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Abstract

Quadratic permutation polynomial interleavers over integer rings have recently received attention

in practical turbo coding systems from deep space applications to mobile communications. In this

correspondence, a necessary and sufficient condition that determines the least degree inverse of a

quadratic permutation polynomial is proven. Moreover, an algorithm is provided to explicitly compute

the inverse polynomials.
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I. INTRODUCTION

Interleavers for turbo codes have been extensively investigated [1]–[3]. Today the focus on

interleaver constructions is not only for good error correction performance of the corresponding

turbo codes but also for their hardware efficiency with respect to power consumption and speed.

The work in [2] opened the door to a class of polynomial based interleavers. In particular,

quadratic permutation polynomials (QPP) were emphasized because of their simple construction

and analysis. Their performance was shown to be excellent [2], [3]. The practical suitability of

QPP interleavers has been considered in a deep space application [7] and in 3GPP long term

evolution (LTE) [19].

The inverse function for a QPP is also a permutation polynomial (PP) but is not necessarily

a QPP [7]. However, there exists a simple criterion for a QPP to admit a QPP inverse [5]. A

simple rule for finding good QPPs has been suggested in [3]. Some examples in [3] do not have

QPP inverses. Most of QPP interleavers proposed in 3GPP LTE [19] admit a quadratic inverse

with the exception of 35 of them.

In [4], a necessary and sufficient condition that determinesthe least degree inverse of a QPP by

using Chinese remainder theorem and presenting the inversefunction as a power series is given.

As an example, an exact formula that determines the degree ofthe inverse PP is shown when

the degree is no larger than3.

In this correspondence, we provide a necessary and sufficient condition by using linear congru-

ence approach in [6, pp. 24-40] that determines the degree ofthe inverse when the degree is

no larger than50. The condition is characterized by an exact formula and consists of simple

arithmetic comparisons. We further provide an algorithm toexplicitly find the inverse PP(s). The

algorithm is suitable for implementation since it consistsof solving linear congruences.

This correspondence is organized as follows. In section II,we briefly review PPs [10]–[14] over

the integer ringZN and relevant results. The main result is derived in section III, and examples

are given in section IV. Finally, conclusions are discussedin section V.

II. PERMUTATION POLYNOMIAL OVER INTEGER RINGS

In this section, we revisit the relevant facts about PPs and other additional results in number the-

ory to make this paper self-contained. Given an integerN ≥ 2, a polynomialf(x) =
∑K

k=1 fkx
k

(mod N), wheref1, f2, . . . , fK are non-negative integers andK ≥ 1, is said to be a PP over
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ZN when f(x) permutes{0, 1, 2, . . . , N − 1} [12]–[14]. It is immediate that we can use this

constant-free PP without losing generality in our quest foran inverse PP by the Lemma 2.1

in [5].

In this correspondence, let the set of primes beP = {2, 3, 5, ...}. Then an integerN can be

factored asN =
∏

p∈P

pnN,p, wherep’s are distinct primes. In addition,nN,p ≥ 1, for a finite

number ofp andnN,p = 0 otherwise.

Theorem 2.1 ( [2], [5]): Let N =
∏

p∈P

pnN,p and denoteα divides β over Z by α|β. The

necessary and sufficient condition for a quadratic polynomial f(x) = f1x + f2x
2 (mod N) to

be a PP can be divided into two cases.

1) 2|N and4 ∤ N (i.e., nN,2 = 1)

f1 + f2 is odd, gcd(f1, N
2
) = 1 and f2 =

∏

p∈P

pnf,p , nf,p ≥ 1, ∀p such thatp 6= 2 and

nN,p ≥ 1.

2) Either2 ∤ N or 4|N (i.e., nN,2 6= 1)

gcd(f1, N) = 1 andf2 =
∏

p∈P

pnf,p, nf,p ≥ 1, ∀p such thatnN,p ≥ 1.

Theorem 2.2 ( [10]):Let α, β be any integers andN be a positive integer. The linear con-

gruenceαx ≡ β (mod N) has at least one solution if and only ifγ|β, whereγ = gcd(α,N).

If γ|β, then it hasγ mutually incongruent solutions. Letx0 be one solution, then the set of the

solutions is

x0, x0 +
N

γ
, x0 +

2N

γ
, . . . , x0 +

(γ − 1)N

γ

, wherex0 is the unique solution ofα
γ
x ≡ β

γ
(mod N

γ
).

Definition 2.3 ( [13], [14]): Two polynomialsf1(x) =
∑K

k=1 f1,kx
k andf2(x) =

∑K

k=1 f2,kx
k

of degreeK are called congruent polynomials moduloN if f1,k ≡ f2,k (mod N), where1 ≤

k ≤ K and equivalent polynomials moduloN if f1(x) ≡ f2(x) (mod N), where0 ≤ x ≤ N−1.

Definition 2.4 ( [3], [13], [14]): A polynomialz(x) =
∑K

k=1 zkx
k (mod N) is called a non-

trivial zero polynomial of degreeK modulo N if zK 6≡ 0 and z(x) ≡ 0, 0 ≤ x ≤ N − 1.

Specifically,z(x) = 0 is a trivial zero polynomial.

Proposition 2.5 ( [13], [14]): If two polynomials f1(x) and f2(x) are equivalent but not

congruent, there exists a non-trivial null polynomialz(x) such thatf1(x) − f2(x) ≡ z(x)

(mod N).
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Definition 2.6: Let f(x) be a PP. A PP of least degree has a least degree among all equivalent

polynomials off(x).

The following proposition was proposed in [13], [14]. The proof is shown for its simplicity.

Proposition 2.7 ( [13], [14]): Let f(x) =
∑K

k=1 fkx
k (mod N), wherefK 6≡ 0 and K ≥

N . Then there exists an equivalent polynomial off(x) such that the degree of the equivalent

polynomial is less thanN .

