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General formulas for
fixed-length quantum entanglement concentration

Masahito Hayashi

Abstract— General formulas of entanglement concentration are method to treat this model asymptotically, we focus on the
derived by using an information-spectrum approach for the jnformation spectrum method and apply it to entanglement
i.i.d. sequences and the general sequences of partially engled - qncantration. The information spectrum method has been de
pure states. That is, we derive general relations between ¢h | dbv H d Verdd 191 for di . |
performance of the entanglement concentration and the eige ve ppe y_ an and Verdu [9] for discussing genera.seqmenc
values of the partially traced state. The achievable rates ith  Of information sources/channels, and been established as a

constant constraints and those with exponential constraits can unified method to information theory in Han’s textbook[13].

be calculated from these formulas. Indeed, this method has been applied to quantum information
Index Terms— Information spectrum, Entanglement concen- theory, for example, to quantum hypothesis testing[14] and
tration, Exponents, Maximally entangled state quantum channel coding[15]. In this paper, we apply this
method to entanglement concentration, and characterize th

l. INTRODUCTION asymptotic production rate of a general sequence of plgrtial

ARIOUS wuminf i . entangled pure states without any assumption. The inféomat
quantum Information processings areé proposegy o oy ;m method used in this paper is slightly differentrfro

many of which require ma>_<|mally entangled lstates FRe original Han-Verdd’'s method, and is close to Nagaoka-
resourcese.g, quantum teleportation and dense codig?2], Hayashi’'s method[14]

[1], [3]. Hence, it is often desireq to gener_ate max_imally In the derivation of our general asymptotic formulas,
entangled states. However, the realized state is not nsngsswe essentially use the majorization method established by
_amaX|maIIy entangled state. Thus, entanglement ConGﬁmtraNielsen[4]. Based on this method, he developed a necessary
is used for producing maximally entangled states (MES) froﬁhd sufficient condition for the possibility of transforrgin
partially entangled pure states only by local operationcas- from a partially entangled pure statd:)(®,| to another
sical communication (LOCC), while entanglement distidat ntangled pure stat@bs)(®| by using LOCC between the
is used for producing them from partially entangled mixeﬁ,\/0 parties H, and Hp. This condition is characterized
states by LOCC. Therefore, entanglement concentration is (ﬁﬂy by the eigenvalues of their reduced densities :—
important issue in the field of quantum information. Tep, |[®:) (@], (i = 1,2).

In information theory, we often assume that the system 'SM}(B)re(;verl éven in’ the i.i.d. case, the knowledge of the
prepared as the independent and identical multiple Coljiesa%ymptotic broduction rate is not suf%icient for estimatthg

the given state. Such a condition is called independenty aBroduction rate of MES for a given finite number of copies. In

identically distributed (i.i.d.) condition. Under this mdition, hannel coding or source coding, for this analysis, we Ugual
Bennettet al[6] showed that the amount of entanglement Yocus on the error exponenis., the exponential rate of error

a ?artla}I}/ enta}ngled ptl{rle tstaté;><<1:| tls .d_esglbedq)byq)the probability because the error goes @oexponentially when
entropy (p) of its partia raced stalg == 1y, |2)(®], we choose our code suitably. In entanglement concentration
which is called .the r_edu%e(d)densny matrix. Th.at is, theypcb when we fix the production rate to a constant number less
that an_MES_ with size ?) can be asym_ptot|ca_lly producedthan the entropy rate, the optimal failure probability gées
from n !Qenncal copies of_the staié@) (2| with a high enough 0 exponentially. Hence, based on its exponential rate f&ilu
probabll_|ty. Furthermore, independently of the form|§§<§|, xponent), we can roughly estimate the failure probability
Hayashi and Matsumoto constructed a protocol satisfyieg t r a given finite number of copies. As preceding researches,

abﬁ)‘ve propgrt)/t,hwh|ch "T’ (t:atljledhumvelrsal tm. the state of t ayashiet al[8] derived the failure exponent of entanglement
owever, In he correlated physical system, the state o ncentration in the i.i.d. case based on the method of types

tota_l system cz_;mnot be regarded as independent and ident%ad Hayashi and Matsumoto [7] did that of their universal en-
copies of a given state. In such a case, we have to tr?&ﬁglement concentration protocol. In this paper, we dateu

gengral partial enfcangled pure state between two d|st|q b failure exponent of entanglement concentration in aemor
parties. Indeed, this model is not so unnatural because eral setting

state on the total system is pure when this system is isola n most problems in information theory, in the i.i.d. case,

from the other system. In this paper, as a general asympIQHe correct (or success) probability exponentially goe® to
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exponent of entanglement concentration in the i.i.d. céBs In section[I¥, we apply these formulas to the case when the
paper proceed to the general sequence of partially entdngleduced density is given as a thermal state. In seflon V, the
pure states. performances of the two FLEC types in a non-asymptotic case
One may think that such an exponential treatment is nate characterized by applications of Nielsen’s result [@d a
essential. It is, however, more difficult to obtain the errdto and Popescu’s results[17]. In sectiod VI, the main result
and correct exponents asymptotically and tightly than the verified by applying several lemmas described in se¢fibn V
asymptotical optimal production rate. Hence, in order tovéde to an asymptotic case. In sectibnVIl, the relation between
these tight bounds of both exponents, we need better amanglement concentration and random number generation
more simple non-asymptotic evaluations. That is, such a nas discussed. The appendd A summarizes relations for the
asymptotic evaluation should be a better and more simgjaantum analogue of the information spectrums based on the
approximation for the optimal value. Therefore, even thougriginal definition[14], which are necessary for verifyitige
the optimal correct exponent is useless, the non-asynaptatiain result.
evaluations used for its derivation is quite useful.
Furthermore, the optimal rates with exponential constrain II. MAIN RESULTS
are characterized by Rényi entropy in the i.i.d. case. Is th

derive th ; | d K . When the two distinct parties, Alice and Bob, have their
paper, we derive the same formuias under a wea assump_?(ggpective systemi 4 andH g, the total system is described
for the Rényi entropy. Using these formulas, we charaxgeri

. " : by the tensor product spa¢és ®H g. In quantum information,
the optimal rates based on the partition function. y P pateaeiis. g

. ) : as is mentioned in sectidh I, one of main issues is the char-
Finally, we have to explain our formulation of entanglemerg

concentration. There are two formulations in source Codin&cterization of entanglement between these distinctgzari
- j i . . P e state on total syste is a pure stdtee Hy ® Hp, it
One is fixed length, in which the coding length is fixée,, y P A B

is independent of the input data. The other is variable{hangis known that its entanglement between two parties can be
in which the coding length is variablée. depends on the characterized by the reduced density (partially tracete)sta

:= Trp |®)(®|. In particular, if the reduced densigyis the

mpgt data. Slm.||ar|y. to source coding, we can consider t é)ompletely mixed statedl—l, it is called maximally entagled,
similar formulations in entanglement concentration. ImBett hered,, denotes the dimension of the systém . Hence, if

