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Transmit Beamforming in Multiple-Antenna Systems
With Finite Rate Feedback: A VQ-Based Approach
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Abstract—This paper investigates quantization methods for
feeding back the channel information through a low-rate feedback
channel in the context of multiple-input single-output (MISO)
systems. We propose a new quantizer design criterion for capacity
maximization and develop the corresponding iterative vector
quantization (VQ) design algorithm. The criterion is based on
maximizing the mean-squared weighted inner product (MSwIP)
between the optimum and the quantized beamforming vector. The
performance of systems with quantized beamforming is analyzed
for the independent fading case. This requires finding the den-
sity of the squared inner product between the optimum and the
quantized beamforming vector, which is obtained by considering
a simple approximation of the quantization cell. The approximate
density function is used to lower-bound the capacity loss due to
quantization, the outage probability, and the bit error probability.
The resulting expressions provide insight into the dependence
of the performance of transmit beamforming MISO systems on
the number of transmit antennas and feedback rate. Computer
simulations support the analytical results and indicate that the
lower bounds are quite tight.

Index Terms—Bit error probability, channel capacity, channel
state information, multiple antennas, transmit beamforming,
outage probability, vector quantization (VQ).

I. INTRODUCTION

COMMUNICATION systems using multiple antennas have
attracted considerable attention because of the potential

improvements in transmission rate and/or diversity gain. The
performance achievable using multiple antennas depends on the
nature of channel state information (CSI) available at the trans-
mitter and at the receiver. We assume perfect CSI at the receiver
and focus on the CSI at the transmitter (CSIT). Two extreme
but common CSIT assumptions are complete CSIT where per-
fect channel information is known to the transmitter (e.g., [1],
[2]), and no CSIT (e.g., [1]). The former case, complete CSIT,
provides a higher capacity link than the latter in the single-user
case [3], and has other benefits such as lower complexity re-
ceivers [4] and better system throughput in a multiuser environ-
ment [5]. However, the assumption that the transmitter has per-
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fect knowledge of multidimensional channel is unrealistic; as
in many practical systems, the channel information is provided
to the transmitter through a finite-rate feedback channel. In this
paper, we focus our attention on multiple-input single-output
(MISO) systems and on the problem of feeding back the beam-
forming vector through a finite-rate feedback channel. Many in-
teresting methods for feeding back beamforming information
have been suggested [6] and evaluated mainly through simula-
tions. Only recently, more systematic methods to analytically
quantify the performance of finite-rate feedback systems have
begun to appear [3], [4], [7]–[9].

For a MISO channel, the channel information for feedback
is a complex unit-norm beamforming vector. In this paper,
as in [3], we treat the problem as a vector quantization (VQ)
problem, a subject that has received much attention in source
coding [10]–[12]. For a given number of bits, full search VQ
techniques are known to result in optimal quantizers. In addi-
tion, well-established algorithms for designing these quantizers
are available making them very easy to use. However, the
often employed mean-squared error (MSE) criterion in source
coding, though convenient for quantization design, is not very
suitable in our context because the more appropriate criteria for
effective communication is channel capacity or signal-to-noise
ratio (SNR). Maximizing mutual information could be a good
design criterion (this was studied in [13] for multiple-input mul-
tiple-output (MIMO) channels). However, unfortunately, using
it directly does not lead to a well-behaved iterative quantizer
design algorithm in a sense that the algorithm does not guar-
antee an improvement in the design objective at every iteration
(details will be discussed in Section III). This requires consid-
eration and development of an appropriate design criterion that
leads to effective quantizer design. We propose a new design
criterion, namely, maximizing the mean-squared weighted
inner product (MSwIP) which is directly related to channel
capacity. The new design criterion does lead to a Lloyd-type
VQ design algorithm that has a closed-form centroid solution
thereby guaranteeing a better quantizer at every iteration. The
approach is a generalization of the method suggested in [3].

