arXiv:cs/0508083v2 [cs.IT] 1 Nov 2005

IEEE TRANSACTIONS ON INFORMATION THEORY 1

A General Framework for Codes Involving explored. Parker proposed an algorithmically-motivateg-t
Redundancy Minimization function parameterization defining various Huffman coding
problems; these two parameter functions are a “weight combi
nation” function and a “tree cost” function [4]. Three prebis,
Michael B. BaerMember, IEEE first examined in [1], [7], [8], were considered as a part d$ th
framework; here we show that a fourth [9] fits into it as well.
In addition, we find a simpler redundancy-motivated unifyin
Abstract— A framework with two scalar parameters is introduced problem class that relates the four problems, one involtivay

for various problems of finding a prefix code minimizing a  goqiar harameters rather than two functional parametdiis. T
coding penalty function. The framework encompasses probtas

previously proposed by Huffman, Campbell, Nath, and Drmota NE€W framework reveals a united analytical structure, idicig
and Szpankowski, shedding light on the relationships amonthese  simple redundancy bounds and novel algorithmic resultskwhi
problems. In particular, Nath's range of problems can be see as improve upon the algorithm of [9].

bridging the minimum average redundancy problem of Huffman

with the minimum maximum pointwise redundancy problem of |y Section[dl, background is given on the coding problem

Drmota and Szpankowski. Using this framework, two linear-ime nirqq,ced in [7]. In SectiofiDl, the new framework, based
Huffman-like algorithms are devised for the minimum maximum

pointwise redundancy problem, the only one in the frameworknot 0N @n extension of this problem, is introduced. The problem
previously solved with a Huffman-like algorithm. Both algorithms ~ and the three other aforementioned problems are then mut int
provide solutions common to this problem and a subrange of the context of this framework. In Secti@qllV, the framework
Nath's problems, the second algorithm being distinguishedby its  is sed to help find linear-time algorithms for the problem

ability to find the minimum variance solution among all solutions . . .
common to the minimum maximum pointwise redundancy and in [9]. Redundancy bounds are presented in Sedfibn V, with

Nath problems. Simple redundancy bounds are also presented  concluding thoughts following in SectidiVI.

Index Terms— Huffman algorithm, minimax redundancy, optimal

prefix code, Renyi entropy, unification Il. BACKGROUND: EXPONENTIAL HUFFMAN CODING

One particular application of a modified coding problem was
found by Humblet [10] for a problem involving minimization
of buffer overflow in communications. In this applicatiohget
function minimized isy,_, p:2°" for a given3 > 0. This

is easily generalized to negatiykeby specifying minimization

of the B-exponential average

. INTRODUCTION

A source emits symbols drawn from the alphab¥t =
{1,2,...,n}. Symboli has probabilityp;, thus defining prob-
ability mass function vectop. We assume without loss of
generality thatp; > 0 for everyi € X, and thatp; < p; for Fs(p,1) £ llog2 Zpﬂﬁ”. 1)
everyi > j (i,7 € X). The source symbols are coded into s icx

binary codewords. Each codewardcorresponding to symbol s problem was originally proposed by Campbell [7] and a
i has length;, thus defining length vecta. linear-time algorithm found independently by Hu et al. in [3
eP. 254], Parker in [4, p. 485], and Humblet in [11, p. 25] (fate

It is well known that Huffman coding [1] yields a prefix cod X ’ .
minimizing 3", pili given the natural coding constraints:PuPlished as [10, p. 231]). This algorithm covers allRfthe

the integer constraint, € Z., and the Kraft (McMillan) C@s€ Of5 = 0 is considered by noting that — 0 yields the
inequality [2]: original Huffman coding problem.

