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LINEAR PROGRAMMING BOUNDS FOR CODES IN

GRASSMANNIAN SPACES

CHRISTINE BACHOC

Abstract. We develop the linear programming method in order to
obtain bounds for the cardinality of Grassmannian codes endowed with
the chordal distance. We obtain a bound and its asymptotic version that
generalize the well-known bound for codes in the real projective space
obtained by Kabatyanskiy and Levenshtein, and improve the Hamming
bound for sufficiently large minimal distances.

1. Introduction

Philippe Delsarte has introduced the so-called linear programming method,
in order to find bounds for the size of codes with prescribed minimal dis-
tance, in the classical case of codes over finite fields. This method, also
called Delsarte method or polynomial method, exploits a certain family of
orthogonal polynomials attached to the situation, the Krawtchouk polyno-
mials, and their positivity property. These polynomials and their properties
are intimately related to the action of the symmetric group on the Hamming
space. Delsarte method has proved to be very powerful, and was extended to
many other situations, where the underlying space is symmetric of rank one,
and is homogeneous under the action of a certain group of transformations.
Examples of such spaces are: the Johnson space, the Grassmannian space
over a finite field, the unit sphere of the Euclidean space, the projective
spaces over the real, complex and quaternionic fields (for these last spaces
see [1], [2]).

In recent years, codes over the real Grassmannian space have attracted
attention, motivated by their application to information theory, more pre-
cisely to the so-called space-time codes, used for multi-antenna systems of
communication. The distance usually considered is the chordal distance,
introduced in [3], and defined in the following way (more details are given in
the next subsection): The Grassmannian space of m-dimensional subspaces
of Rn, where m ≤ n/2, is denoted by Gm,n; to a pair (p, q) of elements of
Gm,n is associated m principal angles θ1, . . . , θm ∈ [0, π/2]. Let yi := cos2 θi.
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Then

dc(p, q) :=

√

√

√

√

m
∑

i=1

sin2 θi =

√

√

√

√m−
m
∑

i=1

yi.

In [3], the authors give bounds for the size of Grassmannian codes, called
the simplex and orthoplex bounds. The main drawback of these bounds is
that they are only valid in a certain range of minimal distances. In [4], an
asymptotic bound, derived from the Hamming bound, is given. Another ap-
proach is developed in [5], where bounds are given for codes whose principal
angles are subject to certain constraints (the so-called f -codes), which arise
naturally from the notion of Grassmannian designs introduced in [6].

In this paper, we extend Delsarte method to the Grassmannian codes,
exploiting the zonal polynomials attached to Gm,n. These are symmet-
ric polynomials in the m variables y1, . . . , ym; they belong to the family
of orthogonal generalized Jacobi polynomials (see the next subsection). In
the second section, we recall, or settle the properties of these polynomials
needed to perform linear programming bounds; these properties are easy
to obtain by straightforward generalization of the arguments used in the
classical cases. In fact, the principles underlying the LP method would re-
main true for the zonal polynomials attached to any symmetric space. The
real difficulties start when one wants to actually perform explicit bounds,
because the polynomials have (for m ≥ 2) several variables. The low degree
cases are still easy to manage; this is done in section 3, where we recover the
simplex bound as the bound arising from the case of degree one, and give
new bounds from polynomials of degree 2 and 3. In the forth section, we
propose a strategy based on the eigenvalues of certain symmetric endomor-
phisms, which extends the one variable method based on the zeros of the
polynomials and on Christoffel-Darboux formula, but avoids to deal with
zeros of polynomials in several variables. We obtain an upper bound for the
size of a code C with minimal distance δ, which is expressed in terms of
the largest eigenvalue (Theorem 4.4 and Corollary 9). Section 5 settles the
asymptotic behavior of this largest eigenvalue (Theorem 5.3), and in section
6 we derive the following asymptotic version of the bound:

Theorem 1.1. Let C be a code in Gm,n with minimal chordal distance δ,
let s := m− δ2 ∈]0,m[ and let

ρ :=
m

2
(−1 + (1− s

m
)−1/2).

Then, when n → +∞,

(1)
1

n
log |C| . m

(

(1 + ρ) log(1 + ρ)− ρ log(ρ)).

Our bound coincides with the bound given by G. Kabatiansky and V.
Levenshtein in [7] for the case of the real projective space, corresponding
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to m = 1. But it beats the Hamming bound of [4] only when the minimal
distance is relatively big.

1.1. Basic facts about Grassmannian spaces and their zonal poly-

nomials. We repeat here, without proofs, some well-known facts about
Grassmannian spaces and their zonal polynomials. Some useful references
for the mathematical background are: [8], [9] for the representations of the
orthogonal group, [14], [15], for the Grassmannian spaces and harmonic
analysis on it, [10], [11], [12], [13] for multivariate orthogonal polynomials.

The real Grassmannian space, denoted by Gm,n (m ≤ n/2), is the set
of m-dimensional R-linear subspaces of Rn. The orthogonal group O(n,R)
acts transitively on Gm,n; a transformation stabilizing a given element p0
also stabilizes its orthogonal complement p⊥0 and therefore the stabilizer of
p0 is isomorphic to the direct product O(m,R) × O(n −m,R). Hence we
derive the identification of Gm,n with the set of classes:

Gm,n ≃ O(n,R)/
(

O(m,R)×O(n−m,R)
)

from which Gm,n inherits the structure of a (compact) differential variety,
and a O(n,R)-invariant measure that will be normalized so that

∫

Gm,n
dp =

1. It is worth noticing that the case m = 1 corresponds to the real projective
space.

In order to understand the action of O(n,R) on pairs (p, q) ∈ Gm,n
2, we

need to introduce the principal angles between p and q. These are m angles
θ1, . . . , θm ∈ [0, π/2] defined in the following way:

Let p1 ⊂ p, q1 ⊂ q be two lines such that the angle θ1 between p1 and q1
is minimal. If m = 1 we have finished, otherwise let p′ be the orthogonal
complement of p1 in p, q′ be the orthogonal complement of q1 in q; we define
recursively θ2, . . . , θm to be the principal angles associated to the pair (p′, q′)
in Gm−1,n. We introduce the notation yi := cos2 θi; when needed, we may
denote rather yi(p, q), θi(p, q). A classical result on the geometry of Gm,n is
the following:

Proposition 1.2. Two pairs (p, q) and (p′, q′) are in the same orbit under
the action of the group O(n,R), i.e. there exists σ ∈ O(n,R) such that
σ(p) = p′ and σ(q) = q′, if and only if

yi(p, q) = yi(p
′, q′) for all 1 ≤ i ≤ m.

The previous proposition expresses the fact that the orbits under the
action of O(n,R) of the pairs (p, q) ∈ Gm,n

2 are characterized by the m-
tuple of real numbers (y1(p, q), . . . , ym(p, q)). It becomes clear that, for
m ≥ 2, Gm,n is not 2-point homogeneous, i.e. a single distance on Gm,n

cannot characterize these orbits (while it is the case for other spaces of
interest in coding theory, like the Hamming and binary Johnson spaces, or
the unit sphere of the Euclidean space). It is the reason why we shall deal
with mutivariate polynomials. Also, it shows that the choice of a distance
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on Gm,n is sort of arbitrary. We shall stick to the chordal distance in this
paper, as introduced in [3]:

dc(p, q) :=

√

√

√

√

m
∑

i=1

sin2 θi =

√

√

√

√m−
m
∑

i=1

yi.

Other possibilities are the Riemannian distance
√

∑m
i=1 θ

2
i which be-

haves somewhat badly because it is not smooth; the max distance maxi θi,
etc.. The “product distance” (which is not a distance in the metric sense)
(
∏

i sin θi
)

seems to be relevant in the context of space time codes.

Now we consider the space L2(Gm,n) of functions f : Gm,n → C such that
∫

Gm,n
|f |2dp < +∞. This is a C-vector space, endowed with the hermitian

product:

< f, g >=

∫

Gm,n

f(p)g(p)dp

and with the left action of the orthogonal group given by:

(σ · f)(p) = f(σ−1(p))

(for which the above hermitian product is of course invariant).
Its associated algebra of zonal functions (also called the Hecke algebra)

is:

Z := {Z :Gm,n
2 → C | Z(p, ·), Z(·, q) ∈ L2(Gm,n) and

Z(σ(p), σ(q)) = Z(p, q) for all σ ∈ O(n,R)}

Form Proposition 1.2, since Z ∈ Z is constant on the orbits of O(n,R) on
Gm,n

2, it can be given the form: Z(p, q) = z(y1(p, q), . . . , ym(p, q)) for some
function z.

The explicit decomposition into O(n,R)-irreducible subspaces of
L2(Gm,n), and the corresponding structure of Z, where investigated for the
first time by James and Constantine ([14]). It is now a standard result on
the representation of the classical groups (see [9]).

Recall that the irreducible representations of O(n,R) are (up to a power
of the determinant) naturally indexed by partitions κ = (κ1, . . . , κn), where
κ1 ≥ · · · ≥ κn ≥ 0 (we may omit the last parts if they are equal to 0).

Following [9], let them be denoted by V κ
n . For example, V

()
n = C1, and

V
(k)
n = Harmk the space of homogeneous of degree k, harmonic polynomials

in n variables.
The length ℓ(κ) of a partition κ is the number of its non zero parts, and

its degree deg(κ) also denoted by |κ| equals ∑n
i=1 κi.

