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Abstract

This paper considers the classical error correcting problem which is frequently dis-
cussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted
measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary
and unknown vector of errors. Is it possible to recover f exactly from the data y?

We prove that under suitable conditions on the coding matrix A, the input f is the
unique solution to the ℓ1-minimization problem (‖x‖ℓ1 :=

∑

i |xi|)

min
g∈Rn

‖y − Ag‖ℓ1

provided that the support of the vector of errors is not too large, ‖e‖ℓ0 := |{i : ei 6=
0}| ≤ ρ · m for some ρ > 0. In short, f can be recovered exactly by solving a simple
convex optimization problem (which one can recast as a linear program). In addition,
numerical experiments suggest that this recovery procedure works unreasonably well;
f is recovered exactly even in situations where a significant fraction of the output is
corrupted.

This work is related to the problem of finding sparse solutions to vastly underde-
termined systems of linear equations. There are also significant connections with the
problem of recovering signals from highly incomplete measurements. In fact, the results
introduced in this paper improve on our earlier work [5]. Finally, underlying the suc-
cess of ℓ1 is a crucial property we call the uniform uncertainty principle that we shall
describe in detail.

Keywords. Linear codes, decoding of (random) linear codes, sparse solutions to under-
determined systems, ℓ1 minimization, basis pursuit, duality in optimization, linear pro-
gramming, restricted orthonormality, principal angles, Gaussian random matrices, singular
values of random matrices.
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1 Introduction

1.1 Decoding of linear codes

This paper considers the model problem of recovering an input vector f ∈ Rn from cor-
rupted measurements y = Af +e. Here, A is an m by n matrix (we will assume throughout
the paper that m > n), and e is an arbitrary and unknown vector of errors. The problem
we consider is whether it is possible to recover f exactly from the data y. And if so, how?

In its abstract form, our problem is of course equivalent to the classical error correcting
problem which arises in coding theory as we may think of A as a linear code; a linear code
is a given collection of codewords which are vectors a1, . . . , an ∈ Rm—the columns of the
matrix A. Given a vector f ∈ Rn (the “plaintext”) we can then generate a vector Af in
Rm (the “ciphertext”); if A has full rank, then one can clearly recover the plaintext f from
the ciphertext Af . But now we suppose that the ciphertext Af is corrupted by an arbitrary
vector e ∈ Rm giving rise to the corrupted ciphertext Af + e. The question is then: given
the coding matrix A and Af + e, can one recover f exactly?

As is well-known, if the fraction of the corrupted entries is too large, then of course we have
no hope of reconstructing f from Af + e; for instance, assume that m = 2n and consider
two distinct plaintexts f, f ′ and form a vector g ∈ Rm by setting half of its m coefficients
equal to those of Af and half of those equal to those of Af ′. Then g = Af + e = Af ′ + e′

where both e and e′ are supported on sets of size at most n = m/2. This simple example
shows that accurate decoding is impossible when the size of the support of the error vector
is greater or equal to a half of that of the output Af . Therefore, a common assumption in
the literature is to assume that only a small fraction of the entries are actually damaged

‖e‖ℓ0 := |{i : ei 6= 0}| ≤ ρ · m. (1.1)

For which values of ρ can we hope to reconstruct e with practical algorithms? That is, with
algorithms whose complexity is at most polynomial in the length m of the code A?

To reconstruct f , note that it is obviously sufficient to reconstruct the vector e since knowl-
edge of Af + e together with e gives Af , and consequently f since A has full rank. Our
approach is then as follows. We construct a matrix which annihilates the m × n matrix A
on the left, i.e. such that FA = 0. This can be done in an obvious fashion by taking a
matrix F whose kernel is the range of A in Rm, which is an n-dimensional subspace (e.g. F
could be the orthogonal projection onto the cokernel of A). We then apply F to the output
y = Af + e and obtain

ỹ = F (Af + e) = Fe (1.2)

since FA = 0. Therefore, the decoding problem is reduced to that of reconstructing a
sparse vector e from the observations Fe (by sparse, we mean that only a fraction of the
entries of e are nonzero).
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1.2 Sparse solutions to underdetermined systems

Finding sparse solutions to underdetermined systems of linear equations is in general NP -
hard [11, 27]. For example, the sparsest solution is given by

(P0) min
d∈Rm

‖d‖ℓ0 subject to Fd = ỹ (= Fe), (1.3)

and to the best of our knowledge, solving this problem essentially require exhaustive searches
over all subsets of columns of F , a procedure which clearly is combinatorial in nature and
has exponential complexity.

This computational intractability has recently led researchers to develop alternatives to
(P0), and a frequently discussed approach considers a similar program in the ℓ1-norm which
goes by the name of Basis Pursuit [8]:

(P1) min
x∈Rm

‖d‖ℓ1 , Fd = ỹ, (1.4)

where we recall that ‖d‖ℓ1 =
∑m

i=1 |di|. Unlike the ℓ0-norm which enumerates the nonzero
coordinates, the ℓ1-norm is convex. It is also well-known [2] that (P1) can be recast as a
linear program (LP).

Motivated by the problem of finding sparse decompositions of special signals in the field of
mathematical signal processing and following upon the ground breaking work of Donoho
and Huo [13], a series of beautiful articles [14, 15, 21, 30] showed exact equivalence between
the two programs (P0) and (P1). In a nutshell, this work shows that for m/2 by m matrices
F obtained by concatenation of two orthonormal bases, the solution to both (P0) and (P1)
are unique and identical provided that in the most favorable case, the vector e has at most
.914

√

m/2 nonzero entries. This is of little practical use here since we are interested in
procedures that might recover a signal when a constant fraction of the output is unreliable.

Using very different ideas and together with Romberg [4], the authors proved that the
equivalence holds with overwhelming probability for various types of random matrices pro-
vided that provided that the number of nonzero entries in the vector e be of the order of
m/ log m [5, 6]. In the special case where F is an m/2 by m random matrix with indepen-
dent standard normal entries, [11] proved that the number of nonzero entries may be as
large as ρ ·m, where ρ > 0 is some very small and unspecified positive constant independent
of m.

