
ar
X

iv
:c

s/
05

08
08

3v
2 

 [c
s.

IT
]  

1 
N

ov
 2

00
5

IEEE TRANSACTIONS ON INFORMATION THEORY 1

A General Framework for Codes Involving
Redundancy Minimization

Michael B. Baer,Member, IEEE

Abstract— A framework with two scalar parameters is introduced
for various problems of finding a prefix code minimizing a
coding penalty function. The framework encompasses problems
previously proposed by Huffman, Campbell, Nath, and Drmota
and Szpankowski, shedding light on the relationships amongthese
problems. In particular, Nath’s range of problems can be seen as
bridging the minimum average redundancy problem of Huffman
with the minimum maximum pointwise redundancy problem of
Drmota and Szpankowski. Using this framework, two linear-time
Huffman-like algorithms are devised for the minimum maximum
pointwise redundancy problem, the only one in the frameworknot
previously solved with a Huffman-like algorithm. Both algorithms
provide solutions common to this problem and a subrange of
Nath’s problems, the second algorithm being distinguishedby its
ability to find the minimum variance solution among all solutions
common to the minimum maximum pointwise redundancy and
Nath problems. Simple redundancy bounds are also presented.

Index Terms— Huffman algorithm, minimax redundancy, optimal
prefix code, Ŕenyi entropy, unification.

I. I NTRODUCTION

A source emits symbols drawn from the alphabetX =
{1, 2, . . . , n}. Symboli has probabilitypi, thus defining prob-
ability mass function vectorp. We assume without loss of
generality thatpi > 0 for every i ∈ X , and thatpi ≤ pj for
every i > j (i, j ∈ X ). The source symbols are coded into
binary codewords. Each codewordci corresponding to symbol
i has lengthli, thus defining length vectorl.

It is well known that Huffman coding [1] yields a prefix code
minimizing

∑

i∈X
pili given the natural coding constraints:

the integer constraint,li ∈ Z+, and the Kraft (McMillan)
inequality [2]:

∑

i∈X

2−li ≤ 1.

Hu, Kleitman, and Tamaki [3] and Parker [4] independently ex-
amined other cases in which Huffman-like algorithms were op-
timal; this work was later extended [5], [6]. Other modifications
of the Huffman coding problem were considered in analytical
papers [7]–[9], although none of these proposed a Huffman-
like algorithmic solution. In each paper, relationships between
the modified problem and the Huffman coding problem were
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explored. Parker proposed an algorithmically-motivated two-
function parameterization defining various Huffman coding
problems; these two parameter functions are a “weight combi-
nation” function and a “tree cost” function [4]. Three problems,
first examined in [1], [7], [8], were considered as a part of this
framework; here we show that a fourth [9] fits into it as well.
In addition, we find a simpler redundancy-motivated unifying
problem class that relates the four problems, one involvingtwo
scalar parameters rather than two functional parameters. This
new framework reveals a united analytical structure, including
simple redundancy bounds and novel algorithmic results which
improve upon the algorithm of [9].

In Section II, background is given on the coding problem
introduced in [7]. In Section III, the new framework, based
on an extension of this problem, is introduced. The problem
and the three other aforementioned problems are then put into
the context of this framework. In Section IV, the framework
is used to help find linear-time algorithms for the problem
in [9]. Redundancy bounds are presented in Section V, with
concluding thoughts following in Section VI.

II. BACKGROUND: EXPONENTIAL HUFFMAN CODING

One particular application of a modified coding problem was
found by Humblet [10] for a problem involving minimization
of buffer overflow in communications. In this application, the
function minimized is

∑

i∈X
pi2

βli for a givenβ > 0. This
is easily generalized to negativeβ by specifying minimization
of the β-exponential average

Fβ(p, l)
∆
=

1

β
log2

∑

i∈X

pi2
βli . (1)

This problem was originally proposed by Campbell [7] and a
linear-time algorithm found independently by Hu et al. in [3,
p. 254], Parker in [4, p. 485], and Humblet in [11, p. 25] (later
published as [10, p. 231]). This algorithm covers all ofR; the
case ofβ = 0 is considered by noting thatβ → 0 yields the
original Huffman coding problem.

