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Abstract

Quadratic permutation polynomial interleavers over ietedngs have recently received attention
in practical turbo coding systems from deep space apphieatio mobile communications. In this
correspondence, a necessary and sufficient condition thi@rrdines the least degree inverse of a
quadratic permutation polynomial is proven. Moreover, fyodthm is provided to explicitly compute

the inverse polynomials.
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I. INTRODUCTION

Interleavers for turbo codes have been extensively inyaisd [1]-[3]. Today the focus on
interleaver constructions is not only for good error catitet performance of the corresponding
turbo codes but also for their hardware efficiency with respe power consumption and speed.
The work in [2] opened the door to a class of polynomial basgdrieavers. In particular,
guadratic permutation polynomials (QPP) were emphasieeduse of their simple construction
and analysis. Their performance was shown to be excell@nfJR The practical suitability of
QPP interleavers has been considered in a deep space &ppliZ§ and in 3GPP long term
evolution (LTE) [19].

The inverse function for a QPP is also a permutation polyabrfRP) but is not necessarily
a QPP [[7]. However, there exists a simple criterion for a QPRdmit a QPP inverse [[5]. A
simple rule for finding good QPPs has been suggested in [BheSexamples in [3] do not have
QPP inverses. Most of QPP interleavers proposed in 3GPP [LEddmit a quadratic inverse
with the exception of 35 of them.

In [4], a necessary and sufficient condition that determthedeast degree inverse of a QPP by
using Chinese remainder theorem and presenting the inftarsgon as a power series is given.
As an example, an exact formula that determines the degréeeahverse PP is shown when
the degree is no larger than

In this correspondence, we provide a necessary and sufficogdition by using linear congru-
ence approach in_[6, pp. 24-40] that determines the degrébeoinverse when the degree is
no larger thamb0. The condition is characterized by an exact formula and istef simple
arithmetic comparisons. We further provide an algorithrexplicitly find the inverse PP(s). The
algorithm is suitable for implementation since it consistsolving linear congruences.

This correspondence is organized as follows. In sectiowel priefly review PPs [10]=[14] over
the integer ringZy and relevant results. The main result is derived in sectiprahd examples

are given in section IV. Finally, conclusions are discussesection V.

II. PERMUTATION POLYNOMIAL OVER INTEGER RINGS
In this section, we revisit the relevant facts about PPs dhdradditional results in number the-
ory to make this paper self-contained. Given an integer 2, a polynomialf(x) = Ele fra®

(mod N), where f1, fa, ..., fx are non-negative integers ard > 1, is said to be a PP over
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Zy when f(z) permutes{0,1,2,..., N — 1} [12]-[14]. It is immediate that we can use this
constant-free PP without losing generality in our questdorinverse PP by the Lemma 2.1
in [5].
In this correspondence, let the set of primes7e-= {2,3,5,...}. Then an integetN can be
factored asN = [] p"~», wherep's are distinct primes. In additiomy, > 1, for a finite
number ofp and 7]:;7:, = 0 otherwise.

Theorem 2.1 ([]2],[5]): Let N = ][] p"¥» and denotex divides 5 over Z by «|5. The

peEP
necessary and sufficient condition for a quadratic polymbriiz) = fiz + fo2? (mod N) to

be a PP can be divided into two cases.
1) 2|N and41{ N (i.e.,ny2 =1)
fi+ fois odd,ged(f1,5) = 1 and f, = [] p™»,ns, > 1, Vp such thatp # 2 and
— pEP
2) Either2{ N or 4|N (i.e.,ny2 # 1)
ged(fi, N)=1and f, = I_Lp”ﬁp,nfvp > 1, ¥p such thatny, > 1.
pe

Theorem 2.2 ([]10]):Let «, S be any integers and/ be a positive integer. The linear con-

gruenceazx = 8 (mod N) has at least one solution if and only~+fs3, wherey = ged(a, N).

If v|5, then it hasy mutually incongruent solutions. Let, be one solution, then the set of the
solutions is
N 2N (y—1)N
To, To + 7@0‘1‘ —- ot T

, wherex, is the unique solution ofz = £ (mod ).

Definition 2.3 ( [13], [14]): Two polynomialsf; (z) = Sr, fix2* and fo(z) = SO0 | fora®
of degreeK are called congruent polynomials moduMif f,x = fox (mod N), wherel <
k < K and equivalent polynomials modulé if f,(z) = fo(z) (mod N), where0 <z < N—1.

Definition 2.4 ( [3], [13], [14]): A polynomial z(x) = Zszl zz® (mod N) is called a non-
trivial zero polynomial of degredd modulo N if zx Z 0 andz(z) = 0,0 <z < N — 1.
Specifically,z(x) = 0 is a trivial zero polynomial.