1.3 Innovations

This paper introduces the concept of a restrictedly almost orthonormal system—a collec-
tion of vectors which behaves like an almost orthonormal system but only for sparse linear
combinations. Thinking about these vectors as the columns of the matrix F , we show that
this condition allows for the exact reconstruction of sparse linear combination of these vec-
tors, i.e. e. Our results are significantly different than those mentioned above as they are
deterministic and do not involve any kind of randomization, although they can of course
be specialized to random matrices. For instance, we shall see that a Gaussian matrix
with independent entries sampled from the standard normal distribution is restrictedly al-
most orthonormal with overwhelming probability, and that minimizing the ℓ1-norm recovers
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sparse decompositions with a number of nonzero entries of size ρ0 ·m; we shall actually give
numerical values for ρ0.

We presented the connection with sparse solutions to underdetermined systems of linear
equations merely for pedagogical reasons. There is a more direct approach. To recover f
from corrupted data y = Af +e, we consider solving the following ℓ1-minimization problem

(P ′
1) min

g∈Rn
‖y − Ag‖ℓ1 . (1.5)

Now f is the unique solution of (P ′
1) if and only if e is the unique solution of (P1). In other

words, (P1) and (P ′
1) are equivalent programs. To see why these is true, observe on the one

hand that since y = Af + e, we may decompose g as g = f + h so that

(P ′
1) ⇔ min

h∈Rn
‖e − Ah‖ℓ1 .

On the other hand, the constraint Fx = Fe means that x = e − Ah for some h ∈ Rn and,
therefore,

(P1) ⇔ min
h∈Rn

‖x‖ℓ1 , x = e − Ah

⇔ min
h∈Rn

‖e − Ah‖ℓ1 ,

which proves the claim.

The program (P ′
1) may also be re-expressed as an LP—hence the title of this paper. Indeed,

the ℓ1-minimization problem is equivalent to

min 1T t, −t ≤ y − Ag ≤ t, (1.6)

where the optimization variables are t ∈ Rm and g ∈ Rn (as is standard, the generalized
vector inequality x ≤ y means that xi ≤ yi for all i). As a result, (P ′

1) is an LP with
inequality constraints and can be solved efficiently using standard optimization algorithms,
see [3].

1.4 Restricted isometries

In the remainder of this paper, it will be convenient to use some linear algebra notations.
We denote by (vj)j∈J ∈ Rp the columns of the matrix F and by H the Hilbert space
spanned by these vectors. Further, for any T ⊆ J , we let FT be the submatrix with column
indices j ∈ T so that

FT c =
∑

j∈T

cjvj ∈ H.

To introduce the notion of almost orthonormal system, we first observe that if the columns
of F are sufficiently “degenerate,” the recovery problem cannot be solved. In particular, if
there exists a non-trivial sparse linear combination

∑

j∈T cjvj = 0 of the vj which sums to
zero, and T = T1 ∪ T2 is any partition of T into two disjoint sets, then the vector y

y :=
∑

j∈T1

cjvj =
∑

j∈T2

(−cj)vj
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has two distinct sparse representations. On the other hand, linear dependencies
∑

j∈J cjvj =
0 which involve a large number of nonzero coefficients cj , as opposed to a sparse set of co-
efficients, do not present an obvious obstruction to sparse recovery. At the other extreme,
if the (vj)j∈J are an orthonormal system, then the recovery problem is easily solved by
setting cj = 〈f, vj〉H .

The main result of this paper is that if we impose a “restricted orthonormality hypothesis,”
which is far weaker than assuming orthonormality, then (P1) solves the recovery problem,
even if the (vj)j∈J are highly linearly dependent (for instance, it is possible for m := |J | to
be much larger than the dimension of the span of the vj ’s). To make this quantitative we
introduce the following definition.

Definition 1.1 (Restricted isometry constants) Let F be the matrix with the finite
collection of vectors (vj)j∈J ∈ Rp as columns. For every integer 1 ≤ S ≤ |J |, we define the
S-restricted isometry constants δS to be the smallest quantity such that FT obeys

(1 − δS)‖c‖2 ≤ ‖FT c‖2 ≤ (1 + δS)‖c‖2 (1.7)

for all subsets T ⊂ J of cardinality at most S, and all real coefficients (cj)j∈T . Similarly,
we define the S, S′-restricted orthogonality constants θS,S′ for S+S′ ≤ |J | to be the smallest
quantity such that

|〈FT c, FT ′c′〉| ≤ θS,S′ · ‖c‖ ‖c′‖ (1.8)

holds for all disjoint sets T, T ′ ⊆ J of cardinality |T | ≤ S and |T ′| ≤ S′.

The numbers δS and θS measure how close the vectors vj are to behaving like an orthonormal
system, but only when restricting attention to sparse linear combinations involving no more
than S vectors. These numbers are clearly non-decreasing in S, S′. For S = 1, the value
δ1 only conveys magnitude information about the vectors vj; indeed δ1 is the best constant
such that

1 − δ1 ≤ ‖vj‖2
H ≤ 1 + δ1 for all j ∈ J. (1.9)

In particular, δ1 = 0 if and only if all of the vj have unit length. Section 2.3 establishes
that the higher δS control the orthogonality numbers θS,S′:

Lemma 1.2 We have θS,S′ ≤ δS+S′ ≤ θS,S′ + max(δS , δS′) for all S, S′.

To see the relevance of the restricted isometry numbers δS to the sparse recovery problem,
consider the following simple observation:

Lemma 1.3 Suppose that S ≥ 1 is such that δ2S < 1, and let T ⊂ J be such that |T | ≤
S. Let f := FT c for some arbitrary |T |-dimensional vector c. Then the set T and the
coefficients (cj)j∈T can be reconstructed uniquely from knowledge of the vector f and the
vj ’s.

Proof We prove that there is a unique c with ‖c‖ℓ0 ≤ S and obeying f =
∑

j cjvj. Suppose
for contradiction that f had two distinct sparse representations f = FT c = FT ′ c′ where
|T |, |T ′| ≤ S. Then

FT∪T ′ d = 0, dj := cj1j∈T − cj′1j∈T ′ .