Below is the procedure for the exponential extension of Huff-
man coding with parameterβ. Note that it minimizes (1)
over l, even if the “probabilities” do not add to1. We refer
to such arbitrary positive inputs asweights, often denoted by
w = {wi} instead ofp = {pi}:

Procedure for Exponential Huffman Coding

1) Each itemmi ∈ {m1,m2, . . . , mn} has weightwi ∈
WX , whereWX is the set of all such weights. (Initially,
mi = i.) Assume each itemmi has codewordci, to be
determined later.

2) Combine the items with the two smallest weightswj

and wk into one itemm̃j with the combined weight
w̃j = 2β(wj + wk). This item has codeword̃cj , to
be determined later, whilemj is assigned codeword

http://arxiv.org/abs/cs/0508083v2
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cj = c̃j0 andmk codewordck = c̃j1. Since these have
been assigned in terms of̃cj , replacewj and wk with
w̃j in W to form WX̃ .

3) Repeat procedure, now with the remainingn− 1 code-
words and corresponding weights inW, until only one
item is left. The weight of this item is

∑

i∈X
wi2

βli . All
codewords are now defined by assigning the null string
to this trivial item.

This algorithm can be modified to run in linear time (to input
size) given sorted weights in the same manner as Huffman
coding [12]. An example of exponential Huffman coding for
β = log21.1 is shown in Figure 1. The resulting code is
different from that which would be obtained via Huffman
coding (β = 0).

The output of a Huffman-like algorithm might be a code (and
thus the implicit code tree, e.g., [13]) or merely codeword
lengths; we assume the latter from here on, because valid
codewords can be inferred from the lengths. Thus we can view
the problem such an algorithm solves as an integer optimization
problem. This is useful because many different codes can
correspond to the same set of codeword lengths and thus all
be optimal for a given problem.

Considering the codeword lengths alone as the solution to a
given problem, we find that some problems have a unique
optimizing set of lengths, while others have more than one
distinct optimal solution. Multiple different solutions manifest
themselves in the algorithm as possible ties in the weight
of (possibly combined) items in the combination step (step
2 above). Thus the algorithm, as with Huffman coding, is
nondeterministic. Two deterministic variants arebottom-merge
Huffman codingand top-merge Huffman coding[13]. Code
trees yielded from the former method have been called, depend-
ing on the properties focused upon,best Huffman trees[14],
compact Huffman trees[15], minimal Huffman trees[16],
and minimum variance Huffman trees[17], the last of these
because variance is minimized among (tied) optimal code trees
(codeword lengths).

Given b ∈ R and p, if we relax the integer constraint onl,
minimizing Fb(p, l) becomes a simple numerical optimization
and provides a lower bound for the integer-valued problem.
(We useb instead ofβ from here on to refer to the parameter for
the real-valued problem.) Campbell [7] noted that the optimal
value ofFb(p, l) for b ∈ (−1,+∞)\{0} is the Rényi entropy
of orderα = (1 + b)−1:

Hα(p)
∆
= 1

1−α
log2

∑

i∈X
pαi

= 1+b
b

log2
∑

i∈X
p
(1+b)−1

i .
(2)

This should not be surprising given the relationship between
Huffman coding and Shannon entropy, which corresponds to
b → 0, H1(p) [18].

Given b ∈ (−1,+∞) and p, the optimal ideal real-valued

lengths achieving (2) are given by

l
†
i = −

1

1 + b
log2pi + log2

∑

j∈X

pj
1

1+b . (3)

At the extremes of the(−1,+∞) range, solutions are defined
as the limit of the solutions forb ↓ −1 and b ↑ +∞,
respectively. Forb < −1, there is no real-valued solution, the
problem being optimized byl†1 = 0 and l

†
i = +∞ for every

i > 1.

