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Abstract—In this paper, we formulate and solve a problem
of resource allocation over a given time horizon with uncertain
demands and uncertain capacities of the available resources. In
particular, we consider a number of data sources with uncertain
bit rates, sharing a set of parallel channels with time-varying
and possibly uncertain transmission capacities. We present a
method for allocating the channels so as to maximize the expected
system throughput. The framework encompasses quality-of-ser-
vice (QoS) requirements, e.g., minimum-rate constraints, as well
as priorities represented by a user-specific cost per transmitted
bit. We assume only limited statistical knowledge of the source
rates and channel capacities. Optimal solutions are found by
using the maximum entropy principle and elementary proba-
bility theory.

The suggested framework explains how to make use of multiuser
diversity in various settings, a field of recently growing interest in
communication theory. It admits scheduling over multiple base sta-
tions and includes transmission buffers to obtain a method for op-
timal resource allocation in rather general multiuser communica-
tion systems.

Index Terms—Maximum entropy, multiuser diversity, resource
allocation, scheduling, uncertainty.

1. INTRODUCTION

N this paper, we consider a problem of allocating bandwidth

among users sharing a number of channels. A number of
sources are producing bits at unknown rates. These bits are to
be transmitted to U users (or receivers). The sources share a
number R of transmission channels (or resources) which may
be used to send the produced bits to the receivers.

The problem is an extension and reformulation of a simpler
resource allocation problem, the “widget problem,” studied by
Jaynes [1] (also mentioned in [2, Ch. 14]), where there were
three possible decisions and one resource, with known constant
capacity, which could only be used exclusively for one task.

In our present problem, each channel-receiver pair has a
time-varying number associated with it, denoting the number
of bits that can be sent over the link at a prescribed bit-error
rate (BER), given that the channel is used exclusively for
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transmitting to that specific receiver. We will henceforth denote
this number as the effective capacity' of that link.

Bits produced by the sources are stored in buffers monitored
by a transmission controller. The transmission controller aims
to distribute the bits over the channels so that the number of
bits in the buffers is minimized, or equivalently, so that the
system throughput is maximized. The question that we address
is then: given only limited knowledge of the actual source rates
and effective capacities, how should the controller distribute the
resources?

The main information-theoretic motivation for using sched-
uling in mobile communications comes from the observation [3]
that the sum-of-rates capacity for a single channel increases with
the number of users and that it is maximized by transmitting ex-
clusively to the user with highest channel power. This phenom-
enon, denoted multiuser diversity [4], suggests that independent
channel fluctuations between different users should be taken
advantage of instead of being combatted. The concept is very
similar to multiple-antenna diversity. Knopp [4] describes it as
selection diversity at the transmitting end. The resultin [3], how-
ever, assumes perfect channel knowledge, a single channel, ad-
ditive Gaussian disturbances only, and that transmission buffers
cannot be emptied.

Following the publication of [3], scheduling in wireless com-
munications has received an increasing amount of attention, but
the focus has been on assuming that there is always data to send
(buffers are never emptied) and that the scheduler has perfect
channel knowledge.

In high-level schedulers, stochastic channels are some-
times introduced by two-state models (error-free or random
errors) [5], which might be considered too coarse. In [6], [7],
a framework is suggested for scheduling several time slots
ahead which takes known buffer sizes into account but requires
perfect channel prediction. Another rule, the proportional fair
scheduler [8], gives exclusive access to the user who currently
has the highest effective capacity normalized by its average
allocated throughput, thus, striking a balance between fairness
and performance, but again requiring complete knowledge of
the effective capacities. A similar result to that in [3] is obtained
in [9] for a set of parallel broadcast channels corrupted only by
additive white Gaussian noise. Another line of work [10], [11]
which has been used for multihop networks and on—off types of
links with constant effective capacity considers queue stability

IThe term capacity is here used in a nontraditional way and should not be
confused with any of the usual information-theoretic capacity definitions. The
effective capacity denotes the transmission rate for a given BER requirement
that a user obtains if no other users transmit simultaneously on the channel. The
actual transmission rate becomes less than that if the channel is shared among
several users.
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as the main criterion. An interesting application of this criterion
which also shows a relation to the proportional fair scheduler is
reported in [12], where queue stabilizing schedulers are adapted
to support quality-of-service (QoS) constraints.

Until recently, little had been published concerning allocation
of multiple shared transmitters except for base-station assign-
ments in the uplink with the objective of minimizing allocated
mobile powers [13], [14] and a similar downlink problem [15].
After the submission of this paper, however, the capacity region
for both the Gaussian multiple-input multiple-output (MIMO)
broadcast and multiple-access channel has been found under
the assumption of perfect channel knowledge at the transmitter
and subject to the qualification that there is always data to
send [16]-[18]. In order to achieve the sum capacity for any of
these MIMO channels, exclusive allocations must in general
be abandoned. Moreover, all currently known schemes require
substantial amounts of channel feedback and are extremely
computationally demanding. In [19], the case of partial channel
knowledge is investigated and a simplified resource allocation
scheme based on using several randomized beams is devised. The
scheme transmits to the user with maximum signal-to-interfer-
ence ratio on each beam. When the number of users approaches
infinity, this scheme approaches the capacity-optimal scheme.
For the case of few users, however, there is still alack of low-com-
plexity low-feedback schemes that approach the sum capacity.

In this paper, we do not focus on the general MIMO case;
the model considered here assumes parallel channels where use
of one channel does not affect any other channel. Instead, our
focus is on scheduling transmissions under uncertain channel
conditions and uncertain source rates with the objective of max-
imizing total throughput under QoS constraints. These topics
have hitherto not been investigated in any detail. The aim of this
paper is to provide such a study.

In summary, this work extends the current literature by pro-
viding means for resource allocation with uncertain source rates,
taking buffer levels into account, and scheduling with multiple
parallel transmitters over arbitrary time periods. Furthermore,
the scheduling framework is extended to take into account inac-
curate channel predictions.

In two seminal papers [20], [21], Jaynes introduced the max-
imum entropy principle as a consistent method for determining
probability distributions under constraints on mean values of
functions of data. The principle is applicable to inference prob-
lems with well-defined hypothesis spaces but incomplete data.
A motivation for its use is contained in the entropy concen-
tration theorem [22], which states that given the imposed con-
straints, the maximum-entropy distribution can be realized in
overwhelmingly more ways than any other distribution. It is
thus considered as the least biased solution for determining prior
probabilities under the given constraints. It has been success-
fully applied to a variety of problems, the reference list pro-
viding a sample of examples from image reconstruction [23],
[24], spectrum estimation [25], finance [26], language modeling
[27], and physics [28], [29]. We here propose that the maximum
entropy principle be used for modeling uncertain data flows in
mobile communications systems.

The paper is organized as follows: in Section II, we present
the problem formulation, whereas in Section III, we recapitulate
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Fig. 1. The system consists of U buffers, one for each receiver. R transmission
resources are available and user w receives p.r:Cy-: Dits at time ¢ from
transmitter 7.

the maximum entropy principle and use it to model the uncertain
source flows. Following this, Section IV presents the solutions
for three different states of knowledge concerning source rates
and effective capacities. Before concluding the paper, in Sec-
tion V some observations are made concerning the behavior of
the scheduler for different degrees of uncertainty. The perfor-
mance is also compared to that obtained by the proportional fair
scheduler.

II. DISTRIBUTING BANDWIDTH AMONG USERS SHARING A
SET OF CHANNELS

The problem we shall investigate is how to allocate trans-
mission resources with possibly uncertain effective capacities
to sources with uncertain bit rates. A motivating application has
been the problem of link-level predictive scheduling of a broad-
band downlink radio resource to mobile users with indepen-
dently varying channel capacities due to fast fading [30], [6].
Here we consider a slightly generalized problem.

