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We divide it into three cases.

1) nN;2 = 0; 1
If nF;2 � 0, then nN;2 � 2 + nF;2 holds. Thus,

2n j(22 � 2n � 2n ):

2) nN;2 = 2; 3; 4
If nF;2 � 1, then as required by Lemma 3.3, nG;2 � 1. Thus,

nN;2 � 2 + nF;2 + nG;2 holds and consequently

2n j(22 � 2n � 2n ):

3) nN;2 � 5
If nN;2 � 5, then

nN;2 � 2

2
> 1:

By Lemma 3.3, if nN;2 � 1 > nF;2 �
n �2

2
, then nG;2 =

nF;2. Consequently, if nN;2 is even

2 + nF;2 + nG;2 = 2 + 2 � nF;2 � 2 + nN;2 � 2 = nN;2

and if nN;2 is odd

2 + nF;2 + nG;2 = 2 + 2 � nF;2 � 2 + nN;2 � 1 > nN;2:

Thus, 2n j(22 � 2n � 2n ). If nF;2 � nN;2 � 1, by Lem-
ma 3.3, nG;2 � nN;2� 1. Thus, 2+nF;2+nG;2 � 2 �nN;2 >

nN;2 and consequently 2n j(22 � 2n � 2n ).
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Soft-Decision Decoding of Reed–Muller Codes:
Recursive Lists

Ilya Dumer, Senior Member, IEEE, and
Kirill Shabunov, Member, IEEE

Abstract—Recursive list decoding is considered for Reed–Muller (RM)
codes. The algorithm repeatedly relegates itself to the shorter RM codes by
recalculating the posterior probabilities of their symbols. Intermediate de-
codings are only performed when these recalculations reach the trivial RM
codes. In turn, the updated lists of most plausible codewords are used in
subsequent decodings. The algorithm is further improved by using permu-
tation techniques on code positions and by eliminating themost error-prone
information bits. Simulation results show that for all RM codes of length
256 and many subcodes of length 512, these algorithms approach max-
imum-likelihood (ML) performance within a margin of 0.1 dB. As a result,
we present tight experimental bounds on ML performance for these codes.

Index Terms—Maximum-likelihood (ML) performance, Plotkin con-
struction, posterior probabilities, recursive lists, Reed–Muller (RM) codes.

I. INTRODUCTION

The main goal of this correspondence is to design feasible error-cor-
recting algorithms that approach maximum-likelihood (ML) decoding
on the moderate lengths ranging from 100 to 1000 bits. The problem
is practically important due to the void left on these lengths by the best
algorithms known to date. In particular, exact ML decoding has huge
decoding complexity even on blocks of 100 bits. On the other hand,
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currently known iterative (message-passing) algorithms have been ef-
ficient only on blocks of thousands of bits.

To achieve near-ML performance with moderate complexity, we
wish to use recursive techniques that repeatedly split an original code
into the shorter ones. For this reason, we consider Reed–Muller (RM)
codes, which represent the most notable example of recursive con-

structions known to date. These codes—denoted below asfm
r
g—have

length n = 2m and Hamming distance d = 2m�r . They also
admit a simple recursive structure based on the Plotkin construction
(uuu; uuu+ vvv); which splits the original RM code into the two shorter
codes of length 2m�1. This structure was efficiently used in recursive
decoding algorithms of [2]–[4], which derive the corrupted symbols of
the shorter codes uuu and vvv from the received symbols. These recalcu-
lations are then repeated until the process reaches the repetition codes
or full spaces, whereupon new information symbols can be retrieved
by any powerful algorithm—say, ML decoding. As a result, recursive
algorithms achieve bounded distance decoding with a low complexity
order of nminfr;m � rg, which improves upon the complexity of
majority decoding [1].

