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General formulas for
fixed-length quantum entanglement concentration

Masahito Hayashi

Abstract— General formulas of entanglement concentration are
derived by using an information-spectrum approach for the
i.i.d. sequences and the general sequences of partially entangled
pure states. That is, we derive general relations between the
performance of the entanglement concentration and the eigen-
values of the partially traced state. The achievable rates with
constant constraints and those with exponential constraints can
be calculated from these formulas.

Index Terms— Information spectrum, Entanglement concen-
tration, Exponents, Maximally entangled state

I. I NTRODUCTION

V ARIOUS quantum information processings are proposed,
many of which require maximally entangled states as

resources,e.g., quantum teleportation and dense codingetc[2],
[1], [3]. Hence, it is often desired to generate maximally
entangled states. However, the realized state is not necessarily
a maximally entangled state. Thus, entanglement concentration
is used for producing maximally entangled states (MES) from
partially entangled pure states only by local operation andclas-
sical communication (LOCC), while entanglement distillation
is used for producing them from partially entangled mixed
states by LOCC. Therefore, entanglement concentration is an
important issue in the field of quantum information.

In information theory, we often assume that the system is
prepared as the independent and identical multiple copies of
the given state. Such a condition is called independently and
identically distributed (i.i.d.) condition. Under this condition,
Bennettet al.[6] showed that the amount of entanglement of
a partially entangled pure state|Φ〉〈Φ| is described by the
entropyH(ρ) of its partial traced stateρ := TrHB

|Φ〉〈Φ|,
which is called the reduced density matrix. That is, they proved
that an MES with size2nH(ρ) can be asymptotically produced
from n identical copies of the state|Φ〉〈Φ| with a high enough
probability. Furthermore, independently of the form of|Φ〉〈Φ|,
Hayashi and Matsumoto constructed a protocol satisfying the
above property, which is called universal [7].

However, in the correlated physical system, the state of the
total system cannot be regarded as independent and identical
copies of a given state. In such a case, we have to treat
general partial entangled pure state between two distinct
parties. Indeed, this model is not so unnatural because the
state on the total system is pure when this system is isolated
from the other system. In this paper, as a general asymptotic
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method to treat this model asymptotically, we focus on the
information spectrum method and apply it to entanglement
concentration. The information spectrum method has been de-
veloped by Han and Verdú [9] for discussing general sequence
of information sources/channels, and been established as a
unified method to information theory in Han’s textbook[13].
Indeed, this method has been applied to quantum information
theory, for example, to quantum hypothesis testing[14] and
quantum channel coding[15]. In this paper, we apply this
method to entanglement concentration, and characterize the
asymptotic production rate of a general sequence of partially
entangled pure states without any assumption. The information
spectrum method used in this paper is slightly different from
the original Han-Verdú’s method, and is close to Nagaoka-
Hayashi’s method[14].

In the derivation of our general asymptotic formulas,
we essentially use the majorization method established by
Nielsen[4]. Based on this method, he developed a necessary
and sufficient condition for the possibility of transforming
from a partially entangled pure state|Φ1〉〈Φ1| to another
entangled pure state|Φ2〉〈Φ2| by using LOCC between the
two parties HA and HB. This condition is characterized
only by the eigenvalues of their reduced densitiesρi :=
TrHB

|Φi〉〈Φi|, (i = 1, 2).
Moreover, even in the i.i.d. case, the knowledge of the

asymptotic production rate is not sufficient for estimatingthe
production rate of MES for a given finite number of copies. In
channel coding or source coding, for this analysis, we usually
focus on the error exponents,i.e., the exponential rate of error
probability because the error goes to0 exponentially when
we choose our code suitably. In entanglement concentration,
when we fix the production rate to a constant number less
than the entropy rate, the optimal failure probability goesto
0 exponentially. Hence, based on its exponential rate (failure
exponent), we can roughly estimate the failure probability
for a given finite number of copies. As preceding researches,
Hayashiet al.[8] derived the failure exponent of entanglement
concentration in the i.i.d. case based on the method of types,
and Hayashi and Matsumoto [7] did that of their universal en-
tanglement concentration protocol. In this paper, we calculate
the failure exponent of entanglement concentration in a more
general setting.

In most problems in information theory, in the i.i.d. case,
the correct (or success) probability exponentially goes to0
when the rate is strictly better than the optimal rate. This
exponential rate is called the correct (or success) exponent,
and is one of famouse issues in information theory. Hayashi
et al.[8] and Hayashi and Matsumoto [7] treated the success
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exponent of entanglement concentration in the i.i.d. case.This
paper proceed to the general sequence of partially entangled
pure states.

One may think that such an exponential treatment is not
essential. It is, however, more difficult to obtain the error
and correct exponents asymptotically and tightly than the
asymptotical optimal production rate. Hence, in order to derive
these tight bounds of both exponents, we need better and
more simple non-asymptotic evaluations. That is, such a non-
asymptotic evaluation should be a better and more simple
approximation for the optimal value. Therefore, even though
the optimal correct exponent is useless, the non-asymptotic
evaluations used for its derivation is quite useful.

Furthermore, the optimal rates with exponential constraint
are characterized by Rényi entropy in the i.i.d. case. In this
paper, we derive the same formulas under a weak assumption
for the Rényi entropy. Using these formulas, we characterize
the optimal rates based on the partition function.

Finally, we have to explain our formulation of entanglement
concentration. There are two formulations in source coding.
One is fixed length, in which the coding length is fixed,i.e.,
is independent of the input data. The other is variable-length,
in which the coding length is variable,i.e., depends on the
input data. Similarly to source coding, we can consider two
similar formulations in entanglement concentration. In Bennett
et al.[6]’s protocol and Hayashi and Matsumoto[7]’s protocol,
a local measurement is required as the first step, and the length
of the MSE generated finally depends on the data of this
local measurement. Hence, their protocol is a variable-length
entanglement concentration.

On the other hand, based on Nielsen’s result[4], Hayashi
et al.[8] discussed entanglement concentration protocols pro-
ducing the MES with the fixed size. Hence, such protocols
are called fixed-length entanglement concentration, whichare
classified into two formulations as follows. In the first for-
mulation, we produce, without a failure, an approximately
MES from a partially entangled pure state. Its performance is
represented by the size of the MES and the fidelity between the
appropriate MES and the final state. This kind of entanglement
concentration is called deterministic fixed-length entanglement
concentration (DFLEC). In the other formulation, we produce
an MES itself, allowing a failure probability, from a partially
entangled pure state. The performance of this protocol is eval-
uated by the size of the MES and the failure probability. This
protocol is called a probabilistic fixed-length entanglement
concentration (PFLEC). Hayashiet al.[8] treated these two
formulations in the i.i.d. case. In this paper, we discuss them
in a more general model.

This paper is organized as follows. In section II, we give the
mathematical definitions of the optimal rates with respective
conditions, (constant constraint, exponetial constraint) for the
genereal sequence of partially entangled pure state in two
formulations of FLEC. As the main results, characterizations
of these quantities are given based on information spectrum.
That is, we discover a general relation between the perfor-
mance of entanglement concentration and the eigenvalues of
the reduced density (partially traced state). In section III, the
optimal rates of FLECs are characterized by the Rényi entropy.

In section IV, we apply these formulas to the case when the
reduced density is given as a thermal state. In section V, the
performances of the two FLEC types in a non-asymptotic case
are characterized by applications of Nielsen’s result [4] and
Lo and Popescu’s results[17]. In section VI, the main result
is verified by applying several lemmas described in section V
to an asymptotic case. In section VII, the relation between
entanglement concentration and random number generation
is discussed. The appendix A summarizes relations for the
quantum analogue of the information spectrums based on the
original definition[14], which are necessary for verifyingthe
main result.

II. M AIN RESULTS

When the two distinct parties, Alice and Bob, have their
respective systemsHA andHB , the total system is described
by the tensor product spaceHA⊗HB. In quantum information,
as is mentioned in section I, one of main issues is the char-
acterization of entanglement between these distinct parties. If
the state on total syste is a pure stateΦ ∈ HA ⊗ HB, it
is known that its entanglement between two parties can be
characterized by the reduced density (partially traced state)
ρ := TrB |Φ〉〈Φ|. In particular, if the reduced densityρ is the
completely mixed state1

dA
I, it is called maximally entagled,

wheredA denotes the dimension of the systemHA. Hence, if
the pure stateΨ ∈ HA ⊗ HB is maximally entangled, there
exist completely orthogonal basis{ei} and {e′i} on HA and
HB, respectively such that

Ψ =

√

1

dA

dA
∑

i=1

ei ⊗ e′i.

While any quantum operation is mathematically described by
trace-preserving completely positive (TP-CP) map, in the en-
tanglement concentration of the initial pure stateΦ on distinct
two partiesHA andHB , our operation is often restricted to
a quantum operation with an LOCC implementation between
HA andHB. Hence, a deterministic fixed-length entanglement
concentration (DFLEC) is an LOCC quantum operationC
together with a maximally entangled stateΨ, on a subspace
H′
A ⊗H′

B, i.e., it is described as(C,Ψ). Since this protocol
(C,Ψ) transforms the initial pure state|Φ〉〈Φ| to the final
stateC(Φ) := C(|Φ〉〈Φ|), its performance is evaluated by the
fidelity 〈Ψ|C(Φ)|Ψ〉 and the sizeL(Ψ) of Ψ, which equals
H(TrB |Ψ〉〈Ψ|).

For a rigid analysis of the probabilistic fixed-length en-
tanglement concentration, we have to discuss a measuring
operation that describes a quantum measurement with the final
state as well as the probability distribution of the measured
data. The measuring operation is given as a CP map valued
measureI = {Ii}i whose sum is a TP-CP map;i.e., everyIi
is a CP map, and

∑

i Ii is a TP-CP map. It is often called
an instrument. When we perform a quantum measurement
corresponding toI = {Ii}i on the system with a stateρ, we
obtain the measured datai and the final state 1

Tr Ii(ρ)
Ii(ρ) with

the probabilityTr Ii(ρ). Hence, a probabilistic fixed-length
entanglement concentration (PFLEC) of an initial pure state
Φ ∈ HA ⊗HB is a two-valued instrumentsI = {I0, I1} with
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an LOCC implementation satisfying thatI1(Φ)/Tr I1(Φ) is a
maximally entangled state|Ψ〉〈Ψ| on a subspaceH′

A ⊗ H′
B,

whereIi(|Φ〉〈Φ|) is abbreviated toIi(Φ). That is, the event1
corresponds to success, and the event0 does to failure. Thus,
its performance is characterized by the failure probability
Tr I0(Φ) and the sizeL(I) := L(Ψ) of the final maximally
entangled state.