; . , W
et al[6]'s protocol and Hayashi and Matsumoto[7]'s protocoLfhe pure statel € H, © Hyp is maximally entangled, there

a local measurement is required as the first step, and thtéhleng . )
: ist completely orthogonal bas{g;} and{e;} on H4 and
of the MSE generated finally depends on the data of thﬁB, respectively such that

local measurement. Hence, their protocol is a variablgtlen

entanglement concentration. 1 da ,
On the other hand, based on Nielsen’s result[4], Hayashi V= da Zei ® €;.
et al[8] discussed entanglement concentration protocols pro- =1

ducing the MES with the fixed size. Hence, such protocoWhile any quantum operation is mathematically described by
are called fixed-length entanglement concentration, whieh trace-preserving completely positive (TP-CP) map, in the e
classified into two formulations as follows. In the first fortanglement concentration of the initial pure stét@n distinct
mulation, we produce, without a failure, an approximateliyvo partiesH 4 andHp, our operation is often restricted to
MES from a partially entangled pure state. Its performascea quantum operation with an LOCC implementation between
represented by the size of the MES and the fidelity between fhe, and’H . Hence, a deterministic fixed-length entanglement
appropriate MES and the final state. This kind of entanglémetoncentration (DFLEC) is an LOCC quantum operation
concentration is called deterministic fixed-length entanent together with a maximally entangled staie on a subspace
concentration (DFLEC). In the other formulation, we progucH’, ® H’s, i.e, it is described agC, ¥). Since this protocol
an MES itself, allowing a failure probability, from a pattja (C, V) transforms the initial pure statgp)(®| to the final
entangled pure state. The performance of this protocolds evstateC(®) := C(|®)(®|), its performance is evaluated by the
uated by the size of the MES and the failure probability. Thitdelity (¥|C(®)|¥) and the sizeL(¥) of ¥, which equals
protocol is called a probabilistic fixed-length entangleme H (Trp [¥)(T|).
concentration (PFLEC). Hayaski al[8] treated these two For a rigid analysis of the probabilistic fixed-length en-
formulations in the i.i.d. case. In this paper, we discussith tanglement concentration, we have to discuss a measuring
in a more general model. operation that describes a quantum measurement with tHe fina
This paper is organized as follows. In secfidn II, we give thgtate as well as the probability distribution of the meadure
mathematical definitions of the optimal rates with respecti data. The measuring operation is given as a CP map valued
conditions, (constant constraint, exponetial constydmtthe measurel = {I,;};, whose sum is a TP-CP mape., everyI;
genereal sequence of partially entangled pure state in tigoa CP map, and_, I; is a TP-CP map. It is often called
formulations of FLEC. As the main results, characterizagio an instrument. When we perform a quantum measurement
of these quantities are given based on information spectruearresponding td = {I;}; on the system with a staje we
That is, we discover a general relation between the perf@btain the measured datand the final stat%}iwli(p) with
mance of entanglement concentration and the eigenvaluesha probability Tr 7;(p). Hence, a probabilistic fixed-length
the reduced density (partially traced state). In sedfifintie entanglement concentration (PFLEC) of an initial pureestat
optimal rates of FLECs are characterized by the Rényi gyitro® € H4 ® Hp is a two-valued instruments = {Iy, I } with
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an LOCC implementation satisfying that(®)/ Tr I; (®) isa Thus, concerning PFLEC, we focus on the following values:
maximally entangled statgl)(¥| on a subspaceét, ® H/s,

log L(I™) |—
whereI;(|®)(®|) is abbreviated td;(®). That is, the event ~ Bp(e) := sup {h_mL() lim I (®,,) < e}
corresponds to success, and the ewedbes to failure. Thus, "} n
its performance i; characterized by the failure proba/oilitjaep(r) — sup {h_m log L(I™) h_m_—llogTrIg(cbn) . T}
Tr In(®) and the sizeL(I) := L(¥) of the final maximally (I} n n
entangled state. log L(I") [— —1
. : . . B = lim ———2|lim — log Tr I7(®,,) < r¢.
Here, we briefly discuss the relation between two kinds ofe’P(r) {S}ip}{ﬁ n 08 (®n) < T}

fixed-length entanglement concentrations. For any PFLEEC

{Io, I, } of ®, the pair(I; + I, I,(®)/ Tr I;(P)) becomes a
DFLEC and its fidelity between the final state and the desir
maximally entangled stath (®)/ Tr I; (®) is greater than the

In the DFLEC case, we obtain several criteria by replacing
%% success probability in the above discussion by the fydeli
at is, we can define the following values:

-~ _ _ 1
success probability of the DFLEC= {I, 11 }: Bo(c):= sup {h_m Liog L(w,)
{(C™,¥n)} n
1,(®) i (¥, [C™(D,,)|¥,,) > 1 — e}
1(®) Bep(r) = sup {h_m— log L(Vr,)
{(C™,¥n)} n
=1 n
That is, for any a given PFLEC protocol, there exists a DFLEC lim — log (1= (Up|C™ (D) |¥0)) = 7‘}
protocol whose performance is better than the given PFLEC 1
protocol. B p(r):== sup {h_m —log L(¥n)

{(cm,wn)}
In the quantum system, if systems are prepared identically — -1 .
to the system 4 ® Hp, the total system is described by 11m710g<‘11n|0 (®n)|Wn) < T}'
HE™ @ HE™. If the state of every systeri(4 @ Hp is the
pure state® and if each system is independently prepared,
the state of the total system is written by the tensor produd (¢) > Ba(€), Bep(r) > Bea(r), BZp(r) > B;o(r).
pure stateb®”. Such a case is called the i.i.d. case. However, 2)
even if the state of each system coincides with each othfr, . . .
. . n'this paper, we treat a quantum analogue of information
if they are not independent of each other, the state of total .
: spectrums to analyze the above values. For such an analysis,
system is not a tensor product state. In order to treat such'a : - .
.we_need the following definitions. For a self-adjoint operat
general case, we focus on a general sequence of the paerofWe can denote the projectio’ E by {X > c}
the joint system with distinct two parti¢s 4 ,, and’H g ,, and wr’1ere the spectral decor“)n c])sition i?zﬁvelnﬁy— > _:vE
the partially entangled pure stafe, € Ha ,, ® Hp,, With P b 9 Y= 2. Tk

an asymptotic situation. Note that, in this notation, thacep \C/\]{e ectinir?ea]:lr;?n;[irl]:r ?:;e"?g?r{f)e( b >bce}’téé( re<dli:}e’ d{é(en_sit
Han and Hp,, are generalizations dH%” and H%n, and ' ' " y

®,, is a generalization of the-tensor product vectob®™. Tr345,. |én)(én] aNd define

Hence, it is trivial from[[ll) that

In order to discuss the asymptotic optimal performance in K(a) :=limTrp,{pn — e "* > 0}
such a general case, we optimize the production rate of MES
with three asymptotic constraints for the failure probijoibr
fidelity. Concerning the PFLEC, we focus on the followingyhen the limit
conditions:

-1
¢“(a) = lim —log Tr pu{pn — " > 0}.

