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Relative Entropy and the multi-variable
multi-dimensional Moment Problem

Tryphon T. Georgiou

Abstract

Entropy-like functionals on operator algebras have been studied since the pioneering work of von Neumann,
Umegaki, Lindblad, and Lieb. The most well-known are the vonNeumann entropyI(ρ) := −trace(ρ log ρ) and a
generalization of the Kullback-Leibler distanceS(ρ||σ) := trace(ρ log ρ− ρ log σ), refered to as quantum relative
entropy and used to quantify distance between states of a quantum system. The purpose of this paper is to explore
I andS as regularizing functionals in seeking solutions to multi-variable and multi-dimensional moment problems.
It will be shown that extrema can be effectively constructedvia a suitable homotopy. The homotopy approach
leads naturally to a further generalization and a description of all the solutions to such moment problems. This is
accomplished by a renormalization of a Riemannian metric induced by entropy functionals. As an application we
discuss the inverse problem of describing power spectra which are consistent with second-order statistics, which
has been the main motivation behind the present work.

Index Terms

Moment problem, spectral analysis, covariance matching, multi-variable, multi-dimensional, quantum entropy.

I. Introduction

THE quantum relative entropy (Umegaki [72])

S(ρ ‖σ) := trace(ρ log ρ− ρ log σ)

whereρ, σ are positive Hermitian matrices (or operators) with trace equal to one, generalizes the Kullback-
Leibler relative entropy [43], just as the von Neumann entropy [55]

I(ρ) := −trace(ρ log ρ)

generalizes the classical Shannon entropy. They both inherit a rather rich structure from their scalar coun-
terparts and in particular,S(·‖·) is jointly convex in its arguments as shown by Lieb [48] in 1973, whereas
I(·) is concave. The relative entropy originates in the quest to quantify the difficulty in discriminating
between probability distributions and can be thought as a distance between such. Its matricial counterpart
S can similarly be used to quantify distances between positive matrices.

Entropy and relative entropy have played a central rôle in thermodynamics in enumerating states
consistent with data and, thereby, used to identify “the most likely” ones among all possible alternatives.
The measurement of a physical property in a classical setting is modeled viaensemble averaging(e.g.,
see [41, Chapter 3])

r =
∑

k

g(k)ρ(k)
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wherek runs over all micro-states corresponding to a scalar valueg(k). Each micro-state occurs with
probability ρ(k) and r is a moment of the underlying probability distribution. Similarly, quantum mea-
surement is also modeled by averaging (as originally idealized by von Neumann, see e.g., [71, Chapter
5], [35, page 183]):

ρafter =
∑

k

G(k)ρbeforeG(k)∗

where theρ’s represent density matrices (positive Hermitian with trace one), theG’s represent products
of projection operators, and “∗” denotes “conjugate-transpose”. Similar expressions arise for the density
operator when restricted to a subsystem (partial trace [71,page 185]) and also when measuring “non-
selfadjoint observables” (e.g., [75]). If the underlying Hilbert space is infinite dimensional then the
measurement process can be modeled with a continuous analogue of the above where the summation
is replaced by an integral (e.g., see [8]). These are instances of moment problems. More generally we
may consider

R =
∑

k

Gleft(k)ρ(k)Gright(k) (1)

whereρ(k) are Hermitian positive matrices as well as its “continuous”counterpart

R =

∫

S
Gleft(θ)ρ(θ)Gright(θ)dθ (2)

where ρ(θ) represents a Hermitian-valued positive (density) function on a support setS ⊆ Rk (k >
1) and Gleft, Gright are matrix-valued functions onS. If the underlying distribution is not absolutely
continuous then we writeR =

∫

S Gleft(θ)dµ(θ)Gright(θ) instead, wheredµ is such a positive Hermitian-
valued measure.

The moment problem (1-2) is typified by spectral analysis based on second-order statistics, especially
in the context of sensor arrays and of polarimetric radar. The echo at different polarizations and/or at
different wavelengths is being sampled at a variety of sensor locations. It is usually the case that these
samples are not independent and that the echo at different frequencies, polarizations etc., affects each
sensor by a different amount. Attributes of the scattering field (e.g., reflectivity at different wavelengths
and polarization) and the relative position of the array elements with respect to the scattering field are
responsible for the variations in the vectorial echo. The vector of attributes can be thought of as a vectorial
input u(θ) to the array while the relative position and characteristics of its elements specify anleft ×m
transfer function matrix

Gleft(θ) =





g1,left
...

gnleft,left





to thenleft sensor outputs. If the attributesu(θ) are modeled as a zero-mean vectorial stochastic process,
independent over frequencies, then

yleft =

∫

S
Gleft(θ)du(θ)

represents the vectorial output process. Similarly, if

Gright(θ) =
[

g1,right, . . . gnright,right

]

is them× nright complex conjugate transpose of the transfer matrix corresponding to a second group of
sensors, and if

yright =

∫

S
Gright(θ)

∗du(θ),

designate the corresponding vector ofnright outputs, then thenleft × nright correlation matrix

R = E{ylefty∗right}
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gives rise to the matricial moment constraint on the spectral distribution of u given in (2). On the other
hand (1) can be interpreted when the power spectrum is discrete. A power density which matches the
correlation samples aims at giving clues about the makeup ofthe scattering field.

We address the moment problem in the above generality and provide a way to answer the following:
(i) does there exist a density function satisfying (1-2)?

(ii) if yes, describe all density functions consistent with (1-2).

In essence, the above questions go back to 1980 when Dickinson [16] raised the issue of consistency
of two-dimensional Markovian estimates. Consistency ofscalar distributions was taken up in the work
of Lang and McClellan [44] and Lewis [47]. Both references used entropy functionals and suggested
computational solutions to the first question when dealing with scalar distributions. The present work
follows up in the footsteps of these as well as, of a rather extensive literature on inverse problems [67],
[68], [74], [45], [52], [15], [22], [46], [40] having roots in the early days of statistical mechanics. The key
idea has been to seek extrema of entropy functionals—existence would guarantee solvability of the moment
problem. The idea of using “weighted” entropy functionals to parametrize solutions originates in Byrnes,
Gusev and Lindquist [13]. It was followed up in [11], [12] andin [9], [31] where it was reformulated using
the Kullback-Leibler distance between sought solutions and positive “priors.” Exploring the connection
with the Kullback-Leibler distance, [31], [9], [14] and more resently [30], studied thescalar moment
problem in various levels of generality.

Classical moment problems [1], [42] are closely related to analytic interpolation ones, and as such,
have been studied in great generality, including their matrix-valued counterpart (see e.g., [62]). However,
analytic interpolation applies only when the integration kernels possess a very particular shift-structure
similar to that of a Fourier vector (see e.g., [4], [18] and also [28], [29]), and is of limited use in the
generality sought herein. On the other hand, literature on interpolation with a “complexity constraint” is
relevant since it departs from the groove of the classical theory. Two works are especially relevant, [23] and
more recently [6]. In [23] a homotopy was suggested in the context of the matricial trigonometric moment
problem. Then [6] used optimization of an entropy functional in the context of matricial Nevanlinna-Pick
interpolation. Neither applies in the generality sought herein, yet, below, we build on both of these general
directions.

The present work follows up along the lines of [31] where it was suggested that the quantum relative
entropy may be used in the multi-variable case. In fact, we carry out the plan suggested in [31] for multi-
variable as well as multi-dimensional distributions and wedevelop a computational approach analogous
to one presented in [30] for scalar distributions.

In view of a rather rich literature on quantum entropies, a comment is in order as to other possible
connections to the present work. Besides the Umegaki-von Neumann entropyS(·‖·) studied in this paper,
there is a plethora of alternatives due to a dichotomy between matricial and scalar distributions [58], [57].
In particular Araki’s theory [3], [49] helped characterizea family of “quasi-entropies,” contractive under
stochastic maps. References [59], [60], [49] in particularexplore the Riemannian geometry they induce
on density matrices. It is an interesting question as to which among this “garden of entropies,” besides the
Umegaki-von Neumann one, allows a convenient representation of solutions for general moment problems.
The approach we have taken leads us to work mostly with an induced metric (a Jacobian related to the
Hessian ofS(·‖·)). A suitable normalization then recovers any solution of the moment problem as a
corresponding extremal. It is not known whether, the “weighted metrics” e.g.,∇hW in Section IV, are
metrics induced by a quasi-entropy in the language of Petz [59].