Here, we briefly discuss the relation between two kinds of
fixed-length entanglement concentrations. For any PFLECI =
{I0, I1} of Φ, the pair(I1 + I0, I1(Φ)/Tr I1(Φ)) becomes a
DFLEC and its fidelity between the final state and the desired
maximally entangled stateI1(Φ)/Tr I1(Φ) is greater than the
success probability of the DFLECI = {I0, I1}:

Tr

[

(I1 + I0)(Φ)
I1(Φ)

Tr I1(Φ)

]

≥ Tr I1(Φ). (1)

That is, for any a given PFLEC protocol, there exists a DFLEC
protocol whose performance is better than the given PFLEC
protocol.

In the quantum system, ifn systems are prepared identically
to the systemHA ⊗ HB, the total system is described by
H⊗n
A ⊗ H⊗n

B . If the state of every systemHA ⊗ HB is the
pure stateΦ and if each system is independently prepared,
the state of the total system is written by the tensor product
pure stateΦ⊗n. Such a case is called the i.i.d. case. However,
even if the state of each system coincides with each other,
if they are not independent of each other, the state of total
system is not a tensor product state. In order to treat such a
general case, we focus on a general sequence of the pair of
the joint system with distinct two partiesHA,n andHB,n and
the partially entangled pure stateΦn ∈ HA,n ⊗ HB,n with
an asymptotic situation. Note that, in this notation, the space
HA,n and HB,n are generalizations ofH⊗n

A and H⊗n
B , and

Φn is a generalization of then-tensor product vectorΦ⊗n.

In order to discuss the asymptotic optimal performance in
such a general case, we optimize the production rate of MES
with three asymptotic constraints for the failure probability or
fidelity. Concerning the PFLEC, we focus on the following
conditions:

• Constant constraint: The asymptotic failure probability is
less than a fixed constant.

• Exponential constraint for the failure probability: When
we choose a good DFLEC protocol, failure probability
goes to0 exponentially. Hence, as another criterion, we
restrict our DFLEC satisfying that the exponent of failure
probability is greater than a fixed exponent.

• Exponential constraint for the success probability: If we
choose a bad DFLEC, the success probability goes to
0 exponentially. Among such PFLEC protocols, if this
exponent,i.e., the success exponent, is greater, the proto-
col is worse. Hence, we can consider the optimization of
the production rate of MES with the constraint that the
success exponent is less than a fixed exponent.

Thus, concerning PFLEC, we focus on the following values:

BP (ǫ) := sup
{In}

{

lim
logL(In)

n

∣

∣

∣lim In0 (Φn) ≤ ǫ
}

Be,P (r) := sup
{In}

{

lim
logL(In)

n

∣

∣

∣ lim
−1

n
log Tr In0 (Φn) ≥ r

}

B∗
e,P (r) := sup

{In}

{

lim
logL(In)

n

∣

∣

∣
lim

−1

n
log Tr In1 (Φn) ≤ r

}

.

In the DFLEC case, we obtain several criteria by replacing
the success probability in the above discussion by the fidelity.
That is, we can define the following values:

BD(ǫ) := sup
{(Cn,Ψn)}

{

lim
1

n
logL(Ψn)

∣

∣

∣

lim〈Ψn|Cn(Φn)|Ψn〉 ≥ 1 − ǫ
}

Be,D(r) := sup
{(Cn,Ψn)}

{

lim
1

n
logL(Ψn)

∣

∣

∣

lim
−1

n
log (1 − 〈Ψn|Cn(Φn)|Ψn〉) ≥ r

}

B∗
e,D(r) := sup

{(Cn,Ψn)}

{

lim
1

n
logL(Ψn)

∣

∣

∣

lim
−1

n
log〈Ψn|Cn(Φn)|Ψn〉 ≤ r

}

.

Hence, it is trivial from (1) that

B1(ǫ) ≥ B2(ǫ), Be,D(r) ≥ Be,2(r), B∗
e,D(r) ≥ B∗

e,2(r).
(2)

In this paper, we treat a quantum analogue of information
spectrums to analyze the above values. For such an analysis,
we need the following definitions. For a self-adjoint operator
X , we can denote the projection

∑

xi≥c
Ei by {X ≥ c},

where the spectral decomposition is given byX =
∑

i xiEi.
We can define the projections{X > c}, {X < C}, {X ≤
c}, etc. in a similar manner. Letρn be the reduced density
TrHB,n

|φn〉〈φn| and define

K(a) := limTr ρn{ρn − e−na ≥ 0}

ζc(a) := lim
−1

n
log Tr ρn{ρn − e−na > 0}.

When the limit

lim
−1

n
log Tr ρn{ρn − e−na < 0} (3)

exists, we denote it byζ(a). These definitions can also be
written as

K(a) = lim pn

{−1

n
log pn,i ≤ a

}

(4)

ζc(a) = lim
−1

n
log pn

{−1

n
log pn,i ≤ a

}

(5)

ζ(a) = lim
−1

n
log pn

{−1

n
log pn,i > a

}

, (6)

where everypn,i is an eigenvalue ofρn and can be regarded
as a probability distribution. Hence, the quantityK(a), ζc(a),
and ζ(a) denotes the degree of concentration of theena-
dimensional subspace. Note that the functionζc(a) decreases
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monotonically, while the functionζ(a) increases monotoni-
cally. Indeed, in the classical case, the valueK(a) gives the
asymptotic performances of fixed-length source coding[12]
and uniform random number generation[19], [13] with asymp-
totic constant constraint. Moreover, the quantitiesζc(a) and
ζ(a) gives the asymptotic optimal performance of source cod-
ing with the exponential constraint[12] and that of simulation
of random process with KL divergence criterion[18]. As is
mentioned in section VII,ζ(a) gives the asymptotic optimal
performance of intrinsic randomness with KL divergence
criterion[22].

As is mentioned in the following main theorem, the optimal
production rate of MES can be characterized by how densely
the eigen values of the reduced density matrix concentrate a
small space.

Theorem 1:Without any assumption, for everyǫ ∈ [0, 1]
we have

BD(ǫ) = BP (ǫ) = sup
R

{R|K(R) ≤ ǫ}

Be,D(r) = Be,P (r) = sup
R

{R|ζc(R) ≥ r}.

When the limit (3) exists and there exists a real numbera such
that ζ(a) ≤ ζc(a), we have

B∗
e,D(r) = sup

a

{

a− r

∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

= sup
a

{

a

2
− inf

a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

B∗
e,P (r) = sup

a
{a− ζ(a)|ζ(a) ≤ r}.

This theorem is proved in section VI after preparing the
appropriate discussion.

Remark 1:As is mentioned in Nagaoka and Hayashi[14]
the quantum versions ofK(a), ζc(a), and ζ(a) give the
asymptotic performances of fixed-length source coding. In
particular, the optimal rate with the constraint for the constant
error exponent is given as

sup
a
{a− ζ(a)|ζ(a) < r}, (7)

which is almost similar toB∗
e,P (r). For a proof only of the

classical case, see Han [12]. For a proof in the classical and
quantum case, see Nagaoka and Hayashi [14].

III. A SYMPTOTIC FORMULAS BASED ONRÉNYI ENTROPY

In the classical and quantum fixed-length source coding of
i.i.d. information source, it is known that the optimal ratewith
the constant constraint for error exponent is described by the
Rényi entropyψ(s) := log

∑

i p
s
i [21]. Concerning FLEC of

the i.i.d. source, as is described in Theorem 2, Hayashiet
al.[8] showed that this kinds of optimal rates can be described
by the Rényi entropy. In this section, using Theorem 1, we
derive the same formula in a more general setting.

Theorem 2:Hayashi et al.[8] When ρn = ρ⊗n, the rela-
tions

BD(ǫ) = BP (ǫ) = H(ρ), ∀ǫ such that1 > ǫ ≥ 0 (8)

Be,D(r) = Be,P (r) = sup
s≥1

r + ψ(s)

1 − s
(9)

B∗
e,P (r) = min

0≤s≤1

sr + ψ(s)

1 − s
(10)

B∗
e,D(r) =







min
0≤s≤1

sr + ψ(s)

1 − s
if r ≤ − 1

2ψ
′
(

1
2

)

− ψ
(

1
2

)

2ψ
(

1
2

)

+ r otherwise
(11)

hold, where

H(ρ) := −Tr ρ log ρ, ψ(s) := log Tr ρs.

In particular, the above formulas of some special cases are
written as

Be,D(r) = Be,P (r) = H∞ if r ≥ H∞ = lim
s→∞

−ψ′(s)

B∗
e,P (r) = ψ(0) if r ≥ −ψ′(0) − ψ(0),

where

H∞ := lim
s→∞

−ψ(s)

s
.

The following is the generalization of the above theorem.
Theorem 3:Lettingψn(s) := log Tr ρsn, we assume that the

limit ψ(s) := limn
ψn(s)
n exists and that its first and second

derivativesψ
′
(s) andψ

′′
(s) exist fors ∈ (0, 1)∪(1,∞). Then,

H− ≤ BD(ǫ) = BP (ǫ) ≤ H+ (12)

Be,D(r) = Be,P (r) = sup
s≥1

r + ψ(s)

1 − s
(13)

B∗
e,P (r) = min

0≤s≤1

sr + ψ(s)

1 − s
(14)

B∗
e,D(r) =







min
0≤s≤1

sr + ψ(s)

1 − s
if r ≤ − 1

2ψ
′ ( 1

2

)

− ψ
(

1
2

)

2ψ
(

1
2

)

+ r otherwise,
(15)

where

H− := −ψ′
(1 + 0), H+ := −ψ′

(1 − 0).

In particular, we have

Be,D(r) = Be,P (r) = H∞ if r ≥ H∞ = lim
s→∞

−ψ′
(s)

B∗
e,P (r) = ψ(0) if r ≥ −ψ′

(+0) − ψ(0),

whereH∞ := lims→∞
−ψ(s)
s .