Taking norms of both sides and applying (1.7) and the hypothesis δ2S < 1 we conclude that
‖d‖2 = 0, contradicting the hypothesis that the two representations were distinct.
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1.5 Main results

Note that the previous lemma is an abstract existence argument which shows what might
theoretically be possible, but does not supply any efficient algorithm to recover T and cj

from f and (vj)j∈J other than by brute force search—as discussed earlier. In contrast,
our main theorem result that, by imposing slightly stronger conditions on δ2S , the ℓ1-
minimization program (P1) recovers f exactly.

Theorem 1.4 Suppose that S ≥ 1 is such that

δS + θS + θS,2S < 1, (1.10)

and let c be a real vector supported on a set T ⊂ J obeying |T | ≤ S. Put f := Fc. Then c
is the unique minimizer to

(P1) min ‖d‖ℓ1 Fd = f.

Note from Lemma 1.2 that (1.10) implies δ2S < 1, and is in turn implied by δS +δ2S +δ3S <
1/4. Thus the condition (1.10) is roughly “three times as strict” as the condition required
for Lemma 1.3.

Theorem 1.4 is inspired by our previous work [5], see also [4, 6], but unlike those earlier
results, our results here are deterministic, and thus do not have a non-zero probability of
failure, provided of course one can ensure that the system (vj)j∈J verifies the condition
(1.10). By virtue of the previous discussion, we have the companion result:

Theorem 1.5 Suppose F is such that FA = 0 and let S ≥ 1 be a number obeying the
hypothesis of Theorem 1.4. Set y = Af + e, where e is a real vector supported on a set of
size at most S. Then f is the unique minimizer to

(P ′
1) min

g∈Rn
‖y − Ag‖ℓ1 .

1.6 Gaussian random matrices

An important question is then to find matrices with good restricted isometry constants,
i.e. such that (1.10) holds for large values of S. Indeed, such matrices will tolerate a larger
fraction of output in error while still allowing exact recovery of the original input by linear
programming. How to construct such matrices might be delicate. In section 3, however,
we will argue that generic matrices, namely samples from the Gaussian unitary ensemble
obey (1.10) for relatively large values of S.

Theorem 1.6 Assume p ≤ m and let F be a p by m matrix whose entries are i.i.d.
Gaussian with mean zero and variance 1/p. Then the condition of Theorem 1.4 holds with
overwhelming probability provided that r = S/m is small enough so that

r < r∗(p,m)

where r∗(p,m) is given in Section 3.5. (By “with overwhelming probability,” we mean with
probability decaying exponentially in m.) In the limit of large samples, r∗ only depends upon
the ratio, and numerical evaluations show that the condition holds for r ≤ 3.6 · 10−4 in the
case where p/m = 3/4, r ≤ 3.2 ·10−4 when p/m = 2/3, and r ≤ 2.3 ·10−4 when p/m = 1/2.
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In other words, Gaussian matrices are a class of matrices for which one can solve an un-
derdetermined systems of linear equations by minimizing ℓ1 provided, of course, the input
vector has fewer than ρ · m nonzero entries with ρ > 0. We mentioned earlier that this
result is similar to [11] . What is new here is that by using a very different machinery, one
can obtain explicit numerical values which were not available before.

In the context of error correcting, the consequence is that a fraction of the output may
be corrupted by arbitrary errors and yet, solving a convex problem would still recover f
exactly—a rather unexpected feat.

Corollary 1.7 Suppose A is an n by m Gaussian matrix and set p = m − n. Under the
hypotheses of Theorem 1.6, the solution to (P ′

1) is unique and equal to f .

This is an immediate consequence of Theorem 1.6. The only thing we need to argue is
why we may think of the annihilator F (such that FA = 0) as a matrix with independent
Gaussian entries. Observe that the range of A is a random space of dimension n embedded
in Rm so that the data ỹ = Fe is the projection of e on a random space of dimension p.
The range of a p by m matrix with independent Gaussian entries precisely is a random
subspace of dimension p, which justifies the claim.

We would like to point out that the numerical bounds we derived in this paper are overly
pessimistic. We are confident that finer arguments and perhaps new ideas will allow to
derive versions of Theorem 1.6 with better bounds. The discussion section will enumerate
several possibilities for improvement.

1.7 Organization of the paper

The paper is organized as follows. Section 2 proves our main claim, namely, Theorem 1.4
(and hence Theorem 1.5) while Section 3 introduces elements from random matrix theory
to establish Theorem 1.6. In Section 4, we present numerical experiments which suggest
that in practice, (P ′

1) works unreasonably well and recovers the f exactly from y = Af + e
provided that the fraction of the corrupted entries be less than about 17% in the case
where m = 2n and less than about 34% in the case where m = 4n. Section 5 explores the
consequences of our results for the recovery of signals from highly incomplete data and ties
our findings with some of our earlier work. Finally, we conclude with a short discussion
section whose main purpose is to outline areas for improvement.

2 Proof of Main Results

Our main result, namely, Theorem 1.4 is proved by duality. As we will see in section 2.2, c
is the unique minimizer if the matrix FT has full rank and if one can find a vector w with
the two properties

(i) 〈w, vj〉H = sgn(cj) for all j ∈ T ,

(ii) and |〈w, vj〉H | < 1 for all j /∈ T ,

7



where sgn(cj) is the sign of cj (sgn(cj) = 0 for cj = 0). The two conditions above say that
a specific dual program is feasible and is called the exact reconstruction property in [5], see
also [4]. For |T | ≤ S with S obeying the hypothesis of Theorem 1.4, FT has full rank since
δS < 1 and thus, the proof simply consists in constructing a dual vector w; this is the object
of the next section.

2.1 Exact reconstruction property

We now examine the sparse reconstruction property and begin with coefficients 〈w, vj〉H
for j 6∈ T being only small in an ℓ2 sense.

Lemma 2.1 (Dual sparse reconstruction property, ℓ2 version) Let S, S′ ≥ 1 be such
that δS < 1, and c be a real vector supported on T ⊂ J such that |T | ≤ S. Then there exists
a vector w ∈ H such that 〈w, vj〉H = cj for all j ∈ T . Furthermore, there is an “exceptional
set” E ⊂ J which is disjoint from T , of size at most

|E| ≤ S′, (2.1)

and with the properties

|〈w, vj〉| ≤
θS,S′

(1 − δS)
√

S′
· ‖c‖ for all j 6∈ T ∪ E

and

(
∑

j∈E

|〈w, vj〉|2)1/2 ≤ θS

1 − δS
· ‖c‖.