Proof: Let z(x) = fK · xK−N ·
∏N−1

k=0 (x − k). Clearly z(x) is a zero polynomial. Let

f̄(x) = f(x)−z(x), thenf̄(x) ≡ f(x) butdeg{f̄(x)} < deg{f(x)}. By applying this repeatedly,

an equivalent polynomial of degree equal toN − 1 can be found.

Proposition 2.8 ( [6]): Let f(x) = f1x + f2x
2 be a QPP and letk be an integer such that

k ≥ 1. Let us takef(x) such that2 ∤ f1 when2|N and4 ∤ N . Thenf1 + kf2 is an unit for all

k ≥ 1, i.e., f1 + kf2 is invertible and 1
f1+kf2

is well defined.

Proof: By Theorem 2.2, an elementf1 + kf2 in integer ringsZN is an unit if and only if

gcd(f1 + kf2, N) = 1. We show thatgcd(f1 + kf2, N) = 1.

1) 2|N and4 ∤ N (i.e., nN,2 = 1)

In this case there exist two equivalent QPPs [9], i.e.,f1x+f2x
2 and(f1+ N

2
)x+(f2+

N
2
)x2,

where2 ∤ f1. Let us take a polynomialf(x) = f1x + f2x
2 such that2 ∤ f1. Suppose that

gcd(f1 + kf2, N) 6= 1. Then there exists a primep such thatp|(f1 + kf2) and p|N . By

Theorem 2.1, ifp|N , thenp|f2 but p ∤ f1. A contradiction.

2) Either2 ∤ N or 4|N (i.e., nN,2 6= 1)

In this case, there exist one (if2 ∤ N) or two (if 4|N) equivalent QPPs [9]. In either case,

by Theorem 2.1 and a similar argument in (1),gcd(f1 + kf2, N) = 1.

Since the inverse of only one of the equivalent polynomials is sufficient for our purposes,f(x) =

f1x+ f2x
2 such that2 ∤ f1 will be considered in the rest of the correspondence. The following

corollary is an extension of Proposition 2.8.

Corollary 2.9: Let f1, f2 and N be the integers in Theorem 2.1 and letk, k1 and k2 be

integers such that1 ≤ k1 ≤ k2. Let us takef(x) such that2 ∤ f1 when 2|N and 4 ∤ N . Then

gcd{
∏k2

k=k1
(f1 + kf2), N} is an unit.

Proof: This is a direct consequence of Proposition 2.8.
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III. I NVERSES OFQUADRATIC PERMUTATION POLYNOMIALS

In this section, we derive a necessary and sufficient condition for a QPP to admit a least degree

inverse in Theorem 3.10 (main Theorem). We also explicitly find the inverses in Algorithm I.

This section is organized as follows. We first show that the problem of finding inverse PP(s)

of least degree is equivalent to solve a system of linear congruences. Then we show that the

inverses can be found by factoring the matrix for a system of linear congruences and solving it.

We also show that solving the system of linear congruences can be much simplified and finally,

by showing the number and the form of zero polynomials, we findall the inverses of a QPP.

Lemma 3.1:Let f(x) = f1x+f2x
2 (mod N) be a QPP. Then there exists at least one inverse

g(x). Further, finding all inverse PP(s) up to degreeN − 1 is equivalent to solving a system of

linear congruences,

Ag ≡ b (mod N),

where

ai,j = (if1 + i2f2)
j, 1 ≤ i, j ≤ N − 1,

g = [g1, g2, ..., gN−1]
T , and b = [b1, b2, ..., bN−1]

T = [1, 2, ..., N − 1]T .

Proof: Since the set of PPs forms a group under function composition, the existence of an

inverse for a QPP is guaranteed [7], [15]. Letg(x) be an inverse PP off(x) and suppose that

deg{g(x)} ≥ N . Then by Proposition 2.7, it can be reduced to an equivalent polynomial of

degree less thanN .

Sinceg(x) is an inverse,(g◦f)(x) ≡ x, where0 ≤ x ≤ N−1. The equivalence of(g◦f)(x) ≡ x

andAg ≡ b is shown by evaluating(g ◦ f)(x) =
∑N−1

k=1 gk(f1x + f2x
2)k ≡ x at each point

1 ≤ x ≤ N − 1. Note that(g ◦ f)(0) ≡ 0 trivially holds. Consequently, solvingAg ≡ b is

equivalent to finding all the inverse PP(s) up to degreeN−1. Since the number of inverse PP(s)

up to degreeN − 1 is finite, there exists a least degree inverse.

Lemma 3.2:Let A be anN − 1 by N − 1 matrix in Lemma 3.1. ThenA = LDU, whereL,

D andU areN − 1 by N − 1 matrices as shown below.
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L is anN − 1 by N − 1 lower triangular matrix such that

li,j =







(
i

j

)
·
∏i+j−1

k=i (f1 + kf2) if i ≥ j

0 otherwise
.

D is anN − 1 by N − 1 diagonal matrix such thatdi,i = i!, where1 ≤ i ≤ N − 1.

U is anN − 1 by N − 1 upper triangular matrix such that

ui,j =







1 if i = j

q(i,j)V(i,j)r(j) if i < j

0 otherwise

.

q(i,j) is an1 by j matrix such thatq(i,j)k = (if1 + i2f2)
k−1, where1 ≤ k ≤ j.

V(i,j) is a j by j upper triangular matrix such that

V(i,j) =







I if i = 1

∏1
k=i−1W

(k,j) otherwise

andr(j) = [0, 0, ..., 0, 1]T is a j by 1 matrix.

W(k,j) is a j by j upper triangular matrix such that

w(k,j)
m,n =







0 if m ≥ n

(kf1 + k2f2)
n−m−1 otherwise

,

where1 ≤ m,n ≤ j.

Proof: See Appendix A.

The factorization in Lemma 3.2 is similar toLDU decomposition except thatL has not1s on

the diagonal [8].

Lemma 3.3 ( [17], [18]): Let A, L, D andU be the matrices in Lemma 3.2. ThenAg ≡

b ⇔ Dh ≡ e, whereh ≡ Ug ande ≡ L−1b.