The equations (9), (10), and (11) follow from the equa-
tions (13), (14), and (15). The equation (8) follows from
the equation (12). Hence, Theorem 3 can be regarded as a
generalization of Theorem 2. Since Hayashiet al. [8]used
the method of type, they proved Theorem 2 only in the
finite-dimensional case. Hence, its infinite-dimensional case
is proved by this paper first time.



HAYASHI: GENERAL FORMULAS FOR FIXED-LENGTH QUANTUM ENTANGLEMENT CONCENTRATION 5

Remark 2:Under the same assumption as Theorem 3, we
can similarly prove that

sup
a
{a− ζ(a)|ζ(a) < r} = min

0≤s≤1

sr + ψ(s)

1 − s
,

which gives the optimal rate with the constant constraint for
error exponent in the fixed-length source coding.

Proof: As is discussed in Appendix B, Gärtner-Ellis
theorem [20] yields that

ζ(a) =







0 if a ≤ H+

sup
0≤s≤1

(1 − s)a− ψ(s) > 0 if H+ < a < −ψ′
(0)

(16)

ζc(a) =











0 if H− ≤ a

sup
s≥1

(1 − s)a− ψ(s) > 0 if H∞ < a < H−

∞ if a < H∞.
(17)

Note that

ζ(−ψ′
(+0) − 0) = −ψ′

(+0) − ψ(0) (18)

ζc(H∞ + 0) = H∞. (19)

Moreover, it follows from the discussion in Appendix B that
ψ(s) is convex. Sinceψ

′′
(s) exists fors ∈ (0, 1)∪ (1,∞), we

have

ψ
′′
(s) ≥ 0 s ∈ (0, 1) ∪ (1,∞). (20)

For any real numbera satisfyingH∞ ≤ a ≤ −ψ′
(+0), we

defines(a) by

a = −ψ′
(s(a)). (21)

Hence, equations (16) and (17) yield that

ζ(a) =

{

0 if a ≤ H+

(1 − s(a))a− ψ(s(a)) if H+ < a < −ψ′
(0)

(22)

ζc(a) =







0 if H− ≤ a

(1 − s(a))a− ψ(s(a)) if H∞ < a < H−

∞ if a < H∞.
(23)

First, we prove (13) for the case in whichr < H∞. In this
case, we can definear andsr by ζc(ar) = r andsr := s(ar).
Thus, we have

(1 − sr)ar − ψ(sr) = r (24)

−(1 − sr)ψ
′
(sr) − ψ(sr) = r. (25)

Using (24), we can calculateBe,D(r) andBe,P (r) as

Be,D(r) = Be,P (r) = ar =
r + ψ(sr)

1 − sr
.

The derivative of the functionf1(s) := r+ψ(s)
1−s (s ≥ 1) is given

by

f ′
1(s) =

ψ
′
(s)(1 − s) + r + ψ(s)

(1 − s)2
.

From (25), the equationf1(sr)′ = 0 holds. The derivative of
the numerator off ′

1(s) is
(

ψ
′
(s)(1 − s) + r + ψ(s)

)′

= ψ
′′
(s)(1 − s) ≤ 0,

the final inequality inequality follows from (20). Therefore,
Be,D(r) = Be,P (r) = f1(sr) = maxs≥1 f1(s).

Next, we prove (13) for the case in whichr ≥ H∞. From
(17), if a > H∞, then ζc(a) < r. Otherwise,ζc(a) ≥ r.
Thus,Be,D(r) = Be,P (r) = H∞. Since the numerator of
f ′
1(s) equals

r + ψ
′
(s)(1 − s) + ψ(s) = r − ζc(−ψ′

(s)) > 0,

we obtainf ′
1(s) > 0. Therefore,

sup
s≥1

r + ψ(s)

1 − s
= lim

s→∞

r + ψ(s)

1 − s
= H∞.

Proceeding to (14) for the case in whichr < −ψ′
(+0) −

ψ(0), we definear and sr by ζ(ar) = r and sr := s(ar).
Thus, we have

(1 − sr)ar − ψ(sr) = r (26)

−(1 − sr)ψ
′
(sr) − ψ(sr) = r. (27)

Using (26), we can calculateB∗
e,P (r):

B∗
e,P (r) = ar − r =

srr + ψ(sr)

1 − sr
.

The derivative of the functionf2(s) := sr+ψ(s)
1−s (0 < s < 1)

is given by

f ′
2(s) =

ψ
′
(s)(1 − s) + r + ψ(s)

(1 − s)2
.

From (27), the equationf2(sr)′ = 0 holds. The derivative of
the numerator off ′

2(s) is given by
(

ψ
′
(s)(1 − s) + r + ψ(s)

)′

= ψ
′′
(s)(1 − s) ≥ 0

because of (20). Therefore,B∗
e,P (r) = f2(sr) =

mins≥1 f2(s).
Next, we prove (14) for the case in whichr ≥ −ψ′

(+0)−
ψ(0). If a < −ψ′

(+0), then ζ(a) < r. Otherwise,
ζ(a) > r. Thus, it follows from (18) thatB∗

e,P (r) =

limǫ→+0(−ψ
′
(+0) − ǫ) − ζ(−ψ′

(+0) − ǫ) = −ψ′
(+0) −

(−ψ′
(+0) − ψ(0)) = ψ(0). Since the numerator off ′

2(s) is

r + ψ
′
(s)(1 − s) + ψ(s) = r − ζc(−ψ′

(s)) > 0,

thenf ′
2(s) > 0. Therefore,

min
0≤s≤1

sr + ψ(s)

1 − s
= lim

s→0

sr + ψ(s)

1 − s
= ψ(0).

Next, we prove (15). We can calculate the derivative of
ζ(a) − a

2 as
(

ζ(a) − a

2

)′

= 1 − s(a) − s′(a)a− ψ
′
(s(a))s′(a) − 1

2

=1 − s(a) − s′(a)a+ s′(a)a− 1

2
=

1

2
− s(a).
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This derivative is0 if and only if s(a) = 1
2 , i.e., a = −ψ′ ( 1

2

)

.
The second derivative is calculated as

(

ζ(a) − a

2

)′′

= −s′(a) =
1

ψ
′′
(s(a))

> 0, (28)

where the final equation follows from1 = ψ
′′
(s(a))s′(a)

which can be derived from (21). Thus, the functiona 7→
ζ(a) − a

2 is strictly convex, and its minimum value equals

ζ
(

−ψ′ ( 1
2

)

)

+ 1
2ψ

′ ( 1
2

)

, which is attained ata = −ψ′ ( 1
2

)

.
Hence, we have

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

=

{

ζ(a) − a
2 if a ≤ −ψ′ ( 1

2

)

−ψ
(

1
2

)

if a > −ψ′ ( 1
2

)

,

where we use the equationζ
(

−ψ′ ( 1
2

)

)

= −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

,

which follows from (22). Sinceζ(−ψ′
(1/2)) = −ψ

(

1
2

)

−
1
2ψ

′ ( 1
2

)

, we have

sup
a≤−ψ

′

(1/2)

{a− r|ζ(a) ≤ r}

=

{

ar − r if r ≤ −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

−ψ′
(1/2) − r if r > −ψ

(

1
2

)

− 1
2ψ

′ ( 1
2

)

.

Remember thatar is defined such thatζ(ar) = r. Moreover,
we have

sup
a>−ψ

′

(1/2)

{

a− r

∣

∣

∣

∣

−ψ
(

1

2

)

+
a

2
≤ r

}

=

{

0 if r ≤ −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

2ψ
(

1
2

)

+ r if r > −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

.

Therefore,

B∗
e,D(r) = sup

a

{

a− r

∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

= max

{

sup
a≤−ψ

′

(1/2)

{a− r |ζ(a) ≤ r } ,

sup
a>−ψ

′

(1/2)

{

a− r

∣

∣

∣

∣

−ψ
(

1

2

)

+
a

2
≤ r

}

}

=

{

ar − r if r ≤ −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

2ψ
(

1
2

)

+ r if r > −ψ
(

1
2

)

− 1
2ψ

′ ( 1
2

)

.

Using a discussin similar to (14), we can show (15).

IV. CORRELATED SYSTEM

In this section, we consider the application of Theorem 3 to
correlated systems. As an example, the initial state is assumed
to be a ground state with the Hamiltonian

∑

iHi + Hi,i+1

on the system(HA ⊗ HB)⊗n, whereHi is the Hamiltonian
of the i-th joint system betweenA and B, and Hi,i+1 is
its interaction term between thei-th and i + 1-th systems.
However, it is not so easy to calculateψ(s) in this case. Hence,
we focus on a more ideal case.

Assume that the total system(HA ⊗ HB)⊗n is isolated
from other systems. We also assume that the systemH⊗n

B

is sufficiently large, and the interaction between the system

H⊗n
A and the systemH⊗n

B is ideal so that the systemH⊗n
B

can be regarded as the heat bath of the systemH⊗n
A . Now,

we suppose that the Hamiltonian
∑

iHA,i +HA,i,i+1 on the
systemH⊗n

A . Hence, the state of the total system is pure,
and the reduced density onA is the thermal state with the
Hamiltonian

∑

iHA,i+HA,i,i+1. Now, we define the partition
function as

Ξ(β) := lim
1

n
log Tr exp(β

∑

i

HA,i +HA,i,i+1). (29)

Thus, when the inverse temperature isβ0 and the partition
function is continuous and differentiable, theψ(s) can be
calculated as

ψ(s) = lim
1

n
log Tr

(

exp(β0

∑

iHA,i +HA,i,i+1)

Tr exp(β0

∑

iHA,i +HA,i,i+1)

)s

= lim
1

n
log Tr exp(sβ0

∑

i

HA,i +HA,i,i+1) − sΞ(β0)

=Ξ(sβ0) − sΞ(β0).

Hence,

BD(ǫ) = BP (ǫ) = −β0Ξ
′(β0) + Ξ(β0)

Be,D(r) = Be,P (r) = sup
s≥1

r + Ξ(sβ0) − sΞ(β0)

1 − s

B∗
e,P (r) = min

0≤s≤1

sr + Ξ(sβ0) − sΞ(β0)

1 − s

B∗
e,D(r) =











min
0≤s≤1

sr + Ξ(sβ0) − sΞ(β0)

1 − s
if r ≤ r1/2

2Ξ
(

β0

2

)

− Ξ (β0) + r otherwise,

where

r1/2 := −β0

2
Ξ′

(

β0

2

)

+ Ξ(β0) − Ξ

(

β0

2

)

.