Proposition 2.5 ([[13], [14]): If two polynomials f;(xz) and f;(x) are equivalent but not
congruent, there exists a non-trivial null polynomigdl:) such thatf,(z) — fo(z) = z(z)
(mod N).
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Definition 2.6: Let f(x) be a PP. A PP of least degree has a least degree among allleqtiva
polynomials of f ().
The following proposition was proposed in [13], [14]. Theopf is shown for its simplicity.
Proposition 2.7 ([13], [14]): Let f(z) = Y1, frz* (mod N), where fx # 0 and K >
N. Then there exists an equivalent polynomial f@f:) such that the degree of the equivalent
polynomial is less thamV.

Proof: Let z(z) = fx - 2N - J[2.'(x — k). Clearly z(z) is a zero polynomial. Let
f(x) = f(z)—2(x), thenf(z) = f(z) butdeg{f(z)} < deg{f(x)}. By applying this repeatedly,
an equivalent polynomial of degree equalXo— 1 can be found. [ |

Proposition 2.8 ([6]): Let f(z) = fixz + f,2®> be a QPP and let be an integer such that
k > 1. Let us takef(z) such tha2 { f{ when2|N and4 { N. Then f; + kf, is an unit for all
k> 1, 1.e., fi + kfs is invertible <';1ndf1+1kf2 is well defined.

Proof: By Theoremi 2.2, an elemerfi + & f, in integer ringsZy is an unit if and only if
ged(fy + kfy, N) = 1. We show thatced(f, + kfs, N) = 1.

1) 2|N and4 1t N (i.e.,ny2 = 1)
In this case there exist two equivalent QPRs [9], ifer.+ fo2? and (f1 + 5 )z + (fo+ 5 )2?,

where2 1 f;. Let us take a polynomiaf(z) = fiz + fox® such that2 { f;. Suppose that
ged(fi + kf2, N) # 1. Then there exists a prime such thatp|(f; + kf2) and p|N. By
Theorem 2.1, ifp| N, thenp|f, butp 1 f;. A contradiction.
2) Either2{ N or 4|N (i.e.,ny2 # 1)
In this case, there exist one {ift N) or two (if 4|V) equivalent QPP< [9]. In either case,
by TheoreniZ]1 and a similar argument in @)d(f; + kfo, N) = 1.
u
Since the inverse of only one of the equivalent polynommsufficient for our purposeg|z) =
fiz + fox? such that2 1 f; will be considered in the rest of the correspondence. THefirg
corollary is an extension of Proposition 2.8.

Corollary 2.9: Let f;, fo and N be the integers in Theorem 2.1 and letk, and k, be
integers such that < k; < k. Let us takef(x) such that2 1 f; when2|N and4 { N. Then
gcd{Hiikl(ﬂ + kf>), N} is an unit.

Proof: This is a direct consequence of Proposifion 2.8. [ |
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[1l. I NVERSES OFQUADRATIC PERMUTATION POLYNOMIALS

In this section, we derive a necessary and sufficient camditr a QPP to admit a least degree
inverse in Theorerh 3.10 (main Theorem). We also explicitig fihe inverses in Algorithri 1.
This section is organized as follows. We first show that thablgm of finding inverse PP(s)

of least degree is equivalent to solve a system of linear mmmges. Then we show that the
inverses can be found by factoring the matrix for a systemnefar congruences and solving it.
We also show that solving the system of linear congruenceseamuch simplified and finally,

by showing the number and the form of zero polynomials, we &lhdhe inverses of a QPP.

Lemma 3.1:Let f(z) = fiz+ for? (mod N) be a QPP. Then there exists at least one inverse

g(x). Further, finding all inverse PP(s) up to degr€e- 1 is equivalent to solving a system of

linear congruences,
Ag=Db (mod N),

where
ay; = (ifi +i°f2)’,1 <i,j <N —1,

g = [917927 "'7gN—1]T7 and b = [b17627 "'7bN—1]T = [1727 7N - 1]T

Proof: Since the set of PPs forms a group under function composit@nexistence of an
inverse for a QPP is guaranteed [7],[15]. Lgt) be an inverse PP of(x) and suppose that
deg{g(z)} > N. Then by Propositioh 2.7, it can be reduced to an equivaleitnpmial of
degree less thawv.

Sinceg(z) is an inverse(go f)(z) = =, where0 < z < N —1. The equivalence dfgo f)(z) =z
and Ag = b is shown by evaluatindg o f)(z) = S0 gx(fiz + fo2?)* = = at each point
1 <z < N — 1. Note that(g o f)(0) = 0 trivially holds. Consequently, solvindhg = b is
equivalent to finding all the inverse PP(s) up to degkee 1. Since the number of inverse PP(s)
up to degreeV — 1 is finite, there exists a least degree inverse.
u
Lemma 3.2:Let A be anN — 1 by N — 1 matrix in Lemmd_3.ll. The®A = LDU, whereL,

D andU are N — 1 by N — 1 matrices as shown below.
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LisanN —1 by N — 1 lower triangular matrix such that

() TLE h+ k) i

li,j .
0 otherwise

D isanN —1 by N — 1 diagonal matrix such that,; = i!, wherel <i; < N — 1.
UisanN — 1 by N — 1 upper triangular matrix such that

( -
1 if 1=

0 otherwise

\
q( is an1 by j matrix such thay!” = (if, + i%f,)*L, wherel < k < j.
V@) is aj by j upper triangular matrix such that
- I if i=1
Vi) —
[T, W) otherwise

andr®) = [0,0,...,0,1]7 is aj by 1 matrix.