Let us identifyN − 1 by 1 matricesg = [g1, g2, ..., gN−1]
T , h = [h1, h2, ..., hN−1]

T with g(x) =
∑N−1

k=1 gkx
k, h(x) =

∑N−1
k=1 hkx

k, respectively. Then the degree and the number ofg andh are

equal.

Proof: Since all the diagonal elements ofL are units by Corollary 2.9,L is an unit [11].

ThusAg ≡ b ⇔ DUg ≡ L−1b. Let h be anN − 1 by 1 matrix such thath ≡ Ug. SinceU

is also an unit, the degree and the number ofg andh are equal [17], [18].
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In the following, two corollaries of Lemma 3.3 are shown.

Corollary 3.4: The linear congruenceDh ≡ e has at least one solution, i.e., there existhk’s

such thatdk,k · hk ≡ ek, where1 ≤ k ≤ N − 1.

Proof: Suppose that for somek, there does not existhk such thatdk,k ·hk ≡ ek. Then there

does not exist a solution ofDh ≡ e. By Lemma 3.3, there does not exist a solution ofAg ≡ b,

which contradicts Lemma 3.1.

Corollary 3.5: Let us consider the linear congruenceAg ≡ b. There exists a least degree

inverseg such thatdeg{g} = K if and only if eK 6≡ 0 andek ≡ 0, whereK + 1 ≤ k ≤ N − 1.

Proof:

( =⇒ )

Let g be a least degree inverse such thatdeg{g} = K. By Lemma 3.3, the degree ofh is also

K, i.e., hK 6≡ 0 and hk ≡ 0, whereK + 1 ≤ k ≤ N − 1. SinceDh ≡ e, ek ≡ 0, where

K + 1 ≤ k ≤ N − 1. Suppose thateK ≡ 0, i.e., dK,K · hK ≡ 0. Let us define anN − 1 by 1

matrix h′ such that

h′

k =







hk, 1 ≤ k ≤ K − 1

0, K ≤ k ≤ N − 1
.

Thenh′ also satisfies the linear congruenceDh′ ≡ e. Let g′ be anN − 1 by 1 matrix such that

h′ ≡ Ug′, theng′ is also an inverse. Sincedeg {h′} = deg {g′} < K by Lemma 3.3,g cannot

be a polynomial of least degree. This contradicts the assumption. Consequently,eK 6≡ 0.

( ⇐= )

(1) Suppose thatdeg {g} > K. Then by Lemma 3.3,deg {h} = deg {g} > K, whereh ≡ Ug.

Let us define anN − 1 by 1 matrix h′ such that

h′

k =







hk, 1 ≤ k ≤ K

0, K + 1 ≤ k ≤ N − 1
.

Then deg {h′} = K and h′ also satisfies the linear congruenceDh′ ≡ e. Then again by

Lemma 3.3,deg {g′} = K, whereh′ ≡ Ug′. Sincedeg {g′} = K < deg {g} andAg′ ≡ b, g

cannot be a polynomial of least degree.

(2) Suppose thatdeg {g} < K. SincegK ≡ 0, hK ≡ 0 by Lemma 3.3. Consequently,dK,K ·hK ≡

eK ≡ 0. This contradicts the assumptioneK 6≡ 0, thusdeg {g} cannot be less thanK.

By (1) and (2),deg {g} = K.



JAN. 23, 2011 8

In Lemma 3.3, since all the entries ofL, L−1, D, U and e can be computed for the given

f(x) = f1x + f2x
2, finding the inverse off(x) reduces to solvingN − 1 linear congruences

Dh ≡ e andh ≡ Ug. However, the cost of computation for the matrices can be substantial for

a largeN .

The computational complexity is shown to be significantly reduced by the following lemma and

corollary. The following lemma shows that the degree of the least degree inverse has an upper

bound.

Lemma 3.6 ( [7]): Let N =
∏

p∈P

pnN,p. If f(x) is a QPP, then the inverse PP has degree no

larger thanmax
p∈P

nN,p.

Proof: Since the set of PPs is a finite group as shown in Lemma 3.1, there exists an integer

m called an order such that them-fold composition off(x) with itself is an inverse PP [15].

Let f (n)(x) be n-fold composition off(x) with itself. It is shown that the coefficient of the

degreek term off (n)(x) is divided byfk−1
2 as follows. Forf (1)(x), it is clear thatf2 divides the

coefficient of the degree2 term. If the coefficient of the degreek term in f (n)(x) are divisible

by fk−1
2 , then the coefficient of the degreek term in f (n+1)(x) = f1(f

(n)(x)) + f2(f
(n)(x))2 are

also divisible byfk−1
2 . By induction, the coefficient of the degreek term of f (n)(x) is divided

by fk−1
2 .

Supposek ≥ max
p∈P

nN,p + 1. Sincef2 is divisible by the factors ofN , N |fk−1
2 , i.e., fk−1

2 ≡

0. Consequently, there exists an inversef (n)(x) that contains no terms of degree larger than

max
p∈P

nN,p.

Corollary 3.7: Let us consider the linear congruenceDh ≡ e in Lemma 3.3.

For all k such thatk ≥ max
p∈P

nN,p + 1, ek ≡ 0.

Proof:

Let the degree of the least degree inverse beK. Since there exists an inverse such that the

degree of the inverse is no larger thanmax
p∈P

nN,p by Lemma 3.6,K ≤ max
p∈P

nN,p. Consequently,

by Corollary 3.5,ek ≡ 0, whereK + 1 ≤ max
p∈P

nN,p + 1 ≤ k ≤ N − 1.

By Corollary 3.7, onlymax
p∈P

nN,p by max
p∈P

nN,p leading submatrices (the upper-left corners of

matrices) ofL, L−1, D, U and amax
p∈P

nN,p by 1 leading submatrix ofe are required to be

computed for finding the inverse of least degree. For example, letN = 218·32·5. Thenmax
p∈P

nN,p =

max{18, 2, 1} = 18, thus only18 by 18 leading submatrices ofL, L−1, D, U and a18 by 1

leading submatrix ofe need to be computed instead ofN − 1 by N − 1 submatrices ofL, L−1,
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D, U and aN − 1 by 1 submatrix ofe.