Note that the above formulas are based only on the partition
function. Hence, it is expected to apply them to other cases.
Moreover, we can derive similar formulas concerning classical
and quantum fixed-length source coding.

V. NON-ASYMPTOTIC THEORY

In order to derive general asymptotic formulas based on
the quantum information spectrums, we need to prepare ap-
proximate formulas for non-asymptotic setting based on the
form of the reduced densityρ. For this purpose, we focus
on majorization, because it gives a necessary and sufficient
condition for the possibility of transforming from a partially
entangled pure state|Φ1〉〈Φ1| to another entangled pure state
|Φ2〉〈Φ2| by using LOCC between the two partiesHA and
HB[4]. Suppose thatp = (p1, . . . , pd) and q = (q1, . . . , qd)
are probability distributions. The probabilityp majorizesq,
(equivalentlyq is majorized byp), written p � q, if for each
k in the range

k
∑

j=1

p↓j ≥
k
∑

j=1

q↓j .

The elements indicated by↓ are taken in descending order;
for example,p↓1 is the largest element in(p1, . . . , pd). The
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majorization relation is a partial order. To discuss entangle-
ment transformation, we need to treat probability distributions
consisting of eigenvalues of a reduced densityρ. The reduced
densityρ majorizes another reduced densityσ written ρ � σ,
if the probability distributionp(ρ) consisting of eigenvalues
of a reduced densityρ majorizes the probability distribution
p(σ) defined by the other reduced densityσ. In particular,
the reduced densityρ strongly majorizes another reduced
densityσ, written ρ ≻ σ, if p(ρ) � p(σ) and if the eigen-
vector corresponding top(ρ)↓j coincides with the eigenvector
corresponding top(σ)↓j . That is, this condition requires that
there exists a common basis diagonalizingρ and σ. For
more information about majorization, please see Bhatia’s text
book[16]. Using these notations, we can describe Nielsen’s
condition for LOCC transformation as follows.

Lemma 4:Nielsen[4] We can transform an entangled state
Φ to another entangled stateΨ by LOCC if and only ifσ � ρ,
whereρ (σ) is the reduced density (partially traced state) of
Φ (Ψ), respectively.

Therefore, by using the above Nielsen’s Lemma, the optimal
performance of DFLEC,i.e., the maximum fidelity can be
evaluated based on majorization as follows.

Lemma 5:Let σ be the reduced density of a given pure
stateΨ, andρ be the reduced density of the given initial pure
stateΦ. Then, we have

max
C

〈Ψ|C(Φ)|Ψ〉 = max
ρ′�ρ

max
U :unitary

(

Tr
√

ρ′
√
σU
)2

, (30)

where the quantum operationC runs over all quantum opera-
tions with LOCC in the maximum of LHS. IfΨ is a maximally
entangled state with the sizeL, i.e., the operatorT := Lσ is
a projection with the rankL, then the relation

max
ρ′�ρ

max
U :unitary

(

Tr
√

ρ′
√
σU
)2

= max
ρ′�ρ

(

Tr
√
ρ′T
)2

L
(31)

holds.
Proof: For any pure stateΨ,Φ, we have

〈Ψ|Φ〉 = TrHA

√
ρ
√
σU∗

2U1,

where two unitariesU1 andU2 are defined as

U1ρU
∗
1 = TrHA

|Φ〉〈Φ|, U2σU
∗
2 = TrHA

|Ψ〉〈Ψ|.
Using Lemma 4, we can prove (30). Next, we choose normal-
ized basis{ei}Li=1 and{fi}Li=1 as

T =

L
∑

i=1

|ei〉〈ei|, fi := U∗ei.

Using Schwartz inequality twice, we have

Tr
√

ρ′TU =

L
∑

i=1

〈fi|
√

ρ′|ei〉

≤
L
∑

i=1

√

〈fi|
√

ρ′|fi〉
√

〈ei|
√

ρ′|ei〉

≤

√

√

√

√

L
∑

i=1

〈fi|
√

ρ′|fi〉

√

√

√

√

L
∑

i=1

〈ei|
√

ρ′|ei〉.

Since
L
∑

i=1

〈fi|
√

ρ′|fi〉,
L
∑

i=1

〈ei|
√

ρ′|ei〉 ≤ max
V :unitary

TrV
√

ρ′V ∗T,

we obtain

max
U,V :unitary

TrV
√

ρ′V ∗TU = max
V :unitary

TrV
√

ρ′V ∗T.

Therefore, the equation

max
ρ′�ρ

max
U :unitary

Tr
√

ρ′TU = max
ρ′�ρ

Tr
√

ρ′T (32)

holds becauseUρU∗ � ρ. Equations (30) and (32) guarantee
(31).
However, it is not easy to directly connect the above lemma
to the information spectrum. Hence, we prepare the following
lemma for the evaluation of the RHS of (31). This lemma plays
an important role in the converse part of the main theorem.

Lemma 6:When a projectionT and an integerM satisfy
TrT ≥ M , and the two reduced densitiesρ′ and ρ satisfy
ρ′ � ρ, the inequality

Tr
√

ρ′T

≤
√

Tr

{

ρ ≥ 1

M

}

√

Tr ρ

{

ρ ≥ 1

M

}

+

√

TrT − Tr

{

ρ ≥ 1

M

}

√

Tr ρ

{

ρ <
1

M

}

(33)

holds.
Proof: Assume thatTrT = N(≥ M). Without loss of

generality, we can assume thatρ′ � ρ. Let us diagonalizeρ
and ρ′ as ρ =

∑

i si|ei〉〈ei| and ρ′ =
∑

i s
′
i|fi〉〈fi|, where

si ≥ si+1, s
′
i ≥ s′i+1. The inequalityTr

√
ρ′T ≤

∑N
i=1

√

s′i
holds. We define the probability distribution{si,N} andiN as

{si,N} := argmax
{s′

i
}

{

N
∑

i=1

√

s′i

∣

∣

∣

∣

∣

{s′i} � {si}
}

,

siN ≥ 1

N
> siN+1.

Similarly to iN , we can defineiM . Since the functionx 7→ √
x

is concave, we can prove thatsi = si,N for i ≤ iN . Since
iM ≤ iN ,

iM
∑

i=1

√
si,N =

iM
∑

i=1

√
si

≤
√
iM

√

√

√

√

iN
∑

i=1

si =

√

Tr

{

ρ ≥ 1

M

}

√

Tr ρ

{

ρ ≥ 1

M

}

,

N
∑

i=iM +1

√
si,N ≤

√

N − iM

√

√

√

√

N
∑

i=iM +1

si,N

=
√

N − iM

√

√

√

√1 −
iM
∑

i=1

si

=

√

TrT − Tr

{

ρ ≥ 1

M

}

√

Tr ρ

{

ρ <
1

M

}

.
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Thus, we obtain (33).
In order to treat PFLEC, we have to consider a measuring

operation with LOCC. Lo and Popescu characterize a pro-
jection valued measure{Pω} (Every Pω is a projection, and
∑

ω Pω is the identity.) on the systemB as follows.
Lemma 7:Lo and Popescu[17]For any projection valued

measure{Pω,B} on the systemB, there exist a projection
valued measure{Pω,A} on the systemA and local unitaries
Uω,A andUω,B such that

(I ⊗ Pω,B)|Φ〉 = (Uω,A ⊗ Uω,B)(Pω,A ⊗ I)|Φ〉. (34)
That is, if the initial pure state is known, the operation
corresponding to any projection valued measurement onB
can be replaced by a projection valued measurement onA
and local unitaries onA and B based on measuring data.
However, we have to treat a general measuring operation with
LOCC. The above Lo and Popescu’s result can be generalized
as follows.

Lemma 8:Given a measuring operationI = {Iω} with
LOCC on a tensor product spaceHA ⊗HB and a pure state
|Φ〉〈Φ| on the tensor product spaceHA ⊗ HB , there exist a
POVM {Mω} (EveryMω is a positive operator, and

∑

ωMω

is the identity.) and the quantum operationCω with LOCC,
such that

Iω(Φ) = Cω(
√

Mω ⊗ I|Φ〉〈Φ|
√

Mω ⊗ I), ∀ω. (35)
Proof: It is known that any measuring operationIB =

{Iω,B} on the systemB can be described by the projection
valued measure{Pω,B} on an extended spaceH′

B ⊃ HB and
quantum operationsCω,B on B such that

Iω,B(ρ) = Cω,B(Pω,BρPω,B).

Applying (34), we have

(Iω,B ⊗ I)(Φ)

=(I ⊗ Cω,B)
(

(Uω,A ⊗ Uω,B)(Pω,A ⊗ I)|Φ〉〈Φ|

(Pω,A ⊗ I)(Uω,A ⊗ Uω,B)∗
)

.

Hence, any operation onB can be described by the combina-
tion of the projection measurement{Pω,A}ω on A and local
operations based only on the measuring data of{Pω,A}ω.

Now, we focus on a measurement operationI ′ = {I ′ω}ω on
a tensor product spaceHA ⊗HB consisting of LOCC and a
pure state|Φ〉〈Φ| on HA ⊗HB satisfying the condition (A):
the setΩ = {ω} consists of all sent classical informations.

Then, there exist the projection valued measure{Pω,B}ω on
an extended spaceH′

B ⊃ HB and quantum operationsCω,A
andCω,B such that

I ′ω(Φ) = (Cω,A ⊗ Cω,B)
(

(Pω,A ⊗ I)|Φ〉〈Φ|(Pω,A ⊗ I)
)

.

Even if the measurement operationI = {Ik}k with LOCC
does not satisfies the condition (A), there exist a measurement
LOCC operationI ′ = {I ′ω}ω∈Ω with subsetΩk ⊂ Ω satisfying
the condition (A) such that

Ik =
∑

ω∈Ωk

I ′ω . (36)

( )h x

x

eigen value

O

Fig. 1. Illustration ofh(x)

Hence, we have

Ik(Φ)

=
∑

ω∈Ωk

(Cω,A ⊗ Cω,B)
(

(Pω,A ⊗ I)|Φ〉〈Φ|(Pω,A ⊗ I)
)

.

That is, there exist a projection valued measure{P̃k,A} on an
extended spaceH′

A ⊃ HA and LOCC operationsCk such that

Ik(Φ) = Ck
(

(P̃k,A ⊗ I)|Φ〉〈Φ|(P̃k,A ⊗ I)
)

.