Then, the decomposition of L2(Gm,n) is as follows:

L2(Gm,n) ≃ ⊕V 2κ
n
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where κ runs over the partitions of length at most m and 2κ stands for
(2κ1, . . . , 2κm), meaning that only partitions with even parts enter the de-
composition. We can see that the multiplicities in this decomposition are
all equal to one, which translates the fact that the space Gm,n is a sym-
metric space. Consequently, to each irreducible component V 2κ

n is asso-
ciated a uniquely determined (up to a normalizing factor) zonal function
Pκ(y1, . . . , ym), in the sense that

p (resp. q) 7→ Pκ(y1(p, q), . . . , ym(p, q)) ∈ V 2κ
n

and

Z = ⊕κ,ℓ(κ)≤mCPκ.

It turns out that the Pκ are symmetric polynomials in the m variables
y1, . . . , ym, of degree |κ|, with rational coefficients once they are normalized
by the condition Pκ(1, . . . , 1) = 1. Moreover, the set (Pκ)|κ|≤k is a basis of
the space of symmetric polynomials in the variables y1, . . . , ym of degree at
most equal to k, denoted by Sk.

Since the irreducible subspaces of L2(Gm,n) are pairwise non isomorphic,
they are orthogonal for the O(n,R)-invariant hermitian product defined
above. This hermitian product induces an hermitian product on the space
of symmetric polynomials, denoted by [, ], for which the polynomials Pκ are
orthogonal. More precisely, it is given by the positive measure, calculated
in [14],

dµ = λ

m
∏

i,j=1
i<j

|yi − yj|
m
∏

i=1

y
−1/2
i (1− yi)

n/2−m−1/2dyi

(where λ is chosen so that
∫

[0,1]m dµ(y) = 1). and

[f, g] =

∫

[0,1]m
f(y)g(y)dµ(y).

One recognizes a special case of the orthogonal measure associated to
generalized Jacobi polynomials ([11]).

We let Πk be the subspace of Sk generated by the polynomials Pκ, with
|κ| = k, so that we have the orthogonal decomposition:

Sk = Sk−1 ⊥ Πk.

Let the dimensions of Sk, Πk be denoted respectively by sk, πk. The number
πk is also equal to the number of partitions κ of k in at most m parts. These
dimensions also depend on m, although it does not reflect on our notation,
for the sake of simplicity.

In view of the explicit calculation of the polynomials Pκ, it is better to
use the following characterization, which involves the polynomials Cκ, which
are themselves the zonal polynomials associated to the symmetric space
GL(m,R)/O(m,R) (these polynomials are Jack polynomials, normalized by
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Cκ(1, . . . , 1) = 1, see [14], [12]), and the differential operator ∆ induced on
C[y1, . . . , ym]Sm by the Laplace Beltrami operator of Gm,n. The condition:
for all 1 ≤ i ≤ m, κi ≥ µi is denoted by: κ ≥ µ.

(i) Pκ is an eigenvector for the operator

∆ :=

m
∑

i=1

y2i
∂2

∂y2i
+

m
∑

i 6=j=1

y2i (yi − yj)
−1 ∂

∂yi

+ (
n

2
−m+ 1)

m
∑

i=1

yi
∂

∂yi
−

m
∑

i=1

yi
∂2

∂y2i

−
m
∑

i 6=j=1

yi(yi − yj)
−1 ∂

∂yi
− 1

2

m
∑

i=1

∂

∂yi

(ii) Pκ = βκCκ +
∑

µ|κ>µ βκ,µCµ

(iii) Pκ(1, . . . , 1) = 1.

Condition (ii) is needed to avoid the multiplicities of the operator ∆.

Examples: the effective computation of the polynomials Pκ following the
method described above leads to, up to the normalization imposed by (iii):

P0 = 1

P(1) = s1 −
m2

n

P(11) = σ1 −
(m− 1)2

n− 2
s1 +

m2(m− 1)2

2(n− 1)(n − 2)

P(2) = s2 +
2

3
σ1 −

2(m+ 2)2

3(n+ 4)
s1 +

m2(m+ 2)2

3(n + 2)(n + 4)

where s1 =
∑

1≤i≤m yi, s2 =
∑

1≤i≤m y2i ,

σ1 =
∑

1≤i<j≤m yiyj.

Remark: The complex Grassmannian Gm,n(C) is more commonly used
in the context of space-time coding. It affords the transitive action of the
unitary group U(C, n); similarly one defines principal angles (θ1, . . . , θm) be-
tween two elements of Gm,n(C). The U(C, n) decomposition of L2(Gm,n(C))
and the associated zonal polynomials are computed in [14] so one can play
the same game concerning bounds of codes. On the other hand, a bound
is also obtained from the embedding Gm,n(C) ⊂ G2m,2n(R) (if (θ1, . . . , θm)
are the principal angles associated to a pair (p, q) of elements in Gm,n(C),
the 2m principal angles associated to the pair (p, q), seen as elements of
G2m,2n(R), are simply (θ1, θ1, θ2, θ2, . . . )).
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2. Zonal polynomials associated to Gm,n and the LP bound

In this section, we settle the properties of the polynomials Pκ relevant
for the LP bound, settle this bound, and show how the Christoffel-Darboux
formula can be exploited in that context.

The dimension of V κ
n is denoted by dκ. Explicit formulas for dκ can be

found in [8]; however we do not need them before Section 5.

Proposition 2.1. The polynomials Pκ, normalized by the condition
Pκ(1, . . . , 1) = 1, satisfy:

(i) [Pκ, Pκ] = d−1
2κ

(ii) (Positivity property): For all finite set C ⊂ Gm,n,
∑

p,q∈C

Pκ(y1(p, q), . . . , ym(p, q)) ≥ 0

(iii) Let pνκ,µ be defined by the property:

PκPµ =
∑

ν

pνκ,µPν

The numbers pνκ,µ are non-negative numbers.

Proof. These properties where already pointed out in [5][Lemma 2.2] and
step on very general arguments (see [16][Theorem 3.1]). For the sake of
completeness, we briefly recall the arguments. Let e1, . . . , ed2κ be any or-
thonormal basis of the subspace H2κ

m,n of L2(Gm,n) isomorphic to V 2κ
n . Let

P̃κ(p, q) := Pκ(y1(p, q), . . . , ym(p, q)). It is well known that we have (this is
called the addition formula)

P̃κ(p, q) =
1

d2κ

d2κ
∑

i=1

ei(p)ei(q).

As a consequence, from the expression

[Pκ, Pκ] =

∫

Gm,n

P̃κ(p, q)P̃κ(q, p)dq

(i) follows. Moreover,

∑

p,q∈C

P̃κ(p, q) =
1

d2κ

∑

p,q∈C

(

d2κ
∑

i=1

ei(p)ei(q)
)

=
1

d2κ

d2κ
∑

i=1

(

∑

p,q∈C

ei(p)ei(q)
)

=
1

d2κ

d2κ
∑

i=1

∣

∣

∣

∑

p∈C

ei(p)
∣

∣

∣

2
≥ 0.
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hence (ii). More generally, for any function α : C → C, we have:

∑

p,q∈C

α(p)α(q)P̃κ(p, q) =
1

d2κ

d2κ
∑

i=1

∣

∣

∣

∑

p∈C

α(p)ei(p)
∣

∣

∣

2

≥ 0.

Conversely, assume F ∈ Sk is a polynomial with real coefficients, such that,
for any finite set C ⊂ Gm,n and any function α : C → C,

∑

p,q∈C

α(p)α(q)F̃ (p, q) ≥ 0,

and let us prove that F expands on the Pκ with non-negative coefficients.
Taking limits, we have, for any α ∈ L2(Gm,n),

∫ ∫

Gm,n

α(p)α(q)F̃ (p, q)dpdq ≥ 0

and hence, using the addition formula,
∫ ∫

Gm,n

P̃κ(p, q)F̃ (p, q)dpdq ≥ 0.

If F =
∑

|ν|≤k fνPν , the left hand-side equals fκ/d2κ, which proves that

the coefficients fκ are non-negative numbers. Using once again the addition
formula, it is easy to show that the product PκPµ holds this general positivity
property, and therefore expands on the Pν with non-negative coefficients.

2.1. The principles of the LP bound. The positivity property of the
polynomials Pκ is the basis of the linear programming method to upper
bound the cardinality of δ-codes.

Definition 2.2. A Grassmannian code C satisfying the constraint:

For all p 6= q ∈ C2, dc(p, q) ≥ δ.

is called a δ-code.