W®J) is aj by j upper triangular matrix such that

_ 0 ifm>n
wkd) —

m,n )

(kf1 + k2 fo)r—m=t otherwise

wherel < m,n < j.

Proof: See Appendix A. [ |
The factorization in Lemmp_3.2 is similar iekDU decomposition except thdt has notls on
the diagonal([8].

Lemma 3.3 ([[17],[[18]): Let A, L, D and U be the matrices in Lemma_3.2. Thexg =

b < Dh = e, whereh = Ug ande = L~'b.
Let us identify N — 1 by 1 matricesg = [g1, 92, ..., gv—1)7» h = [hy, ha, ..., hy_1]T with g(z) =
Zk L grz®, h(z) = ff:‘ll hyz*, respectively. Then the degree and the numbeg ahdh are
equal.

Proof: Since all the diagonal elements bfare units by Corollary_2]19L is an unit [11].
ThusAg =b & DUg = L~ 'b. Let h be anN — 1 by 1 matrix such thath = Ug. SinceU
is also an unit, the degree and the numbeg@ndh are equall[1/7],[[18]. [ |
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In the following, two corollaries of Lemmia_3.3 are shown.
Corollary 3.4: The linear congruencBh = e has at least one solution, i.e., there exigs
such thatdy j, - by, = ex, wherel <k < N — 1.

Proof: Suppose that for sonvg there does not exist, such thatdy ;. - b, = e;. Then there
does not exist a solution ddh = e. By Lemma_ 3.8, there does not exist a solutionAgf = b,
which contradicts Lemm@a_3.1. u

Corollary 3.5: Let us consider the linear congruendez = b. There exists a least degree
inverseg such thatdeg{g} = K if and only if ex # 0 ande, =0, whereK +1 <k < N — 1.
Proof:

(=)
Let g be a least degree inverse such that{g} = K. By Lemmal[3.8, the degree &f is also
K,ie,hg Z20andh, = 0, where K +1 < k < N — 1. SinceDh = e, ¢, = 0, where
K+1<k<N —1. Suppose thaty =0, i.e.,dg x - hx = 0. Let us define anV —1 by 1
matrix h’ such that

hi, 1<k<K-1

hj, =
0, K<k<N-1

Thenh’ also satisfies the linear congrueriod’ = e. Let g’ be an/N — 1 by 1 matrix such that
h' = Ug/, theng’ is also an inverse. Sinateg {h'} = deg {g'} < K by Lemma3.Bg cannot
be a polynomial of least degree. This contradicts the assampConsequentlygx # 0.
(=)
(1) Suppose thateg {g} > K. Then by Lemma 3|3jeg {h} = deg {g} > K, whereh = Ug.
Let us define anV — 1 by 1 matrix h’ such that

hg, 1<k<K
0, K+1<k<N-1

Then deg{h’'} = K and h’ also satisfies the linear congruenBh’ = e. Then again by
Lemmal3.8,deg {g'} = K, whereh’ = Ug’. Sincedeg{g'} = K < deg{g} andAg' =b, g
cannot be a polynomial of least degree.

(2) Suppose thateg {g} < K. Sincegx = 0, hx = 0 by Lemmd_3.B. Consequentlyy x-hx =
ex = 0. This contradicts the assumptien # 0, thusdeg {g} cannot be less thai'.

By (1) and (2),deg {g} = K. [ |
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In Lemmal[3.8, since all the entries &f L', D, U ande can be computed for the given
f(x) = fix + for?, finding the inverse off (x) reduces to solvingV — 1 linear congruences
Dh = e andh = Ug. However, the cost of computation for the matrices can batantial for
a largeN.

The computational complexity is shown to be significantigueed by the following lemma and
corollary. The following lemma shows that the degree of #mst degree inverse has an upper
bound.

Lemma 3.6 ([[7]):Let N = [] p"™¥». If f(z) is a QPP, then the inverse PP has degree no
larger tham&%c NN p- <

Proof: Since the set of PPs is a finite group as shown in Lemnla 3.% thasts an integer
m called an order such that the-fold composition of f(z) with itself is an inverse PR _[15].
Let (" (x) be n-fold composition of f(x) with itself. It is shown that the coefficient of the
degreek term of f()(z) is divided by f5~* as follows. Forf(")(z), it is clear thatf, divides the
coefficient of the degre@ term. If the coefficient of the degrdeterm in £ (z) are divisible
by f5~1, then the coefficient of the degréeterm in f"1)(x) = f,(f™(2)) + fol fM(z))? are
also divisible by f+~'. By induction, the coefficient of the degréeterm of £ (z) is divided
by f3~".
Supposek > maxny, + 1. Since f, is divisible by the factors ofV, N|fi~!, ie., fi=! =
0. Consequently, there exists an inver§&) (r) that contains no terms of degree larger than
rglezg(n]v,p. |

Corollary 3.7: Let us consider the linear congruenbé = e in Lemmal3.3.