In the following proposition and corollary, it is shown thatthe computational complexity for

the matrices can be further reduced.

Proposition 3.8:Let e be anN − 1 by 1 matrix in Lemma 3.3. Let alsoCk, wherek ≥ 0,

be a sequence of integers known as Catalan numbers. Thekth Catalan numbers are given by

Ck =
1

k + 1

(
2k

k

)

=
(2k)!

(k + 1)! · k!
.

A recurrence relation forCk is

Ck =
2(2k − 1)

k + 1
· Ck−1, k ≥ 2,

i.e., C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132..... Then,

ek ≡
k! · Ck−1 · (−f2)

k−1

∏2k−1
m=1 (f1 +mf2)

,

where1 ≤ k ≤ 50.

Proof: Let L, e andb be the matrices in Lemma 3.3. Let also thek by k leading submatrix

of L, k by 1 leading submatrices ofe andb beL′, e′ andb′ respectively.

The following statement,b′ = L′e′, was verified to be correct for1 ≤ k ≤ 50.

bk = k =

k∑

n=1

lk,n · en

=

k∑

n=1

[{(
k

n

)

·

k+n−1∏

m=k

(f1 +mf2)

}

·

{
n! · Cn−1 · (−f2)

n−1

∏2n−1
m=1 (f1 +mf2)

}]

=
k∑

n=1

{∏k+n−1
m=k (f1 +mf2)

∏2n−1
m=1 (f1 +mf2)

·
k!

(k − n)!
· Cn−1 · (−f2)

n−1

}

.

Sinceb′ = L′e′, it is clear thatb′ ≡ L′e′. Consequently,e′ ≡ L′−1
b′ for 1 ≤ k ≤ 50.

Corollary 3.9: Let N =
∏

p∈P

pnN,p ≤ 250 and let alsoe be anN−1 by 1 matrix in Lemma 3.3.

If ek ≡ 0 for somek, thenen ≡ 0 for n ≥ k + 1.

Proof: Let N =
∏

p∈P

pnN,p ≤ 250, then clearlymax
p∈P

nN,p ≤ 50. By Lemma 3.6 and Proposi-

tion 3.8,

ek ≡







k!·C(k−1)·(−f2)k−1

∏2k−1
m=1 (f1+mf2)

, 1 ≤ k ≤ 50

0, 51 ≤ k ≤ N − 1
.
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Sincef1+f2 is an unit,e1 ≡ 1
f1+f2

6≡ 0. Suppose thatek ≡ 0 for somek. SinceCk =
2(2k−1)
k+1

·Ck−1

for k ≥ 2, (k+1)!·Ck

k!·Ck−1
= 2(2k − 1). Thusek+1 =

2(2k−1)·(−f2)·ek∏2k+1
m=2k(f1+mf2)

. Consequently,ek+1 ≡ 0 if ek ≡ 0

for somek. By induction, if ek ≡ 0 for somek, en ≡ 0, for n ≥ k + 1.

We are not aware of a closed-form expression ofe when k is larger than50. However, the

investigation on the inverse of a QPP is not restricted underthis condition since the interleaver

sizeN is far less than250 in practice. By Proposition 3.8 and Corollary 3.9, matricesL and

L−1 need not to be computed for solvingDh ≡ e. Combining Lemma 3.1, 3.2, Proposition 3.8

and Corollary 3.9 we state the main theorem.

Theorem 3.10 (main Theorem):Let N =
∏

p∈P

pnN,p ≤ 250. The necessary and sufficient con-

dition for a QPP to admit a least degree inverseg such thatdeg{g} = K is finding a smallest

integerK ≥ 1 such that

(K + 1)! · CK · fK
2 ≡ 0 mod N

and the number of inverse PP(s) is

K∏

k=1

gcd(k!, N).

Let us slightly abuse the notation in this theorem (and in examples and Algorithm I) by writing

D, U, g, h ande for K by K leading submatricesD, U andK by 1 leading submatricesg,

h, e, respectively. The inverse PP(s) can be found by using either (1) or (2).

(1) Find allh’s such thatDh ≡ e and correspondingg’s such thath ≡ Ug.

(2) Find ah such thathk ≡ Ck·(−f2)k−1

∏2k−1
m=1 (f1+mf2)

, correspondingg and add it
∏K

k=1 gcd(k!, N) zero

polynomials.

Zero polynomials of degreeK are
∑K

k=1

{
N

gcd (k!,N)
· τk ·

∏k−1
m=0(x − m)

}

, where 0 ≤ τk ≤

gcd (k!, N)− 1.

Proof: The necessary and sufficient condition is shown by combiningCorollaries 3.5 and

3.9. By Corollary 3.5,g is an inverse of least degree such thatdeg{g} = K if and only if

eK 6≡ 0 and ek ≡ 0 for K + 1 ≤ k ≤ N − 1. By Corollary 3.9, if ek ≡ 0 for somek,

then en ≡ 0 for n ≥ k + 1. Thus g is a least degree inverse such thatdeg{g} = K if and

only if eK 6≡ 0 and eK+1 ≡ 0. Sincee1 6≡ 0, finding the degree of the least degree inverse

is equivalent to finding the smallestK such thateK+1 ≡ 0. Consequently, the necessary and
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sufficient condition1 for a QPP to admit a least degree inverse is(K + 1)! · CK · fK
2 ≡ 0 since

eK+1 ≡
(K+1)!·CK ·(−f2)K
∏2K+1

m=1 (f1+mf2)
≡ 0 ⇔ (K + 1)! · CK · fK

2 ≡ 0.

The number of solutions of linear congruencesDh ≡ e is
∏K

k=1 gcd(k!, N), sincekth linear

congruence isdk,k · hk ≡ ek and gcd(dk,k, N) = gcd(k!, N). By Lemma 3.3, the number of

solutions ofAg ≡ b is also
∏K

k=1 gcd(k!, N).