Since the projectionPHA
toHA satisfies thatPHA

P̃k,APHA
=

(P̃k,APHA
)∗P̃k,APHA

, there exists a unitarỹUk,A such that

P̃k,APHA
=
√

MA
k := Ũk,APHA

P̃k,APHA
.

Hence, we obtain

Ik(Φ)

=Ck

(

(Ũk,A ⊗ I)(
√

MA
k ⊗ I)|Φ〉〈Φ|(

√

MA
k ⊗ I)(Ũk,A ⊗ I)∗

)

.

Therefore, the proof is completed.
In order to use the information spectrum method, one may

characterize the optimal failure probability based onTr ρ{ρ−
x ≥ 0} for the reduced densityρ of the initial state. However,
it is difficult. Hence, we focus onh(x) := Tr(ρ−x){ρ−x ≥
0} instead ofTr ρ{ρ−x ≥ 0}. Suppose that we wish to reduce
all eigenvalues of the reduced densityρ to be no greater than
x. This incurs a probability of failure given byh(x). Upon
success we obtain a normalized state whose largest eigenvalue
is not greater thanx/(1 − h(x)), which is majorized by a
maximally entangled state of the dimension⌊(1 − h(x))/x⌋.
It turns out that this method is optimal among PFLECs as
follows.

Lemma 9:The bound on the performance of PFLEC based
on Φ is evaluated by using the functionh(x), as follows:

max
I={I0,I1}: PFLEC ofΦ

{L(I)|Tr I0(Φ) ≤ h(x)}

=

⌊

1

x
(1 − h(x))

⌋

, (37)

where⌊x⌋ denotes the maximum integern satisfyingn ≤ x.
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Proof: From Lemma 8, for any PFLECI, there exist
two quantum operationsC0 andC1 with LOCC and a positive
operatorP such that0 ≤ P ≤ I and

Tr I0(Φ) = Tr(I − P )ρ

Tr I1(Φ) = TrPρ

I1(Φ) = C1((
√
I − P ⊗ I)|Φ〉〈Φ|(

√
I − P ⊗ I))

I0(Φ) = C0((
√
P ⊗ I)|Φ〉〈Φ|(

√
P ⊗ I)).

Hence, we obtain the following equations for the following
reasons.

min
I={I0,I1}:PFLEC ofΦ

{

Tr I0(Φ)

∣

∣

∣

∣

Tr I1(Φ)

L
= x

}

= min
I≥P≥0 on H

{Tr ρ(I − P )|x−
√
Pρ

√
P ≥ 0} (38)

= min
I≥P≥0 on H

{Tr(ρ−√
ρP

√
ρ)|x−√

ρP
√
ρ ≥ 0} (39)

= min
σ on H

{1 − Tr σ|x− σ ≥ 0, ρ ≥ σ} (40)

= min
σ on H

{

1 −
∑

i

〈ei|σ|ei〉
∣

∣

∣

∣

∣

〈ei|σ|ei〉 ≤ si, x

}

(41)

= 1 −
∑

i:si≤x

si −
∑

i:si >x

x = Tr(ρ− x){ρ− x ≥ 0} = h(x),

(42)

where we diagonalizeρ as ρ =
∑

i si|ei〉〈ei| in (41). From
Lemma 4, there exists a quantum operationC1 with LOCC that
transforms the state 1

TrPρ (P⊗I)|Φ〉〈Φ|(P⊗I) to a maximally

entangled state with the sizeL if and only if Tr I1(Φ)
L ≥ PρP .

Thus, from Lemma 8, we obtain (38). In general, for any
bounded operatorA, there exists a unitary operatorU such
thatAA∗ = UA∗AU∗. Thus, the conditionx − PρP ≥ 0 is
equivalent with the conditionx − √

ρP
√
ρ ≥ 0. We obtain

(39). Replacing
√
ρP

√
ρ by σ, we obtain (40).

Equation (42) implies

max
I={I0,I1}: PFLEC ofΦ

{L(I) |Tr I0(Φ) ≤ h(x)}

= max
x′

{

1

x′
(1 − h(x′))

∣

∣

∣

∣

1
x′

(1 − h(x′)) is an integer,
h(x′) ≤ h(x)

}

=

⌊

1

x
(1 − h(x))

⌋

,

where the second equation follows from the fact that the func-
tion h(x) strictly monotonically decreases and is continuous.

VI. A SYMPTOTIC THEORY

In this section, based on non-asymptotic formulas given in
section V, we prove our main theorem. For this purpose, we
need to prepare the finite-version of the information-spectrum
quantities for a projection operatorTn and a reduced density

σn on HA,n as follows.

ζn(Tn|σn) := − 1

n
log TrσnTn,

ζn,1/2(Tn|σn) := − 1

n
log Tr

√
σnTn,

ηn(Tn) := − 1

n
log Tr(I − Tn),

ζcn(Tn|σn) := − 1

n
log Trσn(I − Tn),

ζcn,1/2(Tn|σn) := − 1

n
log Tr

√
σn(I − Tn).

As the limiting version, we define

ζ( ~T |~σ) := lim ζn(Tn|σn),

ζ( ~T |~σ) := lim ζn(Tn|σn),

ζ1/2( ~T |~σ) := lim ζn(Tn|σn),

ζ
1/2

( ~T |~σ) := lim ζn,1/2(Tn|σn),

η( ~T |~σ) := lim ηn(Tn|σn),
η( ~T |~σ) := lim ηn(Tn|σn),
ζ
c
( ~T |~σ) := lim ζcn(Tn|σn),

ζc( ~T |~σ) := lim ζcn(Tn|σn),

ζ
c

1/2( ~T |~σ) := lim ζcn(Tn|σn),

ζc
1/2

( ~T |~σ) := lim ζcn,1/2(Tn|σn),

for sequences~σ = {σn} and ~T = {Tn}. For the
projection Sn(a) := {ρn < e−na}, we simplify
ζn(Sn(a)|σn), ζn,1/2(Sn(a)|σn), ηn(Sn(a)), ζ

c
n(Sn(a)|σn),

and ζcn,1/2(Sn(a)|σn) to ζn(a|σn), ζn,1/2(a|σn),
ηn(a), ζ

c
n(a|σn), and ζcn,1/2(a|σn). We can similarly

defineζ(a|~σ), ζ(a|~σ), ζ1/2(a|~σ), ζ
1/2

(a|~σ), η(a|~σ), η(a|~σ),

ζ
c
(a|~σ), ζc(a|~σ), ζ

c

1/2(a|~σ), and ζc
1/2

(a|~σ). Using these
values, we can characterize the RHSs of (31), (33) and
(37). In particular, when a sequence~σ equals the sequence
~ρ = {ρn} of the reduced density of the given state, we omit
~ρ in the above values.

Moreover, to discuss the asymptotic theory, we need to
define the concept “majorization” in regard to sequences of
reduced densities. The sequence of reduced densities~σ =
{σn} majorizes (strongly majorizes) another one~σ′ = {σ′

n},
written ~σ � ~σ′ (~σ ≻ ~σ′) if σn � σ′

n (σn ≻ σ′
n), respectively.

In the following, we proceed to the proof of our main
theorem. Before it, we should remark that in an asymptotic
case, we can neglect the gap between⌊Ln⌋ andLn because
Ln is large enough.

Lemma 10:Without any assumption, the equations

B1(ǫ) = B2(ǫ) = sup
R

{R|K(R) ≤ ǫ}.

hold for everyǫ ∈ [0, 1].
Proof: From the definition, the inequalityB1(ǫ) ≥ B2(ǫ)

is trivial. We only need to prove the two inequalities

B2(ǫ) ≥ sup
R

{R|K(R) ≤ ǫ} (43)

B1(ǫ) ≤ sup
R

{R|K(R) ≤ ǫ}. (44)
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Let R be a real number satisfying

K(R) ≤ ǫ. (45)

From Lemma 9, there exists a PFLECIn such that
Tr In0 (Φn) = hn(e

−nR) andLn = enR(1−hn(e−nR)), where
hn(x) := Tr(ρn − x){ρn − x ≥ 0}. From (45), we have

lim
1

n
logLn =R,

limTr In0 (Φn) ≤ limTr ρn{ρn − e−nR ≥ 0}
=K(R) ≤ ǫ.

We have now obtained the direct part (43).
Next, we proceed to the converse part (44). LetIn be a

DFLEC satisfyinglim〈Ψn|Cn(Φn)|Ψn〉 ≥ 1−ǫ. For anyR <
lim 1

n logLn, we have

lim
enR

Ln
= 0.

From Lemma 6, for anyTn satisfyingTrTn = Ln, we have

(Tr
√

ρ′nTn)
2

Ln

≤ 1

Ln

(
√

Tr{ρn ≥ e−nR}
√

Tr ρn{ρn ≥ e−nR}

+
√

Ln − Tr{ρn ≥ e−nR}
√

Tr ρn{ρn < e−nR}
)2

=
(

√

Tr{ρn ≥ e−nR}
Ln

√

Tr ρn{ρn ≥ e−nR}

+

√

1 − Tr{ρn ≥ e−nR}
Ln

√

Tr ρn{ρn < e−nR}
)2

.

Sincelim Tr{ρn≥e−nR}
Ln

≤ lim enR

Ln
= 0,

1 − ǫ ≤ lim
(Tr

√

ρ′nTn)
2

Ln
≤ limTr ρn{ρn < e−nR}

=1 −K(R).

Thus, we obtain (44).
Lemma 11:We have

Be,D(r) = Be,P (r) = sup
R

{R|ζc(R) ≥ r}.
Proof: SinceBe,D(r) ≥ Be,P (r), we only need to prove

the inequalities

Be,D(r) ≤ sup
R

{R|ζc(R) ≥ r} (46)

Be,P (r) ≥ sup
R

{R|ζc(R) ≥ r}. (47)

First, we prove the direct part (47). Assume thatζc(R) ≥ r >
0. From Lemma 9, for anyR, there exists a PFLECIn with
the sizeenR(1 − (1 − tn(R))e−nζ

c
n(R))) such that

Tr In0 (Φn) = (1 − tn(R))e−nζ
c
n(R),

where

tn(R) :=
e−nR Tr{ρn ≥ e−nR}
Tr ρn{ρn ≥ e−nR} .