We also mention two list decoding algorithms of [5] and [6], which
substantially reduce the error rates at the expense of a higher com-
plexity. In both algorithms, RM codes are represented as the gener-
alized concatenated codes, which are repeatedly decomposed into the
shorter blocks similarly to the Plotkin construction. In all intermediate
steps, the algorithm of [5] tries to estimate the Euclidean distance to
the received vector and then retrieves the codewords with the smallest
estimates. To do so, the algorithm chooses some number L of code-
words from both constituent codes uuu and vvv. Then the product list is
constructed for the original code. These lists are recursively re-evalu-
ated and updated inmultiple runs. The second technique [6] is based on
a novel sequential scheme that uses both the main stack and the com-
plementary one. The idea here is to lower-bound the minimum distance
between the received vector and the best code candidates that will be
obtained in the future steps. This “look-ahead” approach gives low error
rates and reduces the decoding complexity of [5].

Recently, new recursive algorithms were considered in [8] and [9]. In
particular, for long RM codes of fixed code rate R, recursive decoding
of [8] corrects most error patterns of weight (d ln d)=2 instead of the
former threshold of d=2. This is done without any increase in decoding
complexity. However, the new decoding threshold is still inferior to that
of a much more powerful ML decoding.

In the sequel, we advance the algorithm of [8], also applying list de-
coding techniques. This approach mostly follows [9] and differs from
the prior results in a few important aspects. First, we use exact poste-
rior probabilities in our recursive recalculations instead of the distance
approximations employed before. This allows us to design a tree-like
recursive algorithm that can better sort out all plausible candidates in
intermediate steps and avoid multiple decoding runs. Second, we shall
see that the output error rate significantly varies for the different infor-
mation symbols derived in the recursive process. Therefore, we also
consider subcodes of RM codes obtained by removing the least pro-
tected information bits. Finally, decoding will be improved by applying
a few permutations on code positions. As a result, we closely approach
the performance of ML decoding on the lengths 256 and 512, which
was beyond the reach of the former techniques.

The material is organized as follows. In Section II, we briefly
summarize some recursive properties of RM codes and their decoding
procedures. In Section III, we describe our list decoding algorithm
	m
r (L). Finally, in Section IV, we discuss the improvements obtained

by eliminating the least protected information bits and using permu-
tation techniques.

II. RECURSIVE ENCODING AND DECODING FOR RM CODES

A. Encoding

The following description is detailed in [10]. Let any codeword ccc of

RM code fm
r
g be represented in the form uuu;uuu+vvv where uuu 2 fm�1

r
g

and vvv 2 fm�1
r�1

g. We say that ccc is split onto two “paths” uuu and vvv.
By splitting both paths, we obtain four paths that lead to RM codes
of length 2m�2; and so on. In each step i of our splitting, we assign
the path value �i = 0 to a new vvv-component and �i = 1 to a new

uuu-component. All paths end at the repetition codes f g
0
g or full spaces

f h
h
g, where

g = 1; . . . ;m� r; h = 1; . . . ; r:

Thus, we can consider a specific binary path

�
def
= (�1; . . . ; �m�g)

that leads from the origin fm
r
g to some left-end code f g

0
g. For any

right-end node f h
h
g, the same process gives a subpath � of lengthm�h

�
def
= (�1; . . . ; �m�h):

A similar decomposition can be performed on the block aaamr of k in-
formation bits that encode the original vector ccc. In this way, any left-end

path � gives only one information bit associated with its end node f g
0
g.

Any right-end path gives 2h information bits associated with the end

code f h
h
g. We can also add an arbitrary binary suffix of length h to

the right-end paths, and obtain a one-to-one mapping between the ex-
tended paths � and k information bits a(�).

B. Basic Decoding With Posterior Probabilities

Let any binary symbol a bemapped onto (�1)a. Then any codeword
of RM code belongs to f1;�1gn and has the form ccc =(uuu;uvuvuv). This
codeword is transmitted over a memoryless channel Zg . The received
block xxx consists of the two halves xxx0 and xxx00, which are the corrupted
images of vectors uuu and uvuvuv. The decoder first takes the symbols x0i and
x00i for any position i = 1; . . . ; n=2; and finds the posterior probabili-
ties of transmitted symbols ui and uivi

q0i
def
= Prfui = 1jx0ig; q00i

def
= Prfuivi = 1jx00i g:

To simplify our notation, in the following we use the associated quan-
tities

y0i
def
= 2q0i � 1; y00i = 2q00i � 1: (1)

Note that y0i is the difference between the two posterior probabilities q
0

i

and 1 � q0i of 1 and �1 in position i of the left half. Similarly, y00i is
obtained on the right half. The following basic recursive algorithm is
described in [8] and [10, Sec. IV] in more detail.