—1; . . .
Z 2 <L Below is the procedure for the exponential extension of Huff
e man coding with paramete. Note that it minimizes[{1)

Hu. Kleit qT ki 131 and Parker [4] ind dentl over I, even if the “probabilities” do not add tb. We refer
u, Rleftman, and lama '.[ ] and Par gr[ ]in ependently €%, such arbitrary positive inputs ageights often denoted by
amined other cases in which Huffman-like algorithms were op

timal; this work was later extended [5], [6]. Other modificas {w:} instead ofp = {p.}:
of the Huffman coding problem were considered in analytical
papers [7]-[9], although none of these proposed a Huffman-
like algorithmic solution. In each paper, relationshipsiezn

Procedure for Exponential Huffman Coding

h dified bl d th p i bi 1) Each itemm; € {mi,ma2,...,myn} has weightw; €
the modified problem and the Huffman coding problem were Wax, whereWy is the set of all such weights. (Initially,
This work was supported in part by the National Science Fationl m; = i.) Assume each iterm; has codeword:;, to be

(NSF) under Grant CCR-9973134 and the Multidisciplinaryiersity determined later.
Research Initiative (MURI) under Grant DAAD-19-99-1-0215 2) Combine the items with the two smallest weights

The author was with the Department of Electrical Enginegrin - - P, . .
Stanford University, Stanford, CA 94305-9505 USA. He is naith and wy, into one ftemm; with the combined weight
Electronics for Imaging, 303 Velocity Way, Foster City, CA%DA4 w; = 27(w; + wg). This item has codeword;, to
USA (e-mail: Michael.Baer@efi.com). be determined later, whilen; is assigned codeword


http://arxiv.org/abs/cs/0508083v2

IEEE TRANSACTIONS ON INFORMATION THEORY 2

¢; = ¢;0 andmy, codeworde;, = ¢;1. Since these have lengths achieving[]2) are given by

been assigned in terms @f, replacew; and w; with 1 e
w; in W to form Wy. Il = — 08P + 1og, > T 3)
3) Repeat procedure, now with the remaining- 1 code- jex

words and corresponding weights W, until OQEY ON€ At the extremes of thé—1, +o0) range, solutions are defined
item is left. The weight of this item 'Eiex w2 Al 45 the limit of the solutions fob 1 —1andb 1 4oo,

codewords are now defined by assigning the null stringspectively. Fob < —1, there is no real-valued solution, the
to this trivial item. problem being optimized byl = 0 andi! = +oc for every

i>1
This algorithm can be modified to run in linear time (to input
size) given sorted weights in the same manner as Huffman
coding [12]. An example of exponential Huffman coding for ||| M INIMIZATION OF d-AVERAGE b-REDUNDANCY
B = log,1.1 is shown in Figurel. The resulting code is

different from that which would be obtained via Huffmanye cql the difference between an integerand the optimal
coding (3 = 0). real-valued solutiori! the pointwiseb-redundancy

The output of a Huffman-like algorithm might be a code (and
thus the implicit code tree, e.g., [13]) or merely codeword
lengths; we assume the latter from here on, because valid emphasize its dependence énThe arithmetic average
codewords can be inferred from the lengths. Thus we can viey pointwise 0-redundancy was the problem considered by
the problem such an algorithm solves as an integer optifoizat Huffman in his original paper, “A Method for the Construc-
problem. This is useful because many different codes ca&ion of Minimum-Redundancy Codes.” Here we introduce a
correspond to the same set of codeword lengths and thus gdheralization of this problem encompassing several cafses
be optimal for a given problem. interest.

(i) = 1 — 1,

Considering the codeword lengths alone as the solution toSaippose we wish to minimizel-average b-redundancy or
given problem, we find that some problems have a uniquBABR

optimizing set of lengths, while others have more than one Ry.a(p,1) A llogQ szzdrb(i)‘ 4)
distinct optimal solution. Multiple different solutionsanifest ’
themselves in the algorithm as possible ties in the weight o
of (possibly combined) items in the combination step (stephiS amounts to findind; ;(p) such that
2 above). Thus the algorithm, as with Huffman coding, is Ry.a(p, 1} 4(p))
nondeterministic. Two deterministic variants &@tom-merge ' ’

IEX

= min Rya(p,1)

= min élog2 Zie)( p2dti—]

Huffman codingand top-merge Huffman codinl3]. Code 1ibid

trees yielded from the former method have been called, dkpen — ming Llog, 3, p, TP odl;
ing on the properties focused updmest Huffman tree§l4], G e L pTHT
compact Huffman tree$15], minimal Huffman treeq16], ’ ! (5)

and minimum variance Huffman tred47], the last of these wherel is restricted to the integers and by the Kraft inequality
because variance is minimized among (tied) optimal codestre(implicit from here on).