For all £ such thatt > max N p +1, e, =0.
Proof:

Let the degree of the least degree inverseiheSince there exists an inverse such that the
degree of the inverse is no larger ﬂ@ggmv,p by Lemma3.6,K < r;leagi ny . Consequently,
by Corollary[3.5,e;, = 0, whereK +1 < Ilr)leég(nMp +1<k<N-1. ]

By Corollary[3.7, onlyrgea?;mN,p by rgea?;m]v,p leading submatrices (the upper-left corners of
matrices) ofL,, L=!, D, U and ar;qe%m]v,p by 1 leading submatrix oé are required to be
computed for finding the inverse of least degree. For exantgild’ = 2!8.32.5, Thenrlr)leagc Ny =
max{18,2,1} = 18, thus only18 by 18 leading submatrices df, L=!, D, U and al18 by 1

leading submatrix oé need to be computed instead 8f— 1 by N — 1 submatrices oL, L,
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D, U and aN — 1 by 1 submatrix ofe.

In the following proposition and corollary, it is shown thie computational complexity for
the matrices can be further reduced.

Proposition 3.8:Let e be anN — 1 by 1 matrix in Lemmd_3]3. Let als6',, wherek > 0,

be a sequence of integers known as Catalan numbersktffih€atalan numbers are given by

o _ L (2K __ (@)
TR\ k) kDR

A recurrence relation fo€’;, is

2(2k — 1)
k+ 1

i.e.,, Cy = 1,01 =1,0=2,C3=5,Cy, =14,C5 =42,y = 132..... Then,
e = k- Cror - (= f2)F !
[ (fu+mfa)

Cr = - Cl_1,k > 2,

wherel < k < 50.
Proof: Let L, e andb be the matrices in Lemnia_3.3. Let also théy & leading submatrix
of L, k by 1 leading submatrices af andb be L/, ¢’ andb’ respectively.

The following statementy’ = L'e’, was verified to be correct far < £ < 50.

k
b=k = Y ln-en
n=1

- 2 [{0)- o ma} {25

n=1 m=k

_ k anink_l(fl—i-mb)' Ko ol
- Z{ HE::_11<f1+mf2) (k —n)! Cn1 - (=fo) }

Sinceb’ = L'¢/, it is clear thath’ = L'e’. Consequentlye’ = L'~ 'b’ for 1 < k < 50. |
Corollary 3.9: Let N = [] p™» < 2% and let alse be anN —1 by 1 matrix in Lemma3]3.

n=1

peEP
If e, =0 for somek, thene,, =0 for n > k + 1.
Proof: Let N = [] p™¥» < 2%, then clearlymag;nN,p < 50. By Lemmal[3.6 and Proposi-
peP pe
tion[3.8,

BLC(k—1)-(—f2)"
T (frampy . LSk =50

0, b1<k<N-1

e =
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Sincef+ fz is an unite; = 1 # 0. Suppose that, = 0 for somek. SinceCy, = 2221.C;

for & > 2, % = 2(2k — 1). Thuseyy = % Consequentlyg,.; =0 if e, =0
for somek. By induction, ife, = 0 for somek, e, =0, for n > k + 1. [ |
We are not aware of a closed-form expressioneoivhen k is larger than50. However, the
investigation on the inverse of a QPP is not restricted utitisrcondition since the interleaver
size N is far less thare® in practice. By Propositiof 3.8 and Corolldry 13.9, matrit¢esind
L~! need not to be computed for solvidgh = e. Combining Lemma_3]1,-3.2, Propositibn13.8
and Corollary 3. we state the main theorem.

Theorem 3.10 (main Theoremlet N = ]‘Lp”w < 2°%. The necessary and sufficient con-

pe

dition for a QPP to admit a least degree invegssuch thatdeg{g} = K is finding a smallest
integer K > 1 such that

(K+1)-Cx-ff=0 mod N

and the number of inverse PP(s) is

[T ecd(k!, N).

k=1

Let us slightly abuse the notation in this theorem (and imgdas and Algorithril ) by writing
D, U, g, h ande for K by K leading submatrice®, U and K by 1 leading submatricesg,
h, e, respectively. The inverse PP(s) can be found by usingreftt)eor (2).
(1) Find allh’s such thatDh = e and corresponding’s such thath = Ug.
(2) Find ah such thath, = % correspondingz and add it[],_, gcd(k!, N) zero
polynomials.
Zero polynomials of degreéd are "1 {m e T (o — m)}, where0 < 7, <
ged (kI N) — 1.