In Fig. 1, an overview of the system is given. There are U
users, and equally many buffers. We will schedule the use of the
R channels for T time slots. Each channel is here taken to be a
transmission resource that is orthogonal to all other channels,
i.e., usage of one channel does not affect other effective channel
capacities. For instance, a channel may be a frequency bin in
an orthogonal frequency-division mulatiple-access (OFDMA)
system or one out of several noninterfering antenna beams.

During the scheduling horizon 7', each buffer is filled with n,,
bits, u denoting the user index. A buffer may also have a number
S, of bits remaining in stock from previous scheduling rounds.
The objective of interest will be to minimize the buffer contents
at the end of the scheduled time horizon. In a completely deter-
ministic situation, this amounts to minimizing the loss function

U T R
L= Z q <Su + Ny — Z Z Curtpurt) (1)

u=1 t=1r=1

where g(z) = x if z > 0, else g(z) = 0. The time-varying
effective capacity of the rth channel to user w is denoted by
the integer ¢4, while p4 is the fraction (0 < pyt < 1) of
the bandwidth of the rth channel that we allocate to user u at
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time ¢. For instance, if p,,+ = 1, user u uses the rth channel
exclusively at time ¢. The total channel usage Zu Purt for a
given channel r at a time ¢ must satisfy > pur+ < 1. The
minimization of (1) would be performed by adjusting p,,,-+ under
whatever constraints the specific system poses on pq.¢.

The total number of incoming bits 7, in the time interval T’
is the sum of the influxes at each time instant £

T
- § Not-
t=1

In cases where we have knowledge of time variations, we will
use this more detailed notation. In general, as a notational con-
vention, for any quantity a, we will use at most three indices:
ayurt, Where u (1 < u < U) denotes user index, (1 < r < R)
channel index, and ¢(1 < ¢ < T') time index. Whenever any of
these three indices is omitted, the quantity represents the sum
over all values of the omitted index.

In general, complete knowledge of the effective capacities or
the number of incoming bits at any specific future time is un-
available. Therefore, we cannot directly minimize L but must
resort to assigning probability distributions for 7, and ¢+ and
minimize the expected loss. Assuming that knowledge of ef-
fective channel capacities gives no information of incoming bit
rates,? and vice versa, we can factor the joint prior probability?

@)

P(nycurt | 1) = P(ny | curts I) P(curt | 1)

= P(n, | I)P(curt | I) 3)
and the expected loss becomes
U oo 0o
=> Z > P(nu | T)P(cure | T)
U=1 cyrt=0mn,=0
T R
X g Su + Ny — Z Z Curt Purt (4)

t=1r=1

Throughout the rest of the paper, we will find it convenient to
use the notation (L,,) for the expected loss contribution corre-
sponding to user u, with the total expected loss being the sum
of all user contributions

(&)

u=1

The scheduling framework we propose relies on minimizing
(4) subject to various constraints. The rest of the paper is con-
cerned with deriving the expected loss contributions (L,,) for a
few typical cases in mobile communications. It should be em-
phasized that the cases differ only in what knowledge the sched-
uler uses.

2Although certain communication protocols actually change their transmis-
sion rates due to channel variations, these protocols, e.g., Transmission Control
Protocol (TCP), react on slower time scales than would normally be used in
scheduling decisions at the link layer.

3To indicate that the probability expressions will change according to the in-
formation at hand, all probabilities are conditioned on I, which denotes any
available information relevant for inferring 1., or ¢ ,¢.
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Finding the minimum of (4) will in general turn out to require
nonlinear programming. The basic constraints on p,,,.; are

Z Purt S 17

ngurt S 17

Vr, t 6)

Yu,r,t @)
but in general we may have an additional number of matrix
equalities and inequalities representing constraints imposed by
the specific system architecture on different resources. Exam-
ples of such constraints include

e alimited set 2 of rate levels, implying that the transmis-
sion rate pq,¢Cyr¢ Must belong to the set €2;

* in a time-division system, p,,+ can only be 0 or 1;

e some channels may not be accessible to all users, i.e.,
E"I", auv Purt = 0;

* in a network guaranteeing some minimum level of ser-
vice quality, constraints may take the form of user-specific
minimum channel access levels ¢ = 7yr¢ O minimum
transmission rates Y . Y. purtCurt > Pu.

These types of constraints are readily treated by available
software for solving nonlinear programming problems and
present no conceptual difficulties. The general problem can
thus be transformed to different specialized settings, all rep-
resented by the same average loss function but with different
optima due to the restrictions on p,,,+.

Minimizing the number of bits remaining in stock is equiva-
lent to maximizing the sum of the users’ bit rates. With this cri-
terion, user-specific priorities can be introduced as multipliers
to each user’s loss contribution in (5). This can be interpreted as
a user-specific cost per bit, expressed as a function m(u, {6, })
of any set {6, } of known parameters (such as time, delay, buffer
levels, average effective capacities, average influxes, bit prices,
etc.). The generalized criterion is then to minimize

2{9}>

For instance, if 7(u, {6, }) is defined as the reciprocal of user
u’s average throughput, we obtain a generalized version of the
proportional fair scheduler [8]. We will not consider fairness any
further; it is sufficient to note that any fairness requirement or
user priority that can be formulated as a deterministic function
describing an equivalent user-specific cost per bit is compatible
with the given formulation.

Another possible approach could be to use quadratic criteria
in order to punish large buffers and, consequently, aim at re-
ducing the risk of buffer overflow. A disadvantage of using a
quadratic criterion here is that the scheduler would no longer
maximize the sum of the users’ bit rates, hence, capacity would
be wasted. Another problem is that if priorities are introduced
as multiplicative factors for each user’s contribution to the total
loss, the priorities will loose their intuitive meaning as incurring
a certain cost per bit to the network. It can be shown that some
queue-stabilizing schedulers are local approximations to using a
quadratic criterion on the buffer levels (see [31] and [32]). Thus,
they do not maximize throughput and have a risk of starving
other users when a single user floods its buffer.

®
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In the sections following the next, we derive the expected
loss contribution for each user u, (L,,) for different states of
prior information by the use of the maximum entropy principle.
Solutions are given for three different states.

e Section IV-A assumes knowledge of average source rates
and exactly known capacities.

e In Section IV-B, we relax the requirement of perfect
channel knowledge and instead assume capacity predic-
tions of varying accuracy.

* Finally, in Section IV-C, source flows are subdivided into
packets and the scheduler requires knowledge of the av-
erage number of packets produced for each packet size.

III. THE MAXIMUM ENTROPY APPROACH TO
SOURCE FLOW MODELING

Building on Shannon’s explanation [33] of entropy for dis-
crete events

H=-> P(A|I)log P(A|I) )
A

as a measure of uncertainty,* Jaynes proposed [20], [21] that
prior probabilities be constructed by maximizing the entropy
under the constraints given by the information at hand. The so-
lution is considered to be the least biased possible as any other
solution would imply lower entropy and thus lead to a less un-
certain state than implied by the given information. In effect,
unwarranted assumptions, or information that is not available,
would be injected into the consequent inference. The entropy
concentration theorem [22] further establishes that the max-
imum-entropy distribution is the sampling distribution which
can arise in the greatest number of ways under the imposed con-
straints. Specifically, if in a long data sequence certain mean
values of the sequence have been recorded but not the actual
sequence itself, then out of all possible sequences that satisfy
the given mean values, the overwhelming majority will have an
entropy extremely close to the maximum. This is a combinato-
rial fact similar to the asymptotic equipartition principle [33];
the longer the sequence and the more mean values recorded, the
tinier the fraction of sequences that does not follow the max-
imum-entropy distribution. A main motivation for using max-
imum-entropy distributions is thus simply that there are so many
more of them! This has been taken to mean that use of the
maximum-entropy principle for assigning priors under incom-
plete information results in a “discipline for avoiding unneces-
sary assumptions” [34]. Formal properties of maximum-entropy
distributions are given in [2, Ch. 11].