The complete solution set can be obtained by exhaustively solving Dh ≡ e and h ≡ Ug.

An alternative is to find one solutionh and g such thatDh ≡ e, h ≡ Ug and add it zero

polynomials of degreeK. Considerkth linear congruenceDh ≡ e, i.e., dk,k · hk ≡ ek. Clearly

hk =
Ck·(−f2)k−1

∏2k−1
m=1 (f1+mf2)

is a solution ofdk,k · hk ≡ ek, i.e., k! · hk ≡ k!·Ck−1·(−f2)k−1

∏2k−1
m=1 (f1+mf2)

. The number and

form of zero polynomials are shown in Appendix B.

IV. EXAMPLES

We present four examples to illustrate the necessary and sufficient conditions of Theorem 3.10.

The first and second examples consider interleavers that wasinvestigated in [3] and [19]. The

third example shows the exact least degree for inverse polynomials can be less than an upper

bound derived in [7] and the fourth example shows the necessary and sufficient condition for a

QPP to admit a least degree inverseg such thatdeg {g} = 2, 3, 4 and5.

All good quadratic interleavers found in Table II admit low degree quadratic inverses. This

observation may not be completely surprising because [2], [3] shows that good interleavers

should require the second degree coefficient to be relatively large (which works toward satisfying

Theorem 3.10) but bounded by some constraints.

1) Let f(x) = f1x+ f2x
2 mod N , whereN = 1504 = 25 · 47, f1 = 23 andf2 = 2 · 47. The

smallestK such that(K + 1)! · CK · fK
2 ≡ 0 is 3.

By Lemma 3.2,3 by 3 matricesD, U and a3 by 1 matrix e are computed as follows.

D =










1 0 0

0 2 0

0 0 6










,U =










1 117 153

0 1 539

0 0 1










, e =










797

188

752










1If K = 1, f(x) is a linear PP.
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Let us now exhaustively solve the equationDh ≡ e (mod 1504). From d1,1 · h1 ≡ e1,

d2,2 · h2 ≡ e2, d3,3 · h3 ≡ e3, we can obtainh1 = 797, h2 = 94, 846 andh3 = 376, 1128,

respectively. Sincegcd (1!, N) = 1, gcd (2!, N) = 2 and gcd (3!, N) = 2, the number of

solutions is4. Let us chooseh1 = 797, h2 = 94 andh3 = 376. We obtaing3 = h3 = 376,

g2 = h2 − u23 · g3 (mod 1504) = 470 andg1 = h1 − u12 · g2 − u13 · g3 (mod 1504) = 1079

by solvingUg ≡ h (mod 1504).

2) Let N = 6016 = 27 · 47, f1 = 23 and f2 = 2 · 47. The least degree is4. A 4 by 4 matrix

U and a4 by 1 matrix e are computed as follows.

U =













1 117 1657 1357

0 1 539 507

0 0 1 1454

0 0 0 1













, e =













3805

188

752

3008













,

Let us computehk such thathk = Ck·(−f2)k−1

∏2k−1
m=1 (f1+mf2)

for eachk. Thenh = [3805, 94, 4136, 4888]T

andg = [1831, 3854, 1880, 4888]T .

3) Let N = 224, f1 = 26119 andf2 = 2 · 3 · 41 · 179 The least degreeK is 12, which shows

the upper bound24 obtained by the technique in [7] is not tight.2

4) The necessary and sufficient condition for a QPP to admit a least degree inverseg such

that deg {g} = K = 2, 3, 4, 5 is 12f 2
2 ≡ 0, 120f 3

2 ≡ 0, 1680f 4
2 ≡ 0 and 30240f 5

2 ≡ 0,

respectively. This formula is also shown in [4], [5] forK = 2 and in [4] forK = 3.

188 QPP based interleavers have been proposed in 3GPP LTE [19]. Most of the interleavers

proposed in [19] admit a quadratic inverse with the exception of 35 of them. In Table II, all of

the interleavers that do not admit quadratic inverses are listed with their respective inverse PPs

of least degree computed using Algorithm I.

2An inverseg(x) is 7612343x+4897586x2+352440x3+2867432x4+13756448x5+13890368x6+915200x7+2679424x8+

6846976x9 + 5217280x10 + 53248x11 + 1478656x12 .
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TABLE I

ALGORITHM 1

An algorithm for finding the inverse PP(s) of least degree fora QPPf(x) = f1x+ f2x
2 (mod N)

1. If 2|N , 4 ∤ N and2|f1, let f(x) be such thatf(x) = (f1 +
N
2 )x + (f1 +

N
2 )x

2.

2. Find the smallest integerK ≥ 1 such that(K + 1)! · CK · fK
2 ≡ 0, whereC0 = 1 andCk = 1

k+1

(
2k
k

)
.

Then, the least degree of the inverse PP(s) isK.

3. ComputeK by K matricesD, U in Lemma 3.2 andK by 1 matrix e in Proposition 3.8.

4. There exist two methods for finding the solution set ofAg ≡ b ⇔ Dh ≡ e,h ≡ Ug.

(1) All the h’s andg’s can be found by solvingK linear congruencesDh ≡ e andh ≡ Ug.

g’s can be computed by by back-substitution.

Note thatgK = hK andgk = hk −
∑K

m=k+1 uk,m · gm for 1 ≤ k ≤ K − 1.

(2) Find one inverse and add it zero polynomials of degreeK.

Computehk = Ck·(−f2)
k−1

∏
2k−1

m=1
(f1+mf2)

for 1 ≤ k ≤ K and correspondingg such thath ≡ Ug.

ConvertK by 1 matrix g into a polynomial and add itz(x) =
∑K

k=1

{
N

gcd (k!,N) · τk ·
∏k−1

m=0(x−m)
}

,

where1 ≤ τk ≤ gcd(k!, N)− 1.

V. CONCLUSION

We derived in Theorem 3.10 a necessary and sufficient condition to determine the least degree

inverse for a QPP. We also provided an algorithm to explicitly compute the inverse PP(s).