(codeword lengths). ] ) )
This reduces to an exponential Huffman coding problem. Then

Givenb € R and p, if we relax the integer constraint o given sorted{p;}, @) is solvable in linear time; note that
minimizing F3(p, 1) becomes a simple numerical optimizatiornthe normalization of the terms is optional for the algorithm
and provides a lower bound for the integer-valued problerffor d < —1, the solution is always the unary code=
(We useb instead of3 from here on to refer to the parameter for(1, 2, ... , n—1, n—1). Considering the edges via limiting
the real-valued problem.) Campbell [7] noted that the ogtim (as we did with real-valued solutions), the range of noigtiv
value of Fy,(p, 1) for b € (—1,4+00)\{0} is the Rényi entropy cases for minimal DABR codes for a given probability mass
of ordera = (1 +b) "% function can thus be considered to be parameterizeghy €
[-1, +00] x [-1, +00], as in FigurdP.

1>

H.(p) logy Y PF @

1 (14b)~1 As indicated in this figure, many interesting coding prokdem
= FologyYicapi : fit within this framework. These problems, which we discuss

This should not be surprising given the relationship betwed€!0W: correspond to subsets of this two-dimensional een

Huffman coding and Shannon entropy, which corresponds ffadrant (1, 400] x [=1,+0c]). On the set of points for
b 0, Hy(p) [18]. which b is +oo, for example, the minimization reduces to

exponential Huffman coding with parameter= d. Ford = 0
Given b € (—1,400) and p, the optimal ideal real-valued (b € (—1,+o00]) we have Huffman coding. A particular type
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Codeword

length Codeword Iltem Weight

2 00 mi 0.36 0.374 0.7267 1.21
2 01 ma 0.30 0.36 0.374

2 10 ms 0.20 0.30

2 11 ma 0.14

Fig. 1. Exponential Huffman coding for weights = (0.36,0.30,0.20,0.14) and 8 = logy1.1. In the first step, the two smallest items
(with weightsws = 0.20 and w4 = 0.14) are combined into a compound item with weigh874 = 1.1 - (0.20 4 0.14); thuscs andc4 end

in 0 and 1, respectively. At each additional step, the two smallestaiaing items are combined in a similar fashion. In this neare code to
optimize (and as a by-product calculate) the value df, w;2P is built from the bottom up. In this case, the minimized vaisid.21.

of Huffman coding occurs fob = +00, d | 0. In such a case, In order to overcome the first two deficiencies, we propose a
we note that reduction to a previously-known algorithm with linear com-
d plexity previously discussed by Parker [4]. This problemswa
Rya(p,l) =Y pili + 5012:(0 +0(d*) asd—0 (6) termed tharee-height measurproblem, though it was not pre-
iex viously considered in the context of the maximal redundancy

where the second term on the right-hand side represefisDABR problems.

variance. This being the tie-breaking term, we have bOttomrhe tree-height measure problem minimizes the maximum

merge Huffman coding. value ofw; + ¢ - 1; givenc > 0 and weight vectorw. Instead

of usingw; = 2°(w; + ws) on the merge step of Huffman
coding, the Huffman-like tree-height measure algorithresus
w; = c+max(w;,wk). In order to use the tree-height measure
algorithm, assign weights according to

As average pointwisé)f)redundancy has been well understood

for some time, Drmota and Szpankowski decided to explore (b) = Llog Di
the previously overlooked minimization of maximal poinsei ' 1+b “p,’
redundancy [9], [19].