The source flows in the current problem are not assumed to
be known in detail. A common assumption concerning near-
future networks is that traffic to a large extent will consist of
Internet flows. Modeling an individual Internet data source is
however a notoriously difficult problem [35]. Various distribu-
tions have been proposed, the most commonly used consists of
assuming that the number of packets per time unit is Poisson
distributed. This distribution has some justification when the in-
coming packet streams stem from a large number of independent
sources, but not in the case of a single-user source flow. Another

4Although the logarithm in the entropy expression may be taken to any base,
in this paper we restrict log to denote the natural logarithm.
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approach would be to record individual histograms for each user
in the transmitter and use them as approximate probability dis-
tributions. That is however not realistic; the amount of data that
has to be collected would typically be larger than that obtainable
during a user’s connection.

Instead, we propose to use the maximum entropy approach.
We shall use the maximum entropy principle to model the source
rates n,, subject to knowledge of the average source rate (n,,) for
each user.5 We first recapitulate the general maximum entropy
problem and its solution, and then derive the distribution for the
source rates.

A. Finding a Maximum Entropy Distribution

Consider a problem where we have knowledge of mean
values Fj, of certain functions f( ) of data

S Pifulw)=F, 1<k<m (10)
i1=1

where P; denotes the probability for each possible “state of na-
ture,” indexed by 7 € {1...n}.

We wish to find the set of probabilities P; for all possible 2,
that maximizes the entropy

H:—ZPilogPi. 1)
1=1

This is a standard variational problem solvable by using La-
grange multipliers when m < n. In Appendix A, it is shown
that using the partition function [20]

Z()‘b s 7)‘711) = Z eXp[_/\lfl(xi) - )"mfm(xL)]
i=1
(12)

we have the formal solution

eXp[_)‘lfl(iEi) - )‘mfm<a7i)]
(13)

where {\} are the Lagrange multipliers which are chosen so
as to satisfy the constraints (10). This is the case when
1<k<m.

i log 7, (14)

F, = —
k I

In (10)-(14) we have the general maximum entropy problem
and its solution. It should be noted that the solution presented
here automatically includes the constraint ) ., P; = 1 without
need for an additional Lagrange multiplier.

B. The Maximum-Entropy Probability Distribution for the
Source Flows

We are to assign a prior probability distribution for
nonnegative integer quantities, n,,uv = 1...U, having

5The average source rate can be estimated at the transmitter based on the
incoming data. An initial estimate can be obtained by using the average of all
users’ data streams.
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known means (n,). Denoting this information by I, we
now turn to find the P(n, |I) which maximizes the entropy
=, P(nu|I)log P(n, | I) under the constraints

(nu) =Y nP(n,|I), u=1...U.

n, =0

5)

Notice that the summation index reflects that the integer n,, is
nonnegative. The partition function (12) becomes

Z()‘17"'7)‘U>

oo oo
=3 Y A = une)
n1=0 ’I’LU:O

[
NE

(. .. < Z exp(_/\UnU)) .. ) exp(—)\l’l’bl)
0 ny =0

1
=1l

u=1

n

q”

(16)
where we first rewrote the expression according to 21 = z%z?
and then used the closed-form expression for the geometric se-
ries. The Lagrange multipliers are now determined from (14)

P 1
N=—-Z logZ = .
(nu) = -5 loeZ = 5

Independence between different probabilities yields higher en-
tropy than dependencies, and, consequently, the maximum-en-
tropy probability assignments P(n,, | I) factor

7)

Inserting (16) into (13) and using (18) and (17) we obtain
P(ng|I)=(1—eM)e ™ n,=0...00
1 (nu) T
= 19
vt () 4

as the distribution of highest entropy subject to the constraints
(15) and )" P(n, |I) = 1.

The maximum-entropy derivation of the negative exponen-
tial distribution above can also be found in [1]. In Fig. 2, the
distribution is plotted for different mean values. The skewness
of the curve arises because n,, is only defined for nonnegative
values. Hence, for a larger mean value, the curve tends more and
more toward a uniform distribution. The distribution would be
different if n, had a known upper bound. For instance, if the
n, represent the number of dots on the face of a die, we must
include that 1 < n, < 6 in our probability derivation. This
yields a distribution which is skewed differently depending on
the given mean values.®

IV. SPECIFIC SOLUTIONS TO THE GENERAL RESOURCE
ALLOCATION PROBLEM

A. Knowledge of Average Source Rates and Exact Capacities

Here we will work out the expected loss contribution of user
u, (L) (cf. (5)), for the scheduling problem when the average
number of incoming bits during the interval T, (n,), in each

SFor the case of data flows, there is an upper bound which is determined by
the bandwidth of the fixed network preceding the buffers. This limit is neglected
here because it is usually much larger than the expected source flow of each user.
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Fig. 2. The maximum-entropy probability distribution for a nonnegative
integer quantity n» with known mean {n).

buffer is known and the effective capacities of the transmit-
ters are exactly known. Denoting this information by I and fol-
lowing the derivation in Section III-B, we assign P(n.,, | I)

1 {ru) "
rouln= ot (pts) - @
For clarity, we introduce
T R
Ly = Z Z CurtPurt (2D

t=1r=1

describing the total number of bits sent from buffer u over the
scheduled time horizon T'. With P(n, |I) given by (20) the
expected loss contribution with known ¢,,,+ becomes

oo

(Lu) = > P(nu | Dg(Su+nu — 24) (22)
Ny =0
z,—S
<nu> “ "
= { <nu> ((nu)-i-l) ) Ty > Sy (23)
Su + <nu> — L, an S Su'

The summation over n,, in (22) is evaluated in Appendix B with
the result (23).

In certain problems, the expected values of the influxes at time
t defined in (2), n,¢, vary over time, i.e., we have knowledge
of (ny:) (defined analogously to (15)) for specified times ¢. In
Appendix C, the solution for this case is derived. The resulting
loss contribution for time-varying expectations of incoming bit
rates is

(nup) )"
<Lu> — {Ku<nu1> ((nul>+1) ’ Loy > Su (24)
Su + <nu> — T, Ty S Su
with
T
1 1
el e @

(nur)+1 (nu1)

where, for the case z,, > S, the influx averages in K, are
no longer ordered chronologically, but have been reordered by
decreasing size, with the index k, to ensure convergence of the

geometrical series. Notice also that K, the product over all
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averages which are smaller than (n,), is a constant that does
not depend on the actual resource allocation p,,,-+. Therefore, if
the minimum loss is calculated iteratively this factor need not
be recalculated at each iteration.

B. Knowledge of Average Source Rates and Accuracy of
Capacity Predictions

In this subsection, we turn to a case which is of particular in-
terest in applications for mobile communications. Here, a trans-
mitter may predict future channel conditions with some known
accuracy based on measured fading patterns at the receivers (see
e.g., [36], or [37]). Adaptive modulation is then used to adjust
the effective capacity.

