗g(B)X + f(B)Xg(A)X∗)

= Tr

((
f (A) 0
0 f (B)

)(
0 X∗

X 0

)

(
g (A) 0
0 g (B)

)(
0 X∗

X 0

))

= Tr
(
f(Â)X̂g(Â)X̂

)

≤ Tr
(
f(Â)g(Â)X̂2

)

= Tr

((
f (A) 0
0 f (B)

)(
g (A) 0
0 g (B)

)

(
0 X∗

X 0

)(
0 X∗

X 0

))

= Tr (f(A)g(A)X∗X + f(B)g(B)XX∗) ,

which is inequality (1). Inequality (2) is proven in a similar
way.

http://arxiv.org/abs/quant-ph/0501152v2


2

III. G ENERALIZED UNCERTAINTY RELATION

For a density matrix (quantum state)ρ and arbitrary matrices
X andY acting onH, we denoteX̃ ≡ X−Tr (ρX) I andỸ ≡
Y − Tr (ρY ) I, whereI represents the identity matrix. Then

we define the covariance by Covρ(X,Y ) = Tr
(
ρX̃Ỹ

)
. Each

variance is defined byVρ(X) ≡ Covρ(X,X) and Vρ(Y ) ≡
Covρ(Y, Y ).

The famous Heisenberg’s uncertainty relation [6], [12] can
be easily proven by the application of the Schwarz inequality
and it was generalized by Schrödinger as follows:

Proposition III.1 (Schrödinger [13]) For any density matrix
ρ and any two selfadjoint matricesA and B, we have the
uncertainty relation :

Vρ(A)Vρ(B)− |Re(Covρ(A,B)) |2 ≥
1

4
|Tr (ρ[A,B]) |2, (1)

where[X,Y ] ≡ XY − Y X .

Definition III.2 For arbitrary matricesX andY , we define

Ip(ρ;X,Y ) ≡ Tr (ρXY )− Tr
(
ρ

1

pXρ
1

p∗ Y
)
,

wherep ∈ [1,+∞] and withp∗ such that1p +
1

p∗
= 1. If A is

selfadjoint, the Wigner-Yanase-Dyson information is defined
by

Ip(ρ;A) ≡ Ip(ρ;A,A) = Tr
(
ρA2

)
− Tr

(
ρ

1

pAρ
1

p∗ A
)

= −
1

2
Tr

(
[ρ

1

p , A][ρ
1

p∗ , A]
)
.

We use the parametersp andp∗, since many papers [3], [4],
[5], [7] in this field use such notations. The Wigner-Yanase
skew information is

I(ρ;A) ≡ I2(ρ;A) = Tr
(
ρA2

)
− Tr

(
ρ

1

2Aρ
1

2A
)

= −
1

2
Tr

(
[ρ

1

2 , A]2
)
.

An interpretation of skew information as a measure of
quantum uncertainty is given in [10] by S.Luo and Q.Zhang.
They claimed the following uncertainty relation :

I(ρ,A)I(ρ,B)− |Re(Corrρ(A,B)) |2

≥
1

4
|Tr (ρ[A,B]) |2, (2)

for two selfadjoint matricesA andB, and density matrixρ,
where their correlation measure was defined by

Corrρ(A,B) ≡ Tr (ρAB)− Tr
(
ρ1/2Aρ1/2B

)
.

However, we show the inequality (2) does not hold in general.
We give a counter-example for inequality (2) in the final
section.

We define the generalized skew correlation and the gener-
alized skew information as follows.

Definition III.3 For arbitraryX andY , p ∈ [1,+∞] with p∗

such that1p + 1

p∗
= 1 andε ≥ 0, set

φp,ε(ρ;X,Y ) ≡ εCovρ(X∗, Y )

+
1

2
Ip(ρ; X̃∗, Ỹ ) +

1

2
Ip(ρ; Ỹ , X̃∗).

If A andB are selfadjoint, the generalized skew correlation
is defined by

Corrp,ε (ρ;A,B) ≡ φp,ε(ρ;A,B).

The generalized skew information is defined by

Ip,ε (ρ;A) ≡ Corrp,ε(ρ;A,A) = εVρ(A) + Ip(ρ; Ã)

so that

Ip,0(ρ;A) = Ip(ρ; Ã) = Vρ(A)− Tr
(
ρ

1

p Ãρ
1

p∗ Ã
)
.

Then we have the following theorem.

Theorem III.4 For any two selfadjoint matricesA andB, any
density matrixρ, anyp ∈ [1,+∞] with p∗ such that1p+

1

p∗
= 1

andε ≥ 0, we have a generalized uncertainty relation :

Ip,ε (ρ;A) Ip,ε (ρ;B)− |Re (Corrp,ε (ρ;A,B))|
2

≥
ε2

4
|Tr (ρ [A,B])|

2
.