In addition, ‖w‖H ≤ K · ‖c‖ for some constant K > 0 only depending upon δS.

Proof Recall that FT : ℓ2(T ) → H is the linear transformation FT cT :=
∑

j∈T cjvj where
cT := (cj)j∈T (we use the subscript T in cT to emphasize that the input is a |T |-dimensional
vector), and let F ∗

T be the adjoint transformation

F ∗
T w := (〈w, vj〉H)j∈T .

Property (1.7) gives

1 − δS ≤ λmin(F
∗
T FT ) ≤ λmax(F

∗
T FT ) ≤ 1 + δS ,

where λmin and λmax are the minimum and maximum eigenvalues of the positive-definite
operator F ∗

T FT . In particular, since δ|T | < 1, we see that F ∗
T FT is invertible with

‖(F ∗
T FT )−1‖ ≤ 1

1 − δS
. (2.2)

Also note that ‖FT (F ∗
T FT )−1‖ ≤

√
1 + δS/(1 − δS) and set w ∈ H to be the vector

w := FT (F ∗
T FT )−1cT ;
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it is then clear that F ∗
T w = cT , i.e. 〈w, vj〉H = cj for all j ∈ T . In addition, ‖w‖ ≤ K · ‖cT ‖

with K =
√

1 + δS/(1 − δS). Finally, if T ′ is any set in J disjoint from T with |T ′| ≤ S′

and dT ′ = (dj)j∈T ′ is any sequence of real numbers, then (1.8) and (2.2) give

|〈F ∗
T ′w, dT ′〉ℓ2(T ′)| = |〈w,FT ′dT ′〉ℓ2(T ′)| =

∣

∣

∣

∣

∣

∣

〈
∑

j∈T

((F ∗
T FT )−1cT )jvj,

∑

j∈T ′

djvj〉H

∣

∣

∣

∣

∣

∣

≤ θS,S′ · ‖(F ∗
T FT )−1cT ‖ · ‖dT ′‖

≤ θS,S′

1 − δS
‖cT ‖ · ‖dT ′‖;

since dT ′ was arbitrary, we thus see from duality that

‖F ∗
T ′w‖ℓ2(T ′) ≤

θS,S′

1 − δS
‖cT ‖.

In other words,

(
∑

j∈T ′

|〈w, vj〉|2)1/2 ≤ θS,S′

1 − δS
‖cT ‖ whenever T ′ ⊂ J\T and |T ′| ≤ S′. (2.3)

If in particular if we set

E := {j ∈ J\T : |〈w, vj〉| >
θS,S′

(1 − δS)
√

S′
· ‖cT ‖},

then |E| must obey |E| ≤ S′, since otherwise we could contradict (2.3) by taking a subset
T ′ of E of cardinality S′. The claims now follow.

We now derive a solution with better control on the sup norm of |〈w, vj〉| outside of T , by
iterating away the exceptional set E (while keeping the values on T fixed).

Lemma 2.2 (Dual sparse reconstruction property, ℓ∞ version) Let S ≥ 1 be such
that δS + θS,2S < 1, and c be a real vector supported on T ⊂ J obeying |T | ≤ S. Then there
exists a vector w ∈ H such that 〈w, vj〉H = cj for all j ∈ T . Furthermore, w obeys

|〈w, vj〉| ≤
θS

(1 − δS − θS,2S)
√

S
· ‖c‖ for all j 6∈ T. (2.4)

Proof We may normalize
∑

j∈T |cj |2 =
√

S. Write T0 := T . Using Lemma 2.1, we can
find a vector w1 ∈ H and a set T1 ⊆ J such that

T0 ∩ T1 = ∅
|T1| ≤ S

〈w1, vj〉H = cj for all j ∈ T0

|〈w1, vj〉H | ≤ θS,S′

(1 − δS)
for all j 6∈ T0 ∪ T1

(
∑

j∈T1

|〈w1, vj〉H |2)1/2 ≤ θS

1 − δS

√
S

‖w1‖H ≤ K.
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Applying Lemma 2.1 iteratively gives a sequence of vectors wn+1 ∈ H and sets Tn+1 ⊆ J
for all n ≥ 1 with the properties

Tn ∩ (T0 ∪ Tn+1) = ∅
|Tn+1| ≤ S

〈wn+1, vj〉H = 〈wn, vj〉H for all j ∈ Tn

〈wn+1, vj〉H = 0 for all j ∈ T0

|〈wn+1, vj〉H | ≤ θS

1 − δS

(

θS,2S

1 − δS

)n

for all j 6∈ T0 ∪ Tn ∪ Tn+1

(
∑

j∈Tn+1

|〈wn+1, vj〉|2)1/2 ≤ θS

1 − δS

(

θS,2S

1 − δS

)n √
S

‖wn+1‖H ≤
(

θS

1 − δS

)n−1

K.

By hypothesis, we have
θS,2S

1−δS
≤ 1. Thus if we set

w :=
∞
∑

n=1

(−1)n−1wn

then the series is absolutely convergent and, therefore, w is a well-defined vector in H. We
now study the coefficients

〈w, vj〉H =

∞
∑

n=1

(−1)n−1〈wn, vj〉H (2.5)

for j ∈ J .

Consider first j ∈ T0, it follows from the construction that 〈w1, vj〉H = cj and 〈wn, vj〉H = 0
for all n ≥ 2, and hence

〈w, vj〉H = cj for all j ∈ T0.

Second, fix j with j 6∈ T0 and let Ij := {n ≥ 1 : j ∈ Tn}. Since Tn and Tn+1 are disjoint,
we see that the integers in the set Ij are spaced at least two apart. Now if n ∈ Ij , then by
definition j ∈ Tn and, therefore,

〈wn+1, vj〉H = 〈wn, vj〉H .

In other words, the n and n + 1 terms in (2.5) cancel each other out. Thus we have

〈w, vj〉H =
∑

n≥1;n,n−16∈Ij

(−1)n−1〈wn, vj〉H .