Finally, it is interesting to point out that, a counterpart for discrete distributions relates to the theory
of analytic centers in semi-definite programming [7], [54].In fact, a key construction in this paper—a
homotopy for the numerical computation of solutions, is analogous to tracing paths of analytic centers in
interior point methods.

In Section II with discuss three motivating examples. Section III develops the geometry of matricial
cones and the significance of relative entropy as a barrier functional. In order to simplify the exposition, we
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first deal with cones of constant matrices and then with thoseof matrix-valued density functions. Except
for technical differences, the two run in parallel. Finally, Section IV discusses the parametrization of
solutions to the moment problem, followed by concluding remarks (Section V) and an appendix (Section
VI) with useful facts on matricial calculus.

II. Motivating Examples

In this section we present four examples that motivate our study. For simplicity, the first two are
developed in the context of scalar distributions, the thirdis intrinsically multi-variable. The fourth example
pertains to the connection of the moment problem with analytic interpolation. We return to the first and
fourth example again later on in the paper.

A. Non-equispaced arrays

Consider an array of sensors with three elements, linearly spaced at distances1 and
√
2 wavelengths

from one another, and assume that (monochromatic) planar waves, originating from afar, impinge upon
the array. This is exemplified in Figure 1.

PSfrag replacements

φ

E0 E1 E2

Fig. 1. Non-equispaced sensor array

Assuming that the sensors are sensitive to disturbances originating over one side of the array, with
sensitivity independent of direction, the signal at theℓth sensor is typically represented as a superposition

uℓ(t) =

∫ π

0

A(θ)ej(ωt−pxℓ cos(θ)+φ(θ))dθ,

of waves arising from all spatial directionsθ ∈ [0, π], whereω is as usual the angular time-frequency (as
opposed to “spatial”),xℓ the distance between theℓth and the0th sensor,p the wavenumber, andA(θ)dθ
the amplitude andφ(θ) a random phase of theθ-component. Typically,φ(θ) for various values ofθ are
uncorrelated. The termpxℓ cos(θ) in the exponent accounts for the phase difference between reception at
different sensors. For simplicity we assume thatp = 1 in appropriate units. Correlating the sensor outputs
we obtain

Rk = E{uℓ1ūℓ2} :=

∫ π

0

e−jk cos(θ)f(θ)dθ
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wheref(θ) = |A(θ)|2 representspower density, andk = ℓ1−ℓ2 with ℓ1 ≥ ℓ2 and belonging to{0, 1,
√
2+

1}. Thus,
k ∈ I := {0, 1,

√
2,
√
2 + 1}. (3)

The only significance of our selection of distances between sensors, that gave rise to the indexing set
(3), is to underscore that there is no algebraic dependence between the elements of the so-calledarray
manifold

G(θ) :=
[

1 e−jτ e−j
√
2τ e−j(

√
2+1)τ

]′
,

(where “[·]′” denotes the transpose,G is thought of as a column vector, andτ = cos(θ) ∈ [−1, 1]).
Given a set of valuesRk for k ∈ I, it is often important to determine whether they are indeed the

moments of a power densityf(θ), and if so to characterize all consistent power spectra. Thecase of
arrays with equispaced elements is very special and answersto such questions relate to the non-negativity
of a Toeplitz matrix formed out of theRk’s. In the present situation nonnegativity of

∫ 1

−1





1
e−jτ

e−j
√
2τ





f(cos−1(τ))√
1− τ 2

[

1 ejτ ej
√
2τ
]

dτ

which, in the obvious indexing turns out to be




R0 R1 R√
2+1

R̄1 R0 R√
2

R̄√
2+1 R̄√

2 R0



 , (4)

is only a necessary condition. The fact that it isnot sufficient (see e.g., [25, page 786]) motivated the
present study.

B. Two-dimensional distributions

The subject matter of multi-dimensional distributions received considerable attention in the 1970’s and
early 1980’s (e.g., see [50]). However, despite the rich theory of analytic interpolation and orthogonal
polynomials in more than one variable, etc. (e.g., see [37],[64]), as pointed out by Brad Dickinson [16],
the analog of the questions raised earlier never received a definitive answer.

For instance, consider the simplest possible planar grid

I := {k, ℓ ∈ Z : 0 ≤ k ≤ n, 0 ≤ ℓ ≤ n}
which is both regular and square. In fact, we may even assume thatn = 2. Then, consider the case where
(monochromatic as before) waves impinge upon sensors at thegrid nodes, the sensors are sensitive to
reception on one side of their plane, the waves are planar, originating from all possible directions in the
sky and uncorrelated over different directions, and that correlations at the sensor outputs are taken. The
array manifold in this case becomes (after suitable normalization assumptions) the3× 3 array

G(θ, φ) =
[

ej(kθ+ℓφ)
]k,ℓ=2

k,ℓ=0
,

with (θ, φ) ∈ [0, π]× [0, π]. This is quite standard (e.g., [39], [73], [34]). Now, ifρ(θ, φ) denotes a positive
scalar power density for the waves originating from (normalized) Euler anglesθ, φ then, correlation
between the sensor outputs gives us a3× 3 matrix of covariance samples

[

Rk,ℓ :=

∫ π

0

∫ π

0

ej(kθ+ℓφ)ρ(θ, φ)dθdφ

]k,ℓ=2

k,ℓ=0

.

The same two questions that we raised earlier are again relevant: Given a3×3 array, how can we tell that
it originates as suggested above, and how can we characterize all power densities that are be consistent
with the covariance samplesRk,ℓ?
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Lang and McClellan [44] considered “maximum entropy spectra” and suggested evaluating those on a
discrete grid1. Lewis [47] considered a framework which is applicable for answering the existence question,
while [30] discussed parametrization of solutions as well.The present contributions allows addressing the
most general situation where the sensor array elements receive vectorial echoes and hence,Rk,ℓ as well
asρ(θ, φ) are matrices.

C. Quantum measurements

We temporarily adopt the language of quantum mechanics as in, e.g., [56], and explain how this relates
to the linear algebraic framework in the introduction. We then discuss a basic academic paradigm which
exemplifies the setting of the matricial moment problem.

Let ρAB denote the density matrix of a quantum system composed of twosubsystemsA andB. Each
subsystem can be in two states|0〉 and |1〉, respectively. These can be thought of as the vectors

(

1
0

)

and

(

0
1

)

in C
2.

Then, the states of the combined system,|i〉 ⊗ |j〉 wherei, j ∈ {0, 1}, can be represented by a vector in
C4. For instance,|0〉 ⊗ |1〉 corresponds to

(

1
0

)

⊗
(

0
1

)

=









0
1
0
0









where in the last equation⊗ is the Kronecker tensor product. Accordingly,ρAB is a Hermitian4×4 trace
one matrix formed out of sums of Kronecker products of2 × 2 density matrices of the two subsystem.
Now, if ρA represents the density matrix of subsystemA, then this can be obtained fromρAB via taking
the partial trace with respect to subsystemB (e.g., see [56, pages 106-107]). An important example is
that of the Bell state with

ρAB =

( |01〉+ |11〉√
2

)(〈00|+ 〈11|√
2

)

=
1

2









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









.

The partial trace then gives (see [56, pages 106-107])

ρA = traceB(ρ
AB) =

1

2
I2

whereI2 is the2× 2 identity matrix. If ρAB is represented as4× 4 matrix as above, then

ρA =
2
∑

k=1

Gkρ
ABG∗

k

where

G1 = I2 ⊗
(

1 0
)

=

(

1 0 0 1
0 0 1 0

)

,

and similarly,G2 = I2 ⊗
(

0 1
)

. The reverse task of characterizing all possibleρAB based on a known
ρA is a (discrete) moment problem.