Since ζc(R) > 0, we have0 ≤ (1 − tn(R))e−nζ
c
n(R) ≤

e−nζ
c
n(R) → 0. Thus, we have the following relations

lim
1

n
log enR(1 − (1 − tn(R))e−nζ

c
n(R))) = R

lim
−1

n
log Tr In0 (Φn) ≥ ζc(R) ≥ r,

which imply the inequality (47).
Next, we proceed to the converse part (46). Assume that the

DFLEC (Cn,Ψn) satisfies

lim
1

n
log (1 − 〈Ψn|Cn(Φn)|Ψn〉) ≥ r. (48)

We define the projectionTn and the reduced densityρ′n as

Tn := Ln TrHB
|Ψn〉〈Ψn|, ρ′n := argmaxρ′�ρn

(

Tr
√
ρ′Tn

)2

Ln
.

Then, Lemma 5 and (48) yields that

lim
1

n
log

(

1 − (Tr
√

ρ′nTn)
2

Ln

)

≥ r.

For anyR′ < R0 := lim 1
n logLn, there exists an integer

N such thatRn := 1
n logLn > R′ for ∀n ≥ N . When a

projectionTn satisfies thatTrTn = Ln, Lemma 6 implies
that

(Tr
√

ρ′nTn)
2

Ln

≤ 1

Ln

(
√

Tr{ρn ≥ enR′}
√

Tr ρn{ρn ≥ enR′}

+
√

Ln − Tr{ρn ≥ enR′}
√

Tr ρn{ρn < enR′}
)2

≤
(

e−
n
2
(ηn(R′)+ζc

n(R′)+Rn)

+
√

1 − e−n(ηn(R′)+Rn)
√

1 − e−nζ
c
n(R′)

)2

∼=
(

1 − 1

2

(

e−n(ηn(R′)+Rn) + e−nζ
c
n(R′)

)

+ e−
n
2
(ηn(R′)+ζc

n(R′)+Rn)
)2

=

(

1 − 1

2

(

e−
n
2
ζc

n(R′) − e−
n
2
(ηn(R′)+Rn)

)2
)2

. (49)

Since e−
n
2
(ηn(R′)+Rn) ≤ e−

n
2
(Rn−R′)e−

n
2
(ηn(R′)+R′) ≤

e−
n
2
(Rn−R′)e−

n
2
ζc

n(R′) ≤ e−
n
2
ζc

n(R′), we have
(

e−
n
2
ζc

n(R′) − e−
n
2
(ηn(R′)+Rn)

)2

≥(1 − e−
n
2
(Rn−R′))2e−nζ

c
n(R′).

Thus,
(

1 − 1

2

(

e−
n
2
(ηn(R′)+Rn) − e−

n
2
ζc

n(R′)
)2
)2

≤
(

1 − 1

2
(1 − e−

n
2
(Rn−R′))2e−nζ

c
n(R′)

)2

. (50)

Since lim(1 − e−
n
2
(Rn−R′))2 = 1, it follows from (49) and

(50) that

ζc(R′) ≥ lim
1

n
log

(

1 − (Tr
√

ρ′nTn)
2

Ln

)

≥ r.
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SinceR′ is an arbitrary real number satisfyingR′ < R0, the
relation R0 ≤ supR{R| ζc(R) ≥ r} holds. Therefore, we
obtain (46).

Lemma 12:When ζ(a) = ζ(a) =: ζ(a) and there exists a
real numbera such thatζ(a) ≤ ζc(a),

B∗
e,P (r)

= sup
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} ≤ r}

= inf
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} > r}

= inf
a
{a− ζ(a)|ζ(a) ≤ r}.

Proof: First, we prove the direct part. Consider a PFLEC
In satisfying

Ln =
1 − hn(e

−na)

e−na

Tr In0 (Φn) = hn(e
−na).

Thus, we have

lim
1

n
logLn =a− min{ζ(a), a+ η(a)},

lim
−1

n
log (Tr In1 (Φn)) = min{ζ(a), a+ η(a)}.

Therefore, we have

B∗
e,P (r)

≥ sup
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} ≤ r}

=max

{

sup
a
{a− ζ(a)|ζ(a) ≤ r}, sup

a
{−η(a)|a+ η(a) ≤ r}

}

=sup
a
{a− ζ(a)|ζ(a) ≤ r},

where the final equation is derived by Lemma 15 as follows.
Using Lemma 15, we havesupa{a − ζ(a)|ζ(a) ≤ r} ≥
supa{−η(a)|a+ η(a) ≤ r} ≥ supa{−η(a)|a+ η(a) ≤ r}.

Next, we proceed to the converse part. Let{In} be a
sequence of PFLECs such thatr ≥ lim −1

n log(1− ǫn), where
ǫn := Tr In0 (Φn). In the following, we focus onlim 1

n logLn.
Let a be a real number satisfying

lim
−1

n
log(1 − ǫn) ≤ r ≤ min{ζ(a), a+ η(a)}. (51)

Since

lim
−1

n
log
(

Tr ρn{ρn ≤ e−na} + e−na Tr{ρn > e−na}
)

= min{ζ(a), a+ η(a)},
there exists an integerN such that

Tr ρn{ρn ≤ e−na} + e−na Tr{ρn > e−na}
≥1 − hn(e

−na), ∀n ≥ N.

Lemma 9 guarantees that

ena
(

Tr ρn{ρn ≤ e−na} + e−na Tr{ρn > e−na}
)

=
1 − hn(e

−na)

e−na
≥ Ln. (52)

Taking the limit of the exponent, we have

lim
1

n
logLn ≤ a− min{ζ(a), a+ η(a)}.

From (51), we have

B∗
e,P (r)

≤ inf
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} ≥ r}.

It follows from (70) that the functiona 7→ min{ζ(a), a+η(a)}
is continuous. Thus,

inf
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} ≥ r}

= sup
a
{a− min{ζ(a), a+ η(a)}|min{ζ(a), a+ η(a)} ≤ r}.

The proof is now completed.
Lemma 13:When ζ(a) = ζ(a) =: ζ(a) and there exists a

real numbera such thatζ(a) ≤ ζc(a),

B∗
e,D(r)

= sup
~ρ′�~ρ

sup
~T

{− lim ηn(Tn)| lim 2ζcn,1/2(Tn|ρ′n) − η(Tn) ≤ r}

(53)

=sup
~T

{− lim ηn(Tn)| lim 2ζcn,1/2(Tn) − η(Tn) ≤ r} (54)

=sup
a

{

a− r

∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

(55)

=sup
a

{

a

2
− inf

a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

. (56)

Proof: Equation (53) follows from (31). Since the
function a 7→ infa′

{

ζ(a′) − a′

2

∣

∣

∣
a′ ≤ a

}

is continuous
and decreases monotonically and the functiona 7→
infa′

{

ζ(a′) − a′

2

∣

∣

∣ a′ ≤ a
}

+a
2 is continuous and increases

monotonically, equation (56) holds. First, we prove the direct
part:

sup
~T

{− lim ηn(Tn)| lim 2ζcn,1/2(Tn) − η(Tn) ≤ r}

≥ sup
a

{

a

2
− inf

a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

. (57)

As we prove later, we can choose a projectionTn(a,R) such
that

ηn(Tn(a,R)) = −R, (58)

ζcn,1/2(Tn(a,R)) ≤ max
{

ζcn,1/2(a),−R+
a

2

}

. (59)

Whenηn(a) ≥ −R, the projectionTn(a,R) := {ρn−e−na ≥
0} satisfies (59). Otherwise, the projectionTn(a,R) := {ρn−
e−na ≥ 0} + ({ρn − e−na < 0} − T̃n(a,R)) satisfies (59),
where T̃n(a,R) is constructed as follows: We choosem :=
enR normalized eigenvectors{e′i}mi=1 of {ρn − e−na < 0}ρn
in descending order concerning the eigenvalue, and define the
projectionT̃n(a,R) by

∑m
i=1 |e′i〉〈e′i|. The choice of{e′i}mi=1

and the relationenR = Tr{ρn − e−na < 0}e−n(−R−ηn(a))

guarantees

Tr
√
ρn{ρn − e−na < 0}e−n(−R−ηn(a)) ≤ Tr

√
ρnT̃n(a,R).

(60)
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Then, we can check the condition (59) as follows:

ηn(Tn(a,R)) =
−1

n
log Tr(I − Tn(a,R))

=
−1

n
log Tr T̃n(a,R) =

−1

n
log enR = −R,

ζcn,1/2(Tn(a,R)) =
−1

n
log Tr

√
ρnT̃n(a,R)

≤−1

n
log Tr

√
ρn{ρn − e−na < 0}e−n(−R−ηn(a))

=ζcn,1/2(a) −R − ηn(a) ≤ −R+
a

2
.

Now, we apply Lemma 17 to the caseρn = ρn, σn =
√
ρn.

Since

{ρn − enaσn > 0} = {ρn − ena
√
ρn > 0}

={√ρn − ena > 0} = {ρn − e2na > 0},

we have

η(a) = ζc
1/2

(2a|~ρ), ζ(a) = ζ(2a|~ρ). (61)

From Lemma 17, the maximumar of
{

a

∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
= r

}

exists. We defineR by

R :=
ar
2

− inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ ar

}

.

Then,R equals to the right hand side of (57), and we have

lim 2ζcn,1/2(Tn(ak, R)) − η(Tn(ak, R))

≤2 max

{

ζ1/2(ar + 1/k),−R+
ar + 1/k

2

}

≤r + 1/k,

whereak := ar + 1/k and k is a fixed integer, and the last
inequality follows from (84) in Lemma 17 in Appendix A. We
defineNk as the minimum integer satisfying

2ζcn,1/2(Tn(ak, R)) − η(Tn(ak, R)) ≤ r +
2

k
, ∀n ≥ Nk.

For the sequencebn := mink{ak|n ≥ Nk}, we have

lim 2ζcn,1/2(Tn(bn, R)) − η(Tn(bn, R)) ≤ r. (62)

Inequality (57) follows from (62) and the first equation of (59).
Next, we prove the converse part. Assume that{(Tn, ρ′n)}

satisfieslimn→∞ 2ζcn,1/2(Tn|ρ′n) − η(Tn) ≤ r. There exists
a subsequence{nk} such that lim ηnk

(Tnk
) = −R0 :=

lim ηn(Tn). Focusing on the projection{ρ′n − e−na ≥ 0} =
{
√

ρ′n − e−na/2 ≥ 0}, we have

Tr
√

ρ′n{ρ′n − e−na ≥ 0} − ena/2 Tr{ρ′n − e−na ≥ 0}
≥Tr

√

ρ′n(I − Tn) − ena/2 Tr(I − Tn),

which implies

Tr
√

ρ′n{ρ′n − e−na ≥ 0} + ena/2 Tr(I − Tn)

≥Tr
√

ρ′n(I − Tn).