Proof: The necessary and sufficient condition is shown by combidogpllaries. 3.6 and
[3.9. By Corollary[3.b,g is an inverse of least degree such thag{g} = K if and only if
ex Z 0ande, = 0 for K +1 < k < N — 1. By Corollary[3.9, ife, = 0 for somek,
thene, = 0 for n > k + 1. Thusg is a least degree inverse such thag{g} = K if and
only if ex # 0 andex,; = 0. Sincee; # 0, finding the degree of the least degree inverse

is equivalent to finding the smalle#t such thatex,; = 0. Consequently, the necessary and
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sufficient conditioH for a QPP to admit a least degree invers¢/is+ 1)! - C - fX = 0 since

. (=) K
excn = G = 00 (K4 )1 O f =0

m=1

The number of solutions of linear congruend®s = e is []r_, ged(k!, N), sincekth linear

congruence sl - hy = e, and ged(dix, N) = ged(k!, N). By Lemmal3.8, the number of
solutions of Ag = b is also[]_, gcd(k!, N).

The complete solution set can be obtained by exhaustivalyingoDh = e and h = Ug.
An alternative is to find one solutioh andg such thatDh = e, h = Ug and add it zero
polynomials of degreds<. Considerkth linear congruenc®h = e, i.e., d;; - hy = e;. Clearly
_ KNCr_q1-(=fa)F—

_ O f)Ft i = e i [ !
hy, Ty ma) is a solution ofdy, i, - hy, = ey, i.€., k! - hy, = T frtma) The number and

form of zero polynomials are shown in Appendix B.

IV. EXAMPLES

We present four examples to illustrate the necessary afidisaf conditions of Theorein 3.110.

The first and second examples consider interleavers thairwastigated in[[3] and [19]. The
third example shows the exact least degree for inverse poljals can be less than an upper
bound derived in[[7] and the fourth example shows the necgssal sufficient condition for a
QPP to admit a least degree invegssuch thatdeg {g} = 2, 3, 4 and5.
All good quadratic interleavers found in Tallé 1l admit lovegiee quadratic inverses. This
observation may not be completely surprising because B]shows that good interleavers
should require the second degree coefficient to be relgtimede (which works toward satisfying
Theorem 3.10) but bounded by some constraints.

1) Let f(x) = fiz + fow® mod N, whereN = 1504 = 25 .47, f; =23 and f, = 2-47. The
smallestK such that(K + 1)! - C - f& =0 is 3.
By Lemmal3.2,3 by 3 matricesD, U and a3 by 1 matrix e are computed as follows.
(10 0 1 117 153 (797]

D=|0 2 0, U=|0 1 539 ,e= |188

0 0 6 0 0 1 752

Nf K =1, f(z) is a linear PP.
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Let us now exhaustively solve the equatibh = e (mod 1504). Fromd,; - hy = ey,
dayo - hy = €9, d33 - hs = e3, We can obtaim; = 797, hy = 94,846 and hy = 376, 1128,
respectively. Sincexed (1!, N) = 1, ged (2!, N) = 2 and ged (3!, N) = 2, the number of
solutions is4. Let us choosé; = 797, ho, = 94 and hy = 376. We obtaings; = hz = 376,
g2 = hg —ug3 - g3 (mod 1504) = 470 andg; = hy — u12 + g2 — uy3 - g3 (mod 1504) = 1079
by solvingUg = h (mod 1504).

2) Let N = 6016 = 27 - 47, f; = 23 and f, = 2 - 47. The least degree i$. A 4 by 4 matrix

U and a4 by 1 matrix e are computed as follows.

(1 117 1657 1357 3805 |
0 1 539 507 188
U: 7e: M
0 0 1 1454 752
o0 0 1 3008

Let us computé,, such that, = % for eachk. Thenh = [3805, 94, 4136, 4888]"
andg = [1831, 3854, 1880, 4888]~.

3) Let N =2%, f, =26119 and f, = 2-3-41- 179 The least degreé is 12, which shows
the upper boun@4 obtained by the technique inl[7] is not tigﬁvt.

4) The necessary and sufficient condition for a QPP to adméaatidegree inverse such
that deg {g} = K = 2,3,4,5 is 12f2 = 0, 120f3 = 0, 1680f4 = 0 and 30240 = 0,

respectively. This formula is also shown [ [4]) [5] féf = 2 and in [4] for K = 3.

188 QPP based interleavers have been proposed in 3GPF_LT.BV[@St of the interleavers
proposed in[[19] admit a quadratic inverse with the exceptib35 of them. In Tabld I, all of
the interleavers that do not admit quadratic inverses atediwith their respective inverse PPs

of least degree computed using Algorithin |.

2An inverseg(z) is 7612343x4-4897586:2 +-3524402° +28674322* + 1375644825 +138903682° +91520027 4267942425 +
68469762° 4 521728020 + 53248z 4 14786562 2.
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TABLE |

ALGORITHM 1

An algorithm for finding the inverse PP(s) of least degreed®@PPf(z) = fix + fox? (mod N)
1. 1f 2|N, 41 N and2|f1, let f(z) be such thatf (z) = (f1 + $)z + (f1 + §)a?.
2. Find the smallest integek’ > 1 such that( K + 1)! - Cx - f& =0, whereCy = 1 andCy, = %H(zk’“).