lim -1 log Tr pp{pn — e " < 0} 3)
« Constant constraint: The asymptotic failure probabilty i "
less than a fixed constant. exists, we denote it by (a). These definitions can also be
« Exponential constraint for the failure probability: WherYVIttén as
we choose a good DFLEC protocol, failure probability — -1
goes to0 exponentially. Hence, as another criterion, we K(a) = lim pn {7 logpn,i < a} )
restrict our DFLEC satisfying that the exponent of failure -1 -1
probability is greater than a fixed exponent. ¢“(a) = lim —=log p, {7 log pn,i < a} (5)
« Exponential constraint for the success probability: If we 1 1
choose a bad DFLEC, the success probability goes to ¢(a) = lim — log p,, {—logpn,i > a}, (6)
0 exponentially. Among such PFLEC protocols, if this n n
exponentj.e., the success exponent, is greater, the proteshere everyp,, ; is an eigenvalue of,, and can be regarded
col is worse. Hence, we can consider the optimization @k a probability distribution. Hence, the quantitya), (“(a),
the production rate of MES with the constraint that thand ¢(a) denotes the degree of concentration of #fe-
success exponent is less than a fixed exponent. dimensional subspace. Note that the functi6fz) decreases



monotonically, while the functiorf(a) increases monotoni- Theorem 2:Hayashi et al[8] When p,, = p®", the rela-
cally. Indeed, in the classical case, the vakiéu) gives the tions

asymptotic performances of fixed-length source cod|ng[12]

and uniform random number generation[19], [13] with asymp-Bp(€) = Bp(€) = H(p), Ve such thatl > >0 (8)

totic constant constraint. Moreover, the quantiti¢éa) and p(r) = su T+ 1(s) )
((a) gives the asymptotic optimal performance of source cog 5211) 1—s
ing with the exponential constraint[12] and that of simialat _sr+h(s)
of random process with KL divergence criterion[18]. As idBe,p (1) = R (10)
mentioned in sectiol MII{(a) gives the asymptotic optimal sr+(s)
performance of intrinsic randomness with KL dlvergenc% (r) = Jin ——-— if r< —3¢' () =¥ (3)
criterion[22]. _ _ _ _ 2 (_%) +r otherwise
As is mentioned in the following main theorem, the optimal (1)
production rate of MES can be characterized by how densely
the eigen values of the reduced density matrix concentraté@d, where
small space. .
Theorem 1:Without any assumption, for every € [0, 1] H(p) = —Trplogp, #(s) :=logTrp.
we have In particular, the above formulas of some special cases are

Bp(€) = Bp(e) = s%p{R|K(R) <a written as

Be,D("‘) _ B€7P(T) — Slép{}ﬂgC(R) > ’f‘}. B@,D(T) = Be P('f') = Hoo if r > H = S11Hl —1/1/(3)

e.p(r) =(0) if r > —y¢'(0) = 4(0),

When the limit [B) exists and there exists a real numbsuch

h
that ((a) < ¢°(a), we have where

Hy, hﬂ

< r} The following is the generallzat|0n of the above theorem.
Theorem 3:Letting ¢, (s) := log Tr pg, we assume that the

a <a

i {o@) - &

—
_|_
N e

;D(T) = sup {a —r

a

! —
= sup {g _ iqf{((a’) -~ % a < a}‘ limit ) (s) = lim,, w”T(”S) exists and that its first and second
“ ¢ , derivativesy (s) andy (s) exist fors € (0,1)U(1, 00). Then,
: !/ a !/ a
l;l/f{((a/ ) - 5 a S CL} + 5 S T} F_ S BD(E) _ BP(E) S F_’_ (12)

B} = - < P

e, P( ) Sup{a ( )|<( ) ’f'} B 7D( ) Be,P("’) = sup T+ ’[/)(S) (13)
This theorem is proved in sectidn]VI after preparing the s>1 1—s
appropriate discussion. . sr+(s)

Remark 1:As is mentioned in Nagaoka and Hayash|[14]Be pr 0<51<1 1—5 (14)
the quantum versions of(a),(“(a), and ((a) give the + % . .
asymptotic performances of fixed-length source coding. (r) = Oglsigl 57’17_7/)8(@ if < —%1/)/ (%) - (%)
particular, the optimal rate with the constraint for the stamt . 2@ ( 1 ) Ty otherwise
error exponent is given as 2 (15)

sup{a — ((a)|¢(a) < T}, (7) where
H_:=—9(140), Hy:=-9(1-0).

which is almost similar taB; ,(r). For a proof only of the

classical case, see Han [12]. For a proof in the classical afdparticular, we have

guantum case, see Nagaoka and Hayashi [14]. o o .,
B..p(r) =Bep(r) =Ho if r > Hoo = lim —1) ()

55— 00

l1l. A SYMPTOTIC FORMULAS BASED ONRENYI ENTROPY s p(r) =4(0) if r> — (+0) — P(0),

In the classical and quantum fixed-length source coding Where H ., := lim,_, - *1#(5)
i.i.d. information source, it is known that the optimal rath  The equations[]9), mo) ancl:lll) follow from the equa-
the constant constraint for error exponent is describechby tions [I3), [1#), and[{15). The equatiofl (8) follows from
Rényi entropyy)(s) := log >, p;[21]. Concerning FLEC of the equation[[l2). Hence, Theordih 3 can be regarded as a
the i.i.d. source, as is described in Theoréin 2, Hayashi generalization of Theoretll 2. Since Hayasti al. [8]used
al.[8] showed that this kinds of optimal rates can be describ@e method of type, they proved Theordih 2 only in the

by the Rényi entropy. In this section, using Theof@m 1, Wite-dimensional case. Hence, its infinite-dimensionasec
derive the same formula in a more general setting. is proved by this paper first time.
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Remark 2:Under the same assumption as Theofém 3, vigom [2B), the equatiorf; (s,)’ = 0 holds. The derivative of

can similarly prove that

sup{a —¢(a)[¢(a) <7} = min =7,

0<s<1

the numerator off{(s) is

(&0 -9 +r+39) =7 )1 -5 <0,

which gives the optimal rate with the constant constraint f&h€ final inequality inequality follows from{20). Thereér

error exponent in the fixed-length source coding.

Be,p(r) = Be,p(r) = f1(sr) = max,>1 fi(s).

Proof: As is discussed in AppendiKlB, Gartner-Ellis Next, we prove[(I3) for the case in whieh> H ... From

theorem [20] yields that
if a S FJ’_

0
((a) = { sup (1 —s)a —1(s) >0
0<s<1

(16)

_ if E_ <a

¢%(a) = ggl—ﬂa—¢@)>o if Hoo <a<H-

00 if a < Heo.
(17)
Note that

(=0 (+0) = 0) = =F (+0) — P(0) (18)
(“(Hoo +0) = Hoo (19)

Moreover, it follows from the discussion in Appendik B tha

¥(s) is convex. Since) (s) exists fors € (0,1)U (1, 00), we
have
E”(S) Z 0
For any real numbet satisfyingH ., < a < —E’(+0), we
defines(a) by

s € (0,1)U(1,00). (20)

a=—1(s(a)).
Hence, equation§(1L6) and{17) yield that

(21)

_ 0 if a <H,
(a)= { (1—s(a))a—(s(a)) if Hy <a< —E/(O)
(22)
0o if E, <a
¢la) = { (1-s(a))a—P(s(a)) if Hoo <a<H-_
00 if a < H.
(23)

First, we provel[I3) for the case in which< H . In this
case, we can defing. ands, by (“(a,) = r ands, := s(a,).
Thus, we have

(24)

(1—s.)a, —(s,) =7
) =r (25)

Y(sy
_(1 - ST‘)E/(ST) - ¢(Sr) =

Using [23), we can calculatB. p(r) and B, p(r) as
Be-,D(T) = Be,P(T) =a, =

The derivative of the functiorfi (s) := @(s > 1)is given
by

T()1=5) +r+7(s)

fl(s) = (1 _ S)Q

it H. <a<—1(0)

@D, if a > Hu, then(°(a) < r. Otherwise,(*(a) > r.
Thus, B, p(r) = Bep(r) = Hu. Since the numerator of
f1(s) equals

!/

PP (s)(1 = 8) + () =7 — (=¥ () >0,
we obtainf{(s) > 0. Therefore,
sup rt E(S) = lim rt E(S) =Heo.
s>1 l—3s s—oo 1 —5

__ Proceeding to[{14) for the case in which< —El(+0) -

¥(0), we definea, and s, by ((a.) = r and s, := s(a,).
Thus, we have

r (26)
(27)

(1- Sr)ar - E(Sr)
~(1 =500 (5,) = U(s,) =
bsing [Z8), we can calculatB;P(r):

B:_’P(T) =q, —r =

The derivative of the functiorfa(s) := LE(5)(0 <s <1)
is given by

s D)1= 8) +r+P(s)
fQ(S) - (1 —8)2 .