We must now consider three different effective capacities: the
predicted one Cy.¢, the potential one ¢,,;, and the eventually
obtained one c,,+. The potential effective capacity c,,¢ is the
number of bits that could be sent over the channel at time ¢ with
a prescribed error rate if we knew the channel and thus could
choose the optimal modulation level. With inaccurate channel
knowledge, however, if the potential effective capacity is lower
than predicted, then the modulation level may be set too high
leading to a performance degradation due to increasing BERs.
If, on the other hand, the predicted capacity is lower than the po-
tential capacity, then the modulation level is set lower than the
optimum and the obtained effective capacity will equal the pre-
dicted capacity (i.e., the obtained capacity will again be lower
than the potential capacity). Thus, the probability for the out-
come of the prediction (in the sense of being larger than, smaller
than, or equal to the potential capacity) will determine the prob-
ability for obtaining a given effective capacity.

We assume that the accuracy of prediction is represented by
a known variance o2,.,, and that the prediction itself ¢, is the
expected value of the potential (but unknown) effective capacity
Curt- As an example of how the prediction can be obtained, in
[36], [37] an unbiased quadratic channel power predictor is de-
rived, based on which it is possible to derive a probability den-
sity function (pdf) for the channel power ([36, Chs. 7-8]). Using
that pdf one can determine the corresponding pdf for the effec-
tive capacity given a certain BER requirement by a change of
variables. This can, for instance, be carried out by using the ap-
proximate BER expressions from [38]. Consequently, the ex-
pectation of the resulting pdf provides an unbiased prediction
of the effective capacity.

In the case of a nonnegative integer quantity such as the po-
tential effective capacity, finding the maximum-entropy distri-
bution for known expectation and variance is analytically in-
tractable. However, it is well known [33] that the Gaussian dis-
tribution has the highest entropy for a given mean and variance if
the quantity of interest is defined over the entire real axis. If the
expectation of a Gaussian distribution is positive and large com-
pared to its standard deviation, then it has negligible probability
mass for negative numbers. Therefore, for reasonably accurate
predictions of ¢+ we may safely assign a Gaussian distribution
as an accurate description of our state of knowledge.

However, as mentioned, the obtained capacity depends on the
prediction error ¢+ — Cyrt. There are three possible cases.

1) ¢urt < Curt- In this case, the obtained effective capacity
will equal the predicted one ¢yt = Cypt-
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Fig.3. The obtained capacity as a function of the predicted capacity with linear
decline for too large predictions.

2) Curt < Curt < ), If the predicted value is higher than
the potential effective capacity, then the modulation level
will be set too high and thus, the obtained effective ca-
pacity will decrease. Here, c,,; is given by a function
f(€urt) which depends on coding and other system-spe-
cific parameters. A reasonable approximation is to assume
that the obtained effective capacity decreases linearly with
the predicted value, reaching zero at a point c},,., = VCyyrt.
We comment further on this model choice and the deter-
mination of v in the end of this section.

3) Curt > ), In this interval, the obtained capacity is zero.

In summary we obtain an effective capacity curve as de-
scribed by Fig. 3.

In Appendix D, the probability for the obtained effective ca-
pacity c,,+ given the predicted value is derived as the sum of the
contributions from each of the three cases. It is shown that the
probability for the obtained capacity is

P(Curt | I) = Pl(curt |I) + PZ(Curt | I) + P3(Cu1’t | I) (26)
where
1 .
Pl (cuTt | I) = 56(61”1 - Cu'rt) (27)

v—1

2
v—1
Prycyrt | ) =—exp|— | ———— wrt — Curt )
2(6 t| ) V27rUurtv Xp[ <\/§Jurtv> (C e t)]

X (H(curt) - H(Curt - éurt)) (28)
1 1 —1)éur
P3(Cu1’t | I):(S(C'u'rt) <§—§erf <%)) (29)
urt

where H(z) denotes the Heaviside step function and

erf(z) = % /0“ et dt.

The probability distribution for the obtained capacity is plotted
for ¢y,¢ = 40 and for different values of o, and v in Fig. 4.
We will now calculate each user’s contribution (L,,) to the
expected loss (4) with respect to P(n,, | I) and P(cyt | I). As-
suming independence between the two probability distributions,
we can use the results obtained in the last section. The expected
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Fig. 4. The probability distribution for the obtained capacity given the

prediction é,,, = 40.

loss contribution will consist of a sum of two components, one
for z,, > S, and another for z,, < S, weighted by their re-
spective probabilities P(z,, > S, | I) and 1 — P(xy, > S, | I)

(Lu)

= P24 > Su | I)(Lu1) + (1 = P(a > Sy | 1)){Lu2).

(30)

It is, however, reasonable to assume that P(x, > S, |T) is
approximately 1 or 0, e.g., when the standard deviation for the
prediction is not extremely large. Hence, we use the simpler rule

~ (LUI>7
<Lu> ~ { <Lu2>7

where (L,1) and (L,») are derived below with the results (42)
and (43), and

&1y

<£L’u> = Z Z purt<curt>

r=1t=1

(32)
where

(Curt) = /CurtP(Curt | Idcyrt

= 5 {Curt + Curterf(aurtcurt)

1
+ N [exp(_a?wté?n‘t) - 1]} (33)

with

v—1
\/io—urtv .

The integral is straightforward and the proof is omitted.

Consider the calculation of (L,;) which is the expectation
with respect to P(c,¢ | I) of the corresponding case in (23). To
distinguish between the expected loss with respect to P(n,, | T)
from (23) and the one currently under investigation we here as-
sign the notation (L.1) p(n, | r) for the former one.

(34)

Qyrt =
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Using the algebraic relation z%7% = z%z® we rewrite the

expression for x,, > S, in (23) as
(Lu1) P(ny | 1)

—(n (nu)
= “><<nu>+1
<nu>

= T) |

) ZZ Ef CurtPurt—Su

(na) | " T R

wie) (G

Averaging over P (¢, | I) gives the expected loss contribution
with respect to both P(n,, | I) and P(cyrt | I)

() = o) ()
)

AL renin (G5

t=1r=1
Inserting (26) into (35), the integral over c,,+ contains three
mutually exclusive intervals. We label the corresponding inte-
grals Iy, I, and I3. The first integral I; corresponding to the
point ¢yt = Cype 18 Simply

CurtPurt
) dcurt . (35)

<77'U>

1 CurtPurt
L=- (2 .
) ((nu} + 1)

The second integral Is ranges from 0 to ¢,,;. Using (28) we
obtain

(36)

I = / "p (e | 1) (2 ) g (37)
2 — Jo 2\ Curt (nu> + 1 urt

1 . (M)
=3P <purtcm‘t log (m) + PZH%%M)

( 1)Curt ) >
erf + urt Jur —erf urt ur
< < vaurt\/_ PurtYurt (P 7Y t)

(38)

where
OurtV < <nu> )
og .
(v—1)V2 (ny) +1
Finally, the third integral I3 represents the single point ¢, =
0 and using (29) we have

0purt A
1 1 -1
< <nu> > <_ - _erf <(v )curt >> (40)
(nu> + 1 2 2 ’Uo'urt\/i
1 1 —1)¢
= - — —erf <M> : 41)
2 2 Uo—urt\/5
Using I; from (36), I5 from (38), and I3 from (41) in (35), the

expected loss contribution of user u with predicted capacities is,
if z,, > S,

-S, T R
(L) = ) (52} T+ 1+

t=1r=1

Yurt = (39)

Iy =

(42)