Then, the least degree of the inverse PP(sXis
3. ComputeK by K matricesD, U in Lemmal3.2 and< by 1 matrix e in Propositior 3.B.
4. There exist two methods for finding the solution setAgf = b < Dh = e, h = Ug.
(1) All the h's andg’s can be found by solvind< linear congruencePh = e andh = Ug.
g's can be computed by by back-substitution.
Note thatgx = hx andgy = hy — Zfl:,cﬂ Ukym - gm fOr 1 <k < K —1.
(2) Find one inverse and add it zero polynomials of degkee

Computehy, = % for 1 < k < K and corresponding such thath = Ug.

ConvertK by 1 matrix g into a polynomial and add it(x) = Zszl {m ST an;lo(a: - m)},

wherel < 7, < ged(k!, N) — 1.

V. CONCLUSION

We derived in Theoreiin 3.10 a necessary and sufficient conditi determine the least degree

inverse for a QPP. We also provided an algorithm to expjic@timpute the inverse PP(s).

188 QPP interleavers were proposed in 3GPP LTE [19]. MoshefQPP interleavers in [19]

admit a QPP inverse. We applied the theory in this correspocel to tabulate all inverse PPs
of degree larger than two. Further, it was shown that ingeo$egood interleavers in [19] have

low degrees and a possible explanation is given.
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TABLE Il

14

INVERSEPPS OF LEAST DEGREE FOR3GPP LTE NTERLEAVERS WITHOUT QUADRATIC INVERSES

length QPP An Inverse PP of Least Degreue length QPP An Inverse PP of Least Degree
928 | 15z + 5822 31z + 29022 + 2322° 4544 | 357z + 14222 45092 + 99422 4 2840z

1056 | 17z + 6627 1025z + 7262 + 79223 4672 | 37x + 14627 2557x 4 102222 + 408823
1184 | 19z + 74a? 779z + 742> + 2962° 4736 | Tlz + 4442 2935z + 39962 + 355223
1248 | 192 + 7822 427x + 782 + 93623 4928 | 39x + 462z 1927z + 1078z2 + 61623

1312 | 21z + 8222 7812 + 574x% + 98423 4992 | 127z + 2342% | 511z + 273022 + 40562 + 21842
1376 | 21z + 862> 557 + 60222 + 3442° 5056 | 39z + 158z> 3079z + 20542 + 1896x°
1504 | 49z + 84623 353z + 2822 4 3762° 5184 | 31z + 96z 3679x 4 163222 + 115223
1632 | 25z + 10222 1273z + 30622 + 40823 5248 | 113z 4 9022% | 2833z 4 410z> + 42642 + 328"
1696 | 55x + 954z 663z 4 5302 + 424x3 5312 | 41z 4+ 16622 3401z + 49822 + 33202°

1760 | 27z + 11022 163z 4 99022 + 13202° 5440 | 43z + 1702 1107z + 153022 + 6802°
1824 | 29z + 114> 1541z + 17102% + 136823 5504 | 21z 4 86x® | 2621z + 50742 + 1032z° + 5160z
1888 | 45z + 354> 21z 4 153422 4 4722° 5568 | 43z + 174 1651z + 156622 + 487223
1952 | 59z + 610> 579z + 158622 + 48823 5696 | 45z + 178> 3829x 4 5518x2 4 49843
2112 | 17z + 662> 1025z + 178222 + 7922° 5824 | 89z + 18222 4092 + 3458z% + 364023
2944 | 45z + 9227 1701z + 174822 + 220823 5952 | 47z + 1862 952 4 93022 + 37202°

4160 | 33z +1302% | 3057z 4 1430z* + 15603 6016 | 23z + 942% | 1831z 4 385422 + 1880z + 4888z*
4288 | 33z + 13422 3281z + 14742% + 26802° 6080 | 47x 4+ 190z 2943z + 95022 4 228023
4416 | 35z + 138z 347z + 234622 + 55223

APPENDIX

(A) [Lemmal[3.2]
We use two-fold induction and provd = LDU by showing that column-reduced form &f
is equivalent taL.D.
Let us define anV — 1 by N — 1 elementary matrixI'7) such that

1 if m=n
—Uj Ifm:z,n:j )
0 otherwise

wherel <i<j—1,2<j7<N-1landl<m,n<N —1.
Let T = T02 .73 . TE3) ... pOLN=D . TWN=2N=1) ‘then it is easily verified thdl = U~".