188 QPP interleavers were proposed in 3GPP LTE [19]. Most of the QPP interleavers in [19]

admit a QPP inverse. We applied the theory in this correspondence to tabulate all inverse PPs

of degree larger than two. Further, it was shown that inverses of good interleavers in [19] have

low degrees and a possible explanation is given.
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TABLE II

INVERSEPPS OF LEAST DEGREE FOR3GPP LTE INTERLEAVERS WITHOUTQUADRATIC INVERSES

length QPP An Inverse PP of Least Degree length QPP An Inverse PP of Least Degree

928 15x+ 58x2 31x+ 290x2 + 232x3 4544 357x+ 142x2 4509x + 994x2 + 2840x3

1056 17x+ 66x2 1025x + 726x2 + 792x3 4672 37x+ 146x2 2557x + 1022x2 + 4088x3

1184 19x+ 74x2 779x + 74x2 + 296x3 4736 71x+ 444x2 2935x + 3996x2 + 3552x3

1248 19x+ 78x2 427x + 78x2 + 936x3 4928 39x+ 462x2 1927x + 1078x2 + 616x3

1312 21x+ 82x2 781x+ 574x2 + 984x3 4992 127x+ 234x2 511x+ 2730x2 + 4056x3 + 2184x4

1376 21x+ 86x2 557x+ 602x2 + 344x3 5056 39x+ 158x2 3079x + 2054x2 + 1896x3

1504 49x+ 846x2 353x+ 282x2 + 376x3 5184 31x+ 96x2 3679x + 1632x2 + 1152x3

1632 25x+ 102x2 1273x + 306x2 + 408x3 5248 113x+ 902x2 2833x + 410x2 + 4264x3 + 328x4

1696 55x+ 954x2 663x+ 530x2 + 424x3 5312 41x+ 166x2 3401x + 498x2 + 3320x3

1760 27x+ 110x2 163x + 990x2 + 1320x3 5440 43x+ 170x2 1107x + 1530x2 + 680x3

1824 29x+ 114x2 1541x + 1710x2 + 1368x3 5504 21x+ 86x2 2621x + 5074x2 + 1032x3 + 5160x4

1888 45x+ 354x2 21x+ 1534x2 + 472x3 5568 43x+ 174x2 1651x + 1566x2 + 4872x3

1952 59x+ 610x2 579x + 1586x2 + 488x3 5696 45x+ 178x2 3829x + 5518x2 + 4984x3

2112 17x+ 66x2 1025x + 1782x2 + 792x3 5824 89x+ 182x2 409x + 3458x2 + 3640x3

2944 45x+ 92x2 1701x + 1748x2 + 2208x3 5952 47x+ 186x2 95x+ 930x2 + 3720x3

4160 33x+ 130x2 3057x + 1430x2 + 1560x3 6016 23x+ 94x2 1831x + 3854x2 + 1880x3 + 4888x4

4288 33x+ 134x2 3281x + 1474x2 + 2680x3 6080 47x+ 190x2 2943x + 950x2 + 2280x3

4416 35x+ 138x2 347x + 2346x2 + 552x3

APPENDIX

(A) [Lemma 3.2]

We use two-fold induction and proveA = LDU by showing that column-reduced form ofA

is equivalent toLD.

Let us define anN − 1 by N − 1 elementary matrixT(i,j) such that

t(i,j)m,n =







1 if m = n

−ui,j if m = i, n = j

0 otherwise

,

where1 ≤ i ≤ j − 1, 2 ≤ j ≤ N − 1 and1 ≤ m,n ≤ N − 1.

Let T = T(1,2) ·T(1,3) ·T(2,3) · · ·T(1,N−1) · · ·T(N−2,N−1), then it is easily verified thatT = U−1.

Let us also defineN − 1 by N − 1 lower triangular matricesL(i,j) such that

L(i,j) = AT(1,2) ·T(1,3) ·T(2,3) · · ·T(1,j) · · ·T(i−1,j)T(i,j), i.e.,
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L(i,j) =







L(j−1,j)T(1,j) if i = 1

L(i−1,j)T(i,j) if 2 ≤ i ≤ j − 1

SinceU is an unit,A = LDU if and only if

AU−1 = AT = AT(1,2) ·T(1,3) ·T(2,3) · · ·T(i,j)
︸ ︷︷ ︸

L(i,j)

· · ·T(1,N−1) · · ·T(N−2,N−1)

= L(N−2,N−1) = LD. (1)

We use induction onj and prove eq. (1) by showing thatL(j−1,j) is as follows.

l(j−1,j)
m,n =







n! · lm,n if 1 ≤ n ≤ j

am,n if j + 1 ≤ n ≤ N − 1

. (2)

Upon completion of column reduction,j = N − 1, thus eq. (1) holds.

We first show that eq. (2) holds forj = 2.

By definition,L(1,2) = AT(1,2). Sincet(1,2)1,2 = −u1,2 andu1,2 = q(1,2)V(1,2)r(2) = f1 + f2,

l
(1,2)
m,2 = −u1,2 · am,1 + am,2

= −(f1 + f2) · (mf1 +m2f2) + (mf1 +m2f2)
2

= (mf1 +m2f2) · {(m− 1)f1 + (m− 1)(m+ 1)f2}

= (m− 1) ·m · (f1 + f2) · {f1 + (m+ 1)f2}

Consequently,

l
(1,2)
m,2 =







0 if m = 1

2! · lm,2 if m ≥ 2

Thus eq. (2) holds forj = 2. Suppose now that eq. (2) holds forj ≥ 2. For eachj, we use

induction oni and show that eq. (3) holds. Upon completion of induction oni, we show eq. (2)

holds for j + 1.

l
(i,j+1)
m,j+1 =

[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

· q(m,j+1)V(i+1,j+1)r(j+1) (3)
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In the following,L(i,j+1) is shown below in matrix form.

























col1 col2 · · · colj colj+1 colj+2 · · · colN−1

low1 1! · l1,1 0 . . . 0 0 a1,j+2 . . . a1,N−1

low2 1! · l2,1 2! · l2,2 . . . 0 0 a2,j+2 . . . a2,N−1

...
...