We then analyze the performance of quantized beamforming
systems. Our work continues along the analytical vein estab-
lished in [3], [4], [7] and attempts to further the analytical un-
derstanding of quantized beamformers. Many interesting results
on multiple-antenna systems with partial side information for
both point-to-point links and broadcast systems have been de-
veloped in [3]. One aspect of this work involves performance
limits of quantized beamformers. In our work, we conduct a rig-
orous analysis of the quantizer for the independent and identi-
cally distributed (i.i.d.) Rayleigh-fading channel. We derive an
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expression for the lower bound on the capacity loss. For a fixed
number of transmit antennas, it is found to be quite tight as the
number of quantization levels or feedback bits increases. Our
results improve on the analysis results in [3] in several ways:
the expressions are more precise, they are not based on an MSE
criterion, and they are not asymptotic in the number of antennas.

More recently, improved results on the performance of fi-
nite-rate feedback systems has been developed in [4], [7]. For
beamforming codebook construction, they consider a min-max
criterion, i.e., minimizing the maximum inner product among
all possible pairs of beamforming vectors. The connection be-
tween quantized beamformers and Grassmanian line packing
was established to solve and expose the structure in the code-
book. Even though our VQ-based design procedure does not
provide an explicit form for the code points, this is of minimal
inconvenience given the generality of the design methodology
and flexibility of the framework. The design methods readily
apply to a variety of statistical environments, and the frame-
work is rich enough to support interesting complexity-to-per-
formance tradeoffs. With the MSwIP design procedure, one can
design the optimum quantizer for any number of transmit an-
tennas, any number of quantization bits, and spatial correlation.

Analytical results were also developed in [4] to characterize
the performance of optimally quantized beamformers. For in-
stance, a universal lower bound was derived for the outage prob-
ability for any finite set of optimum beamformers. In [7], new
results on Grassmanian line packing are developed and used to
evaluate the optimality of quantized beamformers. Though our
analytical approach has points of commonality with those of [4],
[7], it is quite different in flavor and offers an interesting alter-
native. In particular, in our approach the squared inner product
between the optimum and the quantized beamforming vector is
statistically characterized and used in deriving the capacity loss
resulting from finite-rate feedback of channel information. The
approach taken leads to more precision in the analysis and in
our opinion is also a simpler analytical approach. The power
of the approach is further demonstrated by extending the ana-
lytical results to derive the outage probability and the bit error
probability for a finite-rate feedback MISO system. The frame-
work for codebook construction and performance analysis can
be extended to MIMO systems. Though the extensions are not
completely general, the framework for codebook construction
has been extended to the equal power case and a limited perfor-
mance analysis provided for the i.i.d. flat-fading channel sce-
nario [14], [15]. Since the submission of this paper, additional
work on the design and analysis of codebooks for the correlated
channel case have appeared and the interested reader is referred
to [16], [17] for more details.

This paper is organized as follows. Section II describes the
system model and assumptions. The quantizer design for low-
rate feedback of the beamforming vector in MISO systems is
presented in Section III. In Section IV, the density function of
the squared inner product is derived and then it is used to analyze
the capacity loss due to quantization of beamforming vector. In
Sections V and VI, the outage probability and the bit error prob-
ability for systems with quantized beamforming are analyzed,
respectively, by directly applying the distributions derived in
Section IV.

We use the following notations. indicates the conjugate
transpose of matrix . The inner product between two vectors is
defined as and the -norm of vector is denoted by

. represents the expectation operator, and
and are, respectively, the proper complex and

the real Gaussian random vector with mean and covariance
. Uniform distribution over a set is denoted by . The

function is the natural logarithm.