Proposition 2.3. Assume Fk ∈ Sk satisfy:

(i) Fk =
∑

|κ|≤k fκPκ with fκ ≥ 0 for all κ, f0 > 0

(ii) Fk(y1, . . . , ym) ≤ 0 for all (y1, . . . , ym) ∈ [0, 1]m such that
∑m

i=1 yi ≤ m− δ2

Then, the following bound holds for the cardinality |C| of any δ-code:

|C| ≤ Fk(1, . . . , 1)

f0
.
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Proof. This is a standard argument, that we recall here. Let C be a δ-code.
As before, we let F̃k(p, q) = Fk(y1(p, q), . . . , ym(p, q)). We calculate

∑

p,q∈C

F̃k(p, q) =
∑

|κ|≤k

fκ
(

∑

p,q∈C

P̃κ(p, q)
)

Assumption (ii) leads to F̃k(p, q) ≤ 0 when p 6= q. The remaining terms
of the left hand-side, corresponding to p = q, contribute by |C|Fk(1, . . . , 1).
Assumption (i), together with the positivity property of the polynomials
Pκ (Proposition 2.1 (ii)), show that all the terms of the right hand-side are
non-negative. When κ = (0), Pκ = 1 and the contribution is f0|C|2. We
obtain

|C|Fk(1, . . . , 1) ≥ f0|C|2

equivalently

|C| ≤ Fk(1, . . . , 1)

f0
.

It is worth noticing that equality in this inequality happens if and only if, for
all 1 ≤ |κ| ≤ k such that fκ 6= 0,

∑

p,q∈C P̃κ(p, q) = 0 and, for all p 6= q ∈ C,

F̃k(p, q) = 0. The first condition says that C is a 2k-design in the sense of [6]
(when it holds for all 1 ≤ |κ| ≤ k), and the second one that C is an Fk-code
in the sense of [5].

2.2. The three-term relation and the Christoffel-Darboux formula.

We join here more material on the sequence of polynomials Pκ, that will be
of later use. The results presented here are essentially established in [13], ex-
cept that we deal with symmetric polynomials. Following [13], the (column)
vector of the polynomials Pκ with |κ| = k is denoted by Pk. If necessary, we
order the partitions of the same degree in increasing lexicographic order.

We also set

σ := y1 + y2 + · · ·+ ym

and, when necessary, we make the involved variables explicit, by writing
σ(y) rather than σ. The πk × πk diagonal matrix, denoted by Dk, with
entries

Dk[κ, κ] = d2κ := dim(V 2κ
n )

is the inverse of the Gram matrix of Pk.
Next result is an analogue of the so-called “three-term relation”.

Theorem 2.4. For all k ≥ 1, there exists matrices Ak, Bk, Ck, of size
respectively πk × πk+1, πk × πk, πk × πk−1, such that:

σPk = AkPk+1 +BkPk + CkPk−1.

Moreover, (DkBk)
t = DkBk and DkCk = (Dk−1Ak−1)

t.
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Proof. The polynomials σPκ with |κ| = k are symmetric of total degree k+1
so they afford a decomposition over the (Pµ)|µ|≤k+1. Moreover, [σPκ, Pµ] =
[Pκ, σPµ] = 0 if |µ| ≤ k − 2.

If |µ| = |κ| = k, we have: Bk[κ, µ][Pµ, Pµ] = [σPκ, Pµ] = [Pκ, σPµ] =
Bk[µ, κ][Pκ, Pκ], which proves that the matrix DkBk is symmetric. The
same argument shows that DkCk = (Dk−1Ak−1)

t.

Notations: We want to define κ(i) (respectively κ(i)) to be the partition
obtained from κ by increasing (respectively decreasing) the i-th part κi by
one. This is not possible for all i, since the result should be also a partition,
i.e. the new parts should be in decreasing order. Hence we define (where
κm+1 := 0):

{

u(κ) := {1} ∪ {i ∈ [2,m] | κi−1 > κi}
d(κ) := {i ∈ [1,m] | κi > κi+1}

The set u(κ) is the set of indices i for which κ(i) makes sense (respectively

d(κ) for κ(i)). Moreover, if |κ| = k, |κ(i)| = k + 1 and |κ(i)| = k − 1.
Otherwise explicitly mentioned, in the rest of this paper, κ, κ′ are par-

titions of degree k, while µ, µ′ are partitions of degree k + 1 and ν, ν ′ are
partitions of degree k − 1.

Proposition 2.5. The following properties hold:

(i) For all κ, µ and κ′, Ak[κ, µ] ≥ 0, and Bk[κ, κ
′] ≥ 0.

(ii) The coefficients of the matrix Ak are equal to zero, except the coef-

ficients Ak[κ, κ
(i)], which are positive.

Proof. The first assertions are equivalent to: [σPκ, Pµ] ≥ 0 for all κ, µ of

any degree. But [σPκ, Pµ] = [1, σPκPµ] and σ = m(1 − m
n )P1 +

m2

n . Joint
with Proposition 2.1(iii), we obtain [1, σPκPµ] ≥ 0.

The coefficients Ak[κ, µ] can be more precisely calculated, using ([17,
Lemma 7.5.7]). Since we do not normalize the polynomials Cκ in the same
way, we introduce coefficients

[

µ
κ

]

such that

σCκ =
∑

|µ|=k+1

[

µ

κ

]

Cµ.

They differ by a positive multiplicative factor from the generalized binomial
coefficients

(µ
κ

)

defined in [17]; see also [10]. Then we have

Ak[κ, µ] =

[

µ

κ

](

βµ
βκ

)−1

.

It is known that the generalized binomial coefficients
(µ
κ

)

are equal to zero

when µ is not equal to one of the κ(i); consequently the same holds for

Ak[κ, µ]. Moreover, since
(κ(i)

κ

)

> 0, also
[κ(i)

κ

]

> 0 and Ak[κ, κ
(i)] 6= 0.
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Theorem 2.6 (Christoffel-Darboux Formula). Let

Qκ :=
∑

|µ|=k+1

Ak[κ, µ]Pµ ∈ Πk+1.

With the previous notations, we have:

(i) For all k ≥ 0,
∑

|ν|≤k

d2νPν(x)Pν(y) =

∑

|κ|=k d2κ
(

Qκ(x)Pκ(y)− Pκ(x)Qκ(y)
)

σ(x)− σ(y)

(ii) Moreover, if ǫ :=
∑m

i=1
∂
∂yi

,

∑

|ν|≤k

d2ν
(

Pν(y)
)2

=

∑

|κ|=k

d2κ
m

(

(

ǫQκ(y)
)

Pκ(y)−
(

ǫPκ(y)
)

Qκ(y)
)

.

Proof. The proof of (i) is the same as [13][Theorem 3.5.3]. Note that we
cannot hope for a formula for each xi like in [13], since we should stick to
symmetric polynomials. If

Σs : = (AsPs+1(x))
tDsPs(y)− Ps(x)

tDsAsPs+1(y)

=
∑

|κ|=s

d2κ
(

Qκ(x)Pκ(y)− Pκ(x)Qκ(y)
)

,

from the “three-term relation” of Theorem 2.4, we have:

Σs − Σs−1 = (σ(x)− σ(y))Ps(x)
tDsPs(y).

The formula (i) follows from summing up these identities, for 1 ≤ s ≤ k.

In the equation (i), we replace Qκ(x)Pκ(y)− Pκ(x)Qκ(y) by

Qκ(x)
(

Pκ(y)− Pκ(x)
)

− Pκ(x)
(

Qκ(y)−Qκ(x)
)

.

Then, if we specialize x2 = y2, . . . , xm = ym and let x1 tend to y1, we obtain

∑

|ν|≤k

d2ν
(

Pν(y)
)2

=

∑

|κ|=k
|µ|=k+1

d2κAk[κ, µ]
(

(∂Qκ

∂y1
(y)
)

Pκ(y)−
(∂Pκ

∂y1
(y)
)

Qκ(y)
)

.



12 CHRISTINE BACHOC

The same identity holds when one replaces y1 by any yi; if we sum up all
these identities, we obtain the more symmetric formula (ii).

Remark 2.7. The left hand side of the Christoffel-Darboux formula

Kk(x, y) :=
∑

|ν|≤k

d2νPν(x)Pν(y).

is the reproducing kernel of the space of symmetric polynomials of degree at
most k. It satisfies the characteristic property: for all Q ∈ Sk, [Kk(x, .), Q] =
Q(x).

2.3. An LP bound from Christoffel-Darboux formula. In the classical
cases, Christoffel-Darboux formula is involved in the setting up of bounds
of the type |C| ≤ M(δ) where M(δ) is an explicit function of δ. Usually
the running interval of δ is divided into subintervals, related to the zeros of
the zonal polynomials. This is the line followed in [18], and also in [7]; see
[19] for a unified presentation. In this section, we follow this method, and
analyze the difficulties arising from the several variables situation.

The numerator, of degree k + 1, of the right hand side of Christoffel-
Darboux formula (Theorem 2.6(i)) is denoted by Nk+1(x, y). We consider
the polynomial in the variables y1, . . . , ym, of degree 2k + 1,

F2k+1(x, y) : = −Nk+1(x, y)Kk(x, y)

=
Nk+1(x, y)

2

σ(y)− σ(x)
.

In order to make clear that only the y1, . . . , ym are variables, while the
x1, . . . , xm will specialize to real values, we denote it by F2k+1(x, ·).

Proposition 2.8. Let x ∈ [0, 1]m satisfy σ(x) > s := m − δ2. Assume the
following conditions hold:

(i) For all κ, |κ| ≤ k, Pκ(x) ≥ 0
(ii) For all κ, |κ| = k, Qκ(x) ≤ 0

Then, F2k+1(x, ·) satisfies the conditions required in Proposition 2.3.