Step 1. Let qvi = Prfvi = 1jx0i; x
00

i g be the posterior probability of
any symbol vi of the codeword vvv. We find the corresponding quantity
yvi = 2qvi � 1, which is (see [10, eq. (18)])

yvi = y0iy
00

i : (2)

Symbols yvi form the vector yyyv of length n=2. Then we use some

soft-decision decoder 	v(yyy
v) that gives a vector v̂vv 2 fm�1

r�1
g and its

information block âaav .
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Step 2. Now we assume that Step 1 gives correct vector v̂vv = vvv. Let
qui = Prfui = 1jx0i; x

00

i g be the posterior probability of a symbol ui.
Then, the corresponding quantity yui = 2qui � 1 is (see [10, eq. (19)])

yui = (y0i + ŷi)=(1 + y0iŷi) (3)

where ŷi = y00i v̂i. The symbols yui form the vector yyyu of length n=2.
We use some (soft-decision) decoding algorithm 	u(yyy

u) to obtain a

vector ûuu 2 fm�1

r
g and its information block âaau.

In a more general scheme 	m
r , vectors yyyv and yyyu are not decoded

but used as our new inputs yyy. These inputs are recalculated multiple

times according to (2) and (3). Finally, we reach the end nodes f g
0
g

and f h
h
g. Here we perform ML decoding as follows.

At any node f g
h
g, our input is a newly recalculated vector yyy of length

2g with the given differences yi between posterior probabilities of two
symbols ci = �1. Rewriting definition (1), we assign the posterior
probability

Pr(cijyi) = (1 + ciyi)=2

to a symbol ci = �1. In this way, we can find the posterior probability

P (ccc j yyy) =
2

i=1

(1 + ciyi)=2 (4)

of any codeword ccc 2 f g
h
g, and choose the most probable codeword ĉcc,

where

8ccc 2
g

h
: P (ĉccjyyy) �P (ccc j yyy): (5)

The decoded codeword ĉcc 2 fm
r
g and the corresponding information

block âaa are now obtained as follows (here operations (2) and (3) are
performed on vectors componentwise).

Algorithm 	m
r for an input vector yyy.

1. If 0 < r < m, execute the following.
1.1. Calculate vector yyyv = yyy0yyy00.
Decode yyyv into vector v̂vv = 	m�1

r�1 (yyyv).
Pass v̂vv and âaav to Step 1.2
1.2. Calculate vector yyyu = (yyy0 + ŷyy)=(1 + yyy0ŷyy).
Decode yyyu into vector ûuu = 	m�1

r (yyyu).
Output decoded components:
âaa := (âaav j âaau); ĉcc := (ûuu j ûuuv̂vv).

2. If r = 0, use ML decoding (5) for f r
0
g.

3. If r = m, use ML decoding (5) for f r
r
g.

Note that this algorithm 	m
r differs from the simplified algorithm

�m
r of [10] in three aspects. First, we use exact recalculations (3) in-

stead of the former simplification

yyyu = (yyy0 + ŷyy)=2: (6)

Second, we use ML decoding instead of the minimum distance de-
coding that chooses ĉcc with the maximum inner product

8ccc : (ĉcc; yyy) � (ccc; yyy)

Third, we employ a different rule and stop at the repetition codes f r
0
g

instead of the biorthogonal codes used in [10]. This last change will
make it easier to use the list decoding described in the following sec-
tion.