IV. MINIMIZATION OF MAXIMAL POINTWISE REDUNDANCY

which is always nonnegative, and tet= 1. Then this modified
We definedth exponential redundancy as DABR for= 0. Huffman algorithm minimizes
Note that the maximal redundancy problem is equivalent to

minimizing dth exponential redundancy ak— +oo. Thus, _ N _ 1 i

consideringd € [0,+oc], dth exponential redundancy is m?x(wl(b)+c L) = max L+ 1+blog2pn

a subproblem with a parameter that varies solution values . 1
T 3 = 1 S T+D

between minimizing average redundancy (Huffman coding) mzaxrb(z) + ogQJEZ)(pJ

and minimizing maximal redundancy; such a range of problems 1
and solutions was sought in [19]. This was previously dekrive —logopa .
axiomatically without regard to such a range and without

solution [8]. The version of the minimal DABR coding solutio Thus this linear-time algorithm returns a length vectorimia-
applying to the maximal redundancy subproblem was fouridg maximumb-redundancy and satisfying the Kraft inequality
shortly thereafter [4], although it was not generalized t6 0  with equality.

or to d = +o0. . . . . .
Because ties can occur in selecting weights to combine xhe e

Drmota and Szpankowski presented a simple method for findenential Huffman algorithm might yield one of many possibl
ing a code with minimum maximal redundancy [9], [19]. How-optimal codes, including codes not optimal for the limitdath
ever, this solution is deficient in the following senses:sEir exponential redundancy (a&s— +oco). For example, consider
time complexity isO(nlogn). Second, the Kraft inequality p = (35,15, 3,4, ). For dth exponential redundancy,
is not necessarily satisfied with equality, meaning that the= (1,2,3,4,4) andl = (1,3, 3,3,3) are both optimal for
optimal code found in this manner is often, in some sensé, -+ +oo. These not only minimize maximal redundancy,
wasteful. Third, the code does not necessarily optimite but, among codes that optimize this, these codes also have th
exponential redundancy for anry< +oco. The method is also lowest probability of achieving this maximal redundancg, a
not generalized to maximatredundancy { # 0). this is related to the second term of the expansioRgf (p, 1)
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Hoo T ,,,,,\,,,,, ********************************* 8 (2&/ that a sufficiently largeD is given by D = log, 2 > 1

~ [20, pp. 59-62]. However, findingd) requires sorting, so an

maximal . . . . .
\ b-redundancy algor!thm derived from thisD would not be a linear-time
algorithm.
maximal Fortunately, it is possible to arrive at a linear-time algéb
redundancy

! Huffman algorithm, that is, one that kee@% as a variable.
; Algebraic Huffman algorithms were introduced by Knuth [5].

dth exponential
redundancy

The one proposed here uses a Huffman algorithm which keeps
track of both the first- and second-order terms; ties between
these pairs of terms can occur only when all terms are tied,
this due to the manner in which the Huffman procedure
works. Before explaining why this is the case, we present the
algorithm.

: exponential
‘ (Huffman) codin

| (standard)
: Huffman coding

: bottom-merge i
} : Huffman codin i . '
: \ / g\v The aforementioned first- and second-order terms are
0 —_— e = — = = — s — s — L]
|
|
|

[wi (b, d))@ )

AL
w; = lim
d—+oco

. ,,,,,,,,,, L 88 and

~1 0 +00 w2 lim [wi (b, d)] ™" - [wi]%,
d—+oo

) o respectively, where leaf nodes have
Fig. 2. The parameter space for minimélaverageb-redundancy

(DABR) coding with the following noted subproblems: the Fiuén bod) = Libd
problem (the above line ai = 0), Campbell’s exponential coding wi(b,d) = p; )
problem (line atb = +o0), the problem solved via Schwartz’s

bottom-merge Huffman coding method (limit point @ oo, 0) when as ind-averageb-redundancy.