From [ZT), the equatiorfz(s,-)’ = 0 holds. The derivative of
the numerator offi(s) is given by

(TS0 8)+r+()) =T (5)1 = 5) >0

because of [{20). ThereforeB; p(r) = fa(s;) =
ming>y fa(s).

Next, we prove[(I4) for the case in whieh> —E’(Jro) -
D(0). If a < —3'(+0), then ¢(a) < r. Otherwise,

((a) > r. Thus, it follows from [IB) thatB; ,(r) =
lime_ (=3 (+0) = €) — (=& (+0) — €) = —¥'(+0) —

(—El(JrO) —1(0)) = 9(0). Since the numerator of}(s) is
P T ()1 =) +0(s) = 7 = (=T () >0,
then f}(s) > 0. Therefore,
L5 + ()

0<s<1 1 —s

Next, we prove [[15). We can calculate the derivative of
((a) — 5 as

= lim ————= = 9(0).

s—0

(c@=5) =1 sa) — & ()a — T (s(a))s'(@) — 5
=1-s(a) — s'(a)a + s'(a)a — % = % — s(a).



This derivative i) if and only if s(a) = £,i.e,a = - (3)-
The second derivative is calculated as

(¢ta) :

a

-5) == (28)

where the final equation follows fromn E”(s(a))s’(a)
which can be derived from{21). Thus, the functian—

((a) — 3
¢ (=7 (4)) + 47 (3), which s attained at = 7 (4).
Hence, we have

. A R B ORI ST
i e - 3o S“}‘{ ) faes-v (),
where we use the equatitzjr( 7 %)) =—1(3) —%El (3).
WhICh follows from [22). Since((—4'(1/2)) = —¢ (1) —
sz (3), we have
sup  {a—r[¢(a) <1}
a<—34'(1/2)
) it r <9 (3) =57 (3)
/2= > 0(3) - 57 (3)
Remember that,. is defined such thaf(a,) = r. Moreover,

we have

sup {a— r|—
a>—1'(1/2)

_{0

20 (3) +r
Therefore,

IN
-

<<l

N[ N

{a—r|¢(a) <r},

sup
a<-9'(1/2)

zmax{
sup {a—r —
a>=9'(1/2)
) oar—r ifrg—ﬁ(%)—
B QE(l)—i—r ifr>—@(l)—

Using a discussin similar t¢_(lL.4), we can sh

E]

IV. CORRELATED SYSTEM

In this section, we consider the application of Theofé¢m 3
correlated systems. As an example, the initial state isnasdu
to be a ground state with the Hamiltonign, H; + H; ;1
on the system(H4 ® Hp)®", where H; is the Hamiltonian
of the i-th joint system betweem and B, and H; ;41 is
its interaction term between theth andi + 1-th systems.
However, it is not so easy to calculapés) in this case. Hence,
we focus on a more ideal case.

Assume that the total systeif{4 ® Hp)®" is isolated
from other systems. We also assume that the syst&ifi

is sufficiently large, and the interaction between the sygstefor example, p1 is the largest element ifp, . ..

is strictly convex, and its minimum value equals

HS™ and the systenH$" is ideal so that the syster($"
can be regarded as the heat bath of the syst&fit. Now,

we suppose that the Hamiltonign, H4; + Hai+1 on the
systemH%". Hence, the state of the total system is pure,
and the reduced density as is the thermal state with the
Hamiltonian) , H4 ;+ H 4,;:+1. Now, we define the partition
function as

1
(B) := lim - log Trexp(8 Z Hai+ Hajiiv1)

i

[1]

(29)

Thus, when the inverse temperatureds and the partition
function is continuous and differentiable, th&s) can be
calculated as
S
)

E(S) = lim l log Tr ( exp(Bo > Hai + Hajiitr)
n

Trexp(Bo >, Hai + Haiiva
1 _
=1lim - log Tr exp(sfo Z Hai+ Haiiv1) — SE(Oo)

=Z(sfp) — sZ(Bo).

Hence,
Bp(e) = Bp(e) = — 3= (50) =(6o)
Bep(r) = Be,p(r) = sup - 45?0: S2(50)
B: p(r) = min = * E<Slﬁo_> - SZ(60)
in + El5bo) — sE(bo) if r<ry
cp(r)=4q 0ssst 1—s
= (%) —E=(fo) +7 otherwise
where
== (5) +zm-=(3).

Note that the above formulas are based only on the partition
function. Hence, it is expected to apply them to other cases.
Moreover, we can derive similar formulas concerning clzdsi
and quantum fixed-length source coding.

V. NON-ASYMPTOTIC THEORY

In order to derive general asymptotic formulas based on
the quantum information spectrums, we need to prepare ap-
proximate formulas for non-asymptotic setting based on the
form of the reduced density. For this purpose, we focus
on majorization, because it gives a necessary and sufficient
condition for the possibility of transforming from a pailya
entangled pure stat@;)(®,| to another entangled pure state
$%2)<<I>2| by using LOCC between the two partiés, and
‘Hp[4]. Suppose thap = (p1,...,pq) @andq = (¢1,.-.,4a)
are probability distributions. The probability majorizesg,
(equivalentlyq is majorized byp), written p > ¢, if for each
k in the range

k k
ijZqu--

The elements indicated by are taken in descending order;
;pa). The
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majorization relation is a partial order. To discuss enlkang Since

ment transformation, we need to treat probability distiiins L L
consisting of eigenvalues of a reduced dengitfhe reduced Y “(fil\/p/|f:), > (eil\/p'le)) < max T V/p'V*T,
densityp majorizes another reduced densitywritten p = o, =1 i=1 v:unitary

if the probability distributionp(p) consisting of eigenvalueswe obtain
of a reduced density majorizes the probability distribution
p(o) defined by the other reduced density In particular,
the reduced density strongly majorizes another reduced )
density o, written p = o, if p(p) = p(c) and if the eigen- Therefore, the equation
vector corresponding tp(p)j coincides with the eigenvector max max Tr\/pTU = maxTr/p/T (32)
corresponding tg(c)}. That is, this condition requires that P'Zp U:unitary rzp
there exists a common basis diagonalizingand o. For holds becaus&/ pU* > p. Equations[[30) and(B2) guarantee
more information about majorization, please see Bhatexs t {31). ]
book[16]. Using these notations, we can describe Nielsemwever, it is not easy to directly connect the above lemma
condition for LOCC transformation as follows. to the information spectrum. Hence, we prepare the follgwin
Lemma 4:Nielsen[4] We can transform an entangled statéemma for the evaluation of the RHS €f]31). This lemma plays
® to another entangled staleby LOCC if and only ifo = p, an important role in the converse part of the main theorem.
wherep (o) is the reduced density (partially traced state) of Lemma 6:When a projectiori” and an integef/ satisfy
® (D), respectively. TrT > M, and the two reduced densitigs and p satisfy
Therefore, by using the above Nielsen’s Lemma, the optimal > o, the inequality
performance of DFLECj.e., the maximum fidelity can be -
evaluated based on majorization as follows. Tr \/p_T
Lemma 5:Let o be the reduced density of a given pure 1 1
state?, andp be the reduced density of the given initial pure S\/Tr {P z M}\/Trp {P z M}
state®. Then, we have

mgx(lll|C((I>)|\Il):max max (T&"\/?\/EUY, (30) +\/TFT—T1"{PZ%}\/TTP{0<%} (33)