Finally, note that recalculations (2) require n=2 operations, while
recalculations (3) can be done in 5n=2 operations. Therefore, our de-
coding complexity satisfies recursion

j	m
r j � 	m�1

r�1 + 	m�1

r + 3n:

Similarly to [10], this recursion gives decoding complexity

j	m
r j � 6nmin(r;m� r) + n:

Thus, complexity j	m
r j hasmaximum order of 3n logn, which is twice

the complexity j�m
r j of the algorithm �m

r of [10].

III. LIST DECODING

To enhance algorithm 	m
r , we shall use some lists of L = 2p

or fewer codewords obtained on any path �. This algorithm—called
	m
r (L)—increases the number of operations at most L times and has

the overall complexity order of Ln logn. Given any integer parameter
A, we say that the list has size A�, if decoding outputs either all
available records or A records, whichever is less. This algorithm
performs as follows.
At any step s = 1; . . . ; k of the algorithm	m

r (L), our input consists
of L� records

A = (�aaa; �(�aaa); yyy(�aaa)):

Each record is formed by some information block �aaa, its cost function
�(�aaa), and the corresponding input yyy(�aaa), which is updated in the de-
coding process. These three entries are defined in the following.

Decoding starts at the root node fm
r
g. Here we set s = 0 and take

one record

�aaa = ;; �(�aaa) = 1; yyy(�aaa) = yyy (7)

where yyy is the input vector. Decoding takes the first path (denoted

� = 1) to the leftmost code fm�r

0
g and recalculates vector yyy(�aaa) simi-

larly to the algorithm	m
r . However, nowwe take both values a1 = 0; 1

of the first information symbol and consider both codewords 1d and
�1d of length d = 2m�r in the repetition code ccc(a1). The posterior
probabilities (4) of these two vectors will also define the cost function
of the new information block �aaa = a1

�(�aaa) =

2

i=1

1 + ccci(a1)yi(�aaa)

2
:

In our list decoding, we represent the two outcomes �aaa as the initial
edges mapped with their cost functions P (�aaa). Then we proceed to the

next code fm�r�1

0
g, which corresponds to the subsequent path de-

noted � = 2. Given two different decoding results vvv = ccc(a1); our
recursion (2), (3) gives two different vectors yyy(�aaa) arriving at this node.
Therefore, decoding is performed two times and gives the full tree of
depth 2. More generally, at any step s, decoding is executed as follows.
Suppose that the first s � 1 paths are already processed. This gives

L� information blocks

�aaa = (a1; . . . ; as�1)

of length s� 1 and the corresponding records A. Each vector yyy(�aaa) is
then recalculated on the new path � = s using formulas (2) and (3) in
the same way it was done in 	m

r . Let this path end on some left-end

code f g
0
g. Decoding of the new information symbol as = 0; 1 yields

2L� extended blocks

�aaa := �aaa; as
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of depth s, marked by their cost functions

�(�aaa) := �(�aaa) �
2

i=1

1 + ci(as)yi(�aaa)

2
: (8)

Step s is completed by choosing L� blocks with the highest cost func-
tions �(�aaa).

The decoding on the right-end nodes is similar. The only difference is

that the full spaces f h
h
g include 2h codewords defined by information

blocks as of length jasj = h. In this case, we can choose the two
most probable vectors ccc(as) (in essence, making bit-by-bit decisions)
and set g = h in our cost calculations (8). Another—more refined
version of the algorithm—chooses four different vectors of the code

f h
h
g whenever h � 2. The best record is chosen at the last node f r

r
g.

More generally, the algorithm is executed as follows.

Algorithm 	m
r (L). Input: L

� records
A = (�aaa; �(�aaa); yyy(�aaa)), counter s = 0.
1. If 0 < r < m, for all vectors yyy(�aaa):

1.1. Set y(�aaa) := yyy0(�aaa)yyy00(�aaa).
Perform decoding 	m�1

r�1 (yyy(�aaa)).
Pass L� new records A to Step 1.2

1.2. Set yyy(�aaa) :=
yyy0(�aaa) + ŷyy(�aaa)
1 + yyy0(�aaa)ŷyy(�aaa)

.