Let us also definéV — 1 by N — 1 lower triangular matrice&.®”) such that

LG9 = AT12) . T3 3 L p) .. 1)) e



JAN. 23, 2011 15

B LU-LDHTL)  if 5 =1
L7 =
LO-L)TG)  jf 2<i<j—1

SinceU is an unit,A = LDU if and only if

AU—l — AT — AT(I,Q) X T(1,3) . T(2,3) L. T(Z,jz . T(I,N—l) L T(N—2,N—1)
L.(4,9)

LV=2N-1) — 1D, (1)

We use induction oy and prove eq[{1) by showing thit’—7) is as follows.
(G-1d) _ nl by, f1<n<y | .
o M j+1<n<N-1
Upon completion of column reductioni,= N — 1, thus eq.[(ll) holds.
We first show that eq[{2) holds fgr= 2.
By definition, L1 = AT, Sincet(y” = —u, andu;, = q*2VEIr® = f + f,,

12) _
lpy = —ui2-am1+ame

= —(fi+ fo) - (mfr + m*fo) + (mfr + m* fo)*
= (mfi+m?fa) - {(m—1)fi + (m—1)(m+1)fo}
= m—=1)-m-(fi+ fo) {fi+(m+1)fa}

Consequently,

0 if m=1
l(lvz) J—
m,2 T

2 Lo ifm>2
Thus eq. [(R) holds fo = 2. Suppose now that ed.](2) holds fgr> 2. For eachj, we use
induction on: and show that eg[{3) holds. Upon completion of induction,ome show eq.[(2)

holds forj + 1.
(53 = [TI0n = B+ (m o+ B) o} ] - g POV 3
k=0
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In the following, L1 is shown below in matrix form.

coly coly . col coljyq coljyg - coln_q
lOU}l 1!- l171 0 . 0 0 a1,5+42 . ai N—1
lOU)Q 1! 12’1 2! . l272 . 0 0 ((ONED) . az N—1

(i,j+1) _
low; IR 2019 e 0 L1 =0 aije e a;N-1
(6,5+1)

lowiﬂ 1. li+1,1 2! . li+1’2 . 0 li+17j+1 Ai41,542 . Qi+1,N—1
lOU}j 1! lj71 2! lj72 ce ]' . lj,j lj,j—l—l Q5 5+2 ce Qi N—1
lOU)N_l 1. lN—l,l 2! lN_l’Q Ce j' . lN—l,j lN—l,j—l—l AN—-1,5+2 <. QAN-1,N-1

The elementary matri*+1) subtractsu, ;,, times columnl from columnj + 1 of LU—19),

We show thaf.=1) multiplied by T(7+1) |eaves other columns unchanged except the column
4+ 1 and creates a zero in thfe, j + 1) position of L7+ = LU-1)TLi+1),

Wheni = 1, eq. [3) holds, since

l(l,j-i-l)

(L1 (G-14) | JG-1)

= —Uij1 -y, myj+1

= —upjtr- U lpg 4+ amji

= —q(l’jH)V(l’jH)r(jH) : (T) (fi+mfa) + (mfi + m2f2)j+1
= —(fi+ fo) - (mfi +mifo) + (mfi + m>fp)

= (mfi+mf) - {(mfi+mihY = (fi+ f2) }

= (mfi+m*fa)- {(m —1)fi+ (m—1)(m+ 1)f2} : {(mfl +m?f) TR (i + fz)k}

j_

k=0

= m(m—=D(fr +mfo){fi + (m+1)fo} - g TIWEIHFD D
1

— [H(m —E){fi+(m+ k:)fQ}] - (MDY @ADL

k=0
1,j+1 .
Thus!{'71Y = 0 as desired.
Suppose now that eq.](3) holds fofT'“+1+1 subtracts,, ; ;. times columni+1 from column
j+1 of LG7+Y where2 < i < j. In the following, it is shown that thak/+!) multiplied by

T(+Li+D leaves other columns unchanged except the colymnl and creates a zero in the
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(i + 1,5 + 1) position of L1+ = LG TE+LI+L),
lin —igen - by + e
= U1 (0 D bnggn + ZT:LJ‘]-:—ll
m-+i
= —qIIVERLIFDRUFY L (G 4 1)) (Z N 1) T+ ERR) +
k=m
[TI0m = 1)1+ (m+ ) fo}] - @ v sty
k=0
= g VIR T — k) + (m+ k) )] +
k=0
[H(m —k){fi+ (m+ k‘)fz}] - IV LD D
k=0
= [H(m —k){fi+(m+ k:)fz}] At — qUALIHDY Y LD R ()
k=0
q(m,j-‘rl) o q(i-i-l,j-l-l)

Thus,

|
(
|
(

Loyt 2 oy (mfs 2 o) | = (1,6 D f (12 oo (G 1)1+ 0+ 12 ]

—(+DHA+m+i+1)fo)

0, L, m(fr +mfa) + (i + 1){fr + (i +1)fa},

— (i +D)HfA+ m+i+1)fo}- gt

S LI+
m.j+1

k=0

q D W LIy (41741 R (1)

H(m —E){fi + (m+k)fo} - q"

k=0

—1

Z{m framE) PTG D+ G+ D))

1) W(2+1,]+1).

[ TL0n = B+ R f}] - = G+ DY+ (mt i+ 1) o}

JHDY 2,5+ LG +1)
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Consequentlyl';'7%" = 0 and eq.[(B) holds for + 1.

We now show that eq[2) holds fgr+ 1. Leti = j in eq. [3). Then
q(m,j+1)V(j+1,j+1)
— [1,mfi + m2fo, .., (mfy +m2f2)j] WO DW O Li+ D Wi —25+1) . Wi+

= _07 1,..] WULIHDW =25+ . W(Li+1) |

= [0,0,1,..]- WU=25+D) . W (ti+)

= [0,0,...,1].