On the other hand, if n, n − 1 6∈ Ij and n 6= 0, then j 6∈ Tn ∩ Tn−1 and

|〈wn, vj〉| ≤
θS,S

1 − δS

(

θS,2S

1 − δS

)n−1

which by the triangle inequality and the geometric series formula gives

|
∑

n≥1;n,n−16∈Ij

(−1)n−1〈wn, vj〉H | ≤ θS,S

1 − δS − θS,2S
.
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In conclusion,

|〈w, vj〉H − 10∈Ij 〈w0, vj〉H | ≤ θS,S

1 − δS − θS,2S
,

and since |T | ≤ S, the claim follows.

Lemma 2.2 actually solves the dual recovery problem. Indeed, our result states that one
can find a vector w ∈ H obeying both properties (i) and (ii) stated at the beginning of the
section. To see why (ii) holds, observe that ‖sgn(c)‖ =

√

|T | ≤
√

S and, therefore, (2.4)
gives for all j 6∈ T

|〈w, vj〉H | ≤ θS,S

(1 − δS − θS,2S)
·
√

|T |
S

≤ θS,S

(1 − δS − θS,2S)
< 1,

provided that δS + θS,S + θS,2S < 1.

2.2 Proof of Theorem 1.4

Observe first that standard convex arguments give that there exists at least one minimizer
d = (dj)j∈J to the problem (P1). We need to prove that d = c. Since c obeys the constraints
of this problem, d obeys

‖d‖ℓ1 ≤ ‖c‖ℓ1 =
∑

j∈T

|cj |. (2.6)

Now take a w obeying properties (i) and (ii) (see the remark following Lemma 2.2). Using
the fact that the inner product 〈w, vj〉 is equal to the sign of c on T and has absolute value
strictly less than one on the complement, we then compute

‖d‖ℓ1 =
∑

j∈T

|cj + (dj − cj)| +
∑

j 6∈T

|dj |

≥
∑

j∈T

sgn(cj)(cj + (dj − cj)) +
∑

j 6∈T

dj〈w, vj〉H

=
∑

j∈T

|cj | +
∑

j∈T

(dj − cj)〈w, vj〉H +
∑

j 6∈T

dj〈w, vj〉H

=
∑

j∈T

|cj | + 〈w,
∑

j∈J

djvj −
∑

j∈T

cj〉

=
∑

j∈T

|cj | + 〈w, f − f〉

=
∑

j∈T

|cj |.

Comparing this with (2.6) we see that all the inequalities in the above computation must
in fact be equality. Since |〈w, vj〉H | was strictly less than 1 for all j 6∈ T , this in particular
forces dj = 0 for all j /∈ T . Thus

∑

j∈T

(dj − cj)vj = f − f = 0.

Applying (1.7) (and noting from hypothesis that δS < 1) we conclude that dj = cj for all
j ∈ T . Thus d = c as claimed. This concludes the proof of our theorem.
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Remark. It is likely that one may push the condition δS + θS,S + θS,2S < 1 a little further.
The key idea is as follows. Each vector wn in the iteration scheme used to prove Lemma
2.2 was designed to annihilate the influence of wn−1 on the exceptional set Tn−1. But
annihilation is too strong of a goal. It would be just as suitable to design wn to moderate
the influence of wn−1 enough so that the inner product with elements in Tn−1 is small
rather than zero. However, we have not pursued such refinements as the arguments would
become considerably more complicated than the calculations presented here.

2.3 Approximate orthogonality

Lemma 1.2 gives control of the size of the principal angle between subspaces of dimension
S and S′ respectively. This is useful because it allows to guarantee exact reconstruction
from the knowledge of the δ numbers only.

Proof [Proof of Lemma 1.2] We first show that θS,S′ ≤ δS+S′ . By homogeneity it will
suffice to show that

|〈
∑

j∈T

cjvj ,
∑

j′∈T ′

c′j′vj′〉H | ≤ δS+S′

whenever |T | ≤ S, |T ′| ≤ S′, T, T ′ are disjoint, and
∑

j∈T |cj |2 =
∑

j′∈T ′ |c′j′ |2 = 1. Now
(1.7) gives

2(1 − δS+S′) ≤ ‖
∑

j∈T

cjvj +
∑

j′∈T ′

c′j′vj′‖2
H ≤ 2(1 + δS+S′)

together with

2(1 − δS+S′) ≤ ‖
∑

j∈T

cjvj −
∑

j′∈T ′

c′j′vj′‖2
H ≤ 2(1 + δS+S′),

and the claim now follows from the parallelogram identity

〈f, g〉 =
‖f + g‖2

H − ‖f − g‖2
H

4
.

It remains to show that δS+S′ ≤ θS +δS . Again by homogeneity, it suffices to establish that

|〈
∑

j∈T̃

cjvj ,
∑

j′∈T̃

cj′vj′〉H − 1| ≤ (δS + θS)

whenever |T̃ | ≤ S + S′ and
∑

j∈T̃ |cj |2 = 1. To prove this property, we partition T̃ as

T̃ = T ∪ T ′ where |T | ≤ S and |T ′| ≤ S′ and write
∑

j∈T |cj |2 = α and
∑

j∈T ′ |cj |2 = 1−α.
(1.7) together with (1.8) give

(1 − δS)α ≤ 〈
∑

j∈T

cjvj,
∑

j′∈T

cj′vj′〉H ≤ (1 + δS)α,

(1 − δS′)(1 − α) ≤ 〈
∑

j∈T ′

cjvj ,
∑

j′∈T ′

cj′vj′〉H ≤ (1 + δS′)(1 − α),

|〈
∑

j∈T

cjvj ,
∑

j′∈T

cj′vj′〉H | ≤ θS,S′α1/2(1 − α)1/2.

12



Hence

|〈
∑

j∈T̃

cjvj ,
∑

j′∈T̃

cj′vj′〉H − 1| ≤ δSα + δS′(1 − α) + 2θSα1/2(1 − α)1/2

≤ max(δS , δS′) + θS

as claimed. (We note that it is possible to optimize this bound a little further but will not
do so here.)