The second case in the expected loss contribution from user «
(31) is simply

<Lu2> = /P(Curt | I)(Su + (nu> - xu)dcurt

R 43)
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The loss contributions in (42) and (43) are valid when pre-
dicted capacities can be modeled by a Gaussian distribution with
known variance and expected value {Cyrt) = Cyure. It also re-
quires that the obtained capacity decreases linearly when the
predicted capacity ¢,..¢ is larger than the potential capacity y;-¢.
It should, however, be emphasized that the linear decrease and
the actual choice of v is a subjective choice, and not a property
of the channel. The value of v depends on how sensitive the ap-
plication is to departures from the desired BER. For low-BER
requirements, even a small prediction error leads to a substan-
tial departure from the desired BER. For example, with uncoded
M-QAM modulation,” increasing from 4 to 5 bits per symbol at
a signal-to-noise ratio (SNR) of 20 dB increases the BER by
a factor of more than 200. (Use of coding increases the sen-
sitivity.) Typically, in order to determine v we find the BER in-
crease which means that the data must be retransmitted. We then
determine the corresponding rate increase that would cause this
BER discrepancy. If for instance M-QAM is used with a desired
BER of 104, and if a BER increase by a factor 100 would re-
quire that the data be retransmitted, then it can be found that
v &~ 1.5 will be a good model. If a BER increase by a factor 10
would require retransmission, then v & 1.2. Typical values of v
are thus in the range 1 < v < 2. The linear decrease in ¢, for
predictions larger than the potential capacity can be questioned,
but clearly it satisfies the obvious requirement that the curve
should be monotonic decreasing. Other alternatives would be to
use either some concave of some convex decreasing function,
but that could hardly make any substantial difference for the ac-
tual expected loss value unless the magnitude of the function’s
derivative would be very nearly zero for one interval and large
for the remaining part. These cases will not be considered here,
as they would rarely be encountered in practice.

The final expression (42) for (z,) > S, is rather complex
and in the simulations of Section V-D we investigate whether
the basic scheduler assuming perfect channel knowledge can be
used with predicted values as an alternative to the more com-
putationally burdensome minimization of (31). A simpler al-
ternative to using (31) is however possible; note that we can
approximately retain the desired property of lowering the pre-
dicted effective capacity when the uncertainty is high by using
(23) with @y, replaced by (@y.+) from (33). This approxima-
tion to (31) is exact if S, is large compared to (2 -¢).

C. Knowledge of Average Rates for Each Packet Size

We now consider the case where the sizes of incoming
packets are known to the scheduler. The number of possible
packet sizes is assumed small, for reasons we shall return to
in the derivations. Further, the expected number of incoming
packets of each size in the time interval 7" is given. The effective
capacities ¢+ are here assumed known.

Let the packet sizes in the uth buffer, cf. Fig. 1, belong to a
set {k, } with K, elements. Let m,;, be the number of packets
of size k which are received in the uth buffer during the sched-
uling horizon T', with (m,,;;) assumed known. In order to find a
closed-form expression for the expected loss, we make a logic
partitioning of each buffer « into K, buffers. Hence, each user’s

7Approximate BER formulas from [39] are used in these calculations.
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buffer is split so that each packet size gets its own buffer. The

remaining number of bits from the previous round, S,,, is also

split into K, partitions S, = ), kSux. Note, however, that

this is only a logical separation for mathematical convenience.
Our new loss function is

U T R

= r= Curt Pur

L:Z Z g<kmuk+k5uk_2t IZKI t t>
u=1ke{k,} “

(44)

where km.,j is the size (in bits) of the packet multiplied by
the number of packets received by that size. It should be noted
that the packet-enumerated loss function (44) is equivalent to
the bit-enumerated function (1). With the new loss function it
is however easier to model knowledge of size-dependent packet
rates than when using (1).

For each user w, we assign a probability distribution
describing our knowledge of the future influxes m, corre-
sponding to packets of size k. The probability assignment is

(muk>

analogous to (19)
1 Mok
45
it (mgts) @

and the resulting expected loss contribution of user w is
‘/E’ll.
K.)’

(46)

ke{ky} mur=0
For each k € {k,}, we must separate between two possible
cases: kxT“ > S, and kxﬁ < S,k; which leads to different
expressions. The derivation follows the procedure in Appendix
B where (23) is derived. Consequently, the total user contribu-
tion consists of the sum

P(my |I) =

(Lu) =Y (Luk) (47)
ke{ky}
where
T —Suk
(L) = 4 R (G )™ 70 g > s
(48)

It should be noted that if there is a wide variety of packet sizes,
i.e., if K, is large, then the preceding expression would consist
of too many terms for it to be tractable in actual calculations.
We should then instead assign a probability density for n,,, the
number of incoming bits in each buffer. This is possible (see
[1] for a similar derivation) and results in a Gaussian approxi-
mation. The derivation is rather lengthy, and it is not presented
here due to space considerations.

V. COMMENTS AND SIMULATIONS

By using prior probability distributions with maximum
entropy subject to our information constraints, we avoid as-
sumptions concerning the “underlying” long-run behavior of
the sources. The use of the maximum-entropy distribution is
motivated because it is the distribution which can arise in the
greatest number of ways when the outcomes are constrained to
agree with the given information [22].
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Other reasonable approaches to modeling the influxes include
using more information in the initial probability assignments,
and adapting the distributions according to incoming data using
Bayes’ theorem. For instance, if we have knowledge of corre-
lations over time or among different user streams, then we can
use this information in the maximum-entropy formalism to ob-
tain prior distributions of lower entropy than using the mean
values only. If such correlations are known to exist but their ab-
solute values are unknown a priori, then the initial probability
distribution should be updated recursively according to Bayes’
theorem as observations of the data streams become available.
More research needs to be directed toward finding methods that
can infer patterns in on-going data streams and adapt posterior
distributions with low complexity. A step in this direction has
been taken in very recent work [40], but more work is needed
for the specific case of individual data streams.

A. On the Optimality of Time-Division Multiple Access
(TDMA)

Earlier work [41] claims that time division is an optimal
scheduling policy in code-division multiple access (CDMA)
on the grounds that it minimizes the received power levels
from other users. However, in CDMA systems, the bad effects
of interference are alleviated by well-designed codes. The
interfering users’ signal levels are not necessarily harmful to
the detection performance of the desired user and, thus, we
cannot conclude that it is always optimal to use time division.

In spite of this, one might conjecture that, would the buffers
never be emptied, it might be optimal to use time division also
when interference does not affect receiver performance. This
conjecture was proven to be true in the deterministic case in
the sense of maximizing the sum-of-rates capacity of an up-
link in a multiuser single-cell scenario by Knopp and Hum-
blet [3], when the time-varying fading channels were perfectly
tracked and known at the transmitters. In general, however, nei-
ther source rates nor channels are perfectly known and buffers
may be emptied. Hence, time division is not always an appro-
priate choice. To see this, consider the problem of scheduling
one channel one time slot at a time, i.e.,R = 1,T = 1. It can
be observed from the expected loss expression (23) that if the
buffer contents of the user with the highest effective capacity
cyt satisfies Sy, > cyy, then the minimum loss is obtained by
transmitting exclusively to that user. If this condition is not met,
then we cannot conclude that exclusive transmission is optimal
in the sense of maximizing expected throughput.

Example V.1: Consider the problem of assigning bandwidth
across two users using one channel and one time slot, i.e., U =
2, R = 1,T = 1. Assume that the users have S; = S5 = 10 bits
in stock and their expected influx for the next time slotis (n1) =
(n9) = 10. Assume knowledge of the effective capacities, ¢; =
17 and co = 20.