Proof. We have:

F2k+1(x, y) =
Nk+1(x, y)

2

σ(y)− σ(x)

hence condition (ii) is satisfied when s < σ(x).
To prove condition (i), we point out that, if F and G are two polynomials

with non-negative coefficients on the Pκ, then the product FG holds the
same property. This is a direct consequence of Proposition 2.1(iii).
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From the definition of Kk(x, y), its coefficient on Pν with |ν| ≤ k equals
d2νPν(x) (and for higher degree partitions it is zero). On the other hand,

−Nk+1(x, y) =
∑

|κ|=k

d2κ
(

Pκ(x)Qκ(y)−Qκ(x)Pκ(y)
)

=
∑

|µ|=k+1

(

∑

|κ|=k

d2κAk[κ, µ]Pκ(x)
)

Pµ(y)

−
∑

|κ|=k

d2κQκ(x)Pκ(y)

The coefficient Ak[κ, µ] is always non-negative. Clearly, under the condi-
tions of the proposition, the coefficients of −Nk+1(x, y) on the Pκ and Pµ

are non-negative.

Corollary 2.9. Assume x satisfies the conditions of Proposition 2.8. Then,
for all δ-code C,

|C| ≤
(

m− σ(x)
)(
∑

|ν|≤k d2νPν(x)
)2

−∑|κ|=k d2κPκ(x)Qκ(x)

Proof. In order to apply Proposition 2.3, we are left with the computation
of f0 and of F2k+1(x, (1, . . . , 1)). Since F2k+1(x, y) = Kk(x, y)

2(σ(y)−σ(x)),
we have

F2k+1(x, (1, . . . , 1)) =
(

∑

|ν|≤k

d2νPν(x)
)2
(m− σ(x)).

Using the orthogonality of the Pκ, we obtain

f0 : = [F2k+1(x, ·), 1] = −[Kk(x, ·), Nk+1(x, ·)]
= −[

∑

|ν|≤k

d2νPν(x)Pν ,
∑

|κ|=k

d2κQκ(x)Pκ]

= −
∑

|κ|=k

d2κPκ(x)Qκ(x).

The main problem with this approach, is that, in general, we don’t even
know if the inequalities (i) and (ii) of Proposition 2.8 have a solution x.
In case these inequalities define a non empty area of Rm, a second problem
would be to optimize the choice of x in this area. In the classical case m = 1,
Qk = Pk+1 (up to a positive multiplicative factor). The interlacing property
of the real zeros of the orthogonal polynomials Pk, ensures that one can take
x ∈ [zk, zk+1], where zk is the largest zero of Pk, so that Pk+1(x) ≤ 0 and
Pi(x) ≥ 0 for all i ≤ k. Moreover, one uses asymptotic estimates of these
zeros to derive an asymptotic bound for the size of codes.

In the general case m ≥ 2, we don’t have such tools to deal with the
inequalities of Proposition 2.8, which seem to be intractable in general. The
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first case k = 1, leading to a polynomial of degree 3, is however discussed in
the next section. On the other hand, one can think of the zeros of orthogonal
polynomials in one variable as being the eigenvalues of the so-called Jacobi
matrices associated to the sequence of polynomials. We study in section
4 the eigenvalues of the analogous matrices in the general case, and derive
bounds for codes, which contain as a special case the bound obtained from
a possible solution of these inequalities.

3. LP bounds of small degree

We take the following notations: let s := m − δ2, the maximal value of
σ among pairs of points of a code C. We are looking for a function M(s)
such that |C| ≤ M(s). Obviously, M(s) is an increasing function. In this
section, we discuss the cases of small degree k, trying to optimize the choice
of Fk in Proposition 2.3

3.1. Degree 1. Let F1 = 1 + f1P1, with f1 ≥ 0 (condition (i)). We have

P1 =
n

m(n−m)(σ − m2

n ).

When σ ∈ [0, s], 1 + f1P1 should be non-positive (condition (ii)). There-
fore, The zero of 1+f1P1 should be greater than s. It leads to the condition:

s− m2

n
≤ −m(n−m)

nf1
.

Since f1 ≥ 0, we obtain the necessary condition s ≤ m2

n . The smallest
value for f1 is then

f1 =
−m(1−m/n)

s− m2

n

corresponding to a polynomial proportional to σ − s. We obtain the bound

if s <
m2

n
, |C| ≤ m− s

m2

n − s

which is the so-called simplex bound proved in [3].

3.2. Degree 2. We restrict ourselves to polynomials which are divisible by
σ − s. Then, such polynomials are polynomials in σ. We write:

F2 = (σ − s)(σ − b) = f2P2 + f11P11 + f1P1 + f0.

with the condition that b ≤ 0. With t = s−m2/n, we find:
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f2 :=
m(m+ 2)(n −m)(n −m+ 2)

3(n+ 2)(n + 4)

f11 :=
2m(m− 1)(n −m)(n−m− 1)

3(n− 2)(n − 1)

f1 :=m
(

1− m

n

)

(

m2

n
+

4(n− 2m)2

n(n− 2)(n + 4)
− t− b

)

f0 :=
2m2(n−m)2

n2(n − 1)(n+ 2)
− m2

n
t+ bt

The condition f0 > 0, when t > 0, is equivalent to

(2) b >
m2

n

(

1− 2(n −m)2

tn(n− 1)(n + 2)

)

(and when t <= 0 is always fulfilled), which implies

(3) t <
2(n−m)2

n(n− 1)(n + 2)
.

The condition f1 ≥ 0 is equivalent to

(4) b ≤ m2

n
+

4(n − 2m)2

n(n− 2)(n + 4)
− t.

One can check that the right hand side of (4) is positive for m ≥ 2, when
t satisfies (3).

The bound B = (f2 + f11 + f1 + f0)/f0 equals

(5) B = δ2
m− b

f0
.

As a function of b, it is decreasing when t ∈ [ −2m(n−m)
n(n−1)(n+2) ,

2(n−m)2

n(n−1)(n+2) [, and

hence the best choice of b is b = 0. We obtain the bound:

Theorem 3.1. If s ∈
]

0, m
2

n + 2(n−m)2

n(n−1)(n+2)

[

,

(6) |C| ≤ n

m

( m− s

−s+ m2

n + 2(n−m)2

n(n−1)(n+2)

)

This bound, which is an increasing function of s, improves on the simplex

bound when s ≥ m2

n − 2m(n−m)
n(n−1)(n+2) . Their common value at s = m2

n −
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2m(n−m)
n(n−1)(n+2) is

(n+1
2

)

. However, the orthoplex bound proved in [3, (5.6)]

reads:

s < m2/n ⇒ |C| ≤
(

n+ 1

2

)

s = m2/n ⇒ |C| ≤ (n− 1)(n + 2)

and is better than (6) in the range ]m
2

n − 2m(n−m)
n(n−1)(n+2) ,

m2

n [. If we plug in

(6) the value s = m2/n, we find that |C| ≤ (n−1)(n+2)
2(1−m/n) which is better than

the orthoplex bound when m < n/2. We recall that the orthoplex bound
is attained for a family of codes with n = 2i, m = n/2, constructed in [20,
Theorem 1]. These codes are also optimal 6-designs (see [21]).

3.3. Degree 3. We do not study general polynomials of degree 3 but rather
apply the approach described in subsection 2.3

The polynomial F3 has degree 3, and is again a polynomial in σ. In the
following, we calculate the best choice for x (and discuss its existence). Let
u := σ(x)−m2/n. We should have:

(i) u ≥ s−m2/n
(ii) u ≥ 0 (Condition (i))

(iii) u2 − 4(n−2m)2

n(n−2)(n+4)u− 2m2(n−m)2

n2(n−1)(n+2)
≤ 0 (Condition (ii))

The polynomial of degree 2 occurring in (iii) has a positive discriminant,
and a unique positive root that we shall denote by u2. Let b and c be the
coefficients of this polynomial, so that it is equal to u2 − bu − c, and let

d := 2m(n−m)
n(n−1)(n+2) . The bound is then equal to:

B(u) := −(n− 1)(n + 2)(u+ d)2(m− u−m2/n)

2u(u2 − bu− c)
.

The calculation of B′(u) shows that it is increasing in the range [u1, u2]
(the numerator has the form: u + d times a degree 3 polynomial with a

unique real root u1). Hence, for s ∈ [u1 +
m2

n , u2 +
m2

n ], the best choice for

u is u = s−m2/n.
We obtain:

Theorem 3.2. Let d = 2m(n−m)
n(n−1)(n+2) , b =

4(n−2m)2

n(n−2)(n+4) , c =
2m2(n−m)2

n2(n−1)(n+2)
.

If s ∈
]

m2

n
,
m2

n
+

b

2
+

√

b2

4
+ c

[

,

|C| ≤ (m− s)(s− m2

n + d)2(n− 1)(n + 2)

2(s− m2

n )(−(s − m2

n )2 + b(s− m2

n ) + c)
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4. The endomorphisms Tk

We introduce an endomorphism Tk : Sk → Sk which eigenvalues will play
the role of the zeros of the zonal polynomials in the rank one case.

Proposition 4.1. Let

Tk : Sk → Sk

P 7→ prSk
(σP )

where the orthogonal projection on Sk is denoted by prSk
(note that, in

general, σP does not belong to Sk but rather to Sk+1).
The endomorphism Tk is a symmetric endomorphism of Sk, and is an

isomorphism.