...
. . .

...
...

...
. . .

...

lowi 1! · li,1 2! · li,2 . . . 0 l
(i,j+1)
i,j+1 = 0 ai,j+2 . . . ai,N−1

lowi+1 1! · li+1,1 2! · li+1,2 . . . 0 l
(i,j+1)
i+1,j+1 ai+1,j+2 . . . ai+1,N−1

...
...

...
. . .

...
...

...
...

...

lowj 1! · lj,1 2! · lj,2 . . . j! · lj,j l
(i,j+1)
j,j+1 aj,j+2 . . . aj,N−1

...
...

...
. . .

...
...

...
. . .

...

lowN−1 1! · lN−1,1 2! · lN−1,2 . . . j! · lN−1,j l
(i,j+1)
N−1,j+1 aN−1,j+2 . . . aN−1,N−1

























The elementary matrixT(1,j+1) subtractsu1,j+1 times column1 from columnj + 1 of L(j−1,j).

We show thatL(j−1,j) multiplied byT(1,j+1) leaves other columns unchanged except the column

j + 1 and creates a zero in the(1, j + 1) position ofL(1,j+1) = L(j−1,j)T(1,j+1).

When i = 1, eq. (3) holds, since

l
(1,j+1)
m,j+1 = −u1,j+1 · l

(j−1,j)
m,1 + l

(j−1,j)
m,j+1

= −u1,j+1 · 1! · lm,1 + am,j+1

= −q(1,j+1)V(1,j+1)r(j+1) ·

(
m

1

)

(f1 +mf2) + (mf1 +m2f2)
j+1

= −(f1 + f2)
j · (mf1 +m2f2) + (mf1 +m2f2)

j+1

= (mf1 +m2f2) ·
{

(mf1 +m2f2)
j − (f1 + f2)

j
}

= (mf1 +m2f2) ·
{

(m− 1)f1 + (m− 1)(m+ 1)f2

}

·

j−1
∑

k=0

{

(mf1 +m2f2)
j−1−k · (f1 + f2)

k
}

= m(m− 1)(f1 +mf2){f1 + (m+ 1)f2} · q
(m,j+1)W(1,j+1)r(j+1)

=
[ 1∏

k=0

(m− k){f1 + (m+ k)f2}
]

· q(m,j+1)V(2,j+1)r(j+1).

Thus l(1,j+1)
1,j+1 = 0 as desired.

Suppose now that eq. (3) holds fori. T(i+1,j+1) subtractsui+1,j+1 times columni+1 from column

j + 1 of L(i,j+1), where2 ≤ i ≤ j. In the following, it is shown that thatL(i,j+1) multiplied by

T(i+1,j+1) leaves other columns unchanged except the columnj + 1 and creates a zero in the
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(i+ 1, j + 1) position ofL(i+1,j+1) = L(i,j+1)T(i+1,j+1).

l
(i+1,j+1)
m,j+1 = −ui+1,j+1 · l

(i,j+1)
m,i+1 + l

(i,j+1)
m,j+1

= −ui+1,j+1 · (i+ 1)! · lm,i+1 + l
(i,j+1)
m,j+1

= −q(i+1,j+1)V(i+1,j+1)r(j+1) · (i+ 1)! ·

(
m

i+ 1

)

·
m+i∏

k=m

(f1 + kf2) +

[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

· q(m,j+1)V(i+1,j+1)r(j+1)

= −q(i+1,j+1)V(i+1,j+1)r(j+1) ·
[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

+

[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

· q(m,j+1)V(i+1,j+1)r(j+1)

=
[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

· {q(m,j+1) − q(i+1,j+1)}V(i+1,j+1)r(j+1).

q(m,j+1) − q(i+1,j+1)

=
[

1, mf1 +m2f2, ..., (mf1 +m2f2)
j
]

−
[

1, (i+ 1)f1 + (i+ 1)2f2, ..., {(i+ 1)f1 + (i+ 1)2f2}
j
]

= {m− (i+ 1)}{f1 + (m+ i+ 1)f2} ·

[

0, 1, m(f1 +mf2) + (i+ 1){f1 + (i+ 1)f2}, ...,

j−1
∑

n=0

{m(f1 +mf2)}
j−1−n{(i+ 1)(f1 + (i+ 1)f2)}

n
]

= {m− (i+ 1)}{f1 + (m+ i+ 1)f2} · q
(m,j+1)W(i+1,j+1).

Thus,

l
(i+1,j+1)
m,j+1

=
[ i∏

k=0

(m− k){f1 + (m+ k)f2}
]

· {m− (i+ 1)}{f1 + (m+ i+ 1)f2} ·

q(m,j+1)W(i+1,j+1)V(i+1,j+1)r(j+1)

=
i+1∏

k=0

(m− k){f1 + (m+ k)f2} · q
(m,j+1)V(i+2,j+1)r(j+1)
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Consequently,l(i+1,j+1)
i+1,j+1 = 0 and eq. (3) holds fori+ 1.

We now show that eq. (2) holds forj + 1. Let i = j in eq. (3). Then

q(m,j+1)V(j+1,j+1)

=
[

1, mf1 +m2f2, ..., (mf1 +m2f2)
j
]

·W(j,j+1)W(j−1,j+1)W(j−2,j+1) · · ·W(1,j+1)

=
[

0, 1, ...] ·W(j−1,j+1)W(j−2,j+1) · · ·W(1,j+1) ·

=
[

0, 0, 1, ...] ·W(j−2,j+1) · · ·W(1,j+1)

· · ·

= [0, 0, ..., 1].

Thusq(m,j+1)V(j+1,j+1)r(j+1) = 1. Consequently,l(j,j+1)
m,j+1 = 0, wherem ≤ j and

l
(j,j+1)
m,j+1 =

j
∏

k=0

(m− k){f1 + (m+ k)f2}

= (j + 1)! ·

(
m

j + 1

)

·

m+j
∏

k=m

(f1 + kf2)

= (j + 1)! · lm,j+1,

wherej + 1 ≤ m ≤ N − 1. Consequently eq. (2) holds forj + 1.