Fig. 5 plots the total expected buffer contents using (23) as
a function of p; = 1 — po. The optimum assignment is to split
the bandwidth almost equally among the users. Even though the
user with the highest capacity seems to have a large probability
for being able to transmit 20 bits (since Sz + (n2) = 20), the
uncertainty is still considerable and the best decision is to refrain
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Fig. 5. The expected loss using (23) as a function of p; = 1 — p- for the
scenario in Example V.1.

from exclusive transmission. The probability that ny = 0 is
large, and we can only be certain about transmitting 10 bits (the
number of bits already in stock) to user 2. Therefore, it would be
unnecessarily risky to let user 2 obtain all bandwidth when we
know for certain that it can be used to reduce the buffer levels
of user 1. O

If the scheduler uses a longer time horizon, the minimum loss
is obtained with exclusive allocations for each time slot if for
every time slot the user with maximum capacity at that time ful-
fills the criterion S,, > cy¢. If at any time slot there is some
user with maximum effective capacity having less data to send
than the channel allows, no general conclusion about the opti-
mality of exclusive transmission at any time slot can be drawn.
We may conjecture that the scheduler will indeed use exclusive
assignments also in many cases that are not covered by the gen-
eral conditions for optimality; the loss expression does however
not give any simple criterion for this to be the optimal choice in
general.

Further, for the conjecture to be true, the transmission re-
sources (consisting of antennas, codes, modulation format, etc.)
must be such that there is no additional advantage in letting two
users transmit at the same time. For instance, some resources
might not be mutually exclusive, i.e., two users may utilize them
fully at the same time. The model used throughout this paper
does not consider such resources.

B. Multiuser Diversity Gain

In this subsection, we investigate how the capacity of a system
increases with the number of users when utilizing multiuser
diversity.

In Fig. 6, the sum throughput is plotted as a function of the
number of users in a simulated system. The results were ob-
tained using the basic scheduler with perfect channel knowledge
using (23) in a scenario with two parallel independently fading
channels (R = 2). Each user experienced independent Rayleigh
fading on the time scale of slots, and the effective capacity was
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Normalized system throughput
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Fig. 6. The total downlink throughput obtained in a system employing the
basic scheduler increases with the number of users. Each user experienced
independent Rayleigh fading on the time scale of slots, with an average SNR
of 10 dB.

modeled as the integer nearest below the Shannon capacity for
a channel disturbed by additive white Gaussian noise only?

(49)

where ,,+ denotes the SNR at the receiver. Assuming one-tap
Rayleigh fading, v,,+ is exponentially distributed. The average
SNR was set to 10 dB, and the source rates were set so that the
transmission buffers were never emptied.

Define the multiuser diversity gain, or scheduling gain, «
as the ratio between the obtained total throughput = and the
throughput that would have been obtained by simple round-
robin scheduling z(RR)

Curt = 10%2(1 + ’Yurt)

T

a= @R

(50)

Fig. 6 then describes the scheduling gain of the simulated
scenario, since round-robin scheduling gives a sum throughput
equal to the average effective capacity for any one of the users.

C. Comparison With Proportional Fair Scheduling

In a new set of simulations, the proportional fair scheduler
(see, e.g., [8]) was compared to the basic scheduler from Section
IV-A with knowledge of effective capacities (using (23)). Both
these schedulers use knowledge of the channel to guide their
decisions. The proportional fair scheduler, however, does not
consider the effects of source rates and hence the possibility of
empty buffers. Implicitly it assumes that there is always data to
send.

The proportional fair scheduler works as follows. The data
rates that the users’ channels can support at each time slot ¢
(the effective capacity) is known to the scheduler. The scheduler
then keeps track of the average throughput T, (r, t) of each user
u in a past window of length ¢.. On each channel 7 and time
slot ¢, the scheduler transmits exclusively to the user with the
largest —+=t~. The parameter ¢. is used as a forgetting factor

T, (r,t)
in the calculation of the windowed average throughput. It is

8The model used here would in reality require perfect channel adaptation and
a continuum of modulation levels and coding rates.
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TABLE 1
PARAMETERS FOR THE COMPARISON OF PROPORTIONAL FAIR SCHEDULING
WITH THE MAXIMUM-ENTROPY SCHEDULER FOR KNOWN CHANNELS.
AVERAGE INFLOWS PER TIME SLOT <"T—1> AVERAGE SNR (dB) AT THE
RECEIVER 7,,, AND THE CORRESPONDING AVERAGE EFFECTIVE CHANNEL
CAPACITY (NUMBER OF BITS PER TIME SLOT) (€t )

n

7 vu(@B)  (curt)
User 1 2 10 2.9
User 2 6 13 3.7
User 3 1.5 13 3.7
TABLE 11

RESULTS FOR THE COMPARISON OF PROPORTIONAL FAIR SCHEDULING WITH
THE MAXIMUM-ENTROPY SCHEDULER FOR KNOWN CHANNELS. THE AVERAGE
NUMBER OF BITS REMAINING IN THE BUFFERS AFTER 60 TIME SLOTS ARE
LISTED IN COLUMNS 1 AND 2 FOR THE PROPORTIONAL FAIR SCHEDULER (PF)
AND THE SCHEDULER WITH KNOWN ¢,, ., PROPOSED HERE (ME). THE LAST
TwoO COLUMNS DISPLAY AVERAGE TOTAL THROUGHPUT IN BITS

S60(PF)  Seo(ME) Tp(PF) Tp(ME)
User 1 2 11 117 108
User 2 170 35 191 326
User 3 0 4 92 88
Total 172 bits 50 bits 400 bits 522 bits

used as a means of obtaining fairness, by giving a user access
to a channel when its effective capacity is high relative to its
own average throughput over the time scale ¢.. In [8], a single
base station is considered. Here, we adapt the proportional fair
scheduler to multiple parallel channels simply by treating an
additional channel as additional time slots. In other words, if
we are to assign two channels and three time slots, the sched-
uler works exactly as if it were to schedule one channel and six
time slots. After each single assignment, the average throughput
T, () (where 7 indexes assignments regardless of whether it de-
scribes time slot or channel) is recalculated according to [43]

Tu(i) = <1 - %) To(i— 1) + tlcu,i_ﬁ(u — )

C C

(51

where 6(u — u*) = 1 if user u was the transmitting user v* in
the most recent assignment, otherwise, §(u — u*) = 0.

The schedulers were run on the same data sets, with source
rates n,; drawn from a Poisson random number generator,®
and effective capacities generated from the rate expression (49)
using an exponential pdf for the SNR. The parameters used are
listed in Table 1. The forgetting factor for the proportional fair
scheduler was setto t. = 7.

The simulated scenario consisted of two parallel indepen-
dently fading channels (R = 2) and three users (U = 3). The
scheduling horizon was T' = 3 time slots, and the schedulers
were run for a total of 60 time slots. The results listed in Table II
are averages from 100 realizations. The table reports average
throughput and average buffer levels after the 60 time slots.

The results show that in this scenario the total throughput in-
creases by approximately 30% using (23) compared with using
the proportional fair scheduler. In particular, the throughput of
user 2 is severely degraded when buffer contents are neglected.
In terms of buffer levels, it is clear that the second user’s buffer
would overflow, causing further throughput degradation and in-
creasing delays due to the invoking of higher layer mechanisms
such as decreasing transmission rates or retransmissions.

9This choice is admittedly somewhat arbitrary. For a discussion of the prob-
lems involved in modeling and simulating individual Internet sources see [35].
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Comparing the results for users 2 and 3, having equal channel
statistics, we see that the throughput ratio of the two users is
identical to the ratio of their average inflows when using max-
imum entropy scheduling. If the inflows are taken to reflect each
user’s service requirements, then this means that fairness is ob-
tained without any explicit fairness constraint on the policy. On
the other hand, a user with very low average SNR and small
channel variability would obviously risk starvation with the pro-
posed scheduler.

It can be noted that a maximum SNR scheduler (which
is a special case of the proportional fair scheduler when all
users have independent but identical channel statistics) could
approach the performance of the maximum entropy scheduler
if the transmission buffers were constantly flooded with data.
A more important observation is that this case is normally
prevented from occurring in a real system due to rate-control
mechanisms such as provided by TCP. Schedulers should there-
fore always take buffer contents into account. The additional
use of source rate diversity further increases the performance
of the maximum entropy scheduler.