Taking the limitk → ∞, we have

min

{

lim
k→∞

ζcnk,1/2
(a|ρ′nk

),
a

2
−R0

}

≤ lim
k→∞

ζcnk,1/2
(Tnk

|ρ′nk
).

Now, we apply Lemma 14 to the caseρn = ρ′n, σ =
√

ρ′n. In
this case, similarly to (61), we have

η(a) = ζc
1/2

(2a|~ρ′), ζ(a) = ζ(2a|~ρ′).

Hence, (74) yields that

lim
k→∞

ζcnk,1/2
(a|ρ′nk

) ≥ ζc
1/2

(a|~ρ′)

≥ inf
a′

{

ζ(a′|~ρ′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

.

Sinceρ′n � ρn, we haveζ(a′|~ρ′) ≥ ζ(a′) = ζ(a′), i.e.,

inf
a′

{

ζ(a′|~ρ′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

≥ inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

.

Thus,

r ≥ lim
n→∞

2ζcn,1/2(Tn|ρ′n) − η(Tn)

≥ lim
k→∞

2ζcnk,1/2
(Tnk

|ρ′nk
) − η(Tnk

)

≥2 min

{

lim
k→∞

ζcnk,1/2
(a|ρ′nk

),
a

2
−R0

}

+R0

≥2 min

{

inf

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

,
a

2
−R0

}

+R0.

(63)

Since the functiona 7→ a
2 − infa′

{

ζ(a′) − a′

2

∣

∣

∣
a′ ≤ a

}

is
continuous, there exists a real numbera such that

R0 =
a

2
− inf

a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

.

Using (63), we have

r ≥ inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
,

which implies

R0 ≤ sup
a

{

a

2
− inf

a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}∣

∣

∣

∣

inf
a′

{

ζ(a′) − a′

2

∣

∣

∣

∣

a′ ≤ a

}

+
a

2
≤ r

}

.

The proof is now completed.

VII. R ELATION TO RANDOM NUMBER GENERATION

As a related problem, it is known to transform from a
given known probability distributionp to a desired probability
distributionq. If it is possible, the majorization relationq � p
holds. However, even if the majorization relationq � p holds,
this transformation is not necessarily available. Hence, if the
two entangled pure statesΦ1 andΦ2 have Schmidt coefficients
corresponding top and q, the Quantum LOCC operation
transforming fromΦ1 to Φ2 is easier than transform from
p to q.

In particular, when the desired distribution is the uniform
distribution, this problem is called intrinsic randomness. In this
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problem, our operation of intrinsic randomness is described by
the mapψ from the original spaceΩ to M = {1, . . . ,M}.
When the initial distribution isp and the uniform distribution
is described bypM on M, one of criteria of its quality is the
half of the square of Hellinger distance betweenp ◦ ψ−1 and
pM :

ε(ψ, p) := 1 −
M
∑

i=1

√

∑

ω∈ψ−1(i) pω

M
. (64)

In this case, we describe the size of its target uniform dis-
tribution ψ by M(ψ). Hence, for a sequence of the initial
distributions{pn}, we can define the optimal rates

BH(ǫ) := sup
{ψn}

{

lim
logM(ψn)

n

∣

∣

∣lim ε(ψn, pn) ≤ ǫ
}

Be,H(r) := sup
{ψn}

{

lim
logM(ψn)

n

∣

∣

∣ lim
−1

n
log ε(ψn, pn) ≥ r

}

B∗
e,H(r) := sup

{ψn}

{

lim
logM(ψn)

n

∣

∣

∣

lim
−1

n
log(1 − ε(ψn, pn)) ≤ r

}

.

The variational distance version with the constant constraint
has been discussed by Vembu & Verdú [19] and Han [13].

Let Φn be the entangled pure state with the Schmidt
coefficient corresponding topn. When Cn is the quantum
LOCC operation corresponding toψn andΨn is the maximally
entangled state with the sizeM(ψn), we have

1 − ε(ψn, pn) =
√

〈Ψn|Cn(Φn)|Ψn〉, (65)

i.e.,

2ε(ψn, pn) − ε(ψn, pn)
2 = 1 − 〈Ψn|Cn(Φn)|Ψn〉. (66)

Hence, comparing the entanglement concentration with the
initial entangled stateΦn and the intrinsic randomness with
the initial distributionpn, (66) yields that

BH(ǫ) ≤ BD(2ǫ− ǫ2).

Since

ε(ψn, pn) ≤ 1 − 〈Ψn|Cn(Φn)|Ψn〉 ≤ 2ε(ψn, pn),

the inequality

Be,H(r) ≤ Be,D(r)

holds. Moreover, the equation (65) yields that

B∗
e,H(r) ≤ B∗

e,D(2r).

When we adopt the KL divergence criterion:

D(pM‖p ◦ ψ−1) := logM +

M
∑

i=1

1

M
log





∑

ω∈ψ−1(i)

pω



 ,

we focus on the following value:

BKL(ǫ) := sup
{ψn}

{

lim
logM(ψn)

n

∣

∣

∣limD(pM(ψn)‖p ◦ ψ−1
n ) ≤ ǫ

}

.

As is shown Hayashi[22], the relation

BKL(ǫ) = sup
a
{a− ζ(a)|ζ(a) < ǫ}

holds. Whenζ(a) is continuous,

BKL(ǫ) = B∗
e,P (ǫ). (67)

In particular, if the limit of Rényi entropy is differentiable,

BKL(ǫ) ≥ B∗
e,H(ǫ/2) (68)

when ǫ ≤ − 1
2ψ

′ ( 1
2

)

− ψ
(

1
2

)

. The above relation is an inter-
esting relation between Hellinger criterion and KL divergence
criterion.

VIII. C ONCLUDING REMARKS

We derive asymptotic bounds based on several formulations
from Lemma 5, 6, and 9. Since these bounds are tight in
a general source, the evaluations given in Lemma 5, 6, and
9 are useful in a non asymptotic case as well as in an
asymptotic case. Even if the class of DFLEC is wider than
that of PFLEC, their asymptotic performances are almost
equivalent. A difference appears only betweenB∗

e,D(r) and
B∗
e,P (r). For example, when the limit of Rényi entropyψ(s)

is differentiable,B∗
e,D(r) is larger thanB∗

e,P (r) if and only if

r is greater than− 1
2ψ

′ ( 1
2

)

−ψ
(

1
2

)

. From (54) of Lemma 13,
the boundB∗

e,D(r) can be attained without an LOCC,i.e., the
original reduced densityρn is close enough to an appropriate
MES only in regard toB∗

e,D(r). As a byproduct, in Appendix
A, we establish several general relations between information-
spectrum quantities.

APPENDIX

A. General relations for information spectrums

Here, we prove some lemmas required by our proof. In
this section, we treat information-spectrum quantities with
more general definitions, which are given in Nagaoka and
Hayashi[14]. This is because we need such a general treatment
in our proof of Lemma 13.

For the two sequences{ρn} and{σn} of trace class positive
semidefinite operators, we discuss how to characterize an
information-spectrum quantityη(a) := lim −1

n log Trσn{ρn−
e−naσn > 0} by using two other information-spectrum
quantities ζ(a) := lim −1

n log Tr ρn{ρn − e−naσn ≤
0} and ζc(a) := lim −1

n log Tr ρn{ρn − e−naσn > 0}.
As discussed later, whenζ(a) := lim −1

n log Tr ρn{ρn −
e−naσn ≤ 0} equalsζ(a) for any a, we can use the same
method to characterize another information spectrumη(a) :=
lim −1

n log Trσn{ρn − e−naσn > 0}. As was proven by
Nagaoka and Hayashi[14], the functionζ(a) increases mono-
tonically, and other functionsζc(a) andη(a) decrease mono-
tonically [14]. Focusing on the projection{ρn−e−naσn ≥ 0},
we have

Tr(ρn − e−naσn){ρn − e−naσn ≥ 0} ≥ 0,

which yields to

Tr ρn{ρn − e−naσn ≥ 0} ≥ e−naTr σn{ρn − e−naσn ≥ 0}.
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Thus, we have

ζc(a) ≤ η(a) + a. (69)

Similarly, we can prove

Tr(ρn − e−naσn){ρn − e−naσn ≥ 0}
≥Tr(ρn − e−naσn){ρn − e−nbσn ≥ 0}.

By addinge−na Trσn to both sides, we have

Tr ρn{ρn − e−naσn ≥ 0} + e−na Trσn{ρn − e−naσn < 0}
≥ Tr ρn{ρn − e−nbσn ≥ 0} + e−na Trσn{ρn − e−nbσn < 0}.

Taking the limitn→ ∞, we obtain

min{ζ(a), a+ η(a)} ≥ min{ζ(b), a+ η(b)} (70)

for any a and b[14]. When ζ(a) = ζ(a) for any a, we can
replace η by η. From inequality (70), We can derive the
following two formulas;

η(a) + a ≥ ζ(b) if η(b) > η(a) (71)

ζ(a) ≥ a+ η(b) if ζ(a) < ζ(b), (72)

which play important roles in the following lemmas. As a
lower bound ofη(a), the following lemma holds.

Lemma 14:If there exists a real numbera0 such that
ζ(a0) ≤ ζc(a0), the relations

η(a) ≥ inf
a′
{ζ(a′) − a′|a′ < a} (73)

= inf
a′
{ζ(a′) − a′|a′ ≤ a} (74)

hold.
Proof: From (69), the relations

ζ(a0) ≤ ζc(a0) ≤ η(a0) + a0

hold. Sinceη(a0) ≥ ζ(a0) − a0, we have

η(a0) ≥ inf
a′
{ζ(a′) − a′|a′ ≤ a0}.

For anya ≤ a0, the relationζ(a) ≤ ζc(a) holds. Sinceζ(a−
0) ≤ ζ(a), the equation (74) holds. Similarly, we can prove
that a real numbera(≤ a0) satisfies (73).

Next, we prove (73) for anya > a0 by the transfinite
induction. Assume that the relation (73) holds for any real
numberb satisfyinga > b and

η(a) < inf
a′
{ζ(a′) − a′|a′ ≤ a}. (75)

For anyǫ > 0, we have

η(a) < inf
a′
{ζ(a′) − a′|a′ ≤ a− ǫ} ≤ η(a− ǫ).