1Lang and McClellan [44] were the first to point out that existence cannot be guaranteed for the usual “entropy rate” functional
∫

S
log(ρ)dθ

unless the dimension ofS is one, cf. Theorem 4 below.



7

D. State-statistics and analytic interpolation with degree constraint

Consider the linear discrete-time state equations

xk = Axk−1 +Buk, for k ∈ Z, (5)

wherexk ∈ Cn, uk ∈ Cm, A ∈ Cn×n, B ∈ Cn×m, (A,B) is a controllable pair, and the eigenvalues of
A lie in the open unit disk of the complex plane. Let{uk : k ∈ Z} be a zero-mean stationary stochastic
process with power spectrum the non-negative matrix-valued measuredµ(θ) on θ ∈ (−π, π]. Then,under
stationarity conditions,the state covariance

R := E{xkx
∗
k}

can be expressed in the form of the integral (cf. [51, Ch. 6])

R =

∫ π

−π

(

G(ejθ)
dµ(θ)

2π
G(ejθ)∗

)

(6)

where
G(z) := (I − zA)−1B

is the transfer function of system (5). Note that we usez to denote the transform of the delay operator
and thereforeG(z) is analytic in the unit disc of the complex plane.

It turns out that state covariancesR are characterized by the following two equivalent conditions (see
[28], [29])

rank

[

R− ARA∗ B
B∗ 0

]

= 2m (7)

and,
R− ARA∗ = BH +H∗B∗ for someH ∈ C

m×n. (8)

Then, power spectral measures consistent with (6) are in correspondence with matrix valued functions
F (z) on the unit circleD := {z ∈ C : |z| < 1} which have nonnegative real part via the Herglotz
representation

F (z) =

∫ π

−π

(

1 + zejθ

1− zejθ

)

dµ(θ)

2π
+ jc, (9)

with jc an arbitrary skew-Hermitian constant. The measuredµ can be recovered as the weak* limit of
the real part ofF (z) asz tends to the boundary, i.e.,

dµ(θ) ∼ lim
rր1

ℜ(F (rejθ)). (10)

The class of nonnegative real matrix valued functionsF giving rise to admissible power spectral measures
are also characterized by the interpolation condition ([28])

F (z) = H(I − zA)−1B +Q(z)V (z) (11)

whereQ is a matrix function analytic inD,

V (z) := D + zC(I − zA)−1B (12)

andC ∈ Cm×n, D ∈ Cm×m are selected so thatV is inner, i.e.,V (ξ)∗V (ξ) = V (ξ)V (ξ)∗ = I for all
|ξ| = 1.

The dataA,B,H and V (z) in equation (11) specify an analytic interpolation problem. Positive-real
solutions to (11) can be given via (9) and solutions to the moment problem (6). The characterization of
solutions to (6) given in Theorem 6 allows a non-classical characterization of solutions to (11) and in
particular a characterization of solutions of McMillan degree less than or equal to the dimension of (5)
(see Section IV-B).
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III. Matricial distributions and their moments

The moment conditions (1-2) are linear constraints on densities ρk (k = 1, 2, . . .) and ρ(θ) (θ ∈ S),
respectively. Density functions, whether discrete or continuous, are non-negative, or non-negative definite
in the matricial case, for each value of their indexing set. Thus they have the structure of a cone. Entropy
functionals on the other hand represent natural barriers onsuch positive cones and can be used to identify,
and even parametrize, density functions which are consistent with given moment conditions. We begin
by explaining the geometry of the moment problem for constant density matrices and the relevance of
entropy functionals in obtaining solutions as their respective extrema. Both, the geometry of cones of
matricial densities functions as well as the rôle of entropy functionals is quite similar and is taken up in
Section III-B.

A. Relative entropy and the geometry of matricial cones

We begin by focusing on constraints

R =
∑

k

Gleft(k)ρGright(k)

whereρ is not indexed. The general case is quite similar.
We use the notation

M := {M ∈ C
m×m : M = M∗},

M := {M ∈ M andM ≥ 0},
M+ := {M ∈ M andM > 0}

to denote the space of Hermitian matrices and the cones of non-negative and positive definite ones,
respectively. The spaceM is endowed with a natural inner product

〈M1,M2〉 := trace(M∗
1M2) = trace(M1M2)

as a linear space overR. Clearly, both,M andM+ are convex cones. Since non-negativity of〈M1,M〉
for all M1 ∈ M implies thatM ∈ M, it follows thatM is self-dual2. It can also be seen thatM+ is the
interior of M.

The linear operator
L : M → R : ρ 7→ R =

∑

k

Gleft(k)ρGright(k)

whereR ⊆ C
nleft×nright denotes the range ofL, mapsM onto the cone of admissible momentsK =

L(M) ⊆ R. Here, and throughout,Gleft, Gright are matrices of dimensionnleft × m and m × nright,
respectively. A further assumption that is often needed is that the null space ofL does not intersectM,
i.e.,

null(L) ∩M = {0}. (13)

The interior ofK is int(K) = L(M+) and, givenR, the moment problem requires testing whetherR ∈ K
and if so, characterizing allρ ∈ M such thatR = L(ρ).

Geometry in the range spaceR is based on

〈λ,R〉 := ℜe (trace(λ∗R)) , for λ,R ∈ R. (14)

Then the adjoint transformation ofL is

L∗ : R → M : λ 7→ ρ =

(

∑

k

Gleft(k)
∗λGright(k)

∗

)

Herm

2In general, the dual coneMdual is the set of elements forming an “acute angle” with all elements of the original cone, i.e.,{M :
〈M,M1〉 ≥ 0, ∀M1 ∈ M} (see [42]).
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where(M)Herm := 1
2
(M +M∗) is the “Hermitian part”. The dual cone ofK,

Kdual := {λ ∈ R : 〈λ,R〉 ≥ 0, ∀R ∈ K},
is naturally related to the coneM ⊂ M. In fact, using〈λ, L(ρ)〉 = 〈L∗(λ), ρ〉 it follows easily that

Kdual = {λ ∈ R : L∗(λ) ∈ M}.
The interior of the dual cone

Kdual
+ := int(Kdual) := {λ : 〈λ,R〉 > 0, ∀R ∈ K − {0}}

corresponds toM+ as is easily seen to satisfy

Kdual
+ = {λ : L∗(λ) ∈ M+}.

Finally, (13) can be seen to be equivalent toKdual
+ 6= ∅.

1) Minimizers of S(I‖ρ):: We are interested in minimizers of (the negative entropy)

S(I‖ρ) = −trace(log(ρ))

on M+ subject toR = L(ρ). Here and throughout, “I” denotes the identity matrix of size determined
from the context. When such a minimizer exists at an interiorpoint of MR,+, stationarity conditions for
the entropy functional dictate an explicit form for the minimizer (which, is unique due to the convexity
of −trace(log(ρ))).

The Lagrangian of the problem is

L(λ, ρ) := trace(− log(ρ))− 〈λ,R− L(ρ)〉.
Using the expression for the derivative of the logarithm given in Proposition 8 of the appendix, the
(Gateaux) derivative ofL in the directionδ ∈ M becomes

dL(λ, ρ ; δ) := trace(−M−1
ρ δ) + 〈λ, L(δ)〉

= trace(−ρ−1δ) + 〈L∗(λ), δ〉.
In the above derivation, the “trace” is what allows replacing the “non-commutative division operator”
M−1

ρ (cf. (45)) with multiplication byρ−1. The stationarity conditiondL(λ, ρ ; δ) ≡ 0 then gives

ρ = (L∗(λ))−1 . (15)

Thus, a necessary condition is that there existλ ∈ Kdual such thatL∗(λ) is strictly positive, i.e., thatKdual
+

is nonempty. It turns out that ifR ∈ int(K) then this condition is also sufficient.
Theorem 1:Assume that R ∈ int(K). Then the entropy functional S(I‖ρ) has a minimum in MR,+,

which is also unique, if and only if Kdual
+ is nonempty.