III. M INIMIZATION OF d-AVERAGE b-REDUNDANCY

We call the difference between an integerli and the optimal
real-valued solutionl†i the pointwiseb-redundancy

rb(i)
∆
= li − l

†
i ,

to emphasize its dependence onb. The arithmetic average
of pointwise 0-redundancy was the problem considered by
Huffman in his original paper, “A Method for the Construc-
tion of Minimum-Redundancy Codes.” Here we introduce a
generalization of this problem encompassing several casesof
interest.

Suppose we wish to minimized-average b-redundancyor
DABR,

Rb,d(p, l)
∆
=

1

d
log2

∑

i∈X

pi2
drb(i). (4)

This amounts to findingl∗b,d(p) such that

Rb,d(p, l
∗
b,d(p)) = minlRb,d(p, l)

= minl
1
d
log2

∑

i∈X
pi2

d(li−l
†
i
)

= minl
1
d
log2

∑

i∈X

p

1+b+d
1+b

i

∑

j∈X p

1
1+b
j

2dli

(5)
wherel is restricted to the integers and by the Kraft inequality
(implicit from here on).

This reduces to an exponential Huffman coding problem. Then,
given sorted{pi}, (5) is solvable in linear time; note that
the normalization of the terms is optional for the algorithm.
For d < −1, the solution is always the unary codel =
(1, 2, . . . , n−1, n−1). Considering the edges via limiting
(as we did with real-valued solutions), the range of nontrivial
cases for minimal DABR codes for a given probability mass
function can thus be considered to be parameterized byb×d ∈
[−1,+∞]× [−1,+∞], as in Figure 2.

As indicated in this figure, many interesting coding problems
fit within this framework. These problems, which we discuss
below, correspond to subsets of this two-dimensional extended
quadrant ([−1,+∞] × [−1,+∞]). On the set of points for
which b is +∞, for example, the minimization reduces to
exponential Huffman coding with parameterβ = d. Ford = 0
(b ∈ (−1,+∞]) we have Huffman coding. A particular type
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Fig. 1. Exponential Huffman coding for weightsw = (0.36, 0.30, 0.20, 0.14) and β = log21.1. In the first step, the two smallest items
(with weightsw3 = 0.20 andw4 = 0.14) are combined into a compound item with weight0.374 = 1.1 · (0.20 + 0.14); thus c3 andc4 end
in 0 and1, respectively. At each additional step, the two smallest remaining items are combined in a similar fashion. In this manner a code to
optimize (and as a by-product calculate) the value of

∑

i∈X wi2
βli is built from the bottom up. In this case, the minimized valueis 1.21.

of Huffman coding occurs forb = +∞, d ↓ 0. In such a case,
we note that

Rb,d(p, l) =
∑

i∈X

pili +
d

2
σ
2
p(l) +O(d2) asd → 0 (6)

where the second term on the right-hand side represents
variance. This being the tie-breaking term, we have bottom-
merge Huffman coding.

IV. M INIMIZATION OF MAXIMAL POINTWISE REDUNDANCY

As average pointwise (0-)redundancy has been well understood
for some time, Drmota and Szpankowski decided to explore
the previously overlooked minimization of maximal pointwise
redundancy [9], [19].

We definedth exponential redundancy as DABR forb = 0.
Note that the maximal redundancy problem is equivalent to
minimizing dth exponential redundancy asd → +∞. Thus,
considering d ∈ [0,+∞], dth exponential redundancy is
a subproblem with a parameter that varies solution values
between minimizing average redundancy (Huffman coding)
and minimizing maximal redundancy; such a range of problems
and solutions was sought in [19]. This was previously derived
axiomatically without regard to such a range and without
solution [8]. The version of the minimal DABR coding solution
applying to the maximal redundancy subproblem was found
shortly thereafter [4], although it was not generalized tob 6= 0
or to d = +∞.

Drmota and Szpankowski presented a simple method for find-
ing a code with minimum maximal redundancy [9], [19]. How-
ever, this solution is deficient in the following senses: First,
time complexity isO(n log n). Second, the Kraft inequality
is not necessarily satisfied with equality, meaning that the
optimal code found in this manner is often, in some sense,
wasteful. Third, the code does not necessarily optimizedth
exponential redundancy for anyd < +∞. The method is also
not generalized to maximalb-redundancy (b 6= 0).