3 Gaussian Random Matrices

In this section, we argue that with overwhelming probability, Gaussian random matrices
have “good” isometry constants. Consider a p by m matrix F whose entries are i.i.d.
Gaussian with mean zero and variance 1/p and let T be a subset of the columns. We wish
to study the extremal eigenvalues of F ∗

T FT . Following upon the work of Marchenko and
Pastur [25], Geman [20] and Silverstein [28] (see also [1]) proved that

λmin(F
∗
T FT ) → (1 −√

γ)2 a.s.

λmax(F
∗
T FT ) → (1 +

√
γ)2 a.s.,

in the limit where p and |T | → ∞ with

|T |/p → γ ≤ 1.

In other words, this says that loosely speaking and in the limit of large p, the restricted
isometry constant δ(FT ) for a fixed T behaves like

1 − δ(FT ) ≤ λmin(F
∗
T FT ) ≤ λmax(FT ) ≤ 1 + δ(FT ), δ(FT ) ≈ 2

√

|T |/p + |T |/p.

Restricted isometry constants must hold for all sets T of cardinality less or equal to S, and
we shall make use of concentration inequalities to develop such a uniform bound. Note that
for T ′ ⊂ T , we obviously have

λmin(F
∗
T FT ) ≤ λmin(F

∗
T ′FT ′) ≤ λmax(F

∗
T ′FT ′) ≤ λmax(F

∗
T FT )

and, therefore, attention may be restricted to matrices of size S. Now, there are large devia-
tion results about the singular values of FT [29]. For example, letting σmax(FT ) (resp. σmin)
be the largest singular value of FT so that σ2

max(FT ) = λmax(F
∗
T FT ) (resp. σ2

min(FT ) =
λmin(F

∗
T FT )), Ledoux [24] applies the concentration inequality for Gaussian measures, and

for a each fixed t > 0, obtains the deviation bounds

P
(

σmax(FT ) > 1 +
√

|T |/p + o(1) + t
)

≤ e−pt2/2 (3.1)

P
(

σmin(FT ) < 1 −
√

|T |/p + o(1) − t
)

≤ e−pt2/2; (3.2)

here, o(1) is a small term tending to zero as p → ∞ and which can be calculated explicitly,
see [16]. For example, this last reference shows that one can select o(1) in (3.1) as 1

2p1/3 ·
γ1/6(1 +

√
γ)2/3.
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Lemma 3.1 Put r = S/m and set

f(r) :=
√

m/p ·
(√

r +
√

2H(r)
)

,

where H is the entropy function H(q) := −q log q − (1− q) log(1− q) defined for 0 < q < 1.
For each ǫ > 0, the restricted isometry constant δS of a p by m Gaussian matrix F obeys

P
(

1 + δS > [1 + (1 + ǫ)f(r)]2
)

≤ 2 · e−mH(r)·ǫ/2. (3.3)

Proof As discussed above, we may restrict our attention to sets |T | such that |T | = S.
Denote by ηp the o(1)-term appearing in either (3.1) or (3.2). Put λmax = λmax(F

∗
T FT ) for

short, and observe that

P

(

sup
T :|T |=S

λmax > (1 +
√

S/p + ηp + t)2

)

≤ |{T : |T | = S}|P
(

λmax > (1 +
√

S/p + ηp + t)2
)

≤
(

m

S

)

e−pt2/2.

¿From Stirling’s approximation log m! = m log m − m + O(log m) we have the well-known
formula

log

(

m

S

)

= mH(r) + O(log m).

which gives

P

(

sup
T :|T |=S

λmax > (1 +
√

S/p + ηp + t)2

)

≤ emH(r) · eO(log m) · e−pt2/2,

The exact same argument applied to the smallest eigenvalues yields

P

(

inf
T :|T |=S

λmin < (1 −
√

S/p − ηp − t)2
)

≤ emH(r) · eO(log(m)) · e−pt2/2.

Fix ηp + t = (1 + ǫ) ·
√

m/p ·
√

2H(r). Assume now that m and p are large enough so that
ηp ≤ ǫ/2 ·

√

m/p ·
√

2H(r). Then

P

(

sup
T :|T |=S

λmax > (1 +
√

S/p + ǫ ·
√

m/p ·
√

2H(r))2

)

≤ e−mH(r)·ǫ/2.

where we used the fact that the term O(log m) is less than mǫH(r)/2 for sufficiently large
m. The same bound holds for the minimum eigenvalues and the claim follows.

Ignoring the ǫ’s, Lemma 3.1 states that with overwhelming probability

δS < −1 + [1 + f(r)]2. (3.4)

A similar conclusion holds for δ2S and δ3S and, therefore, we established that

δS + δ2S + δ3S < ρp/m(r), ρp/m(r) =

3
∑

j=1

−1 + [1 + f(jr)]2. (3.5)

with very high probability. In conclusion, Lemma 1.2 shows that the hypothesis of our main
theorem holds provided that the ratio r = S/m be small so that ρp/m(r) < 1. In other
words, in the limit of large samples, S/m maybe taken as any value obeying ρp/m(S/m) < 1
which we used to give numerical values in Theorem 1.6. Figure 1 graphs the function ρp/m(r)
for several values of the ratio p/m.
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Figure 1: Behavior of the upper bound ρp/m(r) for three values of the ratio p/m, namely,
p/m = 3/4, 2/3, 1/2.

4 Numerical Experiments

This section investigates the practical ability of ℓ1 to recover an object f ∈ Rn from
corrupted data y = Af + e, y ∈ Rm (or equivalently to recover the sparse vector of errors
e ∈ Rm from the underdetermined system of equations Fe = z ∈ Rm−n). The goal here
is to evaluate empirically the location of the breakpoint as to get an accurate sense of the
performance one might expect in practice. In order to do this, we performed a series of
experiments designed as follows:

1. select n (the size of the input signal) and m so that with the same notations as before,
A is an n by m matrix; sample A with independent Gaussian entries;

2. select S as a percentage of m;

3. select a support set T of size |T | = S uniformly at random, and sample a vector e on
T with independent and identically distributed Gaussian entries1;

4. make ỹ = Ax + e (the choice of x does not matter as is clear from the discussion and
here, x is also selected at random), solve (P ′

1) and obtain x∗;

5. compare x to x∗;

6. repeat 100 times for each S and A;

7. repeat for various sizes of n and m.