Proof: Necessity is obvious and was argued above. Uniqueness follows from the matrix convexity of
log(·) (which follows e.g., from a positive Hessian (44) given in the appendix). Sufficiency requires that
there existsλ1 ∈ Kdual

+ such thatR = L((L∗(λ1))
−1). Thenρ1 = (L∗(λ1))

−1 satisfies both the stationarity
conditions and the contstraints. We show this via a continuity argument which we will adopt again later
on to more general cases.

Consider the mapping

h : K∗
+ → int(K) ⊂ R

: λ 7→ L((L∗(λ))−1).

Its Jacobian

∇h|λ : R → R : δ 7→ L(L∗(λ)−1L∗(δ)L∗(λ)−1).
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is Hermitian since

〈δ1,∇h(δ)〉 = 〈L∗(δ1), L
∗(λ)−1L∗(δ)L∗(λ)−1〉

= 〈L∗(λ)−1L∗(δ1)L
∗(λ)−1, L∗(δ)〉

= 〈∇h(δ1), δ〉.
The maph is a local diffeomorphism and∇h can be used to relate locally a smooth path in the space of
R’s to one in the space ofλ’s (of course, both spaces being the same spaceR).

Choose aλ0 ∈ K∗
+, let

ρ0 = (L∗(λ0))
−1 ,

and letR0 = L(ρ0). Consider the interval pathRτ = (1 − τ)R0 + τR, for τ ∈ [0, 1]. SinceR ∈ int(K),
so is the whole pathRτ (τ ∈ [0, 1]). We claim that for allτ ∈ [0, 1] there existsλτ ∈ Kdual

+ such that
Rτ = L(L∗(λτ )

−1). It is clear that this holds locally and thatλτ satisfies

d

dτ
λτ = (∇h|λτ

)−1(R−R0), (16)

since d
dτ
Rτ = R − R0. The starting point isλ0 and (16) can be integrated over a maximal interval[0, ǫ)

for which λτ ∈ Kdual
+ . Throughout

Rτ = L(L∗(λτ )
−1).

If ǫ > 1, this proves our claim. Ifǫ ≤ 1, then either‖λτ‖ → ∞ as τ → ǫ, or theλτ ’s have a limit point
λǫ on the boundary ofKdual

+ , i.e., such thatL∗(λǫ) is singular. Below we argue that neither is possible,
which then shows thatǫ > 1 and completes the proof.

We first show thatλτ remains bounded. Assume to the contrary, i.e., assume that‖λτ‖ grows unbounded
as τ → ǫ, and let ℓτ := λτ/‖λτ‖ (where‖λ‖ =

√

〈λ, λ〉 as usual). SinceRǫ ∈ int(K), it holds that
Rǫ = L(ρ) with ρ > 0, and 〈ℓτ , R〉 is bounded away from zero for elementsℓτ ∈ Kdual of unit norm.
However, because

〈λτ , Rτ 〉 = 〈L∗(λτ ), L
∗(λτ )

−1〉 = trace(I),

it follows that 〈ℓτ , Rτ 〉 = trace(I)/‖λτ‖ has zero as a limit point whenτ ∈ [0, ǫ); hence, so does〈ℓτ , Rǫ〉.
But this is a contradiction, henceλτ remains bounded.

We finally show thatL∗(λτ )
−1 and∇h along with its inverse remain bounded. Consider the quadratic

form
〈δ,∇hλτ

(δ)〉 = ‖L∗(λτ )
−1/2L∗(δ)L∗(λτ )

−1/2‖2, (17)

for δ ∈ R. Sinceλτ (and henceL∗(λτ )) remains bounded, the quadratic form is bounded away from
zero whenτ ∈ [0, ǫ). Hence,∇h|−1

λτ
is uniformly bounded on[0, ǫ). On the other hand, because of (13),

the minimal angle between any ray in the coneM and range(L∗) is bounded away fromπ/2. Hence,
‖Rτ‖ > α‖L∗(λτ )

−1‖, for someα > 0. But Rτ remains bounded. We conclude thatL∗(λτ )
−1 remains

bounded and that∇h remains bounded as well. This completes the proof.
2) Minimizers of S(ρ‖I):: We now focus on minimizers of

S(ρ‖I) = trace (ρ log(ρ))

in M+, subject toR = L(ρ). The Lagrangian this time is

L(λ, ρ) := trace(ρ log(ρ))− 〈λ,R− L(ρ)〉.
Once again, using the expression for the differential of thelogarithm given in Proposition 8 of the appendix,
the (Gateaux) derivative ofL in the directionδ ∈ M becomes

dL(λ, ρ ; δ) := trace(δ log(ρ) + ρM−1
ρ (δ)) + 〈λ, L(δ)〉

= trace(δ log(ρ) + δ) + 〈L∗(λ), δ〉.
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The last step follows from

trace(ρM−1
ρ (δ)) = trace(ρ

∫ ∞

0

(ρ+ t)−1δ(ρ+ t)−1dt)

= trace(

∫ ∞

0

(ρ+ t)−1ρ(ρ+ t)−1dt δ) = trace(δ).

The stationarity conditiondL(λ, ρ ; δ) ≡ 0 then gives that

ρ = exp (−I − L∗(λ)) =
1

e
exp (−L∗(λ)) (18)

with L∗(λ) ∈ M (and not necessarily inM as before). It turns out that ifR ∈ int(K) a minimizer can
always be found. It should be noted that (13) is no longer a necessary condition.

Theorem 2:If R ∈ int(K), then the entropy functional S(ρ‖I) has a minimum in MR,+ which is
unique and of the form (18).

Proof: We use a similar continuity argument as before. Consider themapping

κ : R → int(K) ⊂ R (19)

: λ 7→ L

(

1

e
exp(−L∗(λ))

)

.

Its Jacobian
∇k|λ : R → R : δ 7→ 1

e
L
(

Mexp(−L∗(λ))(−L∗(δ))
)

, (20)

with MC as in (43), is Hermitian and negative definite. This is because

〈δ1,∇κ|λ(δ)〉 = −1

e
〈L∗(δ1),Mexp(−L∗(λ))(L

∗(δ))〉

= −1

e
trace(L∗(δ1)

∫ 1

0

e−(1−t)L∗(λ)L∗(δ)e−tL∗(λ)dt)

= −1

e
trace(

∫ 1

0

e−tL∗(λ)L∗(δ1)e
−(1−t)L∗(λ) dtL∗(δ))

= 〈∇κ|λ(δ1), δ〉,
while

〈∇δ, κ|λ(δ)〉 = −1

e

∫ 1

0

trace(A
t
2L∗(δ)A− t

2AA− t
2L∗(δ)A

t
2 )dt

with A = exp(−L∗(λ)) ∈ M+. Then〈∇δ, κ|λ(δ)〉 is clearly negative unlessδ = 0. Thus, the mapκ is a
local diffeomorphism and∇κ can be used to relate locally a smooth path in the space ofR’s to one in
the space ofλ’s.

Begin with λ0 in R, R0 = L(1
e
exp(−L∗(λ0)), and Rτ = (1 − τ)R0 + τR for τ ∈ [0, 1]. Since

R0, R ∈ int(K) thenRτ ∈ int(K) for all τ ∈ [0, 1]. We claim that

d

dτ
λτ = (∇κ|λτ

)−1(R−R0), (21)

can be integrated over[0, 1] with λτ staying bounded. Then, by construction,λτ satisfies both

Rτ = L(
1

e
exp(−L∗(λτ )) (22)

as well as the stationarity conditions for eachτ . Hence,

ρ =
1

e
exp(−L∗(λ1)
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is a minimizer forS(ρ‖I) as claimed in the proposition.
Clearly (21) can be integrated over[0, ǫ). If ǫ > 1, we are done. Thus we only need to show thatǫ ≤ 1

and
‖λτ‖ → ∞ as τ → ǫ

lead to a contradition. To this end, we use two facts, first that (22) holds on[0, ǫ) and then, that〈ℓ, Rǫ〉 > 0
for all ℓ ∈ Kdual, sinceRǫ ∈ int(K).