II. SYSTEM MODEL

We consider a multiple-antenna system with antennas at the
transmitter and a single antenna at the receiver. Assuming flat
fading, the multiple-antenna channel is modeled by the channel
vector . That is, the channel input and the channel
output have the following relationship:

(1)

where is the additive white Gaussian noise distributed by
. The average transmit power is denoted by , i.e.,

. The channel vector will be also written in terms
of its magnitude and direction as , where and

.1

It is well known that, with perfect CSIT, transmit beam-
forming along is the optimum choice for maximizing the
received SNR and also the mutual information. In this paper,
we will consider quantization of the unit-norm vector for
feeding back to the transmitter through a feedback channel. The
capacity of the feedback channel is assumed to be finite and
limited to bits per channel update. For feedback purposes,
a quantization codebook , where
and , is assumed known to both the receiver and
the transmitter (designing the codebook will be dealt with in
Section III). Based on the channel information, the receiver
selects the best beamforming vector, say , from the codebook
and sends the corresponding index of the selected beamforming
vector to the transmitter. In practice, the error in the feedback
channel and the delay resulting from finite-rate channel update
impact the overall system performance. However, this paper
assumes feedback with no error and no delay, and focuses on
the effect of quantizing the channel information with a finite
number of bits.

At the transmitter, is employed as the transmit beamforming
vector . That is, an information-bearing symbol
is transmitted through multiple antennas as , resulting in
the received signal

(2)

where . In this setting, the received SNR is simply
given by

SNR (3)

and the mutual information between and for given and
is given by

(4)

1Though not explicitly indicated for notational simplicity, note that
throughout the paper � and v (also v̂ later) are functions of h.
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in nats per channel use, where it is assumed that .
It is obvious that with finite is less than the mutual
information with perfect feedback (with )

(5)

since is always less than one.
Let us define the capacity loss due to quantization of beam-

forming vector as the difference between the ergodic capacity
with perfect and quantized feedback, that is,

(6)

where and are the ergodic capacities
when the transmitter uses the optimum and the quantized beam-
forming vector, respectively; and

With a little manipulation, it can be rewritten as

(7)

III. QUANTIZATION OF RANDOM BEAMFORMING VECTOR

In this section, we develop a general VQ design method for
the quantization of random beamforming vector.

A. The MSwIP Criterion and VQ Design Algorithm

For designing the beamforming codebook, a good design cri-
terion could be to maximize the expected mutual information

or, equivalently, to minimize the capacity loss de-
fined in (6). However, unfortunately using it directly leads to
difficulty with the centroid computation, an essential step in VQ
design (see, e.g., [3], [13]). The difficulty with the approach
is that generally there is no analytical expression for the op-
timum code vector as a function of a given partition region in the
channel space.2 This necessitates approximation to the solution
to the optimization problem as in [13]. Thus, the resulting iter-
ative design algorithm does not necessarily maximize the orig-
inal design criterion, which in turn makes it hard to guarantee
the optimality of the resulting codebook.

The nature of the approximation becomes important, and in
this paper we consider the following approximation to the ca-
pacity loss: When is close to one (which is valid when

is reasonably large) or when , (7) can be approxi-
mated using for small as

where

2This is called the centroid condition in quantizer design.

This results in

(8)

which will be the basis of the quantizer design.

New Design Criterion: Design a quantizer (mathemati-
cally, ) to maximize the MSwIP

(9)

where is the quantized beamforming vector
from codebook . This VQ design criterion will be called the

MSwIP criterion.
One of the virtues of the MSwIP criterion is that it does lead to

a closed-form VQ design algorithm (modified Lloyd algorithm)
that has monotonic convergence property.3 The original Lloyd
algorithm is based on two conditions: i) optimum encoder (parti-
tion regions) for a fixed decoder (code vectors), and ii) optimum
decoder for a fixed encoder [10], [12]. They are also called the
nearest neighborhood condition (NNC) and the centroid con-
dition (CC), respectively. The same approach is used here for
designing the quantizer.

New Design Algorithm:

1. NNC: For given code vectors , the op-
timum partition cells satisfy

(10)

for , where is the partition cell (Voronoi
region) for the th code vector .

2. CC: For a given partition , the op-
timum code vectors satisfy

(11)

for . Since

the solution for the above optimization problem is

principal eigenvector of
(12)

The above two conditions are iterated until the MSwIP
converges. In practice, a quantizer is designed

using a sufficiently large number of training samples (channel
realizations). In that case, the statistical correlation matrix in
(12) is estimated with an experimental expectation.