The results are presented in Figure 2 and Figure 3. Figure 2 examines the situation in
which the length of the code is twice that of the input vector m = 2n, for m = 512 and

1Just as in [6], the results presented here do not seem to depend on the actual distribution used to sample
the errors.
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(a) (b)

Figure 2: ℓ1-recovery of an input signal from y = Af +e with A an m by n matrix with independent
Gaussian entries. In this experiment, we ’oversample’ the input signal by a factor 2 so that m = 2n.
(a) Success rate of (P1) for m = 512. (b) Success rate of (P1) for m = 1024. Observe the similar
pattern and cut-off point. In these experiments, exact recovery occurs as long as about 17% or less
of the entries are corrupted.

m = 1024. Our experiments show that one recovers the input vector all the time as long
as the fraction of the corrupted entries is below 17%. This holds for m = 512 (Figure 2(a))
and m = 1024 (Figure 2(b)). In Figure 3, we investigate how these results change as the
length of the codewords increases compared to the length of the input, and examine the
situation in which m = 4n, with m = 512. Our experiments show that one recovers the
input vector all the time as long as the fraction of the corrupted entries is below 34%.

5 Optimal Signal Recovery

Our recent work [5] developed a set of ideas showing that it is surprisingly possible to
reconstruct interesting classes of signals accurately from highly incomplete measurements.
The results in this paper are inspired and improve upon this earlier work and we now
elaborate on this connection. Suppose we wish to reconstruct an object α in Rm from the
K linear measurements

yk = 〈α, φk〉 k = 1, . . . ,K or y = Fα, (5.1)

with φk, the kth row of the matrix F . Of special interest is the vastly underdetermined
case, K << N , where there are many more unknowns than observations. We choose to
formulate the problem abstractly but for concreteness, we might think of α as the coefficients
α = Ψ∗f of a digital signal or image f in some nice orthobasis, e.g. a wavelet basis so that
the information about the signal is of the form y = Fα = FΨ∗f .

Suppose now that the object of interest is compressible in the sense that the reordered
entries of α decay like a power-law; concretely, suppose that the entries of α, rearranged in
decreasing order of magnitude, |α|(1) ≥ |α|(2) ≥ · · · ≥ |α|(m), obey

|α|(k) ≤ B · k−s (5.2)
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Figure 3: ℓ1-recovery of an input signal from y = Af +e with A an m by n matrix with independent
Gaussian entries. In this experiment, we ’oversample’ the input signal by a factor 4 so that m = 4n.
In these experiments, exact recovery occurs as long as about 34% or less of the entries are corrupted.

for some s ≥ 1. We will denote by Fs(B) the class of all signals α ∈ Rm obeying (5.2). The
claim is that it is possible to reconstruct compressible signals from only a small number of
random measurements.

Theorem 5.1 Let F be the measurement matrix as in (5.1) and consider the solution α♯

to
min

α̃∈Rm
‖α̃‖ℓ1 subject to Fα̃ = y. (5.3)

Let S ≤ K such that δS + 2θS + θS,2S < 1 and set λ = K/S. Then α♯ obeys

sup
α∈Fs(B)

‖α − α♯‖ ≤ C · (K/λ)−(s−1/2). (5.4)

To appreciate the content of the theorem, suppose one would have available an oracle letting
us know which coefficients αk, 1 ≤ k ≤ m, are large (e.g. in the scenario we considered
earlier, the oracle would tell us which wavelet coefficients of f are large). Then we would
acquire information about the K largest coefficients and obtain a truncated version αK of
α obeying

‖α − αK‖ ≥ c · K−(s−1/2),

for generic elements taken from Fs(B). Now (5.4) says that not knowing anything about
the location of the largest coefficients, one can essentially obtain the same approximation
error by nonadaptive sampling, provided the number of measurements be increased by a
factor λ. The larger S, the smaller the oversampling factor, and hence the connection with
the decoding problem. Such considerations make clear that Theorem 5.1 supplies a very
concrete methodology for recovering a compressible object from limited measurements and
as such, it may have a significant bearing on many fields of science and technology. We
refer the reader to [5] and [12] for a discussion of its implications.

Suppose for example that F is a Gaussian random matrix as in Section 3. We will assume
the same special normalization so that the variance of each individual entry is equal to 1/K.
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Calculations identical to those from Section 3 give that with overwhelming probability, F
obeys the hypothesis of the theorem provided that

S ≤ K/λ, λ = ρ · log(m/K),

for some positive constant ρ > 0. Now consider the statement of the theorem; there is a
way to invoke linear programming and obtain a reconstruction based upon O(K log(m/K))
measurements only, which is at least as good as that one would achieve by knowing all the
information about f and selecting the K largest coefficients. In fact, this is an optimal
statement as (5.4) correctly identifies the minimum number of measurements needed to
obtain a given precision. In short, it is impossible to obtain a precision of about K−(s−1/2)

with fewer than K log(m/K) measurements, see [5, 12].

Theorem 5.1 is stronger than our former result, namely, Theorem 1.4 in [5]. To see why
this is true, recall the former claim: [5] introduced two conditions, the uniform uncertainty
principle (UUP) and the exact reconstruction principle (ERP). In a nutshell, a random
matrix F obeys the UUP with oversampling factor λ if F obeys

δS ≤ 1/2, S = ρ · K/λ, (5.5)

with probability at least 1 − O(N−γ/ρ) for some fixed positive constant γ > 0. Second, a
measurement matrix F obeys the ERP with oversampling factor λ if for each fixed subset
T of size |T | ≤ S (5.5) and each ‘sign’ vector c defined on T , there exists with the same
overwhelmingly large probability a vector w ∈ H with the following properties:

(i) 〈w, vj〉 = cj , for all j ∈ T ;

(ii) and |〈w, vj〉| ≤ 1
2 for all j not in T .

Note that these are the conditions listed at the beginning of section 2 except for the 1/2
factor on the complement of T . Fix α ∈ Fs(B). [5] argued that if a random matrix obeyed
the UUP and the ERP both with oversampling factor λ, then

‖α − α♯‖ ≤ C · (K/λ)−(s−1/2),

with inequality holding with the same probability as before. Against this background,
several comments are now in order:

• First, the new statement is more general as it applies to all matrices, not just random
matrices.