Define ℓτ = λτ/‖λτ‖ and letℓǫ be a limit point of a convergent subsequenceℓτi with τi → ǫ (which
exists since theℓτ ’s are bounded). We claim thatL∗(ℓǫ) ≥ 0 and singular. To see this first note that, if

spectrum(L∗(ℓǫ)) ∩ (−∞, 0) 6= ∅,
then spectrum(L∗(ℓτi)) ∩ (−∞, 0) 6= ∅ as well, for sufficiently largei. But if this is so, then

L(
1

e
e−L∗(λτi

)) = L(
1

e
e−L∗(ℓτi )‖λτi

‖) (23)

grows without bound instead of tending toRǫ. Therefore,

spectrum(L∗(ℓǫ)) ⊂ [0,∞).

Now, if L∗(ℓǫ) is nonsingular then for alli sufficiently largeL∗(ℓτi) is nonsingular as well. But then, (23)
tends to zero asi → ∞. Hence,0 ∈ spectrum(L∗(ℓǫ)) ⊂ [0,∞).

Now let U be an isometry (U∗U = I) whose columns span the range ofL∗(ℓǫ) and consider

〈ℓǫ, Rτi〉 =
1

e
〈L∗(ℓǫ), e

−L∗(λτi
)) =

1

e
〈L∗(ℓǫ), e

−L∗(ℓτi )‖λτi
‖)

=
1

e
〈U∗L∗(ℓǫ)U, e

−U∗L∗(ℓτi )U‖λτi
‖).

Since
U∗L∗(ℓτi)U → U∗L∗(ℓǫ)U > 0

while ‖λτi‖ → ∞ we conclude that〈ℓǫ, Rτi〉 → 0 asτ → ∞. Since,Rτi → Rǫ it follows that 〈ℓǫ, Rǫ〉 = 0
which contradicts the hypothesis thatRǫ ∈ int(K).

B. Relative entropy and matricial distributions

The geometry of convex cones and of the moment problem whenρ is a matricial density function on
a compact setS, as in (1-2), is quite similar to the case whereρ is only a positive matrix as in Section
III-A. Appropriate generalizations of the relative entropy functionals allow computable expressions for
the corresponding extrema whenS is a closed interval of the real line, or even a multi-dimensional closed
interval inRk (k > 1). We develop this theory focusing on (2).

We consider Hermitianm×m matrix-valued measurable functions onS as a linear space overR with
an inner product

〈m1, m2〉 =
∫

S
trace(m1(θ)m2(θ))dθ.

We use the notationM to denote the Hilbert space of square integrable elements, and the notationM
andM+ to denote the cones of elements which are nonnegative and positive definite, respectively, for all
θ ∈ S. The linear operator

L : M→ R : ρ 7→ R =

∫

S
Gleft(θ)ρ(θ)Gright(θ)dθ (24)

mapsM into a subspace ofCleft×right denoted byR as before and viewed as a linear space overR. Both,
momentsR and their dualsλ reside inR and the geometry is always based on (14). For simplicity of the
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exposition, we assume that the integration kernelsGleft, Gright are continuously differentiableon S. The
closureof the range ofM is denoted byK = L(M), while int(K) = L(M+). The adjoint transformation
is now

L∗ : R →M : λ 7→ ρ = (Gleft(θ)
∗λGright(θ)

∗)Herm .

It is not difficult to show that the expressions for the dual cone and its interior

Kdual = {λ ∈ R : L∗(λ) ∈M}, and

Kdual
+ = {λ ∈ R : L∗(λ) ∈M+}

remain valid (except for the obvious change whereM replaces our earlierM). The analog of (13) will
be needed (in Theorem 4) which, can also be expressed as

Kdual
+ 6= ∅. (25)

Finally we define as before
MR,+ :=M+ ∩ {ρ ∈M : R = L(ρ)}

as we seek to determine whether or notMR,+ = ∅, or equivalently, whetherR ∈ int(K).
For future reference we bring in a characterization of elementsR ∈ K analogous to the scalar real case

given in [42, page 14]. GivenR ∈ R, define the real-valued functional

CR : R → R

: λ 7→ 〈λ,R〉 (26)

Such a bounded functional is said to benonnegative(resp.,positive)—denoted byCR ≥ 0 (resp.,CR > 0),
if and only if the infimum ofCR(λ) overλ ∈ Kdual

+ of unit norm is positive (resp. nonnegative).
Proposition 3: The following hold:

R ∈ K ⇔ CR ≥ 0

R ∈ int(K) ⇔ CR > 0.

Proof: We now only prove necessity, which is needed in the proof of Theorem 4. The proof of
sufficiency will be given at the end Section III-B.1.

If R ∈ int(K), there exists a particularρ ∈ M+ such thatR = L(ρ). It readily follows thatC > 0. If
R ∈ K, there exist an approximating sequenceRi → R (i = 1, 2, . . . ) whereRi = L(ρi) andρi ∈M. If
λ ∈ Kdual

+ then
CR(λ) = lim

i→∞
〈λ,Ri〉

which is> 0 and hence at leastC ≥ 0.
We now turn to relative entropy functionals for matricial distributions. Givenρ, σ ∈M+,

S(ρ ‖σ) :=
∫

S
trace(ρ log ρ− ρ log σ)dθ. (27)

Once again, minimizers of relative entropy subject to the moment constraints (2) take a particularly
simple form amenable to a numerical solution via continuation methods. We follow the same plan as in
Section III-A by focusing successively on each of the two alternative choices,S(I‖ρ) and thenS(ρ ‖I).
A significant departure from the case of constant densities shows up when considering the dimension of
the support setS in the context ofS(I‖ρ).
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1) Minimizers of S(I‖ρ) = −
∫

S trace(log(ρ))dθ:: In complete analogy with constant case the
derivative of the Lagrangian

L(λ, ρ) := −
∫

S
trace(log(ρ))dθ − 〈λ,R− L(ρ)〉

in the directionδ ∈M is

dL(λ, ρ ; δ) := trace

∫

S
(−M−1

ρ(θ) + L∗(λ))δ(θ)dθ

= trace

∫

S
(−ρ(θ)−1 + L∗(λ))δ(θ)dθ,

where, once again, the presence of thetrace allows replacing the “super-operator”M−1
ρ(θ) by multiplication

by ρ(θ)−1, pointwise overS. The fundamental lemma in calculus of variations (see e.g.,[5]) now gives
the stationarity condition

ρ = L∗(λ)−1. (28)

In order forρ ∈ M it is necessary thatL∗(λ) is strictly positive onS. Thus, we consider the “rational”
family of potential minimizers forS(I‖ρ)

Mrat :=
{

ρ = L∗(λ)−1, with λ ∈ Kdual
+

}

,

where we seek a solution to the moment constraints (2). It turns out that if a solution exists then, a
particular one exists inMrat and that it can be obtained by computing the fixed point of an exponentially
converging matrix differential equation. This differential equation is an appropriate generalization of (16).
We summarize all these conclusions below.

Theorem 4:If dim(S) = 1, condition (25) holds, and R ∈ int(K), then S(I‖ρ) has a minimum in
MR,+ which is unique and belongs toMrat. Furthermore, for any λ0 ∈ Kdual

+ , the solution λt of the
matrix differential equation

d

dt
λt = (∇h|λt

)−1 (R− L(L∗(λt)
−1)), (29)

where
∇h|λt

: R → R : δ 7→ L(L∗(λt)
−1L∗(δ)L∗(λt)

−1), (30)

belongs to Kdual
+ for all t ∈ [0,∞), it converges to a point λ̂ ∈ Kdual

+ as t → ∞ corresponding to
this unique minimizer ρ = L∗(λ̂)−1 for S(I‖ρ) satisfying R = L(ρ). The differential equation (29) is
exponentially convergent as the square distance V (λt) = ‖R− L(L∗(λt)

−1)‖2 satisfies

dV (λt)

dt
= −2V (λt).