Proof. We have, for all P,Q ∈ Sk, [Tk(P ), Q] = [σP,Q] = [P, σQ] =
[P, Tk(Q)]. Moreover, [σP, P ] = [σ, P 2] > 0 unless P = 0, because of the
positivity of the measure on R[y1, . . . , ym]Sm . Thus Tk is injective.

Let Jk be the matrix of this endomorphism in the basis {Pκ, |κ| ≤ k}.
From the three-term relation (Theorem 2.4), Jk is the block-tridiagonal ma-
trix:

(7) Jk =



















B0 A0

C1 B1 A1

C2 B2 A2

C3
. . .

. . .
. . .

. . . Ak−1

Ck Bk



















It is worth noticing that the matrix Jk itself is not symmetric, because the
polynomials Pκ are not of norm 1. We shall later introduce and calculate
the symmetric matrix J ′

k obtained in the normalized basis.

In the end, we shall need some very precise information on the coefficients
of J ′

k. For the moment, the only, but crucial, property that we will exploit
is the fact that it is non-negative and irreducible.

Lemma 4.2. The eigenvalues of Tk are real, and belong to ]0,m[. The
maximal eigenvalue of Tk, denoted by λk, is of multiplicity 1, and possesses
an eigenvector with positive coordinates. Moreover, λk−1 < λk.

Proof. The matrix Jk is non-negative and irreducible in the sense of [22],

because of Proposition 2.5 (note that the coefficients Ak[κ, κ
(i)] are positive).

Moreover, it is the matrix of a symmetric endomorphism, so its eigenvalues
are real. From [22, Perron-Frobenius Theorem], it follows that the maximal
eigenvalue has multiplicity equal to 1, and that, if v is an eigenvector, either
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v or −v has positive coordinates. Let us now prove that all its eigenvalues
belong to ]0,m[.

For any v ∈ Sk, v 6= 0, we have [σv, v] =
∫

σv2dµ(y), where dµ is a
positive measure. We integrate on the domain [0, 1]m, on which 0 ≤ σ ≤ m,
hence 0 < [σv, v] < m[v, v]. If v is an eigenvector of Tk associated with an
eigenvalue λ, we have [σv, v] = [λv, v] = λ[v, v], so we can conclude that
0 < λ < m.

Now let v be an eigenvector of Tk−1 for λk−1, assumed to be of norm 1.
We have

σv = λk−1v + u

with u ∈ Πk. Obviously, since deg(σv) = 1 + deg(v), v must be of degree
exactly k − 1 (and u 6= 0).

Since

λk = max
x∈Sk\{0}

[Tk(x), x]

[x, x]
,

we have [Tk(v), v] ≤ λk. But [Tk(v), v] = [σv, v] = λk−1. The equality
λk−1 = λk would mean that v is an eigenvector of Tk, which is not possible
since it has degree k − 1.

In the case m = 1, the eigenvalues of Tk are exactly the zeros of the
polynomial Pk+1. In the general case, we prove in next lemma that common
zeros of the polynomials Qκ give some of the eigenvalues. However, we do
not know if such common zeros do exist, neither if all of the eigenvalues are
obtained that way (and may be it is not so important):

Lemma 4.3. Let α ∈ [0, 1]m be a common zero of the polynomials

Qκ :=
∑

|µ|=k+1

Ak[κ, µ]Pµ,

for all κ, |κ| = k. Then, v :=
∑

|ν|≤k d2νPν(α)Pν is an eigenvector of Tk for

the eigenvalue σ(α).

Proof. It is immediate from Christoffel-Darboux formula (Theorem 2.6(i)).
If Qκ(α) = 0 for all κ, |κ| = k, we have

(σ(α) − σ(y))v = −
∑

|κ|=k
|µ|=k+1

d2κAk[κ, µ]Pκ(α)Pµ(y) ∈ Πk+1

and, therefrom,

σ(α)v = Tk(v).

We now show how to obtain a bound for the size of δ-codes, as a function
of δ. Therefore, in order to cope with any possible δ, we must perturb the
endomorphism Tk as explained next:
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Theorem 4.4. Let ǫ ∈ R
πk, with ǫκ ≥ 0. Let T ǫ

k be the endomorphism
defined on Sk by

T ǫ
k(v) = Tk(v) − ǫ ∗ vk

where ǫ ∗ vk :=
∑

|κ|=k ǫκvκPκ.

(i) T ǫ
k has a unique maximal eigenvalue λǫ

k, of multiplicity one, pos-
sessing an eigenvector vǫ with positive coefficients. Moreover, if
ǫ 6= 0,

λk−1 < λǫ
k < λk

(ii) Let ǫ 6= 0. Any δ-code C such that s = m− δ2 < λǫ
k satisfies

|C| ≤
(
∑

|κ|=k v
ǫ
κ(ǫκ + aκ)

)2

(m− λǫ
k)
(
∑

|κ|=k d
−1
2κ ǫκv

ǫ
κ
2
)

where aκ := Qκ(1, . . . , 1) =
∑

|µ|=k+1Ak[κ, µ].

Proof. (i) The matrix J ǫ
k of T ǫ

k is equal to Jk, except the diagonal elements
lying in Bk. Replacing J ǫ

k by J ǫ
k +M Id for some appropriate M , we obtain

a non-negative matrix which is irreducible so its largest eigenvalue has mul-
tiplicity one and has an associated eigenvector with positive coordinates. It
remains true for J ǫ

k. Since, when ǫ 6= 0, J ǫ
k < Jk, we have λǫ

k < λk. The
proof of the inequality λk−1 < λǫ

k is the same as the one of λk−1 < λk.
(ii) We have σvǫ = λǫ

kv
ǫ+ ǫ∗vǫk+u where u ∈ Πk+1. We need to compute

u, and we set u =
∑

|µ|=k+1 uµPµ. Let µ, |µ| = k + 1, we have:

uµ[Pµ, Pµ] = [u, Pµ] = [σvǫ, Pµ]

=
∑

|κ|≤k

vǫκ[σPκ, Pµ]

=
∑

|κ|=k

vǫκAk[κ, µ][Pµ, Pµ]

and we obtain uµ =
∑

|κ|=k v
ǫ
κAk[κ, µ]. We have found

u =
∑

|µ|=k+1

(

∑

|κ|=k

vǫκAk[κ, µ]
)

Pµ =
∑

|κ|=k

vǫκQκ,

hence the “generalized Christoffel-Darboux formula”:

(8) vǫ =

k
∑

s=0

vǫsPs =

∑

|κ|=k v
ǫ
κ(ǫκPκ +Qκ)

σ − λǫ
k

.
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Now we proceed like in Proposition 2.8. Let the numerator of the right
hand side be denoted by Nk+1(y), and let

F2k+1(y) :=
Nk+1(y)

2

σ(y)− λǫ
k

= Nk+1(y)v
ǫ.

We have:

f0 = [F2k+1, 1] = [Nk+1, v
ǫ]

= [
∑

|κ|=k

vǫκǫκPκ,
∑

|κ|=k

vǫκPκ]

=
∑

|κ|=k

vǫκ
2ǫκd

−1
2κ .

Since the coefficients of ǫ and of vǫ are non-negative numbers, and f0 6= 0
when ǫ 6= 0, it follows that F2k+1 satisfies the condition (i) of Proposition
2.3. Condition (ii) is clearly fulfilled if s < λǫ

k. We calculate

F2k+1(1, . . . , 1) =

(
∑

|κ|=k v
ǫ
κ(ǫκ + aκ)

)2

m− λǫ
k

.

hence the announced bound.
Let us show that we have indeed generalized the situation described in

subsection 2.3 and Proposition 2.8. Let x ∈ R
m such that Pκ(x) > 0,

Qκ(x) ≤ 0 for all |κ| = k, and Pκ(x) ≥ 0 for all |κ| ≤ k. Let ǫ ∈ R
πk be

defined by: ǫκ = −Qκ(x)/Pκ(x). We can show that λǫ
k = σ(x). Indeed,

from (i) and (ii) of the proposition,

vǫ(y) =

∑

|κ|=k v
ǫ
κ

(

− (Qκ(x)/Pκ(x))Pκ(y) +Qκ(y)
)

σ(y)− λǫ
k

.

When we let y tend to x, the numerator tends to 0. Since the coordinates
of vǫ are positive and Pκ(x) ≥ 0 for all |κ| ≤ k, the left hand side cannot be
equal to zero when y = x (P0 = 1). So the denominator also tends to zero,
and λǫ

k = σ(x). The Christoffel-Darboux formula (Theorem 2.6(i)) shows
that vǫ =

∑

|κ|≤k d2κPκ(x)Pκ.

When m = 1, πk = 1 and any ǫ ≥ 0 is of this form. When m ≥ 2, it is not
clear.. It is not even clear that at least one x satisfying these inequalities
exists.

Another natural question concerns the values that λǫ
k takes. It is hoped

of course that all values in the interval ]λk−1, λk] are attained. We have
defined a mapping from [0,+∞[πk to ]λk−1, λk], sending ǫ to λǫ

k, which is
continuous, hence the image in an interval, containing λk, since clearly it
is the image of ǫ = 0. Let us prove that λǫ

k tends to λk−1 when ǫ tends to
+∞. To that end, we use the following inequality, valid for any non-negative
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matrix J with maximal eigenvalue λ ([22]):

For all x, xi > 0, λ ≤ sup
i

(xJ)i
xi

.