In order to overcome the first two deficiencies, we propose a
reduction to a previously-known algorithm with linear com-
plexity previously discussed by Parker [4]. This problem was
termed thetree-height measureproblem, though it was not pre-
viously considered in the context of the maximal redundancy
or DABR problems.

The tree-height measure problem minimizes the maximum
value ofwi + c · li given c > 0 and weight vectorw. Instead
of using w̃j = 2β(wj + wk) on the merge step of Huffman
coding, the Huffman-like tree-height measure algorithm uses
w̃j = c+max(wj , wk). In order to use the tree-height measure
algorithm, assign weights according to

wi(b) =
1

1 + b
log2

pi

pn
,

which is always nonnegative, and letc = 1. Then this modified
Huffman algorithm minimizes

max
i

(wi(b) + c · li) = max
i

(

li +
1

1 + b
log2

pi

pn

)

= max
i

rb(i) + log2

∑

j∈X

pj
1

1+b

−log2p
1

1+b
n .

Thus this linear-time algorithm returns a length vector minimiz-
ing maximumb-redundancy and satisfying the Kraft inequality
with equality.

Because ties can occur in selecting weights to combine, the ex-
ponential Huffman algorithm might yield one of many possible
optimal codes, including codes not optimal for the limit ofdth
exponential redundancy (asd → +∞). For example, consider
p = ( 8

19
, 4
19
, 3
19
, 2
19
, 2
19
). For dth exponential redundancy,

l = (1, 2, 3, 4, 4) and l = (1, 3, 3, 3, 3) are both optimal for
d → +∞. These not only minimize maximal redundancy,
but, among codes that optimize this, these codes also have the
lowest probability of achieving this maximal redundancy, as
this is related to the second term of the expansion ofRb,d(p, l)
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Fig. 2. The parameter space for minimald-averageb-redundancy
(DABR) coding with the following noted subproblems: the Huffman
problem (the above line atd = 0), Campbell’s exponential coding
problem (line at b = +∞), the problem solved via Schwartz’s
bottom-merge Huffman coding method (limit point at(+∞, 0) when
approached from above), Nath’sdth exponential redundancy problem
(line atb = 0), Drmota and Szpankowski’s maximal redundancy (point
at (0,+∞)), and maximalb-redundancy (line atd = +∞). Each
point in the extended quadrant represents a different (parameterized)
problem, as in Figure 5.

for d → +∞:

Rb,d(p, l) = 1
d
log2

∑

i∈X pi2
drb(i)

= maxi rb(i)
+ 1

d
log2PX [rb(X) = maxj rb(j)]

+O
(

1
d2d

)

asd → +∞

(7)

Each term in the expansion has a different asymptotic com-
plexity. As with minimum variance (bottom-merge) Huffman
coding (6), each additional term further restricts the set of
feasible codes to those that minimize the current term giventhe
optimization of previous terms. In the above example, all terms
are minimized by both the aforementioned sets of lengths. In
contrast,l = (2, 2, 2, 3, 3), although also minimizing maximal
redundancy, results in a code where codewords have a higher
probability of achieving maximal redundancy. This solution,
which is in some sense inferior, can nevertheless be achieved
by the tree-height measure algorithm, specifically the bottom-
merge version.

It is possible to find aD ∈ R such that, for everyd ≥ D, dth
exponential Huffman coding minimizes maximal redundancy.
Let min+

i,j γi,j denote the minimum strictly positive value of
γi,j , and let 〈x〉 denote the fractional part ofx, i.e., 〈x〉 ∆

=

x − ⌊x⌋. Assign δ = min+
i,j〈l

†
i − l

†
j〉. It is possible to show

that a sufficiently largeD is given byD = 1
δ
log2

2
pn

> 1
[20, pp. 59-62]. However, findingD requires sorting, so an
algorithm derived from thisD would not be a linear-time
algorithm.

Fortunately, it is possible to arrive at a linear-time algebraic
Huffman algorithm, that is, one that keepsD as a variable.
Algebraic Huffman algorithms were introduced by Knuth [5].
The one proposed here uses a Huffman algorithm which keeps
track of both the first- and second-order terms; ties between
these pairs of terms can occur only when all terms are tied,
this due to the manner in which the Huffman procedure
works. Before explaining why this is the case, we present the
algorithm.