Perform decoding 	m�1
r (yyy(�aaa)).

Output L� new records A.
2. If r = 0, take both values as = 0; 1.
Calculate costs (8) for each (�aaa; as).
Choose L� best blocks �aaa := (�aaa; as).
Set s := s + 1 and return L� records A.
3. If r = m, choose 4� best blocks as.
Calculate costs (8) for each (�aaa; as).
Choose L� best blocks �aaa := (�aaa; as).
Set s := s+ jasj and return L� records A.

Discussion: Consider the above algorithm on the additive white
Gaussian noise (AWGN) channel N (0; �2). Using the results of [10],
it can be proven that on this channel, the vvv-component is decoded on
the channel with the new noise power

�2v � maxf2�2; �4g:

The first approximation is tight for very small �2 (though the channel is
no longer Gaussian), while the second one performs well on the “bad”
channels with �2 � 1. Thus, the noise power always increases in the
vvv-direction; the more so, the worse the original channel is. By con-
trast, the uuu-channel can be approximated by the smaller power �2=2.
These observations also show that the first information symbol—which
is obtained on the binary path 0r—is protected the least, and then the
decoding gradually improves on the subsequent paths.

Now we see that the algorithm 	m
r (L) with the list of size L =

2p delays our decision on any information symbol by p steps, making
this decision better protected. In the particular case of a bad channel,
it can be verified that the first symbol a1 is now decoded when the
noise power is reduced 2p times. For this reason, this list decoding
substantially reduces the output word-error rates (WER) even for small
size L.

ForL = 2m�r+1, the algorithm	m
r (L) processes all the codewords

of the first biorthogonal code fm�r+1

1
g and is similar to the algorithm

�m
r of [10]. On the other hand, algorithm 	m

r (L) updates all L cost

Fig. 1. Tight lower bounds on WER of ML decoding for three RM codes
of length 128. The legend gives the list size L(�) for which the algorithm
	m
r (L) performs withing� = 0.25 dB from these bounds.

TABLE I
RM CODES OF LENGTH 128: THE LIST SIZE L(�), DECODING COMPLEXITY,
AND THE CORRESPONDING SNR AT WHICH ALGORITHM	m

r (L) PERFORMS

WITHIN� = 0.25 dB FROM ML DECODING AT WER 10�4

functions, while �m
r chooses one codeword on each end node. There-

fore, 	m
r (L) can be considered as a generalization of �m

r that contin-
uously updates decoding lists in all intermediate steps. The result is a
more powerful decoding that comes along with a higher complexity.
Simulation Results: In the following, we present our simulation re-

sults for the AWGN channels. Here we also counted all the instances,
when for a given output the decoded vector was more probable than
the transmitted one. Obviously, these specific events also represent the
errors of ML decoding. Thus, the fraction of these events gives a lower
bound on the ML decoding error probability. This lower bound is also
depicted in the subsequent figures for all the codes tested.
Our simulation results show that for all RM codes of lengths 128 and

256, the algorithm	m
r (L) rapidly approaches ML performance as the

list size L grows. For RM codes of length 128 and distance d > 4, we
summarize these results in Fig. 1. For each RM code, we present tight
lower bounds for the error probability of ML decoding. To measure the
efficiency of the algorithm 	m

r (L), we also exhibit the actual list size
L(�) at which 	m

r (L) approaches the optimal ML decoding within a
small margin of

� = 0.25 dB:

This performance loss � is measured at the output WER P = 10�4;
however, we found little to no difference for all other WER tested in
our simulation. In Table I, we complement these sizes L(�) with the
two other relevant parameters:

— the signal-to-noise ratios (SNR per information bit) at which
algorithm 	m

r (L) gives the WER P = 10�4;
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— the complexity estimates j	m
r (L)j counted as the number of

floating-point operations.