This inequality remains true for the matrix J ǫ
k, although it is not non-

negative, because we can apply it to some J ǫ
k + M Id, an argument that

we have already called for. We choose for x ∈ R
sk a vector, which first sk−1

coefficients constitute a positive eigenvector of Jk−1 for the eigenvalue λk−1.
Its last πk coordinates are denoted by u = (uκ)|κ|=k. We have:























If |ν| ≤ k − 2,
(xJǫ

k
)ν

xν
= λk−1

If |ν| = k − 1,
(xJǫ

k
)ν

xν
= λk−1 +

∑

|κ|=k uκCk[κ,ν]

xν

If |κ| = k,
(xJǫ

k
)κ

xκ
=

∑

|ν|=k−1 xνAk−1[ν,κ]

uκ

+(Bk[κ, κ] − ǫκ).

The last equality relies on a result that is only proved in Section 5, Propo-
sition 5.1(i), namely that Bk[κ, κ

′] = 0 when κ 6= κ′.
Let us now choose an arbitrary small α > 0; we can choose the coefficients

uκ > 0 such that
∑

|κ|=k uκCk [κ,ν]

xν
≤ α for all ν with |ν| = k − 1. Then we

can choose ǫκ > 0 such that
∑

|ν|=k−1 xνAk−1[ν,κ]

uκ
+ (Bk[κ, κ] − ǫκ) = 0. We

are left with:










If |ν| ≤ k − 2,
(xJǫ

k
)ν

xν
= λk−1

If |ν| = k − 1,
(xJǫ

k
)ν

xν
≤ λk−1 + α

If |κ| = k,
(xJǫ

k
)κ

xκ
= 0.

Hence λǫ
k ≤ λk−1 + α for that choice of ǫ.

Let us go back to the bound proved in Theorem 4.4. We can simplify
further this bound, getting rid of the eigenvector. We obtain the following
nicer, but weaker version:

Corollary 4.5. Let C be a δ-code such that m− δ2 ≤ λk−1. Then,

(9) |C| ≤
4
∑

|κ|=k d2κaκ

m− λk
.

Proof. If C satisfies δ2 > m − λk−1, since λk−1 < λǫ
k for all non-negative ǫ

(from Theorem 4.4 (i)), the bound of Theorem 4.4 (iv) applies to C. We
get, using Cauchy-Schwartz inequality, and λǫ

k < λk:
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|C| ≤ 1

m− λǫ
k

(
∑

|κ|=k v
ǫ
κ(ǫκ + aκ)

)2

∑

|κ|=k d
−1
2κ ǫκv

ǫ
κ
2

≤ 1

m− λk

∑

|κ|=k

d2κ
(ǫκ + aκ)

2

ǫκ
.

The function z → (z+a)2

z is minimized over ]0,+∞[ when z = a. We
obtain, with ǫκ = aκ, the announced bound.

5. Asymptotic behavior of the largest eigenvalue λk of Tk

In this section, we compute the limit taken by λk when the quotient n/k
tends to some fixed value (Theorem 5.3). This result is needed to pass to
the asymptotic in the inequality (9) for the size of a Grassmannian code.

We first need some very explicit formulas for the coefficients of the sym-
metric matrix J ′

k associated to the endomorphism Tk, in the orthonormal
basis
{
√
d2κPκ, |κ| ≤ k}. From now on we change our usual convention: if not

specified, κ is a partition of degree s. The diagonal coefficients of J ′
k are

the same as the ones of Jk, while the other coefficients, denoted by A′
s[κ, µ],

satisfy

A′
s[κ, µ] = As[κ, µ]

√

d2κ
d2µ

.

To start with, we gather some known results on the polynomials Cκ.

5.1. Review of some properties of the polynomials Cκ. The coeffi-
cients

[

µ

κ

]

and
(µ
κ

)

are defined respectively by the following properties:

σCκ =
∑

|µ|=s+1

[

µ

κ

]

Cµ(10)

ǫCκ =
∑

|ν|=s−1

(

κ

ν

)

Cν(11)

and have the following explicit expressions:
[

κ(i)

κ

]

=

m
∏

j=1
j 6=i

2κi − 2κj + j − i+ 1

2κi − 2κj + j − i
(12)

(

κ(i)

κ

)

= (κi + 1 +
m− i

2
)

m
∏

j=1
j 6=i

2κi − 2κj + j − i+ 1

2κi − 2κj + j − i+ 2
(13)
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while any other values are equal to zero (see [17, Lemma 7.5.7], [17], [14, Th
14.1], [10]). The polynomials Cκ are intimately related to the decomposition
of GL(m,R)-modules ([9, Theorem 5.2.9]):

R(GL(m,R)/O(m,R)) = ⊕κF
2κ
m .

For later use, we settle the notation: δκ := dim(F κ
m) and we recall the

formula ([8]):

(14) δκ := dim(F κ
m) =

∏

1≤i<j≤m

κi − κj + j − i

j − i
.

5.2. Formulas for the coefficients of the matrix J ′
k.

Proposition 5.1. The matrix Bs has the following properties:

(i) Bs[κ, κ
′] = 0 for all κ 6= κ′.

(ii) If m ≤ n/2,

2Bs[κ, κ] =
∑

i∈u(κ)

(

κ(i)

κ

)[

κ(i)

κ

]

2κi +m+ 1− i

2κi + n/2 + 1− i

−
∑

i∈d(κ)

(

κ

κ(i)

)[

κ

κ(i)

]

2κi +m− 1− i

2κi + n/2− 1− i
.

(iii) If m = n/2, Bs[κ, κ] = m/2.

Proof. We recall that the coefficients βκ,ν are defined by:

Pκ = βκCκ +
∑

ν|κ>ν

βκ,νCν .

Inverting these relations, we obtain coefficients ακ,ν such that

Cκ = ακPκ +
∑

ν|κ>ν

ακ,νPν .

Taking into account the formula (10), we obtain:

Bs[κ, κ
′] = βκ

∑

|µ|=s+1

[

µ

κ

]

αµ,κ′ +
∑

|ν|=s−1

βκ,ν

[

κ′

ν

]

ακ′ .

We use the following obvious relations: ακβκ = 1 and ακβκ,κ′+βκ′ακ,κ′ =
0 to rewrite

Bs[κ, κ
′] =

βκ
βκ′

(

−
∑

|µ|=s+1

[

µ

κ

]

βµ,κ′

βµ
(15)

+
∑

|ν|=s−1

[

κ′

ν

]

ακ′
βκ,ν
βκ

)

.(16)
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Let us assume first that κ 6= κ′. Since
[

µ
κ

]

is non zero only if µ = κ(i)

for some index i, and also βµ,κ′ is non zero only if µ = κ′(j) for some index
j, at most one term in the first summation may be non zero, and the same
argument holds for the second summation. We only have to consider the case
when κ′ satisfies: for some indexes i 6= j, κ′i = κi + 1 and κ′j = κj − 1. The

remaining terms in the expression of Bs[κ, κ
′] correspond to µ = κ(i) = κ′(j)

and ν = κ(j) = κ′(i).
Moreover, the coefficients βµ,κ are calculated in [14], and in particular we

have:

(17)
βκ,κ(j)

βκ
= −1

2

(

κ

κ(j)

)

2κj +m− 1− j

2κj + n/2− 1− j
.

Replacing in (15) we have

Bs[κ, κ
′] =

βκ
βκ′

2κj +m− 1− j

2(2κj + n/2− 1− j)
.

(

[

κ(i)

κ

](

κ(i)

κ′

)

−
(

κ

κ(j)

)[

κ′

κ(j)

]

)

.

Combining (10) and (11) in the obvious relation:

(ǫσ − σǫ)Cκ = mCκ

leads to:

(18)
∑

|µ|=s+1

[

µ

κ

](

µ

κ′

)

−
∑

|ν|=s−1

(

κ

ν

)[

κ′

ν

]

=

{

0 if κ 6= κ′

m if κ = κ′

From (18) we can conclude that Bs[κ, κ
′] = 0 when κ 6= κ′.

When κ = κ′, replacing (17) in (15) leads to the formula (ii). If moreover
n = m/2, taking account of (18) we obtain Bs[κ, κ] = m/2.

We now give explicit formulas for the coefficients of J ′
k:

Proposition 5.2. With the following notations:

qi := 2κi − i+m

N := n− 2m

D(x) =
x2

x2 − 1
and

{

C(x) = (x+1)(x+N)
(2x+N)(2x+N+2) x 6= 0

C(0) = 1
N+2
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we have the expressions:

Bs[κ,κ] =

m

2
− N

4

∑

i∈u(κ)

(

m
∏

j=1
j 6=i

D(qi − qj + 1)
) qi + 2

2qi +N + 2

+
N

4

∑

i∈d(κ)

(

m
∏

j=1
j 6=i

D(qi − qj − 1)
) qi
2qi +N − 2

.

A′
s[κ, κ

(i)] =
(

(

∏

j 6=i

D(qi − qj + 1)D(qi + qj +N + 1)
)

.