Beamforming Vector Selection (Encoding): For a given
codebook , the receiver encodes as follows:4

(13)

This is the optimum encoding scheme that maximizes the re-
ceived SNR and also the mutual information. By the encoding

3Monotonic convergence means here that an improved design is guaranteed
at every iteration.

4The encoding process in beamforming vector selection is denoted by Q(v)
since it only depends on v, while in designing a codebook in (9) the encoding
is also dependent on �, hence, it is denoted by Q(h).
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scheme, the unit-norm sphere , where
random vector lies, is partitioned into ,
where

(14)

The encoding scheme (13) can be restated simply as
if .

B. Two Related Design Methods

The MSwIP design method is general and can be applied even
for spatially correlated channels. A drawback of the MSwIP cri-
terion is that the quantizer is optimized for a particular SNR (or

). As a result, we may need more than one codebooks, espe-
cially if the system has multiple operating SNR points.5 There-
fore, it would be interesting to find other design methods that do
not depend on .

As the SNR increases , ; hence, the MSwIP
criterion (9) reduces to

(15)

where is the quantized beamforming vector
. This design criterion will be called the MSIP criterion. One

can see that this criterion is based only on and is indepen-
dent of and . A design algorithm corresponding to this cri-
terion is obtained by setting in the NNC and the CC
for the MSwIP criterion. It would be instructive to compare
this criterion with the MSE criterion, which is quite common
in source coding study and also implied in rate-distortion-based
analysis. Since and are both unit norm, in the MSE crite-
rion, is equivalent to . Thus,
we can see that the MSE criterion maximizes only the real part
of the inner product; therefore, the two criteria are different6 and
the MSIP criterion is a better criterion in this context.

Another connection of the MSwIP criterion can be found by
considering the other extreme case. When (in the
low-SNR region), ; hence, the original criterion (9)
becomes

(16)

This design criterion is now based on the unnormalized channel
vector instead of . The design algorithm can be obtained by
replacing in the NNC and the CC for the MSwIP criterion
with . This VQ design method was proposed and studied in
[3]. Note that the design objective here also can be said to be
maximizing the expectation of the received SNR (3).

It should be pointed out that when the channel has i.i.d. en-
tries, i.e., , the three design methods are equiva-
lent, all maximizing or . Therefore, one can
use the MSIP method. This follows from the observation that
for a random channel , is independent

5The design can be easily modified to accommodate SNR with a known dis-
tribution, but we do not consider this option in the paper.

6Note that the two criteria are the same for the real vector case, but not for
the complex vector case.

Fig. 1. Ergodic capacities of correlated MISO channels with quantized
beamforming for the different quantizer design methods (t = 2 and
B = 1; 2; 3). Capacities are normalized to the capacity with complete CSIT
(C ). C represents the capacity with no CSIT (B = 0).

of and uniformly distributed over the unit-norm sphere
. However, for general spatially correlated channels, the three

criteria are different since now and are not independent.

C. Design Examples and Discussion

With the MSwIP design algorithm, we can obtain an optimum
codebook for any number of transmit antennas and any number
of codebook size. The performances of quantizer codebooks
designed with the MSwIP design methods described in Sec-
tions III-A and III-B are compared in Fig. 1 in terms of the er-
godic channel capacity, which is given by

For ease of comparison, all the capacities were normalized with
respect to that of the complete CSIT . The channel is
spatially correlated with the correlation model in [18]: A linear
antenna array is simulated with antenna spacing of half wave-
length and uniform angular spread in . As expected,
it turns out that in high-SNR region the MSIP method performs
better than unnormalized channel vector quantization method
of [3], and in low-SNR region the reverse relation holds. More-
over, the original MSwIP method always performs better than or
equal to any of the other two methods over the entire SNR range.
The performance difference decreases as increases, and gen-
erally the degree of performance improvement via the MSwIP
method depends on the correlation parameters. As noted before,
the MSwIP codebook is designed for each SNR point and the
transmitter needs to know the operating SNR of the system a
priori. This can be implemented in most practical systems by
selecting a set of SNR points and maintaining a particular SNR
point over time using some form of power control mechanism.
A simpler way with a minor performance loss is to partition
the SNR region into two and use the codebook from the MSIP
method in the high-SNR region and the unnormalized channel
vector quantization method in the low-SNR region.
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Fig. 2. Examples of quantizer design with the MSIP criterion and comparison
with two other design criteria (t = 3 and B = 1; 2; . . . ; 6).