The aforementioned first- and second-order terms are

w
′
i

∆
= lim

d→+∞
[wi(b, d)]

(d−1)

and
w

′′
i

∆
= lim

d→+∞
[wi(b, d)]

−1 · [w′
i]
d
,

respectively, where leaf nodes have

wi(b, d) = p
1+b+d
1+b

i ,

as ind-averageb-redundancy.

One can think ofw′
i as representing an invertible function of

maximalb-redundancy,

w
′
i =

[

n
∑

j=1

p
1

1+b

j

]−1

· 2maxi rb(i),

where, at any given point of the algorithm,rb(i) = li − l
†
i

uses the depth of itemi in its interim code tree as the value
li. Note that onlyrb(i) is variable; the denominator term of
w′

i is a result of not normalizing the weights at the start of the
algorithm. In a similar manner,w′′

i represents the probability
of maximal b-redundancyPX [rb(X) = maxj rb(j)].

To implement this algorithm, we letw′
i = p

1
1+b

i andw′′
i = pi

for the initial case. In comparing itemsj andk, we consider
them as lexicographically ordered pairs — e.g.,wj = (w′

j , w
′′
j )

— so thatwj ≥ wk if and only if either w′
j > w′

k or if
w′

j = w′
k and w′′

j ≥ w′′
k , as in [5]. In combining itemsj

andk (wherewj ≥ wk as described), the new item will have
w̃′

j = 2w′
j = 2 · max(w′

j , w
′
k). If w′

j > w′
k, then w̃′′

j = w′′
j .

Otherwise,w̃′′
j = w′′

j + w′′
k . That is,

w̃j =

{

(2w′
j , w

′′
j ) if w′

j > w′
k

(2w′
j , w

′′
j + w′′

k ) otherwise.

The reasons for this are easily seen if we viewwi as the repre-
sentation of maximal redundancy and probability this maximal
redundancy is achieved. Take the maximum and add1 for the
additional bit of the codeword (multiplyingw′

i by 2). Then,
if the redundancies are identical, add their probabilities(w′′

i ).
Otherwise, take the probability of the maximal redundancy.
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Fig. 3. Algebraic maximal redundancy coding,p= 1
19

· (8, 4, 3, 2, 2) (bottom-merge)

This combining method is a Huffman algebra, satisfying the
properties introduced in [5]. The Huffman combining criterion
is shown by example in Figure 3. The remaining weight pair
after coding, ( 32

19
, 4
19
), indicates a maximal redundancy of

log2
32
19

and a probability of4
19

that this redundancy is achieved.

We now show that ties in thew pairs imply ties in all terms
of the expansion presented in (7), or, equivalently, fordth
exponential redundancy for alld ∈ [D,+∞) whereD is some
(unspecified) constant.

Theorem 1:If there is a tie in the abovew pairs, there is a tie
in all terms of the correspondingd expansion.

Proof: Consider two tied pairs. Note that, in each,

w
′
i ≥ w

′′
i

1
1+b (8)

because this holds with equality in leaf nodes and the inequality
is preserved in the merge step, since2 ·max(a, b) ≥ a+ b ≥
max(a, b) for a, b ≥ 0. If inequality (8) holds without equality
for the tied pairs, neither node on the corresponding code tree
can be a leaf node, and, due to ordering for the combination
step, their four children must be identically weighed. However,
this fact can be invoked inductively for either pair of children,
also tied, and thus such a tree could not be finite. Therefore,
tied pairs arise only in cases for which the inequality holds
with equality. Thus, they must be leaf nodes or nodes with
two identically-weighted children. Inductively, this means the
subtrees must be composed of leaf nodes that arerelatively
dyadic, that is, are dyadic when multiplied by a nontrivial
common constant. Thus they are equal in all terms, which is
what we set out to show.