Another interesting result from this simulation can be ob-
served by studying the throughput obtained for the second user,
326 bits. Instead of trying to use multiuser diversity to our ad-
vantage we could split the available bandwidth into three equal
parts, and always transmit to all users. Instead of 326 bits, user 2
would then obtain a total throughput of %7 X 2 X 60 = 148 bits.
Thus, the individual throughput increases by 120% when using
the fluctuating channels and arrival rates as sources of diver-
sity. The proportional fair scheduler only achieves an increase
of 29% since it does not take the varying arrival rates into ac-
count. Evidently, there are substantial benefits associated with
taking advantage of the fact that, on average, the other users’
arrival rates are lower than their effective capacities. Neglecting
this source of diversity results in decreased individual and total
throughput.

D. Results for Different Amounts of Channel Uncertainty

Having established that channel information and taking ar-
rival rates into account are critical issues, two questions natu-
rally arise.

1) How does the accuracy of channel predictions affect indi-
vidual and total throughput?

2) Do we need to use the more complex scheduler when
using inaccurate channel predictions or can we equally
well use the simpler one, assuming perfect channel
knowledge?

To answer the first question, we study the throughput degra-
dation of a user as a function of increasing prediction inac-
curacy. The simulation setup consists of scheduling six users
according to (31), with two independently fading and noninter-
fering channels, R = 2, and a scheduling horizon of T = 3
time slots. All users have an average SNR of 10 dB, and the
Rayleigh-fading model from Section V-B is used with the ef-
fective capacity described by (49). (The average potential ef-
fective capacity is thus approximately 2.9 bits.) The buffer in-
fluxes are large compared to the effective capacities. All users
except the first one have nearly perfect prediction, o, = 0.1.
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Fig. 7. The normalized throughput (1 corresponding to the throughput of user
one if 04,4 = 0.1) for user one as a function of o,,. All users had the same
average source rates and potential effective capacities ((¢) ~ 2.9) (cf. Section
V-D). The two curves correspond to different values of the BER sensitivity v.

During a simulation run for 60 time slots, user 1’s prediction ac-
curacy was held at a constant value. The simulation was then re-
peated for a range of increasing prediction inaccuracies oy,+ =
0.1...3.5. Fig. 7 shows the throughput of user 1 for two dif-
ferent BER sensitivities, v = 1.3 and v = 1.1. We see that the
throughput degrades very quickly for decreasing prediction ac-
curacy. Already at o1, = 0.15 the throughput has degraded to
roughly 60% of what a user with 0¢,.+ = 0.1 obtains. The reason
is that there is almost always another user with equally high pre-
dicted capacity, but with higher accuracy, thereby leaving user 1
at a disadvantage since a larger uncertainty o, results in lower
expected effective capacity (33).

In terms of an individual user’s performance at any specific
time slot, therefore, an important property of the predictor is
that its accuracy should be comparable to that of the other users.
On the level of system throughput, however, since the expected
throughput (z,.+) decreases with prediction inaccuracy, the
total throughput necessarily decreases as well if the accuracy
is equal among users. But if the accuracy varies independently
among users, it is likely that there is at least one user with
both high SNR and good accuracy. From a system throughput
perspective, therefore, prediction accuracy should preferably
vary across users. As long as each user has on average similar
prediction accuracy as other users, this is indeed desirable for
individual users as well. Furthermore, prediction accuracy in
the high-SNR region is more important than for low SNR, since
a user will only be scheduled for transmission in the former
case.

Addressing the second question, a simulation setup was run
comparing (31) with the basic scheduler using (23) but em-
ploying the predicted values of the effective capacity ¢y, in-
stead of the true values. Here, all parameters except the predic-
tion accuracies were the same as for the previous simulation; the
prediction accuracies varied independently among users, chan-
nels, and time slots according to a uniform probability distribu-
tion o, € [0, 3].
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The sum throughput using (31) was 17% higher than when
using (23) for v = 1.1, and 16% higher for v = 1.3. The per-
formance difference between the two schedulers!? can be inter-
preted as a third diversity dimension; in addition to multiuser
diversity and source rate diversity, the prediction accuracy di-
versity allows the full Bayesian solution (31) to pick a user with
both high effective channel capacity and high prediction accu-
racy. This implies that the more complex scheduler should be
used in situations where different users have different predic-
tion accuracies, for instance, due to different user velocities.

VI. CONCLUSION

In this paper, a problem of optimizing resource assignments
in the presence of uncertainty was considered for applications
in mobile communications. The problem was formulated as a
minimization of the expected total buffer contents, given by the
general expression (4), a sum of contributions from each user. It
was noted that the framework is compatible with user priorities
represented by deterministic functions describing an equivalent
cost per bit.

Each user’s contribution to the total expected loss was calcu-
lated for three different cases, each representing a typical state
of knowledge at the scheduler. With knowledge of effective ca-
pacities and of average influxes, the expected loss contribution
was found in (23). Using knowledge of the accuracy of capacity
predictions, a Gaussian distribution was assigned for the pre-
dicted capacities. It was noted that the obtained capacity is a
function of the prediction, and the resulting probability distri-
bution for the effective capacities was derived for the case when
too large predictions result in a linear decrease of obtained ca-
pacity. The consequent expected loss contribution was found in
(31). In a packet data system with knowledge of packet sizes,
effective capacities, and average influxes for each packet size,
the resulting expected loss contribution was described by (46).

A substantial increase in throughput due to multiuser diver-
sity gain from maximum entropy scheduling was demonstrated
in simulations. A comparison of maximum entropy scheduling
with the proportional fair scheduler showed that the maximum
entropy scheduler achieved higher throughput by also utilizing
source rate diversity. Further simulations demonstrated that in
order to obtain high throughput, the scheduler needs to have ac-
curate channel knowledge. Degradation of channel prediction
accuracy for one user inevitably led to reduced throughput for
that user as described by Fig. 7. Including knowledge of predic-
tion accuracy into the criterion resulted in improved system per-
formance compared to using the basic criterion with predicted
capacities instead of the true values. The performance differ-
ence was a consequence of exploiting the prediction accuracy
diversity. The larger the variations in channel prediction accu-
racy and the more users in the system, the larger the resulting
gain of using the full Bayesian solution (31).

The Bayesian solution thus prioritizes users with well-deter-
mined high-rate channels, and with data to send. In the limit, as

10Notice that if all users would have had the same prediction accuracy (this is
unlikely, since different users move at different velocities), then there would not
have been any performance difference between the two schedulers, since using
(31) would merely reduce all users’ expected capacity by a nearly equal amount.
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the number of users tends to infinity and the prediction accura-
cies vary independently over the users, the full Bayesian solu-
tion would approach the throughput of the scheduler with per-
fect channel knowledge, since then there would almost always
exist a user having maximum- effective capacity with negligible
uncertainty.

Observe also that the expected loss expressions could be used
in other types of schedulers as well. For instance, with strict
delay requirements, a simple and effective scheme for exclu-
sive one-slot scheduling would be to transmit to the user « who
yields the largest total loss decrease (L(py, =0))—(L(pyr = 1))
(which is the best exclusive scheduling policy in the sense of
minimizing expected loss). Then at the next time slot, the re-
maining U — 1 users would compete similarly. For each time
slot, the set of competing users is reduced, and after U time slots,
the process repeats. The maximum delay for any user would
then be 2U — 1 time slots. This type of scheduling policy with
reduced channel feedback is investigated further in [44].