approached from above), Nath#h exponential redundancy problem . ’ . . . .
(iine atb — 0), Drmota and Szpankowski's maximal redundancy (poinpne can think ofw; as representing an invertible function of

at (0, +00)), and maximalb-redundancy (line ai = +o0). Each maximal b-redundancy,
point in the extended quadrant represents a different ifpetexized)

—1
roblem, as in FigurEl5. LR . mass (i
p g 'LU;: l:zp]}+b:| 2 ‘ b()y
Jj=1
for d — +o0: where, at any given point of the algorithm, (i) = I; — lj
) uses the depth of itemin its interim code tree as the value
Roa(pl) = 3logsXicx pi2?® l;. Note that onlyr, (i) is variable; the denominator term of
= max; re(7) ) @) w;, is a result of not normalizing the weights at the start of the
+ élogsz [re(X) = max; s ()] algorithm. In a similar mannery; represents the probability
+0 (557) asd — +00 of maximal b-redundancyPx [ry(X) = max; r,(5)].

Each term in the expansion has a different asymptotic com- ) ) 1
plexity. As with minimum variance (bottom-merge) Huffman!© implement this algorithm, we '?Di =p; " andw; =Ppi
coding [B), each additional term further restricts the set §OF the initial case. In comparing itemsand &, we consider
feasible codes to those that minimize the current term given them as lexicographically ordered pairs — &l = (u/)}, wj)
optimization of previous terms. In the above example, aihte — S° th/atwj Enwk if f’}”d only if eitherw; > wj, or if
are minimized by both the aforementioned sets of lengths. #y = @k @ndwj > wy, as in [5]. In combining items
contrast] = (2,2, 2,3, 3), although also minimizing maximal andk (wherew; > wy, as described), the new item will have
redundancy, results in a code where codewords have a higher = 2?“3 = 2 max(wj, wy,). If “’3 > wy, thenwf = wf.
probability of achieving maximal redundancy. This solatio Otherwise, i} = wj +wy. That is,
which is in some sense inferior, can nevertheless be aahieve (2w;7w;/) if w; > w)
{ (2w}, wi +wy)  otherwise.

by the tree-height measure algorithm, specifically thedmott wj =

merge version.

The reasons for this are easily seen if we viewas the repre-
It is possible to find @ € R such that, for everyl > D, dth  sentation of maximal redundancy and probability this maatim
exponential Huffman coding minimizes maximal redundancyedundancy is achieved. Take the maximum and affor the
Let minij ~i,; denote the minimum strictly positive value ofadditional bit of the codeword (multiplyingy; by 2). Then,
~vi,j» and let{x) denote the fractional part of, i.e., (x) £ if the redundancies are identical, add their probabilifie).

. _ .+ t + . . . -— .
x — |x]. Assignd = min],(l; — [}). It is possible to show Otherwise, take the probability of the maximal redundancy.
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I ¢ mi 19-p; 19-w;

1 1 mi 8 8,8)— (8,8)— (8, 8) (16, 4) (32, 4)
3 000 o 4 4, 4) 4, 4) (8, 4) (8, 8)

3 001  ms 3 3,3) 4, 4) % (4, 4)

3 010  my 2 2, 2) 3,3)

3 011  ms 2 2,2

Fig. 3. Algebraic maximal redundancy coding,= 1—19 - (8,4, 3,2,2) (bottom-merge)

This combining method is a Huffman algebra, satisfying the V. BOUNDS

properties introduced in [5]. The Huffman combining criber

is shown by example in Figufd 3. The remaining weight pair

after coding, (32, 5%), indicates a maximal redundancy ofOne can easily see that if we relax the integer constraint on
log, 2 and a probability of§ that this redundancy is achieved.length for minimizingd-averageb-redundancy, the real-valued
solution is notl, but some differeni*. By substituting the

We now show that ties in the pairs imply ties in all terms solution in [3), we find

of the expansion presented il (7), or, equivalently, ditin
exponential redundancy for alle [D, +o0) whereD is some
o F=_u-1 ;41 @
(unspecified) constant. i w - logypi + 10gy Dj
jeEX
Theorem 1:If there is a tie in the above pairs, there is a tie

in all terms of the corresponding expansion.  iibid bd
wherew = s = 1-— R

Proof: Consider twao tied pairs. Note that, in each, Note that when the values df and d are exchanged, the