(B) [The number and the form of zero polynomials of degreeK]

We show the number and the explicit form of zero polynomials of degreeK, whereK ≤ N−1.3

In Lemma A.1, the necessary and sufficient conditions for a polynomial to be a zero polynomial

is shown and in Lemma A.2 and A.3, the number and the explicit form of zero polynomials of

degreeK are derived by using Lemma A.1.

Let us definezn(x), where0 ≤ x ≤ N − 1 as follows.

zn(x) ≡







z(x) =
∑K

k=1 zkx
k if n = 0

zn−1(x+ 1 mod N)− zn−1(x mod N) if 1 ≤ n ≤ K

.

Lemma A.1:The following statements are equivalent.

(1) z(x) ≡ 0,where0 ≤ x ≤ N − 1.

3A different proof is shown in [16, pp. 245] and [13] for the explicit form of zero polynomials.
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(2) z(x) ≡ 0,where0 ≤ x ≤ K.

(3) zn(0) ≡ 0,where0 ≤ n ≤ K.

Proof:

( (1) =⇒ (2) )

Trivial.

( (2) =⇒ (3) )

It is easily shown by induction that ifzn(x) ≡ 0, where0 ≤ x ≤ K − n, then zn+1(0) ≡ 0,

where0 ≤ x ≤ K − (n+ 1). Consequently, (3) holds.

( (3) =⇒ (1) )

Suppose thatzn(0) ≡ 0, where0 ≤ n ≤ K. SincezK(x) is a constant, ifzK(0) ≡ 0, then

zK(x) ≡ 0, where1 ≤ x ≤ N − 1.

ConsiderzK(x) ≡ zK−1(x + 1) − zK−1(x). SincezK−1(0) ≡ 0 and zK(0) ≡ 0 by assumption,

zK−1(1) ≡ zK(0) + zK−1(0) ≡ 0. Then by induction onx, it is shown thatzK−1(x) ≡ 0 for

1 ≤ x ≤ N − 1.

The induction outlined above are then repeated forn = K − 2, K − 3, ..., 2, 1. Hence, (1) holds

as desired.

Lemma A.2:The number of zero polynomials of degreeK is
∏K

k=1 gcd(k!, N).

Proof:

Let Ā be aK by K leading submatrix ofA in Lemma 3.2 and letf1, f2 be1 and0 respectively.

Let alsoL̄, D̄, Ū, h̄ andz be the corresponding leading submatrices ofL, D, U, h and a zero

polynomial of degreeK. Then z(x) ≡ 0, where0 ≤ x ≤ K is equivalent toĀz ≡ 0, where

āi,j = ij (mod N), z = [z1, z2, ..., zK ]
T ≡ Ū−1h̄ and0 is aK by 1 zero matrix. This is shown

by evaluatingz(x) ≡ 0 at each point1 ≤ x ≤ N − 1.

In Lemma 3.3, it is shown thatL and U are units. It also holds for̄L and Ū since all the

elements of̄L andŪ on the diagonal are1s. Then by Theorem 2.2 and Lemma 3.3, the number

of zero polynomials of degreeK is the number of solutions of̄Dh̄ ≡ 0, i.e.,
∏K

k=1 gcd(k!, N).

The set of solutions ofAg ≡ b (⇔ Ag+z ≡ b), whereg has degreeK, is therefore composed

of one particular solutiong and zero polynomials of degreeK.
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Lemma A.3:Zero polynomials of degreeK are of the form

z(x) =
K∑

k=1

{ N

gcd (k!, N)
· τk ·

k−1∏

m=0

(x−m)
}

, where0 ≤ τk ≤ gcd (k!, N)− 1.

Proof:

ConsiderKth linear congruence of̄Dh̄ ≡ 0 in Lemma A.2, i.e.,̄dK,K ·h̄K ≡ 0. Sinced̄K,K = K!,

by Theorem 2.2 and Lemma 3.3,h̄K = zK = N
gcd(K!,N)

· τK , where0 ≤ τK ≤ gcd(K!, N) − 1.

Suppose now thatz(K)(x) is a zero polynomial of degreeK, thenz(K)(x) = N
gcd (K!,N)

·τK ·z′(x),

wherez′(x) is a monic polynomial of degreeK.

Let z′(x) =
∏K−1

m=0(x−m) and considerz(K)(x) = N
gcd (K!,N)

· τK ·
∏K−1

m=0(x−m). It is clear that

z(K)(x) ≡ 0, where0 ≤ x ≤ K−1. Furtherz(K)(K) = N
gcd (K!,N)

·τK ·K! = N ·τK · K!
gcd (K!,N)

≡ 0,

thus z(K)(x) ≡ 0, where0 ≤ x ≤ K. Consequently, by eq. (2) in Lemma A.1,z(K)(x) is a

zero polynomial of degreeK. Sinceτm 6= τn, wherem 6= n, z(K)(x)’s are equivalent but not

congruent polynomials.

Let us now consider (K − 1)th andKth linear congruences of̄Dh̄ ≡ 0, where h̄K−1,K−1 ≡

zK−1 ≡
N

gcd((K−1)!,N)
· nK−1 and h̄K,K ≡ 0. By using a similar argument above, it is shown that

z(K−1)(x) = N
gcd ((K−1)!,N)

· τK−1 ·
∏K−2

m=0(x−m) is a zero polynomial of degreeK−1. Note that

z(K)(x) + z(K−1)(x) is also a zero polynomial of degreeK.

Applying this repeatedly fork = K − 2, K − 3, ..., 2, the desired result follows, i.e., zero

polynomials of degreeK are of the form
∑K

k=1 z
(k)(x) =

∑K

k=1

{
N

gcd (k!,N)
· τk ·

∏k−1
m=0(x−m)

}

.4
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