C(qi)C(qi + 1)
)1/2

.

Proof. For the calculation of Bs, we replace in Proposition 5.1 (ii) the for-
mulas (12) and (13), and take account of Proposition 5.1 (iii).

In order to calculate A′
s[κ, κ

(i)], we have already seen that:

As[κ, κ
(i)] =

[

κ(i)

κ

](

βκ(i)

βκ

)−1

.

We need a formula for
(

β
κ(i)

βκ

)−1
. Expressions for the leading coefficients

of the polynomials Cκ and Pκ can be found in [12] and [23]. Putting them
together we find:

βκ(i)

βκ
=

m
∏

j=1
j 6=i

(

qi + qj +N

qi + qj +N + 1

)

(2qi +N)(2qi +N + 2)

(qi +N)(qi +N + 1)

where the last fraction must be understood as (N +2)/(N +1) when qi = 0.
Joined with (10), we obtain

As[κ, κ
(i)] =

m
∏

j=1
j 6=i

(

qi − qj + 1

qi − qj

)(

qi + qj +N + 1

qi + qj +N

)

.

(qi +N)(qi +N + 1)

(2qi +N)(2qi +N + 2)
.

Next we use ([8]):

d2κ(i)

d2κ
=

m
∏

j=1
j 6=i

(

qi − qj + 2

qi − qj

)(

qi + qj +N + 2

qi + qj +N

)

.

(2qi +N + 4)(qi +N)(qi +N + 1)

(2qi +N)(qi + 1)(qi + 2)
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where the last fraction must be understood as (N+4)(N+2)/2 when qi = 0,

and we obtain the announced formula for A′[κ, κ(i)].

5.3. The limit of λk. Now n varies with k so we rather denote by T
(n)
k the

endomorphism defined previously and λ
(n)
k its largest eigenvalue.

Theorem 5.3. If n/2k → ℓ, while n → +∞ and k → +∞,

limλ
(n)
k = 4

ℓ+ 1/m

(ℓ+ 2/m)2
.

Proof. We give careful proofs in the cases m = 1 and m = 2, and will be
more sketchy in the general case. As it was noticed previously, when m = 1
the eigenvalues are the zeros of the Jacobi polynomials; their asymptotic
is calculated in [7], exploiting the differential equation for the Jacobi poly-
nomials and Sturm’s method. Another approach, using chain sequences, is
used in [24]. However, none of these methods seem to generalize easily to the
several variable case. Our argument will only use the fact that the matrix

J ′(n)
k is non-negative. More precisely, we use the following:

Lemma 5.4. [22] Let J be a non-negative symmetric matrix of size N , with
largest eigenvalue λ.

(i) For all x ∈ R
N with xi > 0, λ ≤ maxi

(xJ)i
xi

.

(ii) For all x ∈ R
N x 6= 0, λ ≥ (xJ)·x

x·x .

The case m = 1. We recover from Proposition 5.2 the formulas:

2bs = 1− (n − 2)(n − 4)

(4s+ n)(4s + n− 4)

a′s =

(

(2s+ 1)(2s + 2)(2s + n− 2)(2s + n− 1)

(4s + n− 2)(4s + n)2(4s + n+ 2)

)1/2

From these expressions we see that both sequences are increasing with
s. Moreover, we see easily that if s ∼ k, bs ∼ 2 ℓ+1

(ℓ+2)2 , and a′s ∼ ℓ+1
(ℓ+2)2 .

Applying Lemma 5.4 (i) with xs = 1 for all s leads to:

λ
(n)
k ≤ a′k−1 + bk + a′k

and the right hand side tends to 4(ℓ+ 1)/(ℓ + 2)2 when n/2k tends to ℓ.

We lower bound λ
(n)
k using Lemma 5.4 (ii) and a choice of x proposed in

[24]: let x be defined by:

{

xs = 0 1 ≤ s ≤ t := k − ⌊
√
k⌋+ 1

xs = 1 t+ 1 ≤ s ≤ k + 1

so that xs = 1 on the ⌊
√
k⌋ last coordinates. Then,
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(xJ ′(n)
k ) · x
x · x ≥

∑k−1
s=t+1(a

′
s−1 + bs + a′s)

k − t+ 1

≥
(

k − t− 1

k − t+ 1

)

(a′t + bt+1 + a′t+1)

Again, the right hand side tends to 4(ℓ+ 1)/(ℓ+ 2)2, hence the result.

The case m = 2. From Proposition 5.2, we have, setting s := κ1 + κ2 and
v := κ1 − κ2:

Bs[κ, κ] = 1+
(n− 6)(n− 4)

8(4s+ 2n− 6)

(

(4s+ 2n− 4)2

(4κ1 + n)(4κ2 + n− 2)

− (4s+ 2n− 8)2

(4κ1 + n− 4)(4κ2 + n− 6)

)

A′

s[κ,κ
(1)] =

(

(2v + 2)2

(2v + 2)2 − 1

)1/2(
(2s+ n− 2)2

(2s+ n− 2)2 − 1

)1/2

.

(

(2κ1 + 2)(2κ1 + 3)(2κ1 + n− 3)(2κ1 + n− 2)

(4κ1 + n− 2)(4κ1 + n)2(4κ1 + n+ 2)

)1/2

A′

s[κ,κ
(2)] =

(

(2v)2

(2v)2 − 1

)1/2(
(2s+ n− 2)2

(2s+ n− 2)2 − 1

)1/2

.

(

(2κ2 + 1)(2κ2 + 2)(2κ2 + n− 4)(2κ2 + n− 3)

(4κ2 + n− 4)(4κ2 + n− 2)2(4κ2 + n)

)1/2

One can verify that these coefficients are increasing with s when v stays
constant. This is easy to see for Bs, not so obvious for the two others because
the second term is decreasing while the last big quotient is increasing.

In order to obtain a lower bound for λ
(n)
k from Lemma 5.4 (ii), we choose

x = (xκ) with: xκ = 0, 1. We fix a number V < k−
√
k. Let KV,s be the set

of the V partitions of degree s with smallest v = κ1−κ2. Hence KV,s = {κ |
|κ| = s, κ2 ≥ ⌊ s2⌋ − V + 1}. We set xκ = 1 iff deg(κ) ≥ t := k − ⌊

√
k⌋ + 1,

and κ ∈ KV,|κ|. We need to avoid in KV,s some partitions, namely the ones
with v = 0 and the ones with v maximal (for those partitions, some terms

are either missing or are equal to zero in (xJ ′(n)
k )κ). Let this new set be

denoted by K′
V,s. We have, when xκ = 1, κ ∈ K′

V,s, |κ| 6= t, k,

(xJ ′(n)
k )κ = Bs[κ, κ] +

2
∑

i=1

A′
s[κ, κ

(i)]

+
2
∑

i=1

A′
s−1[κ(i), κ]
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In the expressions of A′
s[κ, κ

(i)] we can minor the first term by 1 (v 6= 0),
then minor each term by its minimal value in the sequence v = cte to which
it belongs. As was mentioned before, this minimal value is obtained when
the degree is minimal, i.e. when s = t or s = t + 1. We do the same for
A′

s−1[κ(i), κ] and for Bs[κ, κ]. Then we must consider the behavior when s
is constant of Bs[κ, κ], of:

A1
s[κ] :=

(2s + n− 2)

((2s + n− 2)2 − 1)1/2
·

(

(C(q1)C(q1 + 1))1/2 + (C(q2)C(q2 + 1))1/2
)

and of the analogous expression A2
s−1[κ] corresponding to the last term.

These expressions are increasing with κ2. Let Bs,V
min, Ai

s,V
min

be their
minimal values in K′

V,s. For simplicity, we assume that

min(Bt,V
min, Bt+1,V

min) = Bt,V
min,

and the same for A1, A2.
We obtain:

(xJ ′(n)
k ) · x
x · x ≥

(k − t− 1)(V − 2)

(k − t+ 1)V
(Bt,V

min +A1
t,V

min
+A2

t,V
min

).

Now we let n/2k tend to ℓ. Since Bt,V
min is obtained at a partition

essentially equal to [t/2 − V/2, t/2 + V/2, and since t ∼ k, we see that

Bt,V
min tends to 2(ℓ + 1/2)/(ℓ + 1)2. For the same reason, A1

t,V
min

and

A2
t,V

min
tend to (ℓ + 1/2)/(ℓ + 1)2 (the parameter V is still fixed at this

stage). So we obtain

lim inf λ
(n)
k ≥ (1− 2

V
) · 4 ℓ+ 1/2

(ℓ+ 1)2
.

Now we let V tend to +∞ to obtain the appropriate lower bound.