) ideal solution remains the same. This problem thus has a high
w; > w, T+ (8) degree of symmetry. However, because the problem itsetitis n
symmetric, the symmetry of integer solutions is not perfast

because this holds with equality in leaf nodes and the inggua we can see in Figu 5.

is preserved in the merge step, sicemax(a,b) > a+b>  Using this and the Shannon code [18] analogifd, we can
max(a, b) for a,b > 0. If inequality 8) holds without equality find bounds for the optimal DABR wheb > —1, d > —1,
for the tied pairs, neither node on the corresponding ccele trgndp 4+ d > —1:

can be a leaf node, and, due to ordering for the combination -
step, their four children must be identically weighed. Hoere

this fact can be invoked inductively for either pair of chéd,
also tied, and thus such a tree could not be finite. Therefore,
tied pairs arise only in cases for which the inequality hold&here we recallv = ﬁ”(ﬂd) anda = %er the subscript
with equality. Thus, they must be leaf nodes or nodes withf Rényi entropy in[[R). As with exponential Huffman codjng
two identically-weighted children. Inductively, this mesathe equality holds iff the ideal solutioht has all integer lengths.
subtrees must be composed of leaf nodes thatrelegively For b = +oo and d = 0, this results in the well-known
dyadic that is, are dyadic when multiplied by a nontrivialShannon bounds. Fér= 0, it reduces to a normalized version
common constant. Thus they are equal in all terms, which & an inequality in [8]. With a different normalization, hi
what we set out to show. B inequality relates to Rényi's gain of information of order a

eneralization of relative entropy [21]. This is not susprg

One can use bottom-merge or top-merge coding so that tgi?/en the relationship between relative entropy and Huffma
algorithm is deterministic. If one uses top-merge codinghat t coding noted by Longo and Galasso [22].

is, favoring combined items over single items with idertica

weight [13] — one actually need not keep track of the secorfdue to the reduction to exponential Huffman coding, more
term; the top-merge algorithm behaves identically withowophisticated redundancy results may be applied if desired
considering this term. This variant, illustrated in Figllleis The bounds given by Blumer and McEliece [23] apply to the
actually a special case of the tree-height measure problem mexponential case but appear as solutions to related preblem
tioned above. However, if we wish to assure that the soluticather than in closed form. Taneja [24] gave closed-form
has minimum variance, the algebraic method is needed.  bounds using an alternative definition of redundancy.

0 < Ry,a(p, 15,4(p)) — ab(Huw(p) — Ha(p)) < 1
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li ¢ m; 19-p;  19-w)

1 1 mi 8 8 8 8 16 32
2 01 ma 4 4 4 8 8 :

3 001 ms 3 3 4 4

4 0000 Mg 2 2 3

4 0001  ms 2 2

L

16 (8,4, 3,2,2) (single variable)

Fig. 4. Top-merge maximal redundancy codipg—

‘ considered by Parker; the top-merge version of the algarith

: \ ﬁ in particular additionally optimizedth exponential redundancy

N 1 § for large d. A better solution — one minimizing codeword

‘ } length variance among such optimal codes — is suggested
\ § by and is developed from the two-dimensional framework
‘ ; introduced here. All algorithms discussed are Huffmag-lik

? § and thus linear-time given sorted input, unlike the origina

| : algorithm proposed for maximal redundancy.

@)

It is unclear whether all nontrivial problems within Parker
more general framework are covered by this seemingly more
specific framework and trivial extensions thereof. SucHyana
sis, building upon Parker’'s work, could be a basis for furthe
research. Extending this algorithm to alphabetic codgzhéal
betic search trees) could also be explored. For nonnegative

N T T T T T T T T —™ exponentsd > 0), this framework is a trivial extension of [3],
5) — but negative exponents might provide more of a challenge.
-1 / VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV C—
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