P'zZp U:unitary

max TrV/p'V*TU = max TrV\/p'V*T.
U,v:unltary V:unltary

where the quantum operati@n runs over all quantum opera-h0|d3-

tions with LOCC in the maximum of LHS. i is a maximally Proof: Assume thaflr 7" = N(> M). Without loss of
entangled state with the sizg i.e., the operatofl’ := Lo is generlallty, we can assume th‘ﬁti/ p- Let us diagonalize
a projection with the ranid, then the relation andp’ asp = 3, silei)(ei| and o’ = 37, si|fi)(fil, where

) si > siy1,8, > )., The inequalityTr /o'T < S | \/s]
e e (Tr \/F\/EU)Z  max (Tr \/Lp T) (31) holds. We define the probability distributids; x } andiy as

°'zZp y:unitary p'rp N
holds. {sin} = arg max { > Vs s} = {Si}} ,
Proof: For any pure stat&, ®, we have . =1
(U[®) = Try, /pVoU; UL, Sin Z 37 2 Sintl:
where two unitaried/; and U, are defined as Similarly to i, we can definé,,. Since the function: — /x
. N is concave, we can prove that = s; 5 for i < iy. Since
UrpUy = Ty, |@)(@|,  Uz0Us = Ty, [¥)(9]. ey P al = siN N
Using Lemmd}4, we can provE_(30). Next, we choose normal- 4, inm
ized basis{e;}L , and{f;}L | as Zm: Z\/‘S—l
=1 =1

L
T=> le)eil, fi:=Ues.
=1

R

iN
<Vim E i
i=1

Using Schwartz inequality twice, we have

L N
Te/pTU = (filV/oes) > VeEin<VN—in
=1 =iy +1
L R
<SVENVTIN (el VP e T 1-S s
=1 =1
L L
<\ VIR DotV len. :\/TrT—Tr{p > %}\/m{p <3tf



Thus, we obtain[{33). [ eigen value
In order to treat PFLEC, we have to consider a measuring 1
operation with LOCC. Lo and Popescu characterize a pro- - h(x)
jection valued measuréP,,} (Every P, is a projection, and f
>~ P. is the identity.) on the syster® as follows.
Lemma 7:Lo and Popescu[l7]For any projection valued
measure{ P, g} on the systemB, there exist a projection

valued measuré P, 4} on the systemA and local unitaries
U, 4 andU,, g such that

(I ® P, B)|®) = (Usa® Uy, )(Poa®I)|P). (34)
That is, if the initial pure state is known, the operation 0
corresponding to any projection valued measurementBon
can be replaced by a projection valued measurement onFig. 1. lllustration ofh(x)
and local unitaries oM and B based on measuring data.
However, we have to treat a general measuring operation with
LOCC. The above Lo and Popescu’s result can be generalizégnce, we have

v

as follows.

Lemma 8:Given a measuring operatioh = {I,} with L (®)
LOCC on a tensor product spaéé, © Hp and a pure state = 3~ (€, 4 ® CW,B)((PW,A ® 1)|®)(D|(Pos @ 1))_
|®)(®| on the tensor product spadé, ® Hp, there exist a e,

POVM {M,,} (Every M,, is a positive operator, angl M., . _ o .
is the identity.) and the quantum operati6h, with LOCC, Thatis, there exist a projection valued meas{iz 4} on an
such that extended spac®’y D H4 and LOCC operation§';, such that

I,(®) = C(v/ My, @ I|1®)(®|\/M, ®I), Vw. (35) 1,(®) = Ck(Pea @ 1)|®)(D|(Pya @ 1)),
Proof: It is known that any measuring operatidp =
{15} on the systemB can be described by the projectiorince the projectio®y, to H satisfies thaPy, Pi.a P, =

valued measur¢ P, g} on an extended spadé; O Hp and (P, 4 Py, )* P..a Py ,, there exists a unitar§/,, 4 such that
guantum operation§',, 5 on B such that

L, 5(p) = Cu,B(P,,BpP. B). kaAPHA = \/]V[>;;4 = Uk,APHAPk,APHA.
Applying (33), we have Hence, we obtain
(Lo.s @ I)(®) Ix (@)
=(I® OW,B)((UW,A @ Us,B)(Puoa @ 1)|®) (| =C}, ((Uk,A ® I)(\/ M ® 1)) (®|(y/ MA @ 1) (U ® 1)*).
(Poa®@D)(Uy,a ® Uw,B)*). Therefore, the proof is completed. [ ]

In order to use the information spectrum method, one may

Hence, any operation of can be described by the combinagharacterize the optimal failure probability basedTam{p —
tion of the projection measuremefi,, 4}, on A and local ;. > 0} for the reduced density of the initial state. However,
operations based only on the measuring datdf a}.. it is difficult. Hence, we focus of(x) = Tr(p—){p—x >

Now, we focus on a measurement operatior= {1/}, on 0} instead ofTr p{p—2x > 0}. Suppose that we wish to reduce
a tensor product spacé4 ® Hp consisting of LOCC and a 3| ejgenvalues of the reduced densityo be no greater than
pure state®)(®| on H4 ® Hp satisfying the condition (A): ;. This incurs a probability of failure given by(z). Upon
the set(2 = {w} consists of all sent classical informations. syccess we obtain a normalized state whose largest eigenval

Then, there exist the projection valued measfg s}, ON s not greater tham:/(1 — h(z)), which is majorized by a
an extended spacl; O Hp and quantum operationS,, 4 maximally entangled state of the dimensioil — h(x))/z].
andC,, g such that It turns out that this method is optimal among PFLECs as

, follows.

L,(®) = (Cu,a ® Cu ) ((P%A ® 1)|2)(P|(Foa © I))' Lemma 9: The bound on the performance of PFLEC based

Even if the measurement operatidn— {I;}; with LOCC on @ is evaluated by using the functidr(z), as follows:

does not satisfies the condition (A), there exist a measureme

> ) cast max {L(I)| Tr Iy(®) < h(x)}
LOCC operation’ = {I/,}.cq with subset);, C 2 satisfying I={I,,I,}: PFLEC of®
the condition (A) such that 1
~[2a-na], 37

L= Y I,. (36)

weQy, where | x| denotes the maximum integersatisfyingn < x.
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Proof: From Lemmda®, for any PFLEQ, there exist
two quantum operationS, andC with LOCC and a positive
operatorP such that) < P < I and

Tr Ip(®) = Tr(f — P)p

Tr I;(®) = Tr Pp
L(®)=C/(VT=P&I)®)(®|(VI-PoI))
I(®) = Co(VP ® 1)|@)(@|(VP @ I)).