Proof : By Lemma II.2,φp,ε(ρ;X,X) ≥ 0. Furthermore it is
clear thatφp,ε(ρ;X,Y ) is sesquilinear and Hermitian. Then
we have

|φp,ε(ρ;X,Y )|2 ≤ φp,ε(ρ;X,X)φp,ε(ρ;Y, Y )

by the Schwarz inequality. It follows that

|Corrp,ε(ρ;A,B)|2 ≤ Corrp,ε(ρ;A,A)Corrp,ε(ρ;B,B)

for any two selfadjoint matricesA andB. Then

|Corrp,ε(ρ;A,B)|2 ≤ Ip,ε(ρ;A)Ip,ε(ρ;B) (3)

Simple calculations imply

Corrp,ε (ρ;A,B)− Corrp,ε (ρ;B,A)

= εTr
(
ρ
[
Ã, B̃

])
= εTr (ρ [A,B]) , (4)

Corrp,ε (ρ;A,B) + Corrp,ε (ρ;B,A)

= 2Re (Corrp,ε (ρ;A,B)) . (5)

Summing both sides in the above two equalities, we have

2Corrp,ε (ρ;A,B) = εTr (ρ [A,B])

+2Re (Corrp,ε (ρ;A,B)) . (6)

Since [A,B] is skew-adjoint, Tr(ρ [A,B]) is a purely imagi-
nary number, we have

|Corrp,ε (ρ;A,B)|2 =
ε2

4
|Tr (ρ [A,B])|2

+ |Re (Corrp,ε (ρ;A,B))|2 . (7)

Thus the proof of the theorem is completed by the use of
inequality (3) and Eq.(7).

We are interested in the relationship between the left hand
sides in Proposition III.1 and Theorem III.4. The following
proposition gives the relationship.
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Proposition III.5 For any two selfadjoint matricesA andB,
any density matrixρ, any p ∈ [1,+∞] with p∗ such that
1

p + 1

p∗
= 1 andε ≥ 0, we have

Ip,ε (ρ;A) Ip,ε (ρ;B)− |Re (Corrp,ε (ρ;A,B))|2

≥ ε2Vρ (A) Vρ (B)− ε2 |Re (Covρ (A,B))|2 .

Proof : From Proposition III.1, we haveVρ(A)Vρ(B) ≥
|Re(Covρ(A,B)) |2, that is,

∣∣∣Re
(

Tr
(
ρÃB̃

))∣∣∣
2

≤ Tr
(
ρÃ2

)
Tr

(
ρB̃2

)
. (8)

By putting ε = 0 in (3), we have

|Corrp,0(ρ;A,B)|2 ≤ Ip,0(ρ;A)Ip,0(ρ;B).

It follows from (4) and (5) that

Corrp,0(ρ;A,B) = Re (Corrp,0(ρ;A,B)) .

Thus

|Re (Corrp,0(ρ;A,B)) |2 ≤ Ip,0(ρ;A)Ip,0(ρ;B). (9)

Using Eq.(8), Eq.(9) and direct calculations, we get the fol-
lowing:

L.H.S.−R.H.S.

= εTr
(
ρÃ2

)
Ip,0(ρ;B) + εTr

(
ρB̃2

)
Ip,0(ρ;A)

−2εRe
(

Tr
(
ρÃB̃

))
Re(Corrp,0(ρ;A,B))

+Ip,0(ρ;A)Ip,0(ρ;B)− {Re(Corrp,0(ρ;A,B))}
2

≥ εTr
(
ρÃ2

)
Ip,0(ρ;B) + εTr

(
ρB̃2

)
Ip,0(ρ;A)

−2εRe
(

Tr
(
ρÃB̃

))
Re(Corrp,0(ρ;A,B))

≥ εTr
(
ρÃ2

)
Ip,0(ρ;B) + εTr

(
ρB̃2

)
Ip,0(ρ;A)

−2ε

√
Tr

(
ρÃ2

)
Tr

(
ρB̃2

)√
Ip,0(ρ;A)Ip,0(ρ;B)

= ε

{√
Tr

(
ρÃ2

)
Ip,0(ρ;B)−

√
Tr

(
ρB̃2

)
Ip,0(ρ;A)

}2

≥ 0.

Remark III.6 Theorem III.4 can be also proven by Proposi-
tion III.1 and Proposition III.5.

IV. A N INEQUALITY RELATED TO THE UNCERTAINTY

RELATION

The trace inequality

Vρ (A)Vρ (B)− |Re (Covρ (A,B))|
2

≥ I2,0 (ρ;A) I2,0 (ρ;B)− |Re (Corr2,0 (ρ;A,B))|
2
.

was conjectured in [11] and proven in [10]. As a generalization
of Theorem 2 in [10], we prove a one-parameter extention of
the above inequality.