In conclusion, it should be pointed out that, although the
framework was formulated in a communication-theoretic set-
ting, the rationale can be employed in other forms of resource
optimization problems where the demand n,, is incompletely
known. The case of incompletely known supply c,,.+, corre-
sponding to the solution laid out in Section IV-B, would how-
ever require a different supply distribution than here. This is
in principle straightforward; given any testable information re-
garding the actual supply mechanisms, find the P(cy.+ | I) that
maximizes the corresponding entropy. Given that model, the so-
lution that maximizes the number of satisfied orders is again
given by (4).

APPENDIX A

The maximum-entropy distribution is found using the La-
grange method. Using the constraints (10) we form the func-
tional

H(P) = —Zﬂlogﬂ + ZM (Fk - Zpifk(l'i)>
i=1 k=1 i=1

(52)
and differentiate with respect to P;
OH(P <
%i) = _IOgPi_l_Z)\kfk<xi)- (53)

k=1

Setting this equal to zero we have the general form of the
entropy-maximizing probability mass

Pz' = exXp [—1 — Z Akfk($z>] .
k=1

However, we have not yet included the constraint that
>-i_, Pi = 1. This is just a normalization, and we obtain

(54)

1

i S I S WA S

exp | — Z Ak fre(24)
=1
(55)

The Lagrange multipliers ); are chosen so that the constraints
(10) are satisfied.
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This procedure is formulated in a compact form by intro-
ducing the partition function (12) and rewriting (55) as

1 m
P = mexl’ [—;Akfk(xz)] - (56)

In order to find the Lagrange multipliers satisfying the con-
straints (10), we notice that differentiating log Z with respect to
each )\ gives

9 1 =
o3 57 = Z0n ) 2 )
X exp[—Arfi(zi) — - — A (24)])

== Pifi(z:) (57)
i=1
which is the formulation of the constraints (10).
Thus, the constraints (10) are satisfied by choosing the La-
grange multipliers so that
F, =

log Z. (58)

T oA

APPENDIX B

In Section IV-A, in the derivation of the expected loss contri-
bution assuming knowledge of effective capacities and average
source rates, we need to evaluate the summation over n,, in (22).
Using the probability assignment (20) for the influxes we obtain

oo

Z P(nu |I)g(Su + Moy, — xu)

N, =0
_ <LT>7 Ty > Sy
- { u + <nu> — T, o S Su (59)
where
(Lg) = Y P(nu | I)(Su + nu — 74)
M, =0
Ty —Sy

- Z P(nu|1)(5u+nu_xu)

N, =0
> 1 ( (1) >n“
= (Su + Ty — xu)
= (ny) +1 \(ny) +1
., —S. n
— 1 < (ny) > *
- Z (Su + Ny — wu)
= () +1 \(na) +1

oo

ngz:o <nu)1+ 1 [( WS;?. 1>nu .
+ (%)" (S —xu)} o

* (#)" (Su = ivu)] (63)

(60)

(62)

s
— {na) + . — (64
(S =) (%)I"_S"H (65)
~ () (1 - <<n<7;%>_5> (66)
 (Su— ) (1 - <<ng%>wsu+l> ©67)
~ () <<n<7;%>_5 . (68)

The infinite progression in lines (60) and (61) are standard sums
which can be found in [45, eqgs. 0.231.2 and 0.231.1]. They cor-
respond to the solution (64). The finite sum in lines (62) and
(63) can also be found in [45. eqs. 0.113 and 0.112]. The arith-
metico-geometric progression (62) corresponds to the solution
spanning lines (65) and (66), while the geometric series (63)
corresponds to the solution (67).

APPENDIX C

Here we derive the expected loss contribution for known
time-varying influx averages, assuming perfect knowledge of
the effective capacities. The probabilities for n,; for different
times ¢ factor according to the maximum entropy principle and
thus, we can rewrite the expected loss contribution as a product
of independent terms. As in (23), we need to separate between
the cases z,, > S, and z,, < S,,. It follows immediately from
the derivation of (23) in Appendix B that for z,, < S, the loss
contribution for user v is

(Lu) = Su+ D _(nut) — 2

= Su + (nu> — Tu, Tu S Su- (69)

Consider the calculation of (L,) in the case x, > S,,. For
reasons we shall return to in the derivation we need to reorder
the (n..:) by decreasing size. Thus, we replace the time indexes
t by size indexes k, where larger k corresponds to smaller size.
We start by deriving the average loss with respect to P(n,1 | I),
for given smaller influxes nys, 743, . . ., Wwhich we denote by
(Lw) P(n., | 1)- By substituting S, + Zfﬁ Nk for S, in the
derivation of (23) in Appendix B it follows directly that

(Lu) P(n.: | T)

(nul>

Z(nm) (m

<nu1> <nu1>

= (o) (W) Il (W) - 70

k=2

T
)xu_su_ E pg Muk

This means that the expected loss averaged over the influxes
at the remaining times 7,2, . . . becomes

<nu1>

Ty —Su
(Lu) = () (W>
y ﬁ i P(ny | 1) <%>—n 7n

k=2 nuk:0
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The sum over n, in (71) is, by using (20), given by

Nk =0 <nuk> + 1 <nuk> —+ 1 <nu1> + 1
R N ( (na)  (mat) + 1) -
Nyr=0 <nuk> + 1 <nuk> + 1 <nu1>
1 1
- (73)
(nuk) (nui)+1
() +1 {1 — ] Gl

In the last equality, the reordering of (n,) by decreasing size
is needed to ensure convergence of the geometric series (72) [45,
eq. 0.231.1], which requires

(nu1> +1
<nu1>

(nuk>

< 1.
(nuk> + 1

The average loss is then
<nu1>

al < ) (W)

T
1 1

<11
<nu >
<nuk> + 1 1— <’n/uk>l‘+1

CES] (74)

(nu1)

APPENDIX D

In Section IV-B, the probability for the obtained effective ca-
pacity c,+ given a prediction is needed in order to calculate the
expected loss. We derive the probability for each of the three
cases (cf. Fig. 3) and then add the resulting distributions to ob-
tain the total probability distribution.

1) When ¢+ < €yurt, the obtained capacity is cyrt = Curt-

Because the distribution for the predicted capacity is sym-
metric and centered at the potential capacity ¢,,+ we have

1 .
Pl(curt |I) = ié(curt - curt) (75)
where 6 is the Dirac delta.
2) In the second interval Cyrt < Cype < €y, WE use the

aforementioned linearly decreasing function in describing
the obtained capacity

1

Curt = — v Curt +

v—1 Curt- (76)

Leaning on previous remarks, we model the potential ca-
pacity as a Gaussian distribution according to Cyp¢ ~

N (éyrt, 02,,). Using the result
z ~N(m,o?) = ax+b~ N(am+b,a’0?) (77)

and from the relation (76) it is concluded that

2
1 v VO yrt
v_lcurt+ v_lcurtv (’U—l)

2
U
=N ém“t7 < UUTt>
v—1

Curt ™~ N |-

(78)

(1]

(2]
31

[4]

(51
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]
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Notice that this distribution is attained only for the interval
0 S Curt S éurt~

In the third interval, ¢,,¢+ > vCyyt OF equivalently —oco <
Curt < Cyrt /v, the obtained capacity is zero. The proba-
bility for this is

PB(Curt |I)
Curt /v
= 6(Curt> / P(Eurt | I) dEurt
Curt [V 1
=0 Cur Y
(Curt) oo /2702,

1 A _
€xp __Z(Eurt - Curt)2 dcurt
2Uurt

X

e fer(25) o
where erf(x) is the error function
erf(z) = 2 /Z e dt. (80)
V7 Jo

Gaussian integrals like the previous one are solved
by combining equations 3.322.1, 3.322.2, and 3.323.2
in [45].
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