One can use bottom-merge or top-merge coding so that the
algorithm is deterministic. If one uses top-merge coding — that
is, favoring combined items over single items with identical
weight [13] — one actually need not keep track of the second
term; the top-merge algorithm behaves identically without
considering this term. This variant, illustrated in Figure4, is
actually a special case of the tree-height measure problem men-
tioned above. However, if we wish to assure that the solution
has minimum variance, the algebraic method is needed.

V. BOUNDS

One can easily see that if we relax the integer constraint on
length for minimizingd-averageb-redundancy, the real-valued
solution is notl†, but some differentl‡. By substituting the
solution in (3), we find

l
‡
i = −ω · log2pi + log2

∑

j∈X

p
ω
j

whereω = 1+b+d
(1+b)(1+d)

= 1− bd
(1+b)(1+d)

.

Note that when the values ofb and d are exchanged, the
ideal solution remains the same. This problem thus has a high
degree of symmetry. However, because the problem itself is not
symmetric, the symmetry of integer solutions is not perfect, as
we can see in Figure 5.

Using this and the Shannon code [18] analogue⌈l‡i ⌉, we can
find bounds for the optimal DABR whenb ≥ −1, d ≥ −1,
and b+ d ≥ −1:

0 ≤ Rb,d(p, l
∗
b,d(p))− αb(Hω(p)−Hα(p)) < 1

where we recallω = 1+b+d
(1+b)(1+d)

andα = 1
1+b

, the subscript
of Rényi entropy in (2). As with exponential Huffman coding,
equality holds iff the ideal solutionl‡ has all integer lengths.
For b = +∞ and d = 0, this results in the well-known
Shannon bounds. Forb = 0, it reduces to a normalized version
of an inequality in [8]. With a different normalization, this
inequality relates to Rényi’s gain of information of orderα, a
generalization of relative entropy [21]. This is not surprising
given the relationship between relative entropy and Huffman
coding noted by Longo and Galasso [22].

Due to the reduction to exponential Huffman coding, more
sophisticated redundancy results may be applied if desired.
The bounds given by Blumer and McEliece [23] apply to the
exponential case but appear as solutions to related problems
rather than in closed form. Taneja [24] gave closed-form
bounds using an alternative definition of redundancy.
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Fig. 5. The parameter space for minimal DABR coding forp =
(0.58, 0.12, 0.11, 0.1, 0.09). Each region represents a set of problems
with the same solution. On the transition curves (solid), multiple
solutions are optimal. The five distinct solution regions are (1) l =
(1, 2, 3, 4, 4), (2) l = (1, 3, 3, 3, 3), (3) l = (2, 2, 2, 3, 3), (4) l =
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parameter space indicate the (+∞) asymptotic behavior of the limits
between regions. Note thatb+d+1 = 0 divides nonincreasing length
vectors from nondecreasing. Also note the high degree of symmetry;
the imperfection of this symmetry is best illustrated by thedifferent
asymptotes.

VI. CONCLUSION

A two-dimensional framework is demonstrated to encompass
examples considered by Parker [4] — classical Huffman cod-
ing [1], the exponential variant proposed by Campbell [7], and
thedth exponential redundancy problem proposed by Nath [8].
These examples, along with all problems within the framework,
are solvable by Huffman-like algorithms. The maximal redun-
dancy problem proposed by Drmota and Szpankowski [9], [19]
is shown to be optimized by its equivalence to another example

considered by Parker; the top-merge version of the algorithm
in particular additionally optimizesdth exponential redundancy
for large d. A better solution — one minimizing codeword
length variance among such optimal codes — is suggested
by and is developed from the two-dimensional framework
introduced here. All algorithms discussed are Huffman-like
and thus linear-time given sorted input, unlike the original
algorithm proposed for maximal redundancy.

It is unclear whether all nontrivial problems within Parker’s
more general framework are covered by this seemingly more
specific framework and trivial extensions thereof. Such analy-
sis, building upon Parker’s work, could be a basis for further
research. Extending this algorithm to alphabetic codes (alpha-
betic search trees) could also be explored. For nonnegative
exponents (d ≥ 0), this framework is a trivial extension of [3],
but negative exponents might provide more of a challenge.
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