Thus q(mi+DVU+Li+Dp0+1) = 1. Consequently{?7 1) — 0, wherem < j and

935 = Tl —k){fi + (m + k) f2}

k=0

— G+ (jfl) 'ﬁjﬁl +kf2)

k=m

= G+ bt
wherej +1 < m < N — 1. Consequently eql{2) holds fgr+ 1.
(B) [The number and the form of zero polynomials of degfeg
We show the number and the explicit form of zero polynomi&ldeyreek’, where K < N—lH
In LemmaA.l, the necessary and sufficient conditions for lgrmonial to be a zero polynomial
is shown and in Lemmia_Al.2 and A.3, the number and the explbcihfof zero polynomials of
degreeK are derived by using Lemnia A.1.

Let us definez,(z), where0 <z < N — 1 as follows.

2(x) =0 | zak if n=0

Zn—1(x +1mod N) — z,_1(x mod N) if1<n<K

Lemma A.1:The following statements are equivalent.
(1) z(z) = 0,where0 <z < N — 1.

3A different proof is shown in[[16, pp. 245] and [13] for the éxji form of zero polynomials.
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(2) z(z) = 0,where0 < z < K.
(3) 2,(0) = 0,where0 <n < K.

Proof:
(1)=(?))
Trivial.
(2= 3))
It is easily shown by induction that i,(x) = 0, where0 < x < K — n, thenz,,1(0) = 0,
where(0 < z < K — (n+ 1). Consequently, (3) holds.
(B)= 1))
Suppose that,,(0) = 0, where0 < n < K. Sincezk(x) is a constant, ifzx(0) = 0, then
zx(z) =0, wherel <z < N — 1.
Considerzi (z) = zx_1(z + 1) — zx_1(z). Sincezx_1(0) = 0 and zx(0) = 0 by assumption,
2zik-1(1) = 2x(0) + zx_1(0) = 0. Then by induction on, it is shown thatzx_(x) = 0 for
1<xz<N-1.
The induction outlined above are then repeatedifer K — 2, K — 3, ...,2,1. Hence, (1) holds
as desired. [ |

Lemma A.2:The number of zero polynomials of degréeis Hszl ged(k!, N).

Proof:
Let A be aK by K leading submatrix ofA in Lemma(3.2 and lef;, f> be1 and0 respectively.
Let alsoL, D, U, h andz be the corresponding leading submatriced.pD, U, h and a zero
polynomial of degreek. Thenz(z) = 0, where0 < z < K is equivalent toAz = 0, where
a;; = (mod N), z = [z, 2,...,2x]7 = U *h and0 is a K by 1 zero matrix. This is shown
by evaluatingz(z) = 0 at each poinl <z < N — 1.
In Lemmal[3.8, it is shown thaL and U are units. It also holds fof. and U since all the
elements of. and U on the diagonal arés. Then by Theorem 2.2 and Lemimal3.3, the number
of zero polynomials of degre& is the number of solutions ddh = 0, i.e., Hszl ged(k!, N).
The set of solutions oAg = b (<& Ag+z = b), whereg has degredy, is therefore composed

of one patrticular solutiog and zero polynomials of degree.
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Lemma A.3:Zero polynomials of degre&” are of the form

K N k—1
= g S | | - <7< [ 1
z(x) 2 {gcd(k!,N) T m:O(x m)}, where0 < 7, < ged (k!I, N) — 1

Proof:

ConsiderKth linear congruence ddh = 0 in LemmdA.2, i.e.dk x-hx = 0. Sincedg x = K|,

by Theorenl 212 and Lemma B.Bx = zx = m - Tre, where0 < 75 < ged(K!, N) — 1.
Suppose now that"(x) is a zero polynomial of degrek, thenz")(x) = iy - 7x - 2/ (2),
wherez'(x) is a monic polynomial of degref'.

Let 2/(x) = [, (= — m) and consider ™) (z) = b - mic - TT,,Zo(x —m). Itis clear that
2" (x) =0, where0 <z < K —1. Further2")(K) = oy i - K! = N Tie - coqiersy = 0,

thus (%) (z) = 0, where0 < z < K. Consequently, by eq. (2) in Lemnia_A.2(%)(z) is a
zero polynomial of degreds. Sincer,, # 7,, wherem # n, z5)(z)’s are equivalent but not
congruent polynomials.

Let us now considerK — 1)th and Kth linear congruences ddh = 0, wherehy ;x| =

= m ‘ng_, andhg = 0. By using a similar argument above, it is shown that
K—l)( N
ged (K=1)LN)

25 (z) + 25D (z) is also a zero polynomial of degreé.

2 x) = TR-1- Hﬁ;g(:p —m) is a zero polynomial of degreE — 1. Note that

Applying this repeatedly foic = K — 2, K — 3,...,2, the desired result follows, i.e., zero
polynomials of degreés are of the formy < =) (z) = S7F {ﬁ -Tk-l_[fn;lo(:):—m)}
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