For RM codes of length 256, we skip most decoding results as
these will be improved in the next section by the permutation tech-
niques. In our single example in Fig. 2, we present the results for the

(n = 256; k = 93) code f 8

3
g. This code gives the lowest rate of

convergence to the ML decoding among all RM codes of length 256.
In other words, all other codes require the smaller lists to achieve the
same performance loss �. This example and other simulation results
show that the algorithm 	m

r (L) performs within 0.5 dB from ML
decoding on the lengths 128 and 256 using lists of small or moderate
size.

IV. FURTHER IMPROVEMENTS

A. Subcodes of RM Codes

More detailed results also show that many codes of length n � 256
require lists of large size L � 1024 to approach ML decoding within
the small margin of 0.25 dB. Therefore, for n � 256, we also em-
ploy a different approach. Namely, the decoding performance can be
improved by eliminating those paths, where recursive decoding fails
more often. Here we use the results of [10], which show that the left-
most paths are the least protected.

Recall that each left-end path � corresponds to one information
symbol. Therefore, decoding on these paths can be eliminated by
setting the corresponding information bits as zeros. In this way, we

employ the subcodes of the original code fm
r
g. Note that our decoding

algorithm 	m
r (L) runs virtually unchanged on subcodes. Indeed, the

single difference arises when some information block as takes only
one value 0 on the corresponding left node (or less than 2h values on
the right node). Therefore, on each step s, we can proceed as before,
by taking only the actual blocks as left at this node after expurgation.

In the algorithm 	m
r (L), this expurgation starts with the least

protected information path 0r that ends at the node fm�r
0
g. It can

be shown that for long RM codes of fixed order r, eliminating even
the single weakest path 0r increases the admissible noise power
21=2 times. Thus, the lowest orders r = 2; 3 yield the biggest gain
(10 log10 2)=2

r dB, which equals 0.75 and 0.375 dB, respectively.
To proceed further, we eliminate the next weakest path 0r�110.

However, the theoretical analysis becomes more complicated on the
subsequent bits and it is unclear which bits should be eliminated first.
For this reason, we optimized this pruning process in our simulation
by making a few ad hoc trials and eliminating subsequent bits in
different order.

The corresponding simulation results are presented in Fig. 3 for the

(256;93)-code f 8

3
g and its (256;78)-subcode. We see that pruning

substantially improves code performance. It is also interesting to com-
pare Figs. 2 and 3. We see that the subcode approaches the optimal ML
performance much faster than the original code does. In particular, the
same margin of � = 0.25 dB can be reached with only L = 16 code-
words instead of L = 1024 codewords needed on the code. In all other
examples, the subcodes also demonstrated a much faster convergence,
which leads to a lesser complexity.

In Fig. 4, we present similar results for the (512;101)-subcode of

the (512;130)-code f 9

3
g. Here in Table II, we also give a few list sizes

L, the corresponding SNRs needed to reach the output WER P =
10�4, and the complexity estimates j	m

r (L)j counted by the number
of floating-point operations. Similar results were also obtained for the
subcodes of other RM codes of length 512.

These simulation results show that combining both techniques—
eliminating the least protected bits and using small lists of code-

Fig. 2. (256;93) RM code f 8

3
g. WER for the algorithm 	m

r (L) with

lists of size L.

Fig. 3. (256;78)-subcode of the (256;93) RM code f 8

3
g. WER for the

algorithm 	m
r (L) with lists of size L.

words—gives a gain of 3 to 4 dB on the lengths n � 512 over the
original non-list decoding algorithm 	m

r . For subcodes, we also
approach ML decoding with the lists reduced up to 64 times relative
to the original RM codes.

B. New Permutation Techniques

The second improvement to the algorithm 	m
r (L) utilizes the rich

symmetry group GA(m) of RM codes [7] that includes 2O(m ) per-
mutations of n positions i = (i1; . . . ; im). To employ fewer permuta-
tions, we first permute the m indices (1; 2; . . . ; m) of all n positions
i = (i1; . . . ; im). Thus, we first take a permutation

(1; 2; . . . ;m)
�
7! (�(1); . . . ; �(m))

ofm indices and consider the correspondingm! permutations �(i) of
positions i

�(i) : (i1; . . . ; im)! i�(1); . . . ; i�(m) : (9)
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Fig. 4. (512; 101)-subcode of the (512;130) RM code f 9

3
g. WER for the

algorithm 	m

r (L) with lists of size L.

TABLE II
(512;101)-SUBCODE OF THE (512;130) RM CODE f 9

3
g. LIST

SIZES L, THE CORRESPONDING SNRS, AND COMPLEXITY ESTIMATES

j	m

r (L)j NEEDED AT WER 10�4

Remark: Note that them indices represent the different axes inEm

2 .
Thus, any permutation of indices is the permutation of axes of Em

2 .
For example, the permutation (2; 1; 3; 4; . . . ;m) of m indices leaves
unchanged the first and the fourth quarters of all positions 1; . . . ; n, but
changes the order of the second and the third quarters.

Given a permutation �, consider the subset of r original indices
(axes) ��1f1; . . . ; rg that were transformed into the first r axes
1; . . . ; r by the permutation �. We say that two permutations � and �
are equivalent if these images form the identical (unordered) subsets

��1f1; . . . ; rg = ��1f1; . . . ; rg:

Now consider any subset T of permutations (9) that includes exactly
one permutation from each equivalent class. Thus, T includes m

r
per-

mutations, each of which specifies a subset of the first r indices. Recall
that these r indices correspond to the axes that are processed first on
the subpath 0r (for example, we can start with the axis i2 instead of i1,
in which case we first fold the adjacent quarters instead of the halves
of the original block). Thus, this subset T specifies all possible ways
of choosing r unordered axes that will be processed first by the algo-
rithm 	m

r .
Given some positive integer l (which is smaller than the former pa-

rameter L), we then incorporate these permutations �(i) into the list
decoding 	m

r (l). Namely, we form all permutations yyy
�(i) of the re-

ceived vector yyy and apply algorithm	m

r (l) to each vector yyy�(i). How-
ever, at each step of the algorithm, we also combine different lists and
leave only l best candidates in the combined list, each counted once.

Note that this technique makes only marginal changes to our conven-
tional list decoding 	m

r (l). Indeed, the single vector yyy in our original
setting (7) is replaced by m

r
permutations yyy

�(i). Thus, we use pa-
rameter m

r
in our initial setting but keep parameter l for all decoding

Fig. 5. Tight lower bounds on WER of ML decoding for four RM codes of
length 256. The legend gives the list sizes l(�) and L(�) for which the
algorithms �m

r (l) and 	m

r (L) perform within � = 0.25 dB from these
bounds.

steps. If l < m

r
, then the number of records drops to l almost imme-

diately, after the first decoding is performed on the path 0r .
Also, information bits are now decoded in different orders depending

on a specific permutation �(i). Note that we may (and often do) get the
same entries repeated many times. Therefore, in Steps 2 and 3 we must
eliminate identical entries. This is done in all steps by applying inverse
permutations and comparing the corresponding blocks aaa. This permu-
tation-based algorithm is called�m

r (l) below and has complexity sim-
ilar to j	m

r (l)j for all the codes tested.
The motivation for this algorithm is as follows. The specific order of

our axes also defines the order in which the decoding algorithm folds
the original block into the subblocks of lengths n=2, then n=4, and
so on. Now note that this folding procedure will likely accumulate the
errors whenever erroneous positions substantially disagree on the two
halves (correspondingly, quarters, and so on). This can also happen
if the errors are unevenly spread over the two halves of the original
block. By using many permutations, we make it more likely that the
error positions are spread more evenly even if they get accumulated in
the original setting �(i) = i or any other specific setting. In this way,
permutation techniques serve the same functions as interleaving does
on the bursty channels.
Simulation results for the moderate lengths 256 and 512 show that

the algorithm �m

r (l) approaches the optimal ML performance even
when the combined list of lmost probable candidates is reduced two to
eight times relative to the original algorithm	m

r (L). For RM codes of
length 256, we summarize these results in Fig. 5. For each RM code, we
first present the lower bounds for the ML decoding error probability.
Similarly to Fig. 1, we then find the minimum size l(�) that makes
the algorithm �m

r (l) perform only within � = 0.25 dB away from
ML decoding. These sizes and complexity estimates j�m

r (l)j are also
given in Table III. Note that both algorithms give smaller lists once this
performance loss � is slightly increased. In particular, the results in
Table IV show that the lists are reduced two times for� = 0.5 dB.
In summary, the permutation algorithm �m

r (l) performs within 0.5
dB from ML decoding on the length 256, by processing l � 64 vec-
tors for all RM codes. To date, both techniques—permutation decoding
�m

r (l) of complete RM codes and list decoding 	m

r (L) of their sub-
codes—yield the best tradeoffs between near-ML performance and its
complexity known on the lengths n � 256.
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TABLE III
RM CODES OF LENGTH 256: THE LIST SIZES, COMPLEXITIES, AND

THE CORRESPONDING SNRS, AT WHICH THE PERMUTATION

ALGORITHM �m
r
(l) PERFORMS WITHIN � = 0.25 dB FROM ML

DECODING AT WER 10�4

TABLE IV
RM CODES OF LENGTH 256: THE LIST SIZES, COMPLEXITIES, AND THE

CORRESPONDING SNRS, AT WHICH THE PERMUTATION ALGORITHM

�m
r
(l) PERFORMS WITHIN� = 0.5 dB FROM ML DECODING AT WER 10�4

Note, however, that the algorithm�m
r
(l) gives almost no advantage

for the subcodes considered in the previous subsection. Indeed, these
subcodes are obtained by eliminating the leftmost (least protected) in-
formation bits. However, any new permutation �(i) assigns the new
information bits to these leftmost nodes. Thus, the new bits also be-
come the least protected. Another unsatisfactory observation is that in-
creasing the size of the permutation set T—say, to include allm! per-
mutations of allm indices—helps little in improving decoding perfor-
mance. More generally, there are a number of important open problems
related to these permutation techniques. We name a few:

— find the best permutation set T for the algorithm �m
r
(l);

— analyze the algorithm �m
r
(l) analytically;

— modify the algorithm �m
r
(l) for subcodes.

V. CONCLUDING REMARKS

In this correspondence, we considered recursive decoding algo-
rithms for RM codes that can provide near-ML decoding with feasible
complexity for RM codes or their subcodes on the moderate lengths
n � 512.

Our study still leaves many open problems. First, we need to tightly
estimate the error probabilities p(�) on the different paths �. To opti-
mize our pruning procedures for specific subcodes, it is important to
find the order in which information bits should be removed from the
original RM code. Finally, it is still an open problem to analytically es-
timate the performance of the algorithms 	m

r
(L) and �m

r
(l).
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Some Restrictions on Weight Enumerators of Singly Even
Self-Dual Codes

Masaaki Harada and Akihiro Munemasa

Abstract—In this correspondence, we give some restrictions on weight
enumerators of singly even self-dual [ 2 ] codes whose shadows
have minimum weight 2. As a consequence, we determine the
weight enumerators for which there is an extremal singly even self-dual
[40 20 8] code and an optimal singly even self-dual [50 25 10] code.

Index Terms—Extremal code, minimum weight, self-dual code, shadow,
weight enumerator.

I. INTRODUCTION

Let C be a singly even self-dual code and let C0 denote the sub-
code of codewords having weight � 0 (mod 4). Then C0 is a sub-
code of codimension 1. The shadow S of C is defined to be C?0 n C .
Shadows for self-dual codes were introduced by Conway and Sloane
[1] in order to derive new upper bounds for the minimum weight of
singly even self-dual codes, and to provide restrictions on the weight
enumerators of singly even self-dual codes. Using shadows, the largest
possible minimum weights of singly even self-dual codes of lengths up
to 72 are determined in [1, Table I]. The work was extended to lengths
up to 100 in [2, Table VI]. The possible weight enumerators of singly
even self-dual codes with the largest possible minimum weights are
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