Fig. 3. Ergodic capacities of MISO channels with quantized beamforming in
bits per channel use (t = 3 and B = 1; 2; . . . ; 6).

Design examples for the i.i.d. channel are shown
in Figs. 2 and 3 for and various . In Fig. 2, note that
when the MSIP . For comparison, two
other design methods are considered: i) ;
and ii) (MSE criterion). The first method has
been studied in [4], [7]. Although it can be another reasonable
design criterion, there is no VQ codebook design algorithm for
arbitrary dimension and codebook size. The codebooks com-
pared in the figure are from [7], where codebooks only for a low
number of quantization bits are tabulated. Fur-
thermore, the MSIP (also MSwIP) design approach is useful ir-
respective of the correlation structure of channel, while method
i) is only good for the i.i.d. channel. The results show that the
MSIP method performance is similar to that of method i), and
performs better than the MSE method of ii). The ergodic capaci-
ties of MISO systems with quantized beamforming (using code-
books designed with the MSIP criterion) are shown in Fig. 3

when and . For comparison, the capacities
for the two extreme cases of complete CSIT and no CSIT

are added in the figure. The comparative results for the
two competing methods in terms of MSIP also hold for the ca-
pacity measure (results are not shown).

IV. CAPACITY LOSS WITH QUANTIZED FEEDBACK

In this section, we will quantify the effect of quantization
of the beamforming vector with a finite number of bits on the
channel capacity for the i.i.d. MISO channel. With a given
number of feedback (quantization) bits, we want to know how
close we can approach to the performance of the complete
feedback. The capacity loss defined in (6) will be analyzed in
terms of and . The capacity loss is repeated here as follows:

(17)

Since from (13), the capacity loss can be
expressed as

(18)

A. Approximate Density Function of

In (18), note that implies . In order to calcu-
late (18), we need to obtain the conditional density of the inner
product given . For that purpose, we
start with a simpler related random variable, which is described
in the following lemma.

Lemma 1: For and a fixed , the random
variable has a beta distribution with parameters
of and . That is, the density function for is given by

(19)

Similarly, has a beta distribution with parameters
of and

(20)

Proof: See Appendix I.

Now let us look at the conditional density of
given . From the optimum encoding given in (13) or
(14), generally each quantization cell has a complicated shape
with boundaries defined by neighboring code vectors, and the
quantization cells could be all different shapes. This geomet-
rical complexity in the quantization cells makes it difficult to
obtain the exact conditional density for with a closed-form
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Fig. 4. Approximate density ~f (
) (B = 1; 2; . . . ; 6). (a) t = 2, (b) t = 3.

expression. Using intuitive arguments, we now develop an ap-
proximation to this conditional density and in Section IV-B we
provide mathematical insight into the nature of the approxima-
tion.

When is reasonably large, since is uniformly distributed
over , for all , and furthermore the
shapes of quantization cells will be approximately identical. For
analytical tractability, in this paper we constantly consider the
following approximation for the quantization cell:

(21)

for all and some , which will be determined as a function
of . Under large assumption, since , it is reason-
able to assume that for all . We solve for
to satisfy the condition

Here note that with the quantization cell approximation of (21),
when , has the same density as . That is,

for . Then, using the density for which
was derived in Lemma 1, it can be easily shown that

(22)

Although generally there are overlaps in the approximated
quantization cells, the analytical results from the approximation
turn out to be quite accurate even when is small. It should
be mentioned that the quantization cell approximation of (21)
is similar in some sense to those in quantization error analysis
for high-rate VQ in source coding study (for reference see, e.g.,
[19], [20, Ch. 5]). In the high-rate VQ study, a quantization
cell is approximated with the hyper-ellipsoid having the same
volume of the cell. In our case, each quantization cell is approx-
imated to the simple geometrical region defined in (21) having

the same probability as the cell. In [4], Mukkavilli et al. also
considered a similar geometrical region (called spherical cap)
on a constant-norm sphere to obtain a union bound for the area
of no outage region.