Conversely, if R 6∈ int(K) and the dimension of S is one, then the differential equation (29) diverges.
Equations (29) is equivalent to

d

dτ
λτ = (∇h|λτ

)−1 (R− R0), (31)

modulo scaling of the integration variable (see below). Thelatter can be integrated over[0, 1], and then
λ̂ = λτ |τ=1, yet (29) appears preferable for numerical reasons.

We wish to point out that the assumption on the dimension ofS can be slightly relaxed to being at
most two providedS is a torus andGleft, Gright doubly periodic accordingly, (cf. [44, Example 2 on page
882], [30]).

Proof: Once again we consider the mapping

h : R → R : λ 7→ R = L(L∗(λ)−1).
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The Jacobian∇h|λ is Hermitian and invertible whenλ ∈ Kdual
+ . The proof is identical to the one given

in Section III-A.1. Chooseλ0 ∈ Kdual
+ , setR0 = L(L∗(λ0)

−1), and consider the one-parameter homotopy
of maps

L(L∗(λτ )
−1) = R + τ(R −R0) =: Rτ , (32)

for τ ∈ [0, 1]. The idea is to follow a path of solutionsλτ (τ ∈ [0, 1]), ensure that this is contained in
Kdual

+ , and set̂λ = λ1 which then satisfies the sought conditions (L∗(λ̂)−1 ∈Mrat andL(L∗(λ̂)−1) = R).
Clearly,L∗(λ0)

−1 ∈Mrat andR0 ∈ int(K). If R ∈ int(K) then so isRτ for τ ∈ [0, 1]. We claim that
for all τ ∈ [0, 1] there existsλτ ∈ Kdual

+ such that

Rτ = L(L∗(λτ )
−1) (33)

as before. The arguments are similar to those given in the proof of Theorem 1 and are based on the fact
that h is a local diffeomorphism. Valuesλτ which obey

dλτ

dτ
= (∇hλτ

)−1(R− R0), (34)

satisfy (33) as long as the path stays inKdual
+ . We need to rule outλτ crossing the boundary ofKdual

+ or
tending to∞ at a τ ≤ 1. Either possibility contradictsRτ ∈ int(K) (τ ∈ [0, 1]) in a way analogous to
the earlier arguments in the proof of Theorem 1.

We consider a maximal interval[0, ǫ) over whichRτ ∈ int(K), and note that

〈λτ , Rτ 〉 =
∫

S
trace(I)dθ = trace(I) ·measure(S) < ∞,

on [o, ǫ). If ‖λτ‖ → ∞, then CRτ
cannot be bounded away from zero since〈 λτ

‖λτ‖ , Rτ 〉 → 0. Hence,
Rǫ 6∈ in(K) and ǫ > 1.

If λǫ lies on the boundary ofKdual, thenL∗(λǫ) has a root inS. It is here that the dimension ofS
becomes important. As long as the dimension ofS is one,L∗(λǫ)

−1 is not integrable as a function of
θ ∈ S andRǫ = L(L∗(λǫ)

−1) cannot be finite. Thus again,ǫ > 1.
We finally express (34) in a “feedback form”. We first replaceτ with t = − log(1 − τ). In this case,

τ = 1− e−t and t varies in[0,∞) as τ varies in[0, 1]. If we denoteλt := λτ(t) andRt := Rτ(t), then

d

dt
λt =

(

dτ

dt

)

(∇h|λt
)−1 (R− R0)

= (1− τ(t)) (∇h|λt
)−1 (R− R0)

= (∇h|λt
)−1 (R−Rt). (35)

The same substitution givesdRt

dt
= R1 −Rt, and that

V (λt) := ‖R−Rt‖2 = ‖R− L(L∗(λt)
−1)‖2

satisfies
dV (λt)

dt
= −2〈R− L(L∗(λt)

−1),∇h|λt

d

dt
λt〉

= −2〈R− Rt, R−Rt〉 = −2V (λt).

Uniqueness of the representationR = L(ρ) with ρ ∈ Mrat follows from the fact that such aρ is a
minimizer of the convex functionalS(I‖ρ) subject to the moment constraints. An alternative but equivalent
argument can be based on the fact thath is a C1-mapping between open convex subsets of a Euclidean
space, with a positive definite Jacobian everywhere.

In the other direction, ifR 6∈ int(K), then the pathRτ either crosses or at least, in caseR ∈ ∂K, tends
to the boundary ofK. In either case,λt grows unbounded and the differential equation diverges.

We now complete the proof of Proposition 3.
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Proof: [“sufficiency” in Proposition 3] In the proof of Theorem 4, in essence, we used the positivity
of CR to obtain a representationR = L(ρ) with ρ ∈ M+. Thus, the same line of argument gives that if
CR > 0 thenR ∈ int(K).

If CR ≥ 0 but not necessarily> 0, then choseR0 ∈ int(K) and note thatCR+ 1
k
R0

> 0 for k = 1, 2, . . ..
Obviously,R + 1

k
R0 ∈ int(K) (k → ∞) andR is at least inK.3

2) Minimizers of S(ρ‖I) =
∫

S trace(ρ log(ρ))dθ:: Once again, the derivative of the Lagrangian

L(λ, ρ) := −
∫

S
trace(ρ log(ρ))dθ − 〈λ,R− L(ρ)〉

in the directionδ ∈M is

dL(λ, ρ ; δ) := trace

∫

S
(log(ρ) + I + L∗(λ))δ(θ)dθ.

The stationarity condition leads to the expression

ρ =
1

e
exp(−L∗(λ)), (36)

for the minimizer, except that nowρ is a function ofθ ∈ S. We consider the “exponential” family

Mexp :=

{

ρ =
1

e
exp(−L∗(λ)), with λ ∈ R

}

,

of potential minimizers forS(ρ ‖I), where we seek a solution to (2). The development runs in parallel
to the case whereρ ∈ Mrat with one important difference. The “Lagrange multipliers”λ no longer
need to be restricted toKdual and existence of solutions whenR ∈ K can be guaranteed even when
dim(S) > 1. Moreover, (25) is no longer necessary and existence of solution to the moment problem in
Mexp is impervious to the dimension of the dual coneKdual

+ .
Theorem 5:If R ∈ int(K) then the entropy functional S(I‖ρ) has a minimum in MR,+ which is

unique and belongs toMexp. Furthermore, for any λ0 ∈ R, the solution λt of

d

dt
λt = (∇k|λt

)−1 (R− L(λt)), (37)

where
∇k|λt

: R → R : δ 7→ −1

e
L(Mexp(−L∗(λt))(L

∗(δ)), (38)

remains bounded for t ∈ [0,∞) and converges to λ̂ ∈ R as t → ∞ corresponding to the unique
minimizer ρ = 1

e
exp(−L∗(λ̂)) for S(I‖ρ) subject to R = L(ρ). The convergence is exponential as

V (λt) = ‖R − 1
e
L(exp(−L∗(λ̂t)))‖2 satisfies dV (λt)

dt
= −2V (λt). Conversely, if R 6∈ int(K) then the

differential equation (37) diverges.
Proof: The arguments are for the most part identical to those used inproving Theorem 2, i.e., we

now consider
κ : R → int(K) ⊂ R : λ 7→ R = L(

1

e
e−L∗(λ)),

observe that the Jacobian is negative definite for any value of λ, and use it to track a linear path(1 −
τ)R0 + τR (τ ∈ [0, 1]) from R0 = L(1

e
e−L∗(λ0)) to the givenR in the λ-coordinates. This is done by

integrating (21) over[0, 1] starting from arbitrarily chosen starting pointλ0. By construction, the solution
of (21) corresponds toρτ = 1

e
e−L∗(λτ ) ∈ M+ which satisfiesRτ = L(ρτ ). It is clear that ifR 6∈ int(K),

then the differential equation diverges forτ ≤ 1 (since otherwiseρτ ∈M+ andRτ = L(ρτ ) would hold
on [0, 1], contradictingR 6∈ int(K)). We only need to show that ifR ∈ int(K), thenλτ remains bounded

3A uniform bound on the integral of densities corresponding to R+ 1
k
R0 can be shown. This can be used to establish a finite nonnegative

measuredµ corresponding toR.
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for τ ∈ [0, 1]. This yieldsλ̂ = λτ |τ=1 which satisfiesR = L(1
e
e−L∗(λ̂)). Then (37) can be obtained via a

change of variables as in Theorem 4. The same applies to deriving the differential equation for the “error”
V (λt).