Proposition IV.1 For any two selfadjoint matricesA andB,
any density matrixρ and anyp ∈ [1,+∞] with p∗ such that
1

p + 1

p∗
= 1, we have

Vρ (A) Vρ (B)− |Re (Covρ (A,B))|
2

≥ Ip,0 (ρ;A) Ip,0 (ρ;B)− |Re (Corrp,0 (ρ;A,B))|2 . (10)

Proof : Let {ϕi} be a complete orthonormal basis composed
by eigenvectors ofρ. Then we calculate

Tr
(
ρ

1

p Ãρ
1

p∗ Ã
)
=

∑

i,j

λ
1

p

i λ
1

p∗

j aijaji,

whereaij ≡
〈
Ãϕi |ϕj〉 andaji ≡ aij . Thus we get

Ip,0 (ρ;A) = Vρ (A)−
∑

i,j

λ
1

p

i λ
1

p∗

j aijaji,

Ip,0 (ρ;B) = Vρ (B)−
∑

i,j

λ
1

p

i λ
1

p∗

j bijbji,

wherebij ≡
〈
B̃ϕi |ϕj〉 and bji ≡ bij . In a similar way, we

obtain

Re (Corrp,0 (ρ;A,B)) = Re (Covρ (A,B))

−
1

2

∑

i,j

λ
1

p

i λ
1

p∗

j Re (aijbji)−
1

2

∑

j,i

λ
1

p

i λ
1

p∗

j Re (bijaji).

In order to prove the present proposition, we have only to
show the inequalityξ ≥ η, where,

ξ ≡ Vρ (A)
∑

i,j

λ
1

p

i λ
1

p∗

j bijbji + Vρ (B)
∑

i,j

λ
1

p

i λ
1

p∗

j aijaji

−


∑

i,j

λ
1

p

i λ
1

p∗

j aijaji





∑

i,j

λ
1

p

i λ
1

p∗

j bijbji


 ,

η ≡ Re (Covρ (A,B))
∑

i,j

λ
1

p

i λ
1

p∗

j Re (aijbji)

+Re (Covρ (A,B))
∑

i,j

λ
1

p

i λ
1

p∗

j Re (bijaji)

−
1

4


∑

i,j

λ
1

p

i λ
1

p∗

j Re (aijbji) +
∑

i,j

λ
1

p

i λ
1

p∗

j Re (bijaji)




2

.

SinceVρ (A) = Tr
(
ρÃ2

)
= 1

2

∑
i,j

(λi + λj) aijaji, Vρ (B) =

Tr
(
ρB̃2

)
= 1

2

∑
i,j

(λi + λj) bijbji, and (λi + λj)λ
1

p

k λ
1

p∗

l +

(λk + λl)λ
1

p

i λ
1

p∗

j − 2λ
1

p

i λ
1

p∗

j λ
1

p

k λ
1

p∗

l ≥ 0, we calculate

ξ =
1

4

∑

i,j,k,l

{
(λi + λj)λ

1

p

k λ
1

p∗

l + (λk + λl)λ
1

p

i λ
1

p∗

j

−2λ
1

p

i λ
1

p∗

j λ
1

p

k λ
1

p∗

l

}
(aijajibklblk + bijbjiaklalk)

≥
1

2

∑

i,j,k,l

{
(λi + λj)λ

1

p

k λ
1

p∗

l + (λk + λl)λ
1

p

i λ
1

p∗

j

−2λ
1

p

i λ
1

p∗

j λ
1

p

k λ
1

p∗

l

}
|aijbji| |aklblk| . (11)
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Since Re (bklalk) = Re
(
blkakl

)
= Re (blkakl) =

Re (aklblk) ,Re (bijaji) = Re (aijbji), we calculate

η =
1

2

∑

i,j,k,l

{
(λi + λj) λ

1

p

k λ
1

p∗

l + (λk + λl)λ
1

p

i λ
1

p∗

j

−2λ
1

p

i λ
1

p∗

j λ
1

p

k λ
1

p∗

l

}
Re (aijbji)Re (aklblk) .

Thus we concludeξ ≥ η, since |aijbji| |aklblk| ≥
|Re (aijbji)Re (aklblk)|.

The inequality (10) was independently proven by H.Kosaki
in [8]. Our proof is simpler than Kosaki’s one.

As a concluding remark, we point out that Theorem 1 in
[10] is incorrect in general.

Remark IV.2 Theorem 1 in [10] is not true in general. A
counter-example is given as follows. Let

ρ =
1

4

(
3 0
0 1

)
, A =

(
0 i

−i 0

)
, B =

(
0 1
1 0

)
.

Then we have,I (ρ,A) I (ρ,B) − |Re (Corrρ (A,B))|2 =
7−4

√
3

4
and |Tr (ρ [A,B])|

2
= 1. These imply

I (ρ,A) I (ρ,B)− |Re (Corrρ (A,B))|
2
<

1

4
|Tr (ρ [A,B])|

2
.
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