The second and last step obtains an upper bound for λ
(n)
k from Lemma

5.4 (i) with an appropriate choice of x. The choice xκ = 1 for all κ is not

good enough here because D(2v + 2)1/2 + D(2v)1/2 6= 2. We need some

xκ that modify properly these factors. We choose xκ := (2v + 1)1/2 where
v = κ1 − κ2. We have
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(xJ ′(n)
k )κ
xκ

= Bs[κ, κ] +
2
∑

i=1

A′
s[κ, κ

(i)]
xκ(i)

xκ

+
2
∑

i=1

A′
s−1[κ(i), κ]

xκ(i)

xκ

Let:

A♯[κ,κ(1)] =

(

2v + 2

2v + 1

)(

(2s+ n− 2)2

(2s+ n− 2)2 − 1

)1/2

·
(

(2κ1 + 2)(2κ1 + 3)(2κ1 + n− 3)(2κ1 + n− 2)

(4κ1 + n− 2)(4κ1 + n)2(4κ1 + n+ 2)

)1/2

A♯[κ,κ(2)] =

(

2v

2v + 1

)(

(2s+ n− 2)2

(2s+ n− 2)2 − 1

)1/2

·
(

(2κ2 + 1)(2κ2 + 2)(2κ2 + n− 4)(2κ2 + n− 3)

(4κ2 + n− 4)(4κ2 + n− 2)2(4κ2 + n)

)1/2

A♭[κ(1),κ] =

(

2v

2v + 1

)(

(2s+ n− 4)2

(2s+ n− 4)2 − 1

)1/2

·
(

(2κ1)(2κ1 + 1)(2κ1 + n− 5)(2κ1 + n− 4)

(4κ1 + n− 6)(4κ1 + n− 4)2(4κ1 + n− 2)

)1/2

A♭[κ(2),κ] =

(

2v + 2

2v + 1

)(

(2s+ n− 4)2

(2s+ n− 4)2 − 1

)1/2

·
(

(2κ2 − 1)(2κ2)(2κ2 + n− 6)(2κ2 + n− 5)

(4κ2 + n− 8)(4κ2 + n− 6)2(4κ2 + n− 4)

)1/2

Since

D(2v + 2)1/2
(2v + 3)1/2

(2v + 1)1/2
=

2v + 2

2v + 1
,

and

D(2v)1/2
(2v − 1)1/2

(2v + 1)1/2
=

2v

2v + 1
,

we have:

(xJ ′(n)
k )κ
xκ

= Bs[κ, κ] +

2
∑

i=1

A♯[κ, κ(i)]

+

2
∑

i=1

A♭[κ(i), κ].

This expression is increasing with s when v is fixed. When s is fixed,
Bs[κ, κ],

∑2
i=1 A

♯[κ, κ(i)] and
∑2

i=1A
♭[κ(i), κ] are maximal at κ = [s/2, s/2]
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(we extend the functions to partitions with real parts here). We obtain,
with ρk = [k/2, k/2],

max
κ

(xJ ′(n)
k )κ
xκ

≤

Bs[ρk, ρk] +

2
∑

i=1

A♯[ρk, ρk
(i)] +

2
∑

i=1

A♭[ρk(i), ρk].

The computation of these values shows that the right hand side tends to
4(ℓ+ 1/2)/(ℓ + 1)2 when n/2k → ℓ.

The general case m > 2 works the same. For the lower bound, we use
KV,s := {κ | |κ| = s, κm ≥ ⌊ s

m⌋ − V + 1}. The cardinality of KV,s only
depends on s mod m. We should avoid some partitions in KV,s, namely the
ones with some parts equal and the ones with κm = ⌊ s

m⌋ − V + 1. Their
number is negligible compared to the cardinality of KV,s. Then, we proceed
in the same way as for m = 2.

The upper bound is obtained with xκ = (δ2κ)
1/2. We have

m
∏

j=1
j 6=i

D(qi − qj + 1)1/2
(

δ2κ(i)

δ2κ

)1/2

=
m
∏

j=1
j 6=i

qi − qj + 1

qi − qj
.

hence

(xJ ′(n)
k )κ
xκ

= Bs[κ, κ] +

m
∑

i=1

A♯[κ, κ(i)]

+

m
∑

i=1

A♭[κ(i), κ],

where

A♯[κ,κ(i)] =

m
∏

j=1
j 6=i

qi − qj + 1

qi − qj
·

(

(

m
∏

j=1
j 6=i

D(qi + qj +N + 1)
)

C(qi)C(qi + 1)
)1/2
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and similarly

A♭[κ(i),κ] =

m
∏

j=1
j 6=i

qi − qj − 1

qi − qj
·

(

(

m
∏

j=1
j 6=i

D(qi + qj +N − 1)
)

C(qi − 2)C(qi − 1)
)1/2

.

We have the nice identity:
m
∑

i=1

m
∏

j=1
j 6=i

qi − qj + 1

qi − qj
= m.

We do not have a reference for this last identity, so we give an argument
here: from (14),

dimF κ(i)

m

dimF κ
m

=

m
∏

j=1
j 6=i

κi − κj + j − i+ 1

κi − κj + j − i
.

We obtain the demanded identity as the equality of the dimensions in the
following decomposition of GL(m,R)-modules (Pieri’s rule, [9]):

F (1)
m ⊗ F κ

m = ⊕m
i=1F

κ(i)

m .

It turns out that the coefficients B[κ, κ], A♯[κ, κ(i)] and A♭[κ(i), κ] are
increasing when κ runs over a sequence of the type (ν + s[1, 1, . . . , 1])s≥0

(whenN is big enough), and that, on the space of partitions (with real parts)
κ of fixed degree k, the maximum of the expressions B[κ, κ],

∑m
i=1 A

♯[κ, κ(i)]

and
∑m

i=1 A
♭[κ(i), κ] is attained at κ = ρk = [k/m, k/m, . . . , k/m].

Moreover, it is easy to see that, when n/2k → ℓ,

limBk[ρk, ρk] = 2
ℓ+ 1/m

(ℓ+ 2/m)2

lim

(

m
∑

i=1

A♯[ρk, ρ
(i)
k ]

)

= lim

(

m
∑

i=1

A♭[(ρk)(i), ρk]

)

=
ℓ+ 1/m

(ℓ+ 2/m)2
.

Remark 5.5. One obvious consequence of Theorem 5.3 is that, for fixed n,

the eigenvalue λ
(n)
k runs over the whole interval ]0,m[. Hence the bounds

proved in section 4 for the size of grassmannian codes potentially cover all
possible minimal distance.
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6. An asymptotic bound for the size of Grassmannian codes

We are now ready to take the limit when n tends to +∞ in the inequality
(9), and prove Theorem 1.1.

We are left with the estimate of log(
∑

|κ|=k d2κaκ)/n.

Lemma 6.1. Let δκ := dim(F κ
n ). If n/2k → ρ−1 ∈ R while n and k tend to

+∞,

lim sup
1

n
log(

∑

|κ|=2k
ℓ(κ)≤m

δκ) ≤(19)

m
(

(1 + ρ) log(1 + ρ)− ρ log(ρ)).(20)

Proof. In the case m = 1, δ2k = dimS2k =
(n+2k−1

2k

)

and it is a classical
result. The general case is probably well-known but since we lack a reference,
we give a proof here. Let κ be a partition of length at most m and of degree
2k, that we extend to a partition with n parts with an appropriate number
of zeros. From (14),

dim(F κ
n ) =

∏

1≤i<j≤n

κi − κj + j − i

j − i
.

Since κj = 0 when j > m, we have

dim(F κ
n ) =

∏

1≤i<j≤m

κi − κj + j − i

j − i

∏

1≤i≤m

∏

j>m

κi + j − i

j − i

We upper bound:
∏

j>m

κi + j − i

j − i
≤
(

n+ κi − 1

κi

)

and
∏

1≤i<j≤m

κi − κj + j − i

j − i
≤ (2k + 1)m

2

to obtain

∑

|κ|=2k
ℓ(κ)≤m

δκ ≤ (2k + 1)m
2
∑

|κ|=2k
ℓ(κ)≤m

(

m
∏

i=1

(

n+ κi − 1

κi

)

)

≤ (2k + 1)m
2

(

2k
∑

s=0

(

n+ s− 1

s

)

)m

≤ (2k + 1)m
2

(

n+ 2k

2k

)m
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and we obtain the announced limiting result using the classical

lim
n/2k→ρ−1

1

n
log

(

n+ 2k

2k

)

= (1 + ρ) log(1 + ρ)− ρ log(ρ).

From the three-term relation (2.4), specializing to (1, . . . , 1) we get triv-
ially
aκ ≤ m and hence

∑

|κ|=k d2κaκ ≤ m
∑

|κ|=2k
ℓ(κ)≤m

δκ (obviously d2κ ≤ δ2κ since

V 2κ
n is contained in F 2κ

n ).
Then we only have to solve the equation, involving the limiting result of

Theorem 5.3,

s = lim
n/2k→ρ−1

λ
(n)
k−1 = 4

ρ−1 + 1/m

(ρ−1 + 2/m)2

which leads to

ρ =
m

2
(−1 + (1− s

m
)−1/2).

7. LP versus Hamming

In [4], A. Barg and D. Nogin give an asymptotic bound for the size of
Grassmannian codes, derived from the so-called Hamming bound. They
prove, with the notations of Theorem 1.1:

Theorem 7.1. [4]

(21)
1

n
log |C| . −m log





√

1−
√

s+m

2m





It turns out that our bound (1) is better than (21) only when s is small.1

The crossing point s0 for the two bounds has the approximate value:

m 2 3 4 5 6
s0 1.4528 1.2714 1.1853 1.1372 1.1067

7 8 9 10
1.0856 1.0702 1.0584 1.0492

Figure 1 plots the two bounds for m = 2.
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Figure 1. LP and Hamming asymptotic bounds for m = 2
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