In order to show that, in the eventR ∈ int(K), λτ remains bounded on[0, 1] we extend the argument
used to prove Theorem 2 to the present case whereρ is a matrix valued function onS. The key is
to observe that, when (21) is integrated over a maximal interval [0, ǫ), any convergent subsequence of
ℓτ := λτ/‖λτ‖ (τ ∈ [0, ǫ)) must have a limit pointℓǫ for which L∗(ℓǫ) ∈ M but not inM+. Moreover,
L∗(ℓǫ) must be singular onS0 ⊂ S (a subset of possibly zero measure). To see this note the following.
If L∗(ℓǫ) ∈ M+ then L∗(ℓτi) is bounded away from zero and positive fori large enough, whereas if
L∗(ℓǫ) 6∈ M then there is a subset ofS of non-zero measure whereL∗(ℓτi) is negative. Either way
L(exp(−L∗(λτi))) = L(exp(−L∗(ℓτi · ‖λτi‖))) cannot tend toRǫ as it should. In the first instance it goes
to zero and in the second it becomes unbounded. ThusL∗(ℓǫ) ∈ M but singular for certain values of
θ. Below we show that this impliesRǫ 6∈ int(K), which then proves thatǫ > 1 and that (37) can be
integrated on[0, 1].

To show thatRǫ 6∈ int(K) it suffices to show thatCRǫ
is not strictly positive. To this end, we evaluate

CRτi
(ℓǫ) = 〈ℓǫ, L(exp(−L∗(ℓτi‖λτi‖)))〉

= 〈L∗(ℓǫ), exp(−L∗(ℓτi‖λτi‖)))〉
=

∫

S
trace(L∗(ℓǫ) exp(−L∗(ℓτi · ‖λτi‖)))dθ

=

∫

S
trace(L∗(ℓǫ)(exp(−L∗(ℓτi)))

‖λτi
‖dθ.

For each value ofθ, (exp(−L∗(ℓτi)))
‖λτi

‖ tends to zero outside the null space ofL∗(ℓǫ). SinceS is
compact, the integrand goes to zero uniformly inθ as i → ∞. Therefore,CRτi

(ℓǫ) → 0 as well, and
R 6∈ int(K).

C. Non-equispaced arrays (cont.)

We continue with Example II-A. We begin with a “true” densityρtrue shown in Figure 2 and generate
covariance samplesR. This “true” density does not need to be in any particular form—computation ofR
is done via numerical integration.

Next, we integrate (29) and (37) takingλ0 =
[

1 0 0 0
]

, and display in Figure 2 the resulting
ρexp(λ∞, θ) andρrat(λ∞, θ), for comparison. Both are constructed using the fixed point of the correspond-
ing differential equations. The rate of convergence is the same, while the distance of the starting choice
(for the sameλ0) may be different—as is the case here (withMexp corresponding to they-axis to the left
andMrat the labeling to the right in subplot(2, 1)).

IV. The complete set of positive solutions

Reference [31] suggested that all positive solutions to themoment problem may be obtained as
minimizers of a suitable entropy functional, e.g., as being

argmin{S(σ ‖ρ) : R = L(ρ)} (39)

with σ thought of as a parameter. This was carried out successfullyin [31] and [30] for the case where
density functions are scalar-valued, for different levelsof generality. Naturally, certain complications arise
in the matricial setting. We discuss this next in the contextof constantρ, σ as in Section III-A). The
generalization to the non-constant case is straightforward and a positive result is given for the general
case.
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Considering the Lagrangian and the stationarity conditions for (39) we arive at

dL(λ, ρ ; δ) = trace(−δM−1
ρ (σ)) + 〈L∗(λ), δ〉

= trace
(

−δM−1
ρ (σ) + δL∗(λ)

)

,

leading to
M−1

ρ (σ) = L∗(λ).

Although the “parameter”σ can be readily expressed asMρ(L
∗(λ)), the densityρ which we are interested

in, cannot be expressed in any effective way as a function ofσ and the dual variableλ. Thus, a convenient
functional form for the minimizer of (39) is unkown.

The option of minimizingS(ρ ‖σ) subject toR = L(ρ) however, goes through. Analysis of the
corresponding Lagrangian readily leads to

ρ =
1

e
exp(log(σ)− L∗(λ)).

A computational theory, following the lines of Sections III-A.2 and III-B.2 easily carries through.
An attractive third alternative originates in the observation that the geometry of the problem, throughout,

was inherited by the definiteness of the Jacobian maps. This suggests to forgo an explicit form for the
entropy functional and start instead with a computable Jacobian. To this end we consider

hσ : λ 7→ L(σ1/2L∗(λ)−1σ1/2), and

κσ : λ 7→ L(σ1/2 1

e
exp(−L∗(λ))σ1/2).

The respective Jacobians are

∇hσ|λ : δ 7→ L(σ1/2L∗(λ)−1L∗(δ)L∗(λ)−1σ1/2), and

∇κσ|λ : δ 7→ 1

e
L(σ1/2Mexp(−L∗(λ))(−L∗(δ))σ1/2).

They are both sign definite as before and, almost verbatim, wecan replicate the conclusions of Theorems
4 and 5. These are combined into the following statement.
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Theorem 6:Let R ∈ int(K) and σ ∈ M+. If dim(S) = 1, condition (25) holds, and λ0 ∈ int(K∗
+),

then the solution to
d

dt
λt = (∇hσ|λt

)−1 (R− hσ(λt)) (40)

remains in Kdual
+ for t ≥ 0 and as t → ∞ converges to a unique value λr ∈ Kdual

+ such that
R = hσ(λr). On the other hand, for any λ0 ∈ R the solution to

d

dt
λt = (∇κσ|λt

)−1 (R− κσ(λt)) (41)

remains bounded for t ≥ 0 and as t → ∞ converges to a unique value λe ∈ Kdual
+ such that

R = κσ(λe). In case R 6∈ int(K), then (41) diverges. In case R 6∈ int(K) and dim(S) = 1, then (40)
diverges as well.

The importance of recasting Theorems 4 and 5 as above, by incorporating arbitraryσ’s in M+, allows
obtainingany density function which is consistent with the dataR by such a procedure. To see this note
that, if ρ consistent with the data, then working backwards we can select σ accordingly so thatρ equals
σ1/2L∗(λ)−1σ1/2 or 1

e
σ1/2 exp(−L∗(λ))σ1/2 for any λ (in Kdual

+ andR, respectively). Thus, Theorem 6
gives descriptions ofall positive densities that are consistent with the dataR—simply choose the “correct”
σ.

A potentially important application is when prior information may dictate a choice ofσ. In this case,
using Theorem 6 we may obtain an admissible density functionwhich is “closer to our expectations.” We
amplify this remark by reworking Example II-A with a suitable weight.

A. Non-equispaced arrays (cont.)

Figure 3 compares the “true” density functionρtrue which was used to generate the moments, and a
densityρrat = σ1/2L∗(λ)σ1/2 which is computed according to Theorem 6. The original density ρtrue has
discontinuous peak at aboutθ ∼ 0.35. Thenσ has been selected so as to be≥ 1 in the neighborhood
of θ ∼ 0.35—actually centered about0.25. (The accuracy of the “match” does not seem critical.) The
densityρrat is seen to be a better match as compared with the “unweighted”case of Figure 2. Subplot
(2,1) shows the value of‖R1 − Rt‖ as before, and highlights the fact that, again,ρrat is consistent with
the moments. Sinceλ0G(θ) ≡ 1, if we chooseσ = ρtrue (using100% hindsight), we obviously obtain a
perfect match as explained above.
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B. State-statistics and analytic interpolation with degree constraint (cont.)