• Second, whereas our previous statement argued that for each α ∈ Rm, one would
be able—with high probability—to reconstruct α accurately, it did not say anything
about the worst case error for a fixed measurement matrix F . This is an instance
where the order of the quantifiers plays a role. Do we need different F ’s for different
objects? Theorem 5.1 answers this question unambiguously; the same F will provide
an optimal reconstruction for all the objects in the class.

• Third, Theorem 5.1 says that the ERP condition is redundant, and hence the hypoth-
esis may be easier to check in practice. In addition, eliminating the ERP isolates the
real reason for success as it ties everything down to the UUP. In short, the ability
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to recover an object from limited measurements depends on how close F is to an or-
thonormal system, but only when restricting attention to sparse linear combinations
of columns.

We will not prove this theorem as this is a minor modification of that of Theorem 1.4 in
the aforementioned reference. The key point is to observe that if F obeys the hypothesis of
our theorem, then by definition F obeys the UUP with probability one, but F also obeys
the ERP, again with probability one, as this is the content of Lemma 2.2. Hence both the
UUP and ERP hold and therefore, the conclusion of Theorem 5.1 follows. (The fact that
the ERP actually holds for all sign vectors of size less than S is the reason why (5.4) holds
uniformly over all elements taken from Fs(B), see [5].)

6 Discussion

6.1 Connections with other works

In our linear programming model, the plaintext and ciphertext had real-valued components.
Another intensively studied model occurs when the plaintext and ciphertext take values
in the finite field F2 := {0, 1}. In recent work of Feldman et al. [17], [18], [19], linear
programming methods (based on relaxing the space of codewords to a convex polytope)
were developed to establish a polynomial-time decoder which can correct a constant fraction
of errors, and also achieve the information-theoretic capacity of the code. There is thus
some intriguing parallels between those works and the results in this paper, however there
appears to be no direct overlap as our methods are restricted to real-valued texts, and the
work cited above requires texts in F2. Also, our error analysis is deterministic and is thus
guaranteed to correct arbitrary errors provided that they are sufficiently sparse.

The ideas presented in this paper may be adapted to recover input vectors taking values
from a finite alphabet. We hope to report on work in progress in a follow-up paper.

6.2 Improvements

There is little doubt that more elaborate arguments will yield versions of Theorem 1.6 with
tighter bounds. Immediately following the proof of Lemma 2.2, we already remarked that
one might slightly improve the condition δS +θS,S +θS,2S < 1 at the expense of considerable
complications. More to the point, we must admit that we used well-established tools from
Random Matrix Theory and it is likely that more sophisticated ideas might be deployed
successfully. We now discuss some of these.

Our main hypothesis reads δS + θS,S + θS,2S < 1 but in order to reduce the problem to the
study of those δ numbers (and use known results), our analysis actually relied upon the
more stringent condition δS + δ2S + δ3S < 1 instead, since

δS + θS,S + θS,2S ≤ δS + δ2S + δ3S .

This introduces a gap. Consider a fixed set T of size |T | = S. Using the notations of that
Section 3, we argued that

δ(FT ) ≈ 2
√

S/p + S/p,
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and developed a large deviation bound to quantify the departure from the right hand-side.
Now let T and T ′ be two disjoint sets of respective sizes S and S′ and consider θ(FT , FT ′):
θ(FT , FT ′) is the cosine of the principal angle between the two random subspaces spanned
by the columns of FT and FT ′ respectively; formally

θ(FT , FT ′) = sup〈u, u′〉, u ∈ span(FT ), u′ ∈ span(FT ′), ‖u‖ = ‖u′‖ = 1.

We remark that this quantity plays an important analysis in statistical analysis because of
its use to test the significance of correlations between two sets of measurements, compare
the literature on Canonical Correlation Analysis [26]. Among other things, it is known [31]
that

θ(FT , FT ′) →
√

γ(1 − γ′) +
√

γ′(1 − γ) a.s.

as p → ∞ with S/p → γ and S′/p → γ′. In other words, whereas we used the limiting
behaviors

δ(F2T ) → 2
√

2γ + 2γ, δ(F3T ) → 2
√

3γ + 3γ,

there is a chance one might employ instead

θ(FT , FT ′) → 2
√

γ(1 − γ), θ(FT , FT ′) →
√

γ(1 − 2γ) +
√

2γ(1 − γ)

for |T | = |T ′| = S and |T ′| = 2|T | = 2S respectively, which is better. Just as in Section 3,
one might then look for concentration inequalities transforming this limiting behavior into
corresponding large deviation inequalities. We are aware of very recent work of Johnstone
and his colleagues [23] which might be here of substantial help.

Finally, tighter large deviation bounds might exist together with more clever strategies to
derive uniform bounds (valid for all T of size less than S) from individual bounds (valid for
a single T ). With this in mind, it is interesting to note that our approach hits a limit as

lim inf
S→∞, S/m→r

δS + θS,S + θS,2S ≥ J(m/p · r), (6.1)

where J(r) := 2
√

r + r + (2 +
√

2)
√

r(1 − r) +
√

r(1 − 2r). Since J(r) is greater than 1 if
and only if r > 2.36, one would certainly need new ideas to improve Theorem 1.6 beyond
cut-off point in the range of about 2%. The lower limit (6.1) is probably not sharp since it
does not explicitly take into account the ratio between m and p; at best, it might serve as
an indication of the limiting behavior when the ration p/m is not too small.

6.3 Other coding matrices

This paper introduced general results stating that it is possible to correct for errors by
ℓ1-minimization. We then explained how the results specialize in the case where the coding
matrix A is sampled from the Gaussian ensemble. It is clear, however, that one could
use other matrices and still obtain similar results; namely, that (P ′

1) recovers f exactly
provided that the number of corrupted entries does not exceed ρ · m. In fact, our previous
work suggests that partial Fourier matrices would enjoy similar properties [5, 6]. Other
candidates might be the so-called noiselets of Coifman, Geshwind and Meyer [9]. These
alternative might be of great practical interest because they would come with fast algorithms
for applying A or A∗ to an arbitrary vector g and, hence, speed up the computations to
find the ℓ1-minimizer.
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