Hence, we obtain the following equations for the following

reasons.

Tr (P
min {Tr]o(fl)) ‘;() x}
1={I,,1,}:PFLEC of L

{Trp(I = P)lz —VPpVP >0} (38)

{Tx(p — VBPVE)|x — /APy 2 0} (39)
(40)

= min
I>P>0 ONH

= min
I>P>0 ONH

= i 1-T —0 > >
Ur(r)lhnH{ rolr—0>0,p>0}
min

o ON H { 1= Z<ei|a|ei>
=1- Z S; — Z T =

8, <x 118, >T

(e;loles) < si,x} (41)
Tr(p —z){p — 2 = 0} = h(),

(42)
where we diagonalize asp = ), s;|e;)(e;| in @). From

Lemméd?, there exists a quantum operatigrwith LOCC that
transforms the stat@rlTp(P®I)|<I>) (®|(P®I) to a maximally

entangled state with the sieif and only if 1) > p,p.

Thus, from Lemmdl8, we obtaifi{88). In general, for aMYefinel (

bounded operatod, there exists a unitary operatéf such
that AA* = UA*AU*. Thus, the condition: — PpP > 0 is
equivalent with the conditiorr — /pP./p > 0. We obtain
@9). Replacing,/pP./p by o, we obtain [ZD).

Equation [4R) implies

ma. LD T In(®) < h(z
I={Io,I1}: PI%(LEC Of<1>{ ()l O( )_ ( )}

{1

L —ne)
~[sa-n@],

= max
P

L (1= h(z")) is an integer
h(z") < h(z)

}

x
T

o, ON'H 4, as follows.
Cn(Thlon) := —% log Tr 0, T,
o /2(Talon) = = 0g T VT,
n(Th) = —% log Tr(I — Tp),

1
Crcz(Tn|0n) = __1OgTrUn(I_ Tn)a
n

1
Cﬁ,l/z(Tnbn) = — log Tr /o, (I — T},).

As the limiting version, we define

{(T)6) :=Tim (o (Tulow),
((T6) = lim G (Tolom),
21/2(T|&) = m<n(Tﬂ|Un)a
¢, )(T1&) = Hm Gy 1/ (Tulon),
(TG = Timn, (Tn|om),
0(T1G) =l (Tulow),
C(T)3) = T ¢ (Tulow),
¢(T|e) := lim G (Thlow),
C12(T16) =T (T o),
§1:/2(T|&) = h_m<1cz,1/2(Tn|Un)a
for sequencesé = {o,} and T = {T,}. For the
projection S,(a) = {pn < e "}, we simplify

Cn(Snla)lon), Gn,1/2(Sn(a)lon), mn(Sn(a)), ¢ (Sn(a)|on),
and <ﬁ,1/2(5n(a)|0n) to Colalon), Guay2(alon),
m(a), ¢S (aloy), and C§71/2(a|an). We can similarly
al@), ((alF), C1/2(ald), ¢, ,(ald), M(ald), nlald),
("(al&), ¢°(alé), ijp(alé), and (¢, (al&). Using these
values, we can characterize the RHSs bfl (3L}l (33) and
@3). In particular, when a sequenée equals the sequence
p = {pn} of the reduced density of the given state, we omit
p in the above values.

Moreover, to discuss the asymptotic theory, we need to
define the concept “majorization” in regard to sequences of
reduced densities. The sequence of reduced densities
{o.} majorizes (strongly majorizes) another omée= {o’,},
written & = o’ (& - o) if o, = 0/, (o, = 07,), respectively.

In the following, we proceed to the proof of our main
theorem. Before it, we should remark that in an asymptotic
case, we can neglect the gap betweén | and L,, because

where the second equation follows from the fact that thefung, is large enough.
tion h(x) strictly monotonically decreases and is continuous. Lemma 10:Without any assumption, the equations

VI. ASYMPTOTIC THEORY

In this section, based on non-asymptotic formulas given

section[)¥, we prove our main theorem. For this purpose, we

need to prepare the finite-version of the information-sjpmeat

guantities for a projection operat@t, and a reduced density

Bj(e) = Ba(e) = s%p{R|K(R) < e}

hold for everye € [0, 1].
Proof: From the definition, the inequalit$; (¢) > Ba(¢)

is trivial. We only need to prove the two inequalities
" By () > sup{R|K(R) < ¢} (43)
R

Bi(e) < Slép{RlK(R) < e} (44)



10

Let R be a real number satisfying Since ¢°(R) > 0, we have0 < (1 — t,(R))e ") <

From LemmalD, there exists a PFLEC® such that
Tr IH(®,,) = hyp(e ") andL,, = e"B(1—h, (e ")), where
B () = Tr(pn — 2){pn — x > 0}. From [@%), we have

K(R) <. (45) e~"(R) 0. Thus, we have the following relations
lim — log e"R(l —(1- tn(R))e—nCﬁ(R))) - R
n
-1
lim — log Tr I (®,,) > C°(R) > r,
n S

which imply the inequality[{47).

lim — 1og L, =R, Next, we proceed to the converse phr (46). Assume that the
ETr (D) <Tm Tr pu{pn — e " > 0} DFLEC (C™, ) satisfies
=K(R) <e. lim — 1og(1 — (U, |CT ()| W) > 7. (48)
We have now obtained the direct pdrfl(43). We define the projectioﬁFn and the reduced densipj, as

Next, we proceed to the converse pdrfl(44). [&tbe a

2
DFLEC satisfyindim (¥, |C" (®,,)[¥y) > 1—e. ForanyR < 7, .= [, Try, |W,)(¥,|, p, := argmax p 7(1} Vo'T) .

lim X log L,,, we have L,
R Then, Lemmdl5 and{#8) yields that
&
lim — = 0. Tr / A T 2
Ly, hm log <1 — %) >
From LemmdD, for anyf}, satisfyingTrT;,, = L,,, we have "
(Tr \/ET ForanyR' < Ry := lim —1og L,, there exists an integer

N such thatR,, := 1logL, > R’ for Vn > N. When a
projection T;, satlsﬂes thatlr7,, = L,, Lemmal® implies

<—(\/Tr{pn >e ”R}\/Trpn{pn > e A} that
) (Tx \/ZT
+ \/Ln — Tr{p, > e—"R}\/Trpn{pn < e—"R})

(R s < (o o

2
+ \/Ln — Tr{p, > en® }\/Tr pnipn < enR/})
Ir{pn 2 e} —ory)’ e
- L. \/Trpn{pn <e }) - g(e—%wR )G (R4 Ry)

2
sincelim Teaze ™0 < i ¢ — g, + V1= e ntm(BITR /] — emnGi(R) )

g(l _ 1 (e*n(nn(R’HRn) n efncm'))
P

Tr /P, T
1—e§h_m(L¢ < lmTrp,{p, <e "7} )
" + e‘%(nn(R')-FCfL(R')-FRn))

=1- K(R).
/ , 2\ 2
Thus, we obtain[{44). (] — (1 _ % (e—gc;(R ) _ o= 30m(R )+Rn)) ) . (49)
Lemma 11:We have
Since e~ 2m(R)+Ry) < o= 3(Ru—R)e=5mu(RH+R) <
Be.o(r) = Be.p(r) = up{RlC () 27} e~ 8 (Ra—R) o~ 3C(R) < o= 3C(R) e have -
Proof: SinceB., D( ) > B, ( ), we only need to prove o § / )
the inequalities (e—aCn(R ) _ =5 (m(R )+Rn))

>(1—e" Z2(R, R’))QefanL(R’).

Bep(r) < s%p{RIQC(R) >r} (46)
¢ Thus,
Be p(r) > stll%p{R|§ (R) > r}. (47) )
1— = (e & (0 (R)+Ra) _ 5<n<R'>)
First, we prove the direct pali{#7). Assume thatk) > r > 2
0. From LemmdD, for anyr, there exists a PFLEC" with 1 w R - 2
the sizee®(1 — (1 — t,(R))e "< (1)) such that < ( - 5= e 3 Fnm))2emnan )> : (50)
T I (D5) = (1 = ta(R))e ", Slncehm(l — e 5(BamR)Y2 — 1 it follows from {@3) and
where E&0) that

-n —n Tl“ / Tn 2
" (R) — e R Tr{pn >e R} . CC(R/) > hm 10g \ vV FPnin) Pn ) >
" Tr pp{pn > e "B} - Ly,



HAYASHI: GENERAL FORMULAS FOR FIXED-LENGTH QUANTUM ENTANG.EMENT CONCENTRATION 11

Since R’ is an arbitrary real number satisfying < Ry, the From [&1), we have
relation Ry < supr{R| (°(R) > r} holds. Therefore, we .
obtain [@5). - [ e.p(r)
Lemma 12:When((a) = ¢((a) =: ((a) and there exists a <inf{a —min{((a),a +7(a)}| min{((a),a +7(a)} = r}.

< C
real number such that(a) < ¢*(a), It follows from ([0) that the functiom — min{((a), a+7(a)}

cp(r) is continuous. Thus,
=sup{a —min{((a),a +79()}min{C(a),a +7@)} <7} inffa — min{¢(a), a +7(a)} min{¢(a),a +7a)} > r}
= i%f{a —min{¢(a),a +7(a)}| min{((a),a +7(a)} >r} = Sup{a —min{((a),a +n(a)}| min{¢(a),a +7(a)} < r}.
=inf{a —((a)|¢(a) < 7} The proof is now completed. n
‘Proof: First, we prove the direct part. Consider a PFLEC | ginma 13: WhenC(a) = ((a) =: ((a) and there exists a
I" satisfying real numbem such that((a) < ¢%(a),
L, = Lol ™) Lo (r) B
Te I7(®) = hn (e ™). = §up sup{— lim 7, (T3,) | lim 2{7‘;1/2(Tn|p;) —n(T,) <r}
g
Thus, we have o (53)
lim % log L, =a — min{((a), a +7(a)}, = Sl%p{—li_mnn(Tn)l lm 2¢7 /5 (Tn) =n(Tw) <7} (54)
E% log (Tr I7(®,,)) =min{{(a),a + 7(a)}. =sup {a —r|inf {C(a') _a a < a} + g < r} (55)
Therefore, we have —sup {g = inf {C(a') d d < a}‘
£p(r) ' . o
= sup{a — min{((a),a +7j(a)}| min{¢(a), a +7(a)} < 7} inf ¢ (') = Sla' <ap+5< rl . (56)
‘ Proof: Equation [BB) follows from [[d1). Since the

=max {Sup{a = ((a)l¢(a) < r},sup{-T(a)la+7(a) <7} function & — infy {((a’) —~4la’ <al is continuous
—sup{a — ((a)|C(a) < 7, f':md decrease§ monotonlcal!y and_ the funcugn —

a infe 4 ¢(a') — % |d < %Jr% is continuous and increases
where the final equation is derived by Lemma 15 as followmonotonically, equatior {$6) holds. First, we prove thedlir
Using LemmalIb, we haveup,{a — ((a)|((a) < 7} > part:

sup,{—n(a)la + n(a) < r} > sup,{-7j(a)la +7(a) < r}. : T g
Next, we proceed to the converse part. Let"} be a s‘%p{_h—m”"(T"”11m2<n,1/2(T") —n(Ta) <7}

sequence of PFLECs such thap lim =% 1og(1 —¢€n), Where a o

€n = Tr I7(®,,). In the following, we focus otim L log L,. ~ >sup {5 — inf {g(a’) -5 a < a}

Let a be a real number satisfying e “ ,
1 inf {¢(d)) — = |a’ < R
lim — log(1l — ¢,,) <7 <min{{(a),a +7(a)}.  (51) o {((a) 2| _a}—i— 2 _T} ®7)

n
Since Ahs we prove later, we can choose a projectidy{a, R) such
that

lim _71 log (Tr pn{pn < e "} +e ™ Tr{p, >e ""})
=min{¢(a),a +7(a)},

there exists an intege¥ such that

nn(Tn(aa R)) = —R, (58)
GiajolTula, R) <max {C51p(a). ~R+ 5} (59)

B B B Whenn, (a) > —R, the projectioril, (a, R) := {p, —e " >

Trppfpn < 7"} + e Tr{p, >e "} 0} satisfies[[99). Otherwise, the projectioi(a, R) := {p, —
>1 —hp(e™™), VYn>N. e >0} + ({pn — e " < 0} — T(a, R)) satisfies [59),

whereT,,(a, R) is constructed as follows: We choose :=

Lemm uarantees that
ad g e™® normalized eigenvectors!} ™, of {p, — e "* < 0}p,

e (Tr ondon <e ™} +e " Te{p, > e*"“}) in descending order concerning the eigenvalue, and defene th
1— hy(e~m) projectionT}, (a, R) by >, |e})(e;|. The choice of{e}}™,
= 2L (52) and the relation:"® = Tr{p, — e "* < 0}e"(~E=mm(a)

guarantees

Tr\/pn{pn —e ™ < O}e_"(_R_”"(a)) <Tr pnTn(a,R).
hm 1ogL < a—min{{(a),a +7(a)}. vin Vin (60)

Taking the limit of the exponent, we have
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Then, we can check the conditidn159) as follows:
—1
nn(Tn(aa R)) = o log TI‘(I - Tn(av R))
-1 . -1
=—1logTr T, (a,R) = — loge™f = —R,
n n
—1 -
<7cz,1/2 (Tﬂ(a’ R)) = 7 10g Tr vV pnTn (a7 R)
-1
S_ 10gTr \/p’ﬂ{pn — e_nu’ < O}Q_n(_R_"]n(ll))
n

. a
=(Cpa/2(@) = R—np(a) < —R+ 3

Taking the limitk — oo, we have
. T— ¢ a T— ¢
mm{klggo Conalalih,). o Ro} < T G5, (T 0,

Now, we apply Lemm&34 to the capgg = p/,,0 = \/pl,- In
this case, similarly to[{81), we have

n(a) = ¢; ,(2alp’),  ¢(a) = ¢(2alp").
Hence, [7K) yields that

k@ <fzk,1/2((l|P;lk) > £(1:/2(a| "

glionvgéwe apply Lemm&17 to the capgg = pn,0n = \/Pn- Zigllf {Q(G’V;’) B %/ o <a
{pn —€"opn >0} = {pn — €""/pn > 0} Sincep!, = pn, we have((a’|p’) > ¢(d') = ¢(d'), i.e.,
={\/Pn — " > 0} = {p, — > > 0}, I o
we have igl/f{é((ﬂp’)—; a’ga}Zif}f {(a’)—; a’ga}.
n(@) = ¢, (2alP), (o) =((2alp).  (61) ThUS

From Lemmdl7, the maximum, of

. ! _ a_
{a 1lr11/f {C(a ) 5
exists. We defing? by

a’/
2a§ar.

!/
R:—a—;—inlf{((a/)——

Then, R equals to the right hand side &f{57), and we have

lim 26, 1 /o (Tn(ak, R)) — n(Tn(ak, R))

et 1k}

<2max {Zl/Q(ar +1/k),—R+ 5

<r+1/k,

whereay, := a, + 1/k andk is a fixed integer, and the last
inequality follows from [8K) in LemmBZ17 in Append®¥ A. We

define N;, as the minimum integer satisfying
2
2<1Cl,1/2(Tn(ak? R)) - n(Tn(aka R)) S r+ Ev

For the sequenck, := ming{ax|n > Ny}, we have

Vn Z Nk.

mz(rcz,l/z(Tn(bna R)) = n(Tn(bn, R)) < 1.

Inequality [5T) follows from[{&2) and the first equation G8)5

Next, we prove the converse part. Assume th&k,, o))}

satisfieslim,, . 2¢¢ 1/Q(Tn|p;l) —n(Ty,) < r. There exists

a subsequencén;} such thatlimn,, (T,,) = —Ro =
limn,, (T,,). Focusing on the projectiofip), — e™"* > 0} =
{\/pl, — e "%/2 >0}, we have

Tro/ph{py — ¢ " > 0} — "2 Tr{y), — " > 0}
>Tr\/pl (I —Tp,) — "> Te(I - Tp,),
which implies
Tr /o {p, —e " >0} + e/ Te(I - T,)
>Tr /o, (I = T).

(62)

r> n@o 2(5,1/2(Tn|p;1) —n(Tn)
> k@ 2Gs, 12(Tuelph,) = 1(Toy)
. 1 c a
>2 min {kli)rgo {nk’l/z(am;k)? 3 Ro} + Ry

!’

22min{inf{((a')—% a S(I},g —R0}+R0-

2
(63)
Since the functiona — & — infy § ((a’) — %’ a < a} is
continuous, there exists a real numhesuch that
/
Ro—g—igf{C(a’)—% a’ga}.
Using [63), we have
/
’I’Zi(l}/f{((a/)—% a’ §a}—|—g,
which implies
/
Ro §sup{g —inlf{C(a’) - % a < a}
/
igf{((a’)—% a ga}—i—% Sr}
The proof is now completed. [ ]

VIl. RELATION TO RANDOM NUMBER GENERATION

As a related problem, it is known to transform from a
given known probability distributiop to a desired probability
distributiongq. If it is possible, the majorization relatian>= p
holds. However, even if the majorization relatigr+ p holds,
this transformation is not necessarily available. Hentéhe
two entangled pure statds and®, have Schmidt coefficients
corresponding top and ¢, the Quantum LOCC operation
transforming from®; to ®, is easier than transform from
p to q.

In particular, when the desired distribution is the uniform
distribution, this problem is called intrinsic randomndsshis
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problem, our operation of intrinsic randomness is desdrtibe As is shown Hayashi[22], the relation
the mapiy from the original spacé to M = {1,..., M}. o

When the initial distribution i3 and the uniform distribution Brei(e) = “;p{“ —((a)[¢(a) < ¢}
is described by, on M, one of criteria of its quality is the

half of the square of Hellinger distance betwgeny—! and holds. Whenc(a) is continuous,

PM: Brr(€) = B p(e). (67)
Mo bt P In particular, if the limit of Rényi entropy is differentie,
1 wep—1(i) Pw
e B e Bie(e) = B y(e/2) (68)

In this case, we describe the size of its target uniform disthene < —%_' (3) — ¥ (3)- The above relation is an inter-

tribution v by M(v). Hence, for a sequence of the initialesting relation between Hellinger criterion and KL diverge

distributions{p,, }, we can define the optimal rates criterion.
By (e) := sup {h_mOgTW lim & (¢, pn) < e} VIIl. CONCLUDING REMARKS
{n}

low M 1 We derive asymptotic bounds based on several formulations
i 108 (V) hm__loggwmpn) > T} from Lemmal®b,[b, and]9. Since these bounds are tight in
im > >
)

B o2 N7
n a general source, the evaluations given in LenfiinBl 5, 6, and

(

n

=

. log M (¢, are useful in a non asymptotic case as well as in an

li

1= sup

{¥n}

=

e H(T) ‘= sup {
{n}
et (7) { asymptotic case. Even if the class of DFLEC is wider than
1 that of PFLEC, their asymptotic performances are almost
im — log(1 — &(thn,pn)) < 7“}- equivalent. A difference appears only betweBh ,(r) and

. . . . ) B* . For example, when the limit of Rényi entrop)
The variational distance version with the constant coirdtra. ¥, (r) P Y PY(s)

has been discussed by Vembu & Verd [19] and Han [13] s diﬁerentiable,B;‘,D/(r) 's larger thanf; p(r) if and only if
Co 157 (1 (1
Let &, be the entangled pure state with the Schmidt's greater;[hapriq/) (5)_7/’_(5)- From [54) of Lemm&13,
coefficient corresponding tg,. When C,, is the quantum the boundB{ ,(r) can be attained without an LOCCe,, the
LOCC operation corresponding tg, and®,, is the maximally original reduced density,, is close enough to an appropriate

entangled state with the size (1), we have MES only in regard ta3; ,(r). As a byproduct, in Appendix
&l we establish several general relations between infaomat

1= e(tbn,pn) = V(¥ |Ch(®,)|T,,), (65) spectrum quantities.

€., APPENDIX

26(tn, pn) — €(n,pn)? = 1 — (U,|Cr(®,,)|V,,).  (66) A. General relations for information spectrums

Hence, comparing the entanglement concentration with the€re, we prove some lemmas required by our proof. In
initial entangled stateb,, and the intrinsic randomness withthiS Section, we treat information-spectrum quantitieshwi

the initial distributionp,,, (G8) yields that more g_eneral d_ef_initions, which are given in Nagaoka and
Hayashi[14]. This is because we need such a general tretitmen
Br(€) < Bp(2e — €2). in our proof of Lemmd113.

. For the two sequencd®,, } and{o,,} of trace class positive
Since semidefinite operators, we discuss how to characterize an
(W, pn) < 1= (U, |Co ()|, < 26(t, ), information-spectrum quantity(a) := lim =* log Tr 0, { p, —

e "o, > 0} by using two other information-spectrum
the inequality quantities {(a) = lim=' logTrpn{pn — e "0, <
Ben(r) < Bap(r) 0} and ¢*(a) = lim = logTrpu{pn — ™™o > 0}.
As discussed later, wheg(a) := lim — log Trp,{p, —

holds. Moreover, the equatiof{65) yields that e "o, < 0} equals¢(a) for any a, we can use the same

. . method to characterize another information spectfiin) :=
et (1) < B p(2r). lim = log Tro, {pn — € "0, > 0}. As was proven by
When we adopt the KL divergence criterion: Nagaoka and Hayashi[l{l], the functigfu) increases mono-
tonically, and other functioné®(a) andn(a) decrease mono-
M i i e i i —na
B 1 tonically [14]. Focusing on the projectidmp,, —e~"%c,, > 0},
D(pulpoy™") :=1log M + ; