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n-Channel Entropy-Constrained Multiple-Description
Lattice Vector Quantization
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Abstract—In this paper, we derive analytical expressions for
the central and side quantizers which, under high-resolution
assumptions, minimize the expected distortion of a symmetric
multiple-description lattice vector quantization (MD-LVQ) system
subject to entropy constraints on the side descriptions for given
packet-loss probabilities. We consider a special case of the general

-channel symmetric multiple-description problem where only a
single parameter controls the redundancy tradeoffs between the
central and the side distortions. Previous work on two-channel
MD-LVQ showed that the distortions of the side quantizers can be
expressed through the normalized second moment of a sphere. We
show here that this is also the case for three-channel MD-LVQ.
Furthermore, we conjecture that this is true for the general

-channel MD-LVQ.
For given source, target rate, and packet-loss probabilities

we find the optimal number of descriptions and construct the
MD-LVQ system that minimizes the expected distortion. We
verify theoretical expressions by numerical simulations and show
in a practical setup that significant performance improvements
can be achieved over state-of-the-art two-channel MD-LVQ by
using three-channel MD-LVQ.

Index Terms—High-rate quantization, lattice quantization, mul-
tiple-description coding (MDC), vector quantization.

I. INTRODUCTION

MULTIPLE-description coding (MDC) aims at creating
separate descriptions individually capable of repro-

ducing a source to a specified accuracy and when combined
being able to refine each other. The classical scheme involves
two descriptions, see Fig. 1. The total rate is split between
the two descriptions, i.e., , and the distortion
observed at the receiver depends on which descriptions arrive.
If both descriptions are received, the distortion is lower
than if only a single description is received ( or ).

Existing MDC schemes can roughly be divided into three cat-
egories: quantizer based, transform based, and source–channel
erasure codes based. Quantizer-based schemes include scalar
quantization [1]–[4], trellis-coded quantization [5]–[7], and
vector quantization [8]–[16]. Transform-based approaches in-
clude correlating transforms [17]–[19] and overcomplete expan-
sions [20]–[22]. Recently, schemes based on source–channel
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Fig. 1. The traditional two channel MDC scheme.

erasure codes have been introduced [23]–[26]. For further
details on many existing MDC techniques we refer to the
survey article by Goyal [27]. The present work is based on
lattice vector quantization and belongs therefore to the first of
the categories mentioned above.

The achievable rate–distortion (R-D) region for the
two-channel problem with respect to the Gaussian source
and mean-square error fidelity criterion has been known for
at least two decades [28], [29]. The procedures leading to the
achievable region were however nonconstructive, and the puzzle
of designing a system capable of achieving the performance
promised by theory remained unsolved. In 1993, Vaishampayan
designed a practical MDC scheme for the scalar case [1]. The
idea was to quantize the source by a central quantizer and then
apply an index-assignment algorithm that uniquely mapped all
reconstruction points of the central quantizer to reconstruction
points in two side quantizers, thereby obtaining two coarser
descriptions of the source. If both descriptions were received,
the inverse map was applied and the performance of the central
quantizer was achieved, whereas if only one of the descriptions
was received the source was reproduced at the resolution of
one of the side quantizers. The scheme developed in [1] was,
however, 8.29 dB from the lower bound on the MDC distortion
product for Gaussian sources [30], [31]. Later, Vaishampayan
et al. described an entropy-constrained multiple-description
scalar quantization system [2] that, under high-resolution
assumptions, is 2.67 dB from the lower bound [30], [31].

Recently, practical schemes for two descriptions have been
introduced [11]–[14], that in the limit of infinite-dimensional
source vectors approach the lower bound. Similar to [1], [2],
these schemes exploit the idea of having only one central quan-
tizer followed by an index-assignment algorithm that maps each
central quantizer reconstruction point to pairs of side quantizer
reconstruction points. The quantizers used in [11]–[14] are all
lattice vector quantizers. It is common to distinguish between
symmetric and asymmetric MDC. In the symmetric case, the
entropies of the side descriptions are equal and the distortions
of the side descriptions are also equal whereas in the asymmetric
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case entropies and distortions are allowed to be unequal. Mul-
tiple-description lattice vector quantization (MD-LVQ) for the
symmetric case was first considered in [11], [13] where for given
target entropies of the side descriptions as well
as maximum allowable distortions of the side de-
scriptions the central distortion is minimized. It is shown that
exploiting the structure in lattices makes it possible to consider
only a limited region of the lattices, which makes the solution
computationally feasible without sacrificing optimality. A key
observation in [11], [13] is that the side distortions depend on the
scaling of the lattices but are independent of the specific types
of lattices. In fact, the side distortions can be expressed through
the normalized second moment of a sphere.

Asymmetric MD-LVQ is presented in [12], [14] where the
central distortion is minimized for given target entropies

and maximum allowable side distortions .
A property of all the schemes presented in [11]–[14] is that a
simple scaling of the lattices allows adaptation to changes in
target entropies without the need of any iterative training pro-
cedures. In [32], [33] it is observed that the scheme developed
in [13] is not able to continuously trade off central distortion
versus side distortions. However, using nonlattices obtained by
slightly modifying the lattices in [13] in an iterative fashion
that alternates between optimizing the encoder while keeping
the decoder fixed and optimizing the decoder while keeping
the encoder fixed, it is possible to obtain a continuous range of
redundancies. The problem of achieving a continuous range of
redundancies is treated in more detail in [15].

The schemes mentioned above all consider two descrip-
tions and the extension to more than two descriptions is not
straightforward. State-of-the-art schemes for more than two de-
scriptions are based on source–channel erasure codes [23]–[26]
which are fundamentally different from the quantizer-based ap-
proaches considered above. Schemes based on source–channel
erasure codes rely upon the assumption that at least out of
descriptions are received, for some pre-specified . If less than

descriptions are received, the quality of the reconstructed
source is poor and if or more descriptions are received a
good quality can be achieved. Among the few quantizer-based
approaches which consider more than two descriptions are [3],
[4], [8]–[10], [16].

In this paper,1 we consider a special case of the general
-channel symmetric multiple-description problem where only

a single2 parameter controls the redundancy tradeoffs between
the central and the side distortions. With a single controling
parameter, it is possible to describe the entire symmetric R-D
region for two descriptions as shown in [11], [13] but it is not
enough to describe the symmetric achievable -channel R-D
region. As such, the proposed scheme offers a partial solution
to the problem of designing balanced MD-LVQ systems.

We derive analytical expressions for the central and side
quantizers which, under high-resolution assumptions, minimize
the expected distortion at the receiving side subject to entropy

1A conference version of this work appeared in [16].
2We show in [34] that additional control parameters can be included in the

MD-LVQ scheme presented in this paper by exploiting recent results on dis-
tributed source coding [23].

constraints on the side descriptions for given packet-loss proba-
bilities. The central and side quantizers we use are lattice-vector
quantizers as presented in [13], [14]. The central distortion, in
our scheme, depends upon the lattice in question whereas the
side distortions only depend on the scaling of the lattices but
are independent of the specific types of lattices. In the case
of three descriptions we show that the side distortions can be
expressed through the normalized second moment of a sphere
as was the case for the two descriptions system presented in
[11], [13]. Furthermore, we conjecture that this is true in the
general case of an arbitrary number of descriptions.

While state-of-the-art quantizer-based MDC schemes [13],
[14] mainly deal with only two descriptions, we construct bal-
anced quantizers for an arbitrary number of descriptions. In
the presented approach, the expected distortion observed at the
receiving side depends only upon the number of received de-
scriptions, hence, the descriptions are mutually refinable and
reception of any out of descriptions yields equivalent ex-
pected distortion. This is different from successive refinement
schemes [35] where the individual descriptions often must be
received in a prescribed order to be able to refine each other,
i.e., description number will not do any good unless descrip-
tions have already been received. We construct a
scheme which for given packet-loss probabilities and a max-
imum bit budget (target entropy) determines the optimal number
of descriptions and specifies the quantizers that minimize the ex-
pected distortion.

This paper is structured as follows. In Section II, we briefly
review specific lattice properties and introduce the concept of an
index-assignment algorithm. The actual design of the index-as-
signment algorithm is deferred to Section III. Reconstruction
of the source and optimal construction of the labeling func-
tion is also presented in Section III. In Section IV, we present a
high-resolution analysis of the expected distortion. We describe
how to construct the quantizers in Section V and numerical eval-
uation follows in Section VI. Appendices contain proofs of the-
orems.

II. PRELIMINARIES

In this work, we use lattices as vector quantizers. For a general
treatment of quantizers based on lattices, see [36]–[38]. This
section briefly review lattice properties, introduces the concept
of index assignments, and describe important results regarding
rate and distortion performance of MD-LVQ systems.

A. Lattice Properties

A real -dimensional lattice is a discrete set of points in the
-dimensional Euclidean space . It forms an additive group

under ordinary vector addition and can be specified through
independent basis vectors [39]. The lattice then consists of all
possible integral linear combinations of the basis vectors, or,
more formally

(1)

where are the basis vectors also known as generator vectors
of the lattice.
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When is used as a vector quantizer, a point (vector)
is mapped to the closest lattice point . The lattice

points are then the codewords (reproduction points) of the quan-
tizer. This quantization process partitions the space into cells
called Voronoi cells, Voronoi regions or nearest neighbor deci-
sion regions. The Voronoi cells of a lattice are congruent poly-
topes,3 hence they are similar in size and shape and may be seen
as translated versions of a fundamental region, e.g., the Voronoi
cell around the origin. A Voronoi cell , where , is
given by

(2)

and we write if . Throughout this work,
we will be considering the -norm (normalized per dimension)
given by , where the inner product is defined as

(3)

A lattice is completely specified by its fundamental region,
and often expressed through the volume of the fundamental
region as well as its dimensionless normalized second moment
of inertia [37], which is given by

(4)

where is the Voronoi cell around origo. Applying any
scaling or orthogonal transform, e.g., rotation or reflection on

will not change , which makes it a good figure of merit
when comparing different lattices (quantizers). In other words,

depends only upon the shape of the fundamental region,
and in general, the more sphere-like shape, the lower normal-
ized second moment.

In this paper, we consider one central quantizer and side
quantizers. The central quantizer is based on a central lattice

with fundamental regions of volume .
The side quantizers are based on a geometrical similar4 sublat-
tice of index and fundamental re-
gions of volume . The trivial case leads to a
single-description system, where we would simply use one cen-
tral quantizer and no side quantizers.

We will consider the balanced situation, where the entropy
is the same for each description. Furthermore, we consider

the case where the contribution , of each
description to the total distortion is the same. Our design makes
sure5 that the distortion observed at the receiving side depends
only on the number of descriptions received, hence reception of
any out of descriptions yields equivalent expected distor-
tion.

3A polytope is a finite convex region enclosed by a finite number of hyper-
planes [40].

4A lattice � is said to be geometrical similar to � if � can be obtained
from � by applying a change of scale, a rotation and possible a reflection [37].

5We prove this symmetry property for the asymptotical case ofN !1 and
� ! 0. For finite N we do not guarantee the existence of an exact symmetric
solution. However, by use of time sharing, it is always possible to achieve sym-
metry.

B. Index Assignments

In the MDC scheme considered in this paper, a source vector
is quantized to the nearest reconstruction point in the cen-

tral lattice . Hereafter follows index assignments (mappings),
which uniquely maps all ’s to vectors in each of the side quan-
tizers. This mapping is done through a labeling function , and
we denote the individual component functions of by , where

. In other words, the injective map that maps
into is given by

(5)

(6)

where and . Each -tuple
is used only once when labeling points in

in order to make sure that can be recovered unambiguously
when all descriptions are received. At this point, we also
define the inverse component map , which gives a set of
central lattice points a specific sublattice point is mapped to.
This is given by

for all (7)

where , since there are times as many central
lattice points as sublattice points within a bounded region of .

Since lattices are infinite arrays of points, we construct a
shift-invariant labeling function, so we only need to label a fi-
nite number of points as is done in [13], [14]. Following the
approach in [14], we construct a product lattice which has

central lattice points and sublattice points in each of its
Voronoi cells. The Voronoi cells of the product lattice
are all similar so by concentrating on labeling only central lat-
tice points within one Voronoi cell of the product lattice, the
rest of the central lattice points may be labeled simply by trans-
lating this Voronoi cell throughout . Other choices of product
lattices are possible, but this choice has a particular simple con-
struction. With this choice of product lattice, we only label cen-
tral lattice points within , which is the Voronoi cell of
around origo. With this we get

(8)

for all and all .

C. Rate and Distortion Performance of MD-LVQ Systems

1) Central Distortion: We consider a source that generates
independent and identically distributed (i.i.d.) random variables
with probability density function (pdf) . Let be a
random vector made by blocking the source into vectors of
length , and let denote a realization of . The -fold
pdf of is denoted and given by

(9)

The expected central distortion is defined as

(10)
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where is the Voronoi cell of a single reconstruction point
. Using standard high-resolution assumptions for lattice

quantizers [36], [38], [41], the expected central distortion can
be expressed in terms of the dimensionless normalized second
moment of inertia , that is.

(11)

where is given by (4).
2) Side Distortions: The side distortion for the th descrip-

tion is given by

(12)
which can be approximated as [13]

(13)

where is the probability that will be mapped to , i.e.,
. We notice that indepen-

dent of which labeling function we use, the distortion introduced
by the central quantizer is orthogonal (under high-resolution as-
sumptions) to the distortion introduced by the side quantizers.
Exploiting the shift-invariance property of the labeling function
(8) makes it possible to simplify (13) as

(14)

where we assume the region is sufficiently small so
, for . Notice that we assume

to be constant only within each region , hence,
it may take on different values for each .

3) Rate:

Definition 2.1: denotes the minimum
entropy needed for a single-description system to achieve an
expected distortion of , the central distortion of the multiple-
description system as given by (11).

The single-description rate is given by

(15)
Using that each quantizer cell has identical volume and as-
suming that is approximately constant within Voronoi
cells of the central lattice , it can be shown that

(16)

where is the component-wise differential entropy of a
source vector.

Definition 2.2: denotes the entropy of the individual de-
scriptions in a balanced multiple-description system. The en-
tropy of the th description is given by ,
where .

The side descriptions are based on a coarser lattice obtained
by scaling the Voronoi cells of the central lattice by a factor of

. Assuming the pdf of is roughly constant within a sublat-
tice cell, the entropy of the side descriptions is given by

(17)

The entropy of the side descriptions is related to the entropy of
the single-description system by

(18)

III. CONSTRUCTION OF LABELING FUNCTION

The index assignment is done by a labeling function , that
maps central lattice points to sublattice points. An optimal index
assignment minimizes a cost functional when de-
scriptions are received. In addition, the index assignment should
be invertible so the central quantizer can be used when all de-
scriptions are received. Before defining the labeling function,
we have to define the cost functional to be minimized. To do so,
we first describe how to approximate the source sequence when
receiving only descriptions and how to determine the expected
distortion. Then we define the cost functional to be minimized
by the labeling function and describe how to minimize it.

A. Expected Distortion

At the receiving side, is reconstructed to a quality
that is determined only by the number of received descriptions.
If no descriptions are received, we reconstruct using the ex-
pected value , and if all descriptions are received, we re-
construct using the inverse map , hence obtaining the quality
of the central quantizer.

In this work, we use a simple reconstruction rule which ap-
plies for arbitrary sources. When receiving descrip-
tions we reconstruct using the average of the descriptions. We
show later (Theorem 3.1) that using the average of received de-
scriptions as reconstruction rule makes it possible to split the
distortion due to reception of any number of descriptions into
a sum of squared norms between pairs of lattice points. More-
over, this leads to the fact that the side quantizers performances
approach that of quantizers having spherical Voronoi regions.

There are in general several ways of receiving out of
descriptions. Let denote an index set consisting of all possible

combinations out of . Hence, .
We denote an element of by . Upon
reception of any descriptions we reconstruct to using

(19)

where .
Assuming packet-loss probabilities are independent and are

the same for all descriptions, say , we may write the expected
distortion when receiving out descriptions as

(20)
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where and the two special cases are
given by

and

B. Cost Functional

From (20), we see that the side distortion may be split into
two terms, one describing the distortion occurring when the
central quantizer is used on the source, and one that describes
the distortion due to the index assignment. An optimal index
assignment jointly minimizes the second term in (20) over all

possible descriptions. The cost functional to
be minimized by the index assignment algorithm is then given
by

(21)

where

(22)
The cost functional should be minimized subject to an entropy
constraint on the side descriptions. We remark here that the side
entropies depend solely on and and as such not on the par-
ticular choice of -tuples. In other words, for fixed and ,
the index assignment problem is solved if (21) is minimized.
The problem of choosing and such that the entropy con-
straint is satisfied is independent of the assignment problem and
deferred to Section IV-B.

The following theorem makes it possible to rewrite the cost
functional in a way that brings more insight into which -tuples
to use.

Theorem 3.1: For we have

Proof: See Appendix I.

From Theorem 3.1, it is clear that (22) can be written as

(23)

The first term in (23) describes the distance from a central lat-
tice point to the centroid of its associated -tuple. The second
term describes the sum of pairwise squared distances (SPSD)
between elements of the -tuples. In Section IV (Proposition
4.1), we show that, under a high-resolution assumption, the
second term in (23) is dominant, from which we conclude
that in order to minimize (21) we have to choose the -tuples
with the lowest SPSD. These -tuples are then assigned to
central lattice points in such a way, that the first term in (23) is
minimized.

Independent of the packet-loss probability, we always min-
imize the second term in (23) by using those -tuples which
have the smallest SPSD. This means that, at high resolution, the
optimal -tuples are independent of packet-loss probabilities
and, consequently, the optimal assignment is independent6 of
the packet-loss probability.

C. Minimizing Cost Functional

In order to make sure that is shift-invariant, we use unique
-tuples, i.e., -tuples that are assigned to one central lat-

tice point only. Notice that two -tuples which are
translates of each other by some must not both be
assigned to central lattice points located within the same re-
gion , since this causes assignment of the same -tu-
ples to multiple central lattice points. The region will be
translated throughout and centered at , so there
will be no overlap between neighboring regions, i.e.,

, for and . One obvious
way of avoiding assigning -tuples to multiple central lattice
points is then to exclusively use sublattice points located within

. However, sublattice points located close to but outside
might be better candidates than sublattice points within
when labeling central lattice points close to the boundary.

A consistent way of constructing -tuples is to center a re-
gion at all sublattice points , and con-
struct -tuples by combining sublattice points ,

within in all possible ways and select the
ones that minimize (23). For a fixed , the expression

is minimized when forms a sphere

centered at . Our construction allows for to have an arbi-
trary shape, e.g., the shape of which is the shape used for the
two-description system presented in [14]. However, if is not
chosen to be a sphere, the SPSD is in general not minimized.

For each it is possible to construct
-tuples, where is the number of sublattice points

within the region . This gives a total of -tuples
when all are used. However, only central
lattice points need to be labeled. When , we let ,
so the number of possible -tuples is equal to , which
is exactly the number of central lattice points in . In
general, for , the volume of is smaller than the
volume of and as such . We can approximate
through the volumes and , i.e., . To justify this
approximation let be a real lattice and let
be the volume of a fundamental region. Let be a sphere

6Given the central lattice and the sublattice, the optimal assignment is inde-
pendent of p. However, we show later that the optimal N depends on p.
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in of radius and center . According to Gauss’
counting principle, the number of integer lattice points in
a convex body in equals the volume of with a
small error term [42]. In fact, if , then by use of a
theorem due to Minkowski it can be shown that, for any
and asymptotically as , ,
where is the volume of the -dimensional unit sphere [43],
see also [44]–[48]. It is also known that the number of lattice
points in the first shells of the lattice satisfies,
asymptotically, as , [13]. Hence,
based on the above, we approximate the number of lattice
points in by , which is an approximation that becomes
exact as the number of shells within goes to infinity7

(which corresponds to ). Our analysis is therefore only
exact in the limiting case of . With this we can, in the
asymptotical case of , lower-bound by

(24)

Hence, contains sublattice points so that the
total number of possible -tuples is .

In Fig. 2 is shown an example of and regions for the
two-dimensional lattice. In the example, we used
and , hence there are 25 sublattice points within .
There are 5 sublattice points in which
is exactly the minimum number of points required, according
to (24).

With equality in (24) we obtain a region that contains the
exact number of sublattice points required to construct tuples
for each of the points in . According to (23), a central
lattice point should be assigned as a -tuple where a weighted
average of any subset of the elements of the -tuple is as close
as possible to the central lattice point. The optimal assignment of

-tuples to central lattice points can be formulated and solved
as a linear assignment problem [49].

1) Shift Invariance by Use of Cosets: By centering
around each , we make sure that the
map is shift invariant. However, this also means that all

-tuples have their first coordinate (i.e., ) inside .
To be optimal, this restriction must be removed which is
easily done by considering all cosets of each -tuple. The
coset of a fixed -tuple, say where

and , is
given by for all . -tuples in a
coset are distinct modulo and by making sure that only one
member from each coset is used, the shift-invariance property
is preserved. In general, it is optimal to consider only those

product lattice points that are close to , e.g., those
points whose Voronoi cell touches . The number of such
points is given by the kissing number of the particular
lattice [37].

2) Dimensionless Expansion Factor : Centering
around points causes a certain asymmetry in the pairwise
distances of the elements within a -tuple. Since the region is
centered around , the maximum pairwise distances between

7For the high-resolution analysis given in Section IV it is important that ~�
is kept small as the number of lattice points within ~V goes to infinity. This is
easily done by proper scaling of the lattices, i.e., making sure that � ! 0 as
N ! 1.

Fig. 2. The region ~V is here shown centered at two different sublattice points
within V (0). Small dots represent sublattice points of � and large dots
represent product lattice points � 2 � . Central lattice points are not shown
here. V contains 25 sublattice points (shown as squares) centered at product
lattice points. In this example ~V contains 5 sublattice points.

Fig. 3. The region ~V is here centered at the point � . Notice that the distance
between � and � is about twice the maximum distance from � to any point
in � \ ~V . The dashed circle illustrates an enlargement of ~V .

and any other sublattice point will always be smaller than the
maximum pairwise distance between any two sublattice points
not including . This can be seen more clearly in Fig. 3. Notice
that the distance between the pair of points labeled
is twice the distance than that of the pair or .
However, by slightly increasing the region to also include
other tuples may be made, which actually have a lower pairwise
distance than the pair . For this particular example, it is
easy to see that the -tuple has a greater SPSD
than the -tuple .

For each , we center a region around the point,
and choose those -tuples, that give the smallest SPSD. By
expanding , new -tuples can be constructed that might have
a lower SPSD than the SPSD of the original -tuples. How-
ever, the distance from to the points farthest away increases
as increases. Since we only need -tuples, it can be seen
that should never be larger than twice the lower bound in (24)
because then the distance from the center to the boundary of
the enlarged region is greater than the maximum distance be-
tween any two points in the region that reaches the lower
bound. In order to theoretically describe the performance of
the quantizers, we introduce a dimensionless expansion factor

which describes how much must be expanded
from the theoretical lower bound (24), to make sure that
optimal -tuples can be constructed by combining sublattice
points within a region .
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For the case of , we always have independent
of the dimension so it is only in the case that we need
to find expressions for .

Theorem 3.2: For the case of and any odd , the
dimensionless expansion factor is given by

(25)

where is the volume of an -dimensional unit sphere and
is given by

(26)

Proof: See Appendix II.

For the interesting case of we have the following
theorem.

Theorem 3.3: For and , the dimensionless
expansion factor is given by

(27)

Proof: See Appendix III.

Table I lists8 for and different values of and it
may be noticed that . In order to extend these re-
sults to , it follows from the proof of Theorem 3.2 that
we need closed-form expressions for the volumes of all the dif-
ferent convex regions that can be obtained by overlapping
spheres. With such expressions, it should be straightforward to
find for any . However, the analysis of for the case of

(as given in the proof of Theorem 3.2) is constructive in
the sense that it reveals how can be numerically estimated for
any and . Let denote the volume of the expanded sphere

. Furthermore, let us denote by the number of -tuples that
we construct by using lattice points inside this sphere. Hence,
asymptotically as the number of lattice points in goes to in-
finity, we have

(28)

which leads to

(29)

where denotes the radius of and where, without loss of gen-
erality, we can assume that (simply a matter of scaling).
In order to numerically estimate , it follows that we need to
find the set of lattice points within a sphere of radius . For
each of these lattice points, we center another sphere of radius

8Theorem 3.2 is only valid for L odd. However, in the proof of Theorem
3.2, it is straightforward to replace the volume of spherical caps by standard
expressions for circle cuts in order to obtain  .

TABLE I
 VALUES OBTAINED BY USE OF THEOREMS 3.2 AND 3.3 FOR K = 3

and find the set of lattice points which are within the intersection
of the two spheres. This procedure continues times. In
the end, we find by adding the number of lattice points within
each intersection, i.e.,

(30)

where

...

(31)

For example, for , , and and
then using the algorithm outlined above we find

and , respectively.

Remark 3.1: In order to achieve the shift-invariance prop-
erty of the index-assignment algorithm, we impose a restriction
upon points. Specifically, we require that so that
the first coordinate of any -tuple is within the region .
To avoid excluding -tuples that have their first coordinate out-
side , we form cosets of each -tuple and allow only one
member from each coset to be assigned to a central lattice point
within . This restriction, which is only put on ,
might cause a bias toward points. However, it is easy to show
that, asymptotically as , any such bias can be removed.
For the case of , we can use similar arguments as used
in [14] and for , we can show that the amount of -tu-
ples that is affected by this restriction is small compared to the
amount of -tuples which are not affected. Hence, asymptot-
ically, as , this restriction is effectively removed. So,
for example, this means that we can enforce similar restriction
on all sublattice points, which, asymptotically as , will
only reduce the number of -tuples by a neglectable amount.
And as such, any possible bias toward the set of points
is removed.

As mentioned earlier, the -tuples need to be assigned to cen-
tral lattice points within . This is a standard linear assign-
ment problem where a cost measure is minimized. However, so-
lutions to linear assignment problems are generally not unique.
Therefore, there might exist several labelings, which all yield
the same cost, but exhibit a different amount of asymmetry. The-
oretically, exact symmetry may then be obtained by, e.g., time
sharing through a suitable mixing of labelings. In practice, how-
ever, any scheme would use a finite (and finite rates). In ad-
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dition, for many applications, time sharing is inconvenient. In
these nonasymptotical cases, we cannot guarantee exact sym-
metry. To this end, we have provided a few examples that assess
the distortions obtained from practical experiments, see Sec-
tion VI (Tables II and III).

IV. HIGH-RESOLUTION ANALYSIS

In this section, we derive high-resolution approximations for
the expected distortion. For this high-resolution analysis, we let

and . The effect of this is that the index of
sublattice increases, but the actual volumes of the Voronoi cells
shrink.

A. Total Expected Distortion

We first introduce Conjecture 4.1 which relates the sum of
distances between pairs of sublattice points to , the di-
mensionless normalized second moment of an -dimensional
sphere. In Appendix IV, we prove the conjecture for the case of

and any as well as for the case of and .
In addition, we show in Appendix IV that Conjecture 4.1 is a
good approximation for the case of and finite . After
presenting Conjecture 4.1, we determine the dominating term
in the expression for the expected distortion. This is given by
Proposition 4.1.

Conjecture 4.1: For , , and , we have for
any pair , ,

Proposition 4.1: For and we have

(32)

Proof: See Appendix V.

The expected distortion (20) can by use of Theorem 3.1 be
written as

(33)

By use of Conjecture 4.1 (as an approximation that becomes
exact for ), Proposition 4.1, and (11) it follows that (33)
can be written as

(34)

The second term in (34) is the dominating term for
and . Observe9 that this term is only dependent upon
through the coefficient .

The total expected distortion is obtained by summing over
including the cases where and

(35)

where is given by

(36)

and is given by

(37)

Using (16) and (17), we can write and as a function of
differential entropy and side entropies, that is,

(38)

and

(39)

from which we may write the expected distortion as a function
of entropies, that is,

(40)

where we see that the distortion due to the side quantizers only
depends upon the scaling (and dimension) of the sublattice and
not which sublattice is used.

B. Optimal , , and

We now derive expressions for the optimal , , and .
Using these values we are able to construct the lattices and

9This was pointed out by a reviewer who also drew the connection to recent
results based on source–channel erasure codes [23] where the improvement by
receiving more descriptions is almost linear in certain cases.
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. The optimal index assignment is hereafter found by using
the approach outlined in Section III. These lattices combined
with their index assignment completely specify an optimal en-
tropy-constrained MD-LVQ system.

In order for the entropies of the side descriptions to be equal
to the target entropy , we rewrite (17) and get

(41)

where is constant. The expected distortion may now be ex-
pressed as a function of

(42)

Differentiating with respect to (w.r.t.) and equating to zero
gives

(43)

from which we obtain the optimal value of

(44)

The optimal follows easily by use of (41)

(45)

Equation (45) shows that the optimal redundancy is, for a
fixed , independent of the sublattice as well as the target en-
tropy.

For a fixed , the optimal and are given by (44) and
(45), respectively, and the optimal can then easily be found
by evaluating (35) for various values of , and choosing the
one that yields the lowest expected distortion. The optimal is
then given by

(46)

where is a suitable chosen positive integer. In practice,
will always be finite and furthermore limited to a narrow range
of integers, which makes the complexity of the minimization
approach, given by (46), negligible.

V. CONSTRUCTION OF QUANTIZERS

In this section, we design practical quantizers. We show that
the index values are restricted to a discrete set of admissible
values. Knowledge of these values makes it possible to con-
struct practical quantizers and theoretically describe their per-
formance.

A. Index Values

Equations (44) and (45) suggest that we are able to contin-
uously trade off central versus side distortions by adjusting
and according to the packet-loss probability. This is, however,

not the case, since certain constraints must be imposed on .
First of all, since denotes the number of central lattice points
within each Voronoi cell of the sublattice, it must be integer
and positive. Second, we require the sublattice to be geometrical
similar to the central lattice. Finally, we require the sublattice to
be a clean sublattice, so that no central lattice points are located
on boundaries of Voronoi cells of the sublattice. This restrict
the amount of admissible index values for a particular lattice to
a discrete set, cf. [14].

Fig. 4 shows the theoretically optimal index values (i.e., ig-
noring the fact that belongs to a discrete set) for the
quantizer, given by (45) for and cor-
responding to and , respectively. Also shown are the
theoretical optimal index values when restricted to admissible
index values. Notice that the optimal index value increases for
increasing number of descriptions. This is to be expected since
a higher index value leads to less redundancy; this redundancy
reduction, however, is balanced out by the redundancy increase
resulting from the added number of descriptions. In [50] we ob-
served that for a two-description system, usually only very few
index values would be used. In fact, for the two-dimensional

quantizer, only should be used. Higher di-
mensional quantizers would use greater index values. However,
here we see that by increasing the number of descriptions be-
yond , it is optimal to use greater index values which
adds more flexibility to the scheme.

From Fig. 4 it can be seen that when the continuous optimal
index value is rounded to the optimal admissible index value it is
always the closest one from either below or above. This means
that the optimal admissible index value is found by considering
only the two values closest to the continuous index value, and
using the one that minimizes (35).

VI. NUMERICAL EVALUATION

In this section, we compare the numerical performances of
two-dimensional entropy-constrained MD-LVQ systems (based
on the lattice) to their theoretical prescribed performances.

A. Performance of Individual Descriptions

In the first experiment, we design a three-channel MD-LVQ
based on the quantizer. We quantize an i.i.d. unit-variance
zero-mean Gaussian source which has been blocked into
two-dimensional vectors. The number of vectors used in the
experiment is . The entropy of each side description is 5
bits/dimension and we vary the index value in the range – .
The dimensionless expansion factor is set to . The
numerical and theoretical distortions when receiving only a
single description out of the three is shown in Table II. Simi-
larly, Table III shows the distortions of the same system due
to reception of two out of three descriptions, and Table IV
shows the performance of the central quantizer when all three
descriptions are received. The column labeled “Avg.” illustrates
the average distortion of the three numerically measured distor-
tions and the column labeled “Theo.” describes the theoretical
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Fig. 4. Theoretical optimal index values for the A quantizer as a function of packet-loss probability. Thin solid lines are obtained by restricting the theoretical
optimal index values given by (45) to optimal admissible values. The optimal admissible index values are those that minimize (35) for a given p.

TABLE II
DISTORTION (DB) DUE TO RECEPTION OF A SINGLE DESCRIPTION OUT

OF THREE

TABLE III
DISTORTION (DB) DUE TO RECEPTION OF TWO DESCRIPTIONS OUT OF THREE

distortions given by (34).10 It is clear from the tables that the
system is symmetric; the achieved distortion depends on the
number of received descriptions but is essentially independent
of which descriptions are used for reconstruction.

B. Distortion as a Function of Packet-Loss Probability

We now show the expected distortion as a function of the
packet-loss probability for -channel MD-LVQ systems where

. We block the i.i.d. unit-variance Gaussian source
into two-dimensional vectors and let the total target en-
tropy be 6 bits/dimension. The expansion factor is set to
for and for . We sweep the
packet-loss probability in the range in steps of
and for each we measure the distortion for all admissible index

10Since we do not consider packet losses in this experiment, we have set the
weight to unity, i.e., (1� p) p = 1.

TABLE IV
DISTORTION (DB) DUE TO RECEPTION OF ALL THREE DESCRIPTIONS OUT

OF THREE

values and use that index value which gives the lowest distor-
tion. This gives rise to an operational lower hull (OLH) for each
quantizer. This is done for the theoretical curves as well by in-
serting admissible index values in (35) and use that index value
that gives the lowest distortion. In other words, we compare the
numerical OLH with the theoretical OLH and not the “true”11

lower hull that would be obtained by using the unrestricted index
values given by (45). The target entropy is evenly distributed
over descriptions. For example, for each description
uses 3 bits/dimension, whereas for each description uses
only 2 bits/dimension. The performance is shown in Fig. 5. The
practical performance of the scheme is described by the lower
hull of the -curves. Notice that at higher packet-loss probabili-
ties ( 5%) it becomes advantageous to use three descriptions
instead of two.

VII. CONCLUSION AND DISCUSSION

In this work, we derived analytical expressions for the central
and side quantizers which, under high-resolution assumptions,
minimize the expected distortion of a symmetric -channel
MD-LVQ system subject to entropy constraints on the side
descriptions for given packet-loss probabilities. The expected

11A lattice is restricted to a set of admissible index values. This set is generally
expanded when the lattice is used as a product quantizer, hence, admissible index
values closer to the optimal values given by (45) can in theory be obtained.
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Fig. 5. Distortion as a function of packet-loss probability for theA quantizer. The target entropy is 6 bits/dimension, so each description gets 6=K bits/dimension.
Thick lines show numerical performance and thin solid lines show theoretical performance.

distortion observed at the receiving side depends only upon the
number of received descriptions but is independent of which de-
scriptions are received. We focused on a special case of the sym-
metric multiple-description problem where only a single param-
eter controls the redundancy tradeoffs between the central and
the side distortions. As such more work is needed before the
general symmetric -channel MD-LVQ problem is completely
solved. A step in that direction is presented in [34].

Future work in progress includes extending the presented
scheme to the asymmetric case, where packet-loss probabil-
ities, entropies and distortions may differ for the different
descriptions [55].

APPENDIX I
PROOF OF THEOREM 3.1

In order to prove Theorem 3.1, we need the following results.

Lemma 1.1: For we have

Proof: Expanding all sums on the left-hand side
leads to different terms of the form , where

. There are distinct ’s so the number
of times each occur is .

Lemma 1.2: For we have

Proof: There are distinct ways of adding out of
elements. Squaring a sum of elements leads to squared

elements and cross products (product of two different
elements). This gives a total of squared elements, and

cross products. Now since there are distinct el-
ements, the number of times each squared element occurs is
given by

(47)

There are distinct cross products, so the number of times
each cross product occurs is given by

(48)

Lemma 1.3: For we have

(49)

Proof: Expanding the right-hand side of (49) yields

(50)

We also have
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(51)

which completes the proof.

We are now in a position to prove the following result.

Proposition 1.1: For we have

Proof: We have

Hence, by use of Lemmas 1.1 and 1.2, we have that

so that, by Lemma 1.3, we finally have that

which completes the proof.

Theorem 3.1: For we have

Proof: Follows trivially from Proposition 1.1.

APPENDIX II
PROOF OF THEOREM 3.2

Theorem 3.2: For the case of and any odd , the
dimensionless expansion factor is given by

(52)

where is given by

(53)

Proof: In the following, we consider the case of .
For a specific , we need to construct -tuples all
having as the first coordinate. To do this, we first center a
sphere of radius at . For large and small , this sphere
contains approximately lattice points from . Hence, it
is possible to construct distinct -tuples. However, the
maximum distance between and points is greater than the
maximum distance between and points and also between

and points. To avoid this bias toward points we make
sure that we only use -tuples that satisfy for

. However, with this restriction we can no longer
form -tuples. Therefore, we expand by the factor in
order to make sure that exactly -tuples can be made. It is well
known that the number of lattice points at exactly squared dis-
tance from , for any is given by the coefficients of the
Theta series of the lattice [37]. Theta series depend on the lat-
tices and also on [37]. Instead of working directly with Theta
series we will, in order to be lattice and displacement indepen-
dent, consider the -dimensional hollow sphere obtained as

and shown in Fig. 6(a). The number
of lattice points in is given by and asymptotically
as (and independent of )

(54)
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Fig. 6. The number of lattice points in the shaded region in (a) given by a =
Vol( �C)=� and in (b) given by b = Vol(C)=� .

The following construction makes sure that we have
. For a specific ,

we center a sphere at and use only points from
. In Fig. 6(b), we have shown two over-

lapping spheres where the first is centered at some and the
second is centered at some which is at distance

from , i.e., . Let us by denote the
convex region obtained as the intersection of the two spheres,
i.e., . Now let denote the number of
lattice points in . With this we have, asymptotically as

, that is given by

(55)

It follows that the number of distinct -tuples which satisfy
is given by

(56)

The region consists of two equally sized spherical caps. We
can show that the volume of an -dimensional ( odd) spher-
ical cap is given by (we omit the proof because of space
considerations)

(57)

where the Hypergeometric function is defined by [51]

(58)

where is the Pochhammer symbol defined as

(59)

If either of and or both are negative, the sum in (58)
terminates.

Inserting (54) and (55) into (56) leads to12 (asymptotically as
)

(60)

where follows by use of the binomial series expansion [52,
p. 162], i.e.,

which in our case leads to

(61)

and

(62)

12We remark that in this asymptotical analysis we assume that all � points
within a given �C are at the exact same distance from the center of ~V (i.e., from
� ). The error due to this assumption is neglectable, since any constant offset
from m will appear inside O(�).
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is obtained by once again applying the binomial series ex-
pansion, that is,

(63)

and follows from the fact that

Next we let so that the number of hollow spheres
inside goes to infinity.13 From (60) we see that, asymptotically
as and , we have

(65)

where is constant for fixed and given by (53).
We are now in a position to find an expression for . Let

be equal to the lower bound (24), i.e., and let be
the radius of the sphere having volume . Then is given by
the ratio of and , i.e., , where is the radius of .
Using this in (65) leads to

(66)

Since the radius of an -dimensional sphere of volume is
given by

(67)

we can find by dividing (66) by (67), that is,

(68)

Since we need to obtain -tuples we let so that with
we can rewrite (68) as

(69)

This completes the proof.

APPENDIX III
PROOF OF THEOREM 3.3

Lemma 3.1: For we have

(70)

13We would like to emphasize that this is equivalent to keeping r fixed, say
r = 1, and then let the number of hollow spheres inside ~V go to infinity. To see
this, let M ! 1 and then rewrite (54) as

a =Vol( �C)=� =
!

�

m

M
�

m�1

M
; 1�m�M: (64)

A similar change applies to (55). Hence, the asymptotical expression for T is
also valid within a localized region of which is a useful property we exploit
when proving Lemma 4.1.

Proof: The volume of an -dimensional unit hyper-
sphere is given by so we have that

(71)

Lemma 3.2: For we have

(72)

Proof: The inner sum in (26) may be well approximated
by using that for , which leads to

(73)

We also have that

(74)

where follows from the following Hypergeometric transfor-
mation [51]:

(75)

where . Finally, it is true that

(76)
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Inserting (73), (74), and (76) into (53) leads to

(77)

where since , we get

(78)

which proves the Lemma.

We are now in a position to prove the following theorem.

Theorem 3.3: For and , the dimensionless
expansion factor is given by

(79)

Proof: The proof follows trivially by use of Lemma 3.1
and Lemma 3.2 in (69).

APPENDIX IV
CONJECTURE 4.1

In this appendix, we justify Conjecture 4.1 by proving it for
the case of and any as well as for the case of
and . In addition we show that it is a good approximation
for the case of and finite .

Let , i.e., the set of
sublattice points associated with the central

lattice points within . Furthermore, let be the set
of unique elements of , where . Finally, let

and

and let be the set of unique elements. That
is, contains all the elements which are in the

-tuples that also contains a specific . We will also make use
of the notation to indicate the number of occurrences of a
specific in .

For the pair we have

Given , we have

(80)

where follows by assuming (see the discussion below
leading to Lemma 4.1) that for all

and follows since . Hence, with
and , we have

which is independent of , so that

In (80), we used the approximation without any
explanation. For the case of and as we have
that and , hence, the approximation becomes
exact, i.e., . For we have the following lemma.

Lemma 4.1: For and asymptotically as , the
following approximation becomes exact:

(81)

Proof: Using the same procedure as when deriving closed-
form expressions for leads to the following asymptotical ex-
pression:

(82)

where, without loss of generality, we assumed that and
used the fact that we can replace by for the
points which are at distance from . It follows that we
have

(83)

where

(84)

Since we can rewrite (83) as

(85)
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where follows by inserting (69). Dividing (85) by (81) leads
to

(86)

Hence, asymptotically as we have that

(87)

which proves the lemma.

For it is very likely that similar equations can be found
for which can then be used to verify the goodness of the ap-
proximations for any . Moreover, in Appendix V, we show
that the rate of growth of (80) is unaffected if we replace
by either or which means that the
error by using the approximation instead of the true
is constant (i.e., it does not depend on ) for fixed and .
It remains to be shown whether this error term tends to zero as

for . However, based on the preceding discus-
sion we conjecture that, for any , the side distortions can be
expressed through the normalized second moment of a sphere
as the dimension goes to infinity.

Conjecture 4.1: For , , and , we have for
any pair , ,

APPENDIX V
PROOF OF PROPOSITION 4.1

Before proving Proposition 4.1, we need to lower- and upper-
bound (see Appendix IV for an introduction to this nota-
tion). As previously mentioned, the points which are close (in
Euclidean sense) to occur more frequently than points far-
ther away. To see this, observe that the construction of -tuples
can be seen as an iterative procedure that first picks a

and then any is picked such that
, hence, . The set of points that can

be picked for a particular -tuple, e.g.,
is then given by

It is clear that where

and any .
Let denote the minimum number of times the

pair is used. The minimum of over
all pairs lower-bounds . We will now show that

is always bounded away from zero. To see this, notice that
the minimum overlap between two spheres of radius centered
at and , respectively, is obtained when and are max-
imally separated, i.e., when . This is shown
by the shaded area in Fig. 7 for . For three spheres, the
minimum overlap is again obtained when all pairwise distances
are maximized, i.e., when for

Fig. 7. Three spheres of equal radius are here centered at the set of points
s = f� ; � ; � g. The shaded area describes the intersection of two spheres.
The equilateral triangle describes the convex hull C(s) of s.

and . It is clear that the volume of the intersection of three
spheres is less than that of two spheres, hence, the minimum
number of points is greater than the minimum number of
points. However, by construction it follows that when centering

spheres at the set of points

each of the points in will be in the intersection of the
spheres. Since the intersection of an arbitrary collection of

convex sets leads to a convex set [53], the convex hull of
will also be in . Furthermore, for the example in Fig. 7, it

can be seen that (indicated by the equilateral triangle) will
not get smaller for and this is true in general since points
are never removed from as grows. For , the regular
tetrahedron [40] consisting of four points with a pairwise dis-
tance of describes a regular convex polytope which lies in .
In general, the regular -simplex [40] lies in and the volume

of a regular -simplex with side length is given by [54]

(88)

where depends only on . It follows that the minimum
number of -tuples that contains a specific pair is
lower-bounded by . Since the volume of
is given by we get

(89)

Also—by construction we have that and that
so an upper bound on is given by

(90)

which differs from the lower bound in (89) by a multiplicative
constant.

We are now in a position to prove Proposition 4.1.

Proposition 4.1: For and we have

(91)

Proof: The nominator describes the distance from a cen-
tral lattice point to the mean vector of its associated -tuple.
This distance is upper-bounded by the covering radius of the
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sublattice . The rate of growth of the covering radius is pro-
portional to , hence,

(92)

Since the approximation used in Conjecture 4.1 is sand-
wiched between the lower and upper bounds (i.e., (89) and (90))
we can write

(93)

so that, since

(94)
Comparing (92) to (94) we see that (91) grows as

for and .
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