From (71), we haveη(a) ≥ ζ(a− ǫ)− a. Sinceǫ is arbitrary,
we obtain the inequality

η(a) ≥ inf
a′
{ζ(a′) − a′|a′ < a},

which contradicts assumption (75).
The following lemma is another characterization of the

lower bounds ofη(a).

Lemma 15:We obtain the inequality

sup
a
{a− ζ(a)|ζ(a) ≤ r} ≥ sup

a
{−η(a)|a+ η(a) ≤ r},

which is equivalent to another inequality

inf
a
{ζ(a) − a|ζ(a) ≤ r} ≤ inf

a
{η(a)|a+ η(a) ≤ r}.

Proof: We prove it by reduction to absurdity. Assume
that there exists a real numbera0 such that

a0 + η(a0) ≤ r, (76)

−η(a0) > sup
a
{a− ζ(a)|ζ(a) ≤ r}. (77)

We will lead contradiction with the two cases, case 1:a1 :=
infa{a|η(a) = η(a0)} > a0, case 2:a1 = a0.

In case 1, for any real numberǫ ∈ (0, a0−a1), the inequality
η(a1 − ǫ) > η(a1 + ǫ) holds. Using (71), we have

ζ(a1 − ǫ) ≤ η(a1 + ǫ) + a1 + ǫ = η(a0) + a1 + ǫ

≤r + (a1 − a0) + ǫ < r.

Thus,

sup
a
{a− ζ(a)|ζ(a) ≤ r} ≥ a1 − ǫ− ζ(a1 − ǫ)

≥a1 − ǫ− (a1 + ǫ) − η(a1 + ǫ) = −η(a0) − 2ǫ.

Taking the limitǫ→ 0, we obtainsup{a− ζ(a)|ζ(a) ≤ r} ≥
−η(a0), which contradicts (77).

In case 2, the inequalityη(a0) < η(a0−ǫ) holds for∀ǫ > 0.
Using (71), we haveζ(a0 − ǫ) ≤ η(a0) + a0 ≤ r. Thus,

sup
a
{a− ζ(a)|ζ(a) ≤ r} ≥ a0 − ǫ− ζ(a0 − ǫ)

≥a0 − ǫ− a0 − η(a0) = −ǫ− η(a0).

This also contradicts (77).
Define the setsI andI ′ as

I := {a ∈ R|ζ(a) > ζ(a− ǫ) ∀ǫ > 0},
I ′ := {a ∈ R|ζ(a+ ǫ) > ζ(a) ∀ǫ > 0}.

As upper bounds ofη(a), we have the following two lemmas.

Lemma 16:We have two inequalities

η(a) ≤ inf
a∈I

{ζ(a′) − a′|a′ ≤ a}, (78)

η(a) ≤ inf
a∈I′

{ζ(a′) − a′|a′ < a}. (79)

If ζ(a) = ζ(a) for any reala, we have two other inequalities

η(a) ≤ inf
a∈I

{ζ(a′) − a′|a′ ≤ a}, (80)

η(a) ≤ inf
a∈I′

{ζ(a′) − a′|a′ < a}. (81)

Proof: First, we prove (78). Leta′ ∈ I be a real number
satisfyinga′ ≤ a. From (72), we have

a′ − ǫ+ η(a′) ≤ ζ(a′ − ǫ), ∀ǫ > 0.

Sinceǫ > 0 is arbitrary, we obtain the relation

η(a) ≤ η(a′) ≤ ζ(a′ − 0) − a′ ≤ ζ(a′) − a′.

From the arbitrariness ofa′, the above relation implies (78).
Similarly, we can prove (80).
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Next, we prove (79). Leta′ ∈ I ′ be a real number satisfying
a′ < a. From (72), we have

a′ + η(a′ + ǫ) ≤ ζ(a′).

If ǫ > 0 is small enough,

η(a) ≤ η(a′ + ǫ) ≤ ζ(a′) − a′.

From the arbitrariness ofa′, the above inequality implies (79).
Similarly, we can prove (81).

Lemma 17:Assume that a real numberr satisfies that

r < sup
a

{

inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ a
}

+ a
}

. (82)

The maximumar of
{

a
∣

∣

∣inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ a
}

+ a = r
}

(83)

exists. Moreover, the inequality

η(ar + ǫ) ≤ inf
a

{

ζ(a) − a
∣

∣ a ≤ ar
}

, ∀ǫ > 0 (84)

holds. Whenζ(a) = ζ(a) for anya, we can replaceη by η in
the above argument.

Proof: Since the function g : a 7→
infa′

{

ζ(a′) − a′
∣

∣ a′ ≤ a
}

+ a is continuous and increases
monotonically, it follows from (82) that set (83) is bounded
and closed. Thus the maximum of the set (83) exists.

Next, we prove (84). First we assume that

ζ(ar) − ar ≥ inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar
}

, (85)

Since the functiong increases monotonically andar + ǫ does
not belong to the set (83), the relations

ζ(a) < ζ(ar) = inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar
}

+ ar = r

< inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar + ǫ
}

+ ar + ǫ ≤ ζ(ar + ǫ)

hold for a < ar. Applying (72) to the caseb = ar + ǫ, we
obtain (84).

Second, we assume the opposite inequality

ζ(ar) − ar < inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar
}

. (86)

There exists a sequence{an} such that

ζ(an) − an → inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar
}

an < ar.

From the above relations, there exists an integerN such that
ζ(an) < ζ(ar), ∀n ≥ N . Using (72), we have

η(ar) ≤ ζ(an) − an.

Thus, we obtain

η(ar) ≤ inf
a′

{

ζ(a′) − a′
∣

∣ a′ ≤ ar
}

, (87)

which implies (84).

B. Gärtner-Ellis theorem

Here, for our proof of Theorem 3, we discuss Gärtner-Ellis
theorem [20]. LetXn be a sequence of random variables.
Then, the logarithmic moment function is defined as

Λn(t) := log EXn
etXn ,

where EXn
denotes the expectation concerning the random

variableXn. The logarithmic moment functionΛn(t) is con-
vex.

Theorem 18:Assume that the limitΛ(t) := limn→∞
Λn(t)
n

exists. Then, defining the rate function

Λ∗(R) := sup
t
tR− Λ(t), (88)

we have

lim
−1

n
log PXn

{

Xn

n
≥ a

}

≥ inf
R≥a

Λ∗(R) (89)

lim
−1

n
log PXn

{

Xn

n
> a

}

≤ inf
R>a

Λ∗(R) (90)

lim
−1

n
log PXn

{

Xn

n
≤ a

}

≥ inf
R≤a

Λ∗(R) (91)

lim
−1

n
log PXn

{

Xn

n
< a

}

≤ inf
R<a

Λ∗(R). (92)

Using the above theorem, we can show the following theorem.
Since the functionΛn(t) is convex, theΛ(t) is convex, too.
Hence, when we choose the real numbersR1, R2, R3 andR4

as

R1 := lim
t→∞

Λ(t)

t
, R2 := lim

t→+0

Λ(t)

t
, (93)

R3 := lim
t→−0

Λ(t)

t
, R4 := lim

t→−∞

Λ(t)

t
, (94)

the relations

R4 ≤ R3 ≤ R2 ≤ R1 (95)

hold. Thus, as is proven latter, the equations

lim
−1

n
log PXn

{

Xn

n
≥ a

}

= lim
−1

n
log PXn

{

Xn

n
> a

}

=











0 if a ≤ R2

max
t>0

tR− Λ(t) > 0 if R2 < a < R1

∞ if R1 < a

(96)

and

lim
−1

n
log PXn

{

Xn

n
≤ a

}

= lim
−1

n
log PXn

{

Xn

n
< a

}

=











0 if R3 ≤ a
max
t<0

tR− Λ(t) > 0 if R4 < a < R3

∞ if a < R4

(97)

hold. Moreover, if the functionΛ is differentiable att0 > 0,
and if R2 < a < Λ′(t0), we have

lim
−1

n
log PXn

{

Xn

n
≥ a

}

= lim
−1

n
log PXn

{

Xn

n
> a

}

= sup
t0≥t>0

tR − Λ(t). (98)
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Proof of (96), (97) and (98): First, we calculated the rate
function Λ∗(a). WhenR3 ≤ a ≤ R2,

Λ∗(a) = sup
t
ta− Λ(t) = 0a− Λ(0) = 0.

Assume thatR2 < a < R1. Then, if ǫ > 0 is sufficiently
small,

Λ∗(a) = sup
t
ta− Λ(t) ≥ ǫa− Λ(ǫ) = (a−R2)ǫ+R2ǫ− Λ(ǫ)

∼= (a−R2)ǫ+R2ǫ− lim
t→+0

Λ(t)

t
ǫ = (a−R2)ǫ > 0.

Now, we chooseta 6= 0 such thattaa = Λ(ta). The convexity
of Λ guarantees that

Λ∗(a) = sup
t
ta− Λ(t) = max

0≤t≤ta
ta− Λ(t).

For a such thatR2 ≤ a′ ≤ a, sinceta ≥ ta′ , we have

Λ∗(a′) = max
0≤t≤ta′

ta′ − Λ(t) = max
0≤t≤ta

ta′ − Λ(t).

Hence, the functionΛ∗ is continuous[R2, a]. Thus, the func-
tion Λ∗ is continuous[R2, R1). in addition, whena > R1,
Λ∗(a) = ∞. Hence, whena < R1, we obtain

inf
R≥a

Λ∗(R) = inf
R>a

Λ∗(R)

=

{

0 if a ≤ R2

max
t>0

tR− Λ(t) > 0 if R2 < a < R1

Whena > R1,

inf
R≥a

Λ∗(R) = inf
R>a

Λ∗(R) = ∞.

Therefore, we obtain (96). Similarly, we can prove (97).
Moreover, fora such thatR2 ≤ a < R1, we chooset′a =

argmaxt ta−Λ(t). The convexity ofΛ guarantees that when
R2 ≤ a′ < a, we havet′a′ ≤ t′a. Therefore, we prove (98).

Finally, in order prove (16) and (17) in our proof of Theorem
3, we focus on the probability distributionspn = {pn,i}, and
apply the above discussion to the random variable− log pn,i.
Using (96), (97) and (98), we obtain (16) and (17).
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