With the quantization cell approximation, since the approxi-
mated cells have identical geometrical shape and the proba-
bilities are all equal to , the random variables

given have the same density

for all (23)

where is the indicator function having if and
otherwise. Therefore, we can focus on a particular quantization
cell. As a result, we arrive at the following approximation for
the density function.

Approximate Density: With the quantization cell approxi-
mation described in (21) and (22), the density function for

is approximated by a truncated beta distribution

(24)

Similarly, is approximated by

(25)

The above approximate density will be used to derive analyt-
ical results for the capacity loss (in Section IV-C), the outage
probability (in Section V), and the bit error probability (in Sec-
tion VI). Fig. 4(a) and (b) shows the approximate densities of
for and and various , together with real densities from
simulations using codebooks designed by the MSIP method. We
can see that as increases the distribution of the MSIP value
moves toward one. The approximate density functions follow
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this behavior of the simulation results. And if we look at a par-
ticular approximate density, it is very close to its counterpart
(from simulation) in the area around , but they do not
agree around . This is a result of the quantization cell ap-
proximation.

B. Performance Bounds Using the Approximate Density
Function

Here we quantify the nature of approximation and show that
the quantization cell approximation discussed in Section IV-A
leads to a lower bound on the capacity loss. The following
lemma is important in proving the main result.

Lemma 2: For .
Proof: See Appendix II.

Theorem 1: The capacity loss that is obtained with the
approximate density is a lower bound on the actual capacity
loss associated with the true density . That is

Proof: We can write the capacity loss as an expectation
over and . That is,

(26)

where

Let us define the conditional expectation inside the braces in
(26) by . Note that is a monotonically decreasing
function in . Then, the theorem can be proved as follows (the
integration variable is omitted for simplicity):

(27)

where (27) is because for from
Lemma 2 and is a monotonically decreasing function in .

Theorem 1 can be generalized to any monotonically de-
creasing function in . For example, the outage probability

and the symbol error probability that are obtained using are
also lower bounds on the real performances. Similarly, we can
show that for any monotonically increasing function in , the
approximate density results in an upper bound.

C. Capacity Loss With Quantized Beamforming

Now returning to the original problem of capacity loss which
we recall can be written as

(28)

Using the Taylor series expansion ,
(28) can be expanded as

(29)

where the independence of with , hence with , is used.
First, using (22) and the approximate density given in (25),

we have

(30)

To calculate the first expectation in (29), the density function
for is necessary. It is well known that has a
gamma distribution [21]

(31)

Using this, the expectation is calculated as follows:

(32)

(33)

where is the confluent hypergeometric function
which has the integral representation [22, eq. (9.211.4)]

and is the generalized hypergeometric function [22, eq.
(9.14)] with and . Equation (32) can be easily
obtained with a change variable and (33) is from the
identity [23]
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Fig. 5. Capacity loss due to quantization of beamforming vector (t = 3;B = 1; 2; . . . ; 8). Here “Exact” refers to ~C given in (34). (a) P = 20 dB, (b) P =
4 dB, (c) P = �10 dB.

Putting (30) and (33) into (29), finally we have

(34)

From the expression in (34), we note that goes to zero as
increases to infinity.

1) Approximation to the Capacity Loss: Although the ex-
pression in (34) is quite accurate as will be shown later, it is
difficult to get insights into how the performance changes in
terms of and . Therefore, in this subsection, an approxima-
tion to the capacity loss will be examined. The approximation is
derived from which is given in (7). When
and (called high-resolution and high-SNR assumption),

can be approximated as follows:

(35)

From the SNR expression in (3), we can see that (35) can be
also interpreted as the fractional loss in the received SNR with
quantized beamforming since the fractional loss is given by

SNR

(36)

For the approximated capacity loss, we can simply take the
expectation of using its approximate density
in (25)

(37)

This is also the average fractional loss in SNR

SNR SNR
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D. Numerical Results and Discussion

Fig. 5(a), (b), and (c) shows the capacity loss for MISO sys-
tems when the beamforming vector is quantized with

, at 20, 4, and 10 dB, respectively. In each
part of the figure, the following three results are plotted in bits
per channel use: the exact analytical result given in (34), the
high-resolution and high-SNR approximation given in (37), and
the simulation results using the codebooks designed with the
MSIP method. At high SNR, as shown in Fig. 5(a), the results
from the approximation as well as the exact one are close to the
simulation results. In particular, the exact analytical result
(which is actually a lower bound as discussed in Section IV-B)
and the high-SNR approximation are very tight.

Fig. 5(c) shows the behaviors in low-SNR region. The exact
analytical result follows the simulations results, but the approx-
imation deviates from the simulation results with a slope similar
to that of the simulation curve. This is as expected because in the
approximation, the effect of the term , which
on average is away from in low , was ignored and assumed
to be . Only the dependency of the inner product with re-
spect to the number of quantization bits was taken into account.
As a result, the approximation results in higher values in the ca-
pacity loss. This reconfirms that the approximation holds only
when the SNR is reasonably high.

The numerical and simulation results for the capacity loss are
shown in Fig. 6 for various and . We can see that more quan-
tization bits are required to meet a certain value of the capacity
loss, e.g., , as the dimension increases. Also, the
slope of the curve decreases as increases.

Although very accurate results can be obtained using the
exact analytical expression given in (34), one can gain insights
into the overall behavior through (37)

which is a simple function of and . Similar asymptotic re-
sults, though performance metrics are different, can be found in
[4 (see eqs. (53) and (54))]. It is interesting to compare (37) with
[4, eq. (54)]. The average fractional loss in SNR was approxi-
mated as [4, eq. (54)]

using asymptotic results in [3, eq. (21)], which was obtained
using rate-distortion theory. The two asymptotic expressions are
the same except for different factors in . This difference is be-
cause in [3], the MSE (Euclidean distance) instead of the MSIP
was used when employing rate-distortion theorem for deriving
the asymptotic result.

V. OUTAGE PROBABILITY WITH QUANTIZED FEEDBACK

Another important performance measure for fading channels
is the outage probability, especially when the ergodicity require-
ment (meaning that the transmission time is much
larger than the channel coherence time) cannot be satisfied [24].
In this section, the outage probability studied in [4] is analyzed

Fig. 6. Capacity loss due to quantization of beamforming vector
(t = 2; 3; 4;P = 10 dB; B = 1; 2; . . . ; 8). Here “Exact” refers to ~C
given in (34).

by directly applying the distributions derived in Section IV. The
outage probability for a given transmit power and rate
(bits per channel use) is defined as

It can be rewritten in terms of and as

(38)

where .
Using the approximate density in (24), the conditional

probability in (38) is given by

(39)

where . Then, by averaging (39) with respect
to given in (31), we have a lower bound7 on the outage
probability

(40)

7This claim of lower bound comes from Theorem 1.
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Fig. 7. Outage probability of MISO channels with quantized beamforming
(t=4;R=2 bits per channel use; B=2; 3; 4; 8).

where we used . We define the cumulative distribu-
tion function of as which is given by [21]

(41)

The second integral in (40) can be expressed in the form of
, resulting in

(42)

By using (41), finally we arrive at

(43)

Interestingly, this bound is exactly the same as the one derived
in [4] and our analysis provide an alternate derivation.

Fig. 7 shows the numerical results from (43) for the outage
probability (when , bits per channel use and var-
ious ), together with simulation results using codebook de-
signed by the MSIP method. As can be seen, there is pretty good
agreement between the analytical results and the simulations.

VI. BIT ERROR PROBABILITY WITH QUANTIZED FEEDBACK

Although the capacity loss and the outage probability dis-
cussed in the previous sections are good performance measures
for ideally channel-coded systems, the bit error probability is
also useful in practice. In this section, the effect of quantiza-
tion of the beamforming vector on the bit error probability will
be analyzed. Consider a uncoded MISO system with transmit
beamforming along . The received signal is represented as

where and is the composite channel
gain between the transmit symbol and the received signal . In

this section, we present results for the case of binary signaling
and coherent detection at the receiver. However, we

would like to note that the approach introduced in this section is
general and not limited to the binary case. The decision statistics
is given as

where .
The probability of bit error for a given channel is

(44)

where is the error event, is the -function defined as

as before, and (transmit SNR). Taking
an expectation over channel realizations and noting that two
random variables and are independent, the bit error prob-
ability is given by

(45)

First, we consider the conditional probability of error for a given
denoted by , which is the integral inside the bracket

in (45). Since has the gamma distribution given by (31)

(46)

where

and the last step is well known in the maximal ratio combining
(MRC) and the maximal ratio transmission (MRT) analysis,
e.g., [25], [26]. By taking an average over using the density

derived in (24), we obtain a lower bound on the bit error
probability

(47)
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Fig. 8. Bit error probability of MISO systems with quantized beamforming
(t = 1; 2; 3; 4;B = 2; 4; 8).

where . This can be calculated numerically without
difficulty.

Fig. 8 shows the numerical and the simulation results for the
bit error probability with varying number of transmit antennas

, and quantization bits . The re-
sults for the perfect feedback, i.e., , are also plotted for
comparison. We can see that, as the dimension increases, more
quantization bits are required to get a close performance to the
perfect feedback. Similar behavior was also observed in the pre-
vious section for the capacity loss analysis. The lower bound ap-
pears to be very tight based on the simulation results. A similar
approach for the symbol error probability analysis based on the
geometrical framework presented in [4] can be found in [27].

VII. CONCLUSION

We have investigated the problem of quantization associated
with beamforming in multiple-antenna communication sys-
tems with finite-rate feedback. We proposed a new quantizer
design criterion, namely, MSwIP, and developed a Lloyd-type
quantizer design algorithm. With the MSwIP quantizer design
method, we can design the optimum beamforming codebook
for an arbitrary number of transmit antennas and quantization
bits, and for any spatial correlation structure in channel. To
analyze the performance of MISO systems with quantized
beamforming, the i.i.d. Rayleigh-fading case was considered
and the density function of the squared inner product between

the optimum and the quantized beamforming vector was de-
rived by considering an approximation of the quantization cell.
Then, the density function was used to analyze the capacity
loss due to quantization. An approximation to the capacity
loss was also derived to gain insights into the performance
behavior. The approximation has a simple analytical expression
in terms of the number of transmit antennas and the number
of quantization bits. The power of the approach was further
demonstrated by applying the derived density function to
analyze the outage probability and the bit error probability for
a finite-rate feedback MISO system.

APPENDIX I
PROOF OF LEMMA 1

From assumptions, and is a fixed vector in
. Let us decompose into and its orthogonal complements

where is a scalar and . It is easily shown that
and , and that ,

and they are independent, where means
the gamma distribution with parameters . Since

, can be written as

It is a known fact that, if and are independent
random variables with and , respectively,
then has , the beta distribution with
parameters (see, e.g., [28, Theorem 1.2.3]). By applying
this, we arrive at the desired result . Similarly,
since , .

APPENDIX II
PROOF OF LEMMA 2

Let us define

and

Note that the above sets have the following properties: i)
since . ii) and also

for a small positive . iii)
, similarly, , where

means , and and are the cumulative distribution
functions corresponding to and , respectively.

We claim that

(48)

where is the set difference of and . This
claim can be proved as follows:
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where we used property i) and an identity
. From (48), we have

Using property ii), it can be written as

Remembering that and

By using property iii) and dividing both sides by , we have

Finally, taking a limit , we arrive at .
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