In Section IV, the maphσ can be replaced by

λ 7→ L(ϕL∗(λ)−1ϕ∗)

whereσ = ϕϕ∗ is a factorization ofσ with ϕ not necessarily Hermitian, with the obvious modifications
in the expression for the corresponding Jacobian. The statement of the theorem holds with no changes.
The same applies toκσ which can also be cast with respect to an arbitrary factorization of σ—but this
will not concern us here. Instead, we consider the setting ofSection II-D where

L∗ : λ 7→ B∗(I − e−jθA∗)−1λ(I − ejθA)−1B.

If we takeϕ(z) = I+Coz(I−zA)−1B so thatϕ−1 is also analytic inD (which corresponds toCo chosen
so thatA− BCo is a Hurwitz matrix), then the resulting density function

ρ(θ) = ϕL∗(λ)−1ϕ∗

= (Go(e
jθ)∗λGo(e

jθ))−1,

with Go(z) = (I − z(A − BCo))
−1B. This is a rational spectral density of degree at most twice the

dimension of (5), and hence, it gives rise to a positive-realinterpolantF as in (9) of McMillan degree at
most equal to the dimension of (5).

V. Concluding remarks

We presented an approach for constructing matrix-valued density functions which are consistent with
given moments. Section IV describes, in the spirit of the mathematical theory on the moment problem,
all positive-definite density functions which are consistent with the data. The non-parametric description
given in Section IV (non-parametric since it amounts to an arbitrary choice of a weight-densityσ) should
prove useful in case we wish to incorporate prior information (e.g., subsection IV-A, and cf. [31]).

The basic problem of characterizing admissibilitiy of a matricial momentR has been cast in terms
of the positivity of a suitable functional,CR, in complete analogy with the classical case [42]. However,
testing for positivity of such a functional is not a trivial matter. In the classical theory, the “shift” structure
of the space of integration kernels ([42], [66], [1], [2]) allows a simple description of all positive elements
in their span, via “sums of squares.” This is not the case here. Instead, we determine admissibility ofR
from the convergence of the differential equation given in e.g., Theorems 4, 5. Yet, a more direct analog
of the Pick operator and a corresponding test that would allow a “certificate of positivity ofCR,” would
be highly desirable.

The present work has been influenced by recent literature on “moments with complexity constraints”
[11], [12], [6], [20], [27], [26], [14], and in particular byByrnes, Gusev and Lindquist [13] who first
exploited entropy functionals in such a context. Interpolation or moment problems with degree constraint
seek to parametrize solutions of bounded degree within the “rational familiy.” The “trigonometric moment
problem with degree constraint” was first studied in [23] in both the scalar and the multivariable setting
(via degree theory and homotopy [23, page 76, and Chapters IVand V]). All subsequent literature
on “complexity constraints” focused on scalar problems until Blomqvist etal. [6] who study matricial
Nevanlinna-Pick interpolation via minimizers of an entropy functional. The framework of the present
work, which is also based on entropy functionals, when specialized to analytic interpolation, allows
dealing with the most general tangential (and bi-tangential, cf. [4], [18]) Carathéodory-Nevanlinna-Pick
problems with degree constraint. “Tangential interpolation” refers to the caseV (z) in e.g., (11-12), is a
matricial inner factor as opposed to simply a scalar-inner times the identity. This is examplified in Section
IV-B. While the main focus of the present work remains the general moment problem, consequences of
the theory as in Section IV-B should prove useful in multivariable feedback design with degree constraints
[32].
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VI. Appendix: Matrix calculus

We assemble a number of basic mathematical formulae. These are expressions for the differential of the
matrix exponential and the matrix logarithm that have been used in the physics literature and in quantum
information theory.

A. The matrix exponential

We begin with the differential of the matrix exponential (see [21], [53]). Following [36, page 164],
integrate both sides of

d

dt

[

e−tAet(A+ǫB
]

= e−tAǫBet(A+ǫB)

between0 and t to obtain

e−tAet(A+ǫB) − I =

∫ t

0

e−t1AǫBet1(A+ǫB)dt1.

Then

et(A+ǫB) = etA + etA
∫ t

0

e−t1AǫBet1(A+ǫB)dt1

= etA + etA
∫ t

0

e−t1AǫB ×

×
(

et1A + et1A
∫ t1

0

e−t2AǫBet2(A+ǫB)dt2

)

dt1

= S0(t) + ǫS1(t) + ǫ2S2(t) + . . .

where

S0(t) = etA (42)

S1(t) = etA
∫ t

0

e−t1ABet1Adt1

S2(t) = etA
∫ t

0

∫ t1

0

e−t1ABe(t1−t2)ABet2Adt2dt1,

and the general termSn(t) is

etA
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

(e−t1ABet1A) . . . (e−tnABetnA)dtn . . . dt1.

We are only interested in the first two terms of this convergent series.
Evaluating att = 1 and replacingǫB by ∆, we obtain

eA+∆ − eA =

∫ 1

0

e(1−τ)A∆eτAdτ + o(‖∆‖).

Hence, the differential in the direction∆ (often refered to as Gateaux, or polar, or Fréchet) is givenby
the linear map

∆ 7→
∫ 1

0

e(1−τ)A∆eτAdτ.
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This map represents a “scrambled” multiplication of∆ by eA. To see this assume thatA and∆ commute.
Then the right hand side becomes simpleeA∆.

TheS2-term in (42) gives the quadratic term in∆ in the expansion ofeA+∆ − eA as

∆ 7→
∫ 1

0

(

e(1−τ1)A∆eτ1A
∫ 1

0

(

e−Aτ1τ2∆eτ1τ2A
)

dτ2

)

τ1dτ1.

In general, for Hermitian matricesC and∆, andC ≥ 0, define the “non-commutative” or “scrambled”
multiplication of∆ by C via the operator

MC : ∆ 7→
∫ 1

0

C(1−τ)∆Cτdτ. (43)

This gives a compact expression for the differential ofeA, summarized below.
Proposition 7: The differential of exp(A) := eA is MeA.

B. The matrix logarithm

We now turn to the matrix logarithm. Integrate both sides of

d

dt
[log(I + tP )− log(I + tQ)] = (I + tP )−1P −Q(I + tQ)−1

between0 and1 to obtain that

log(I + P )− log(I +Q) =

∫ 1

0

(I + tQ)−1(P −Q)(I + tP )−1dt

assuming thatB := I + P > 0 and thatA := I +Q >. Rewrite this expression in terms ofA andB and
change the integration variable toτ = t−1

t
, to obtain

log(B)− log(A) =

∫ ∞

0

(A+ τI)−1(B − A)(B + τI)−1dτ.

If B = A+∆, then

(A+ τI)−1 − (A +∆+ τI)−1 = (A+ τI)−1∆(A+∆+ τI)−1

which, for A,∆ Hermitian,A > 0 andA+∆ > 0, leads to

log(A+∆) = log(A) +

∫ ∞

0

(A+ τI)−1∆(A + τI)−1dτ

+

∫ ∞

0

(A + τI)−1∆(A + τI)−1∆(A + τI)−1dτ (44)

+ o(‖∆‖2).
By expanding in terms of eigenvectors ofA it can be verified that

∫ ∞

0

(A+ τI)−1∆(A + τI)−1dτ = M−1
A (∆). (45)

Indeed, ifA is diagonal{a1, . . . , an} then the(i, j)th entry of

MA

(
∫ ∞

0

(A+ τI)−1∆(A + τI)−1dτ

)

is simply
∫ 1

0

a
(1−t)
i atjdt

∫ ∞

0

(ai + τ)−1(aj + τ)−1dτ(∆)ij
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where(∆)ij is the (i, j)th entry of∆ (in this same basis whereA is diagonal). Then
∫ 1

0

a
(1−t)
i atjdt =

ai − aj
log(ai)− log(aj)

whereas,
∫∞
0
(ai+ τ)−1(aj + τ)−1dτ is the inverse of the same expression. This result is attributed to Lieb

(see [65, page 4]) and summarized below.
Proposition 8: The differential of log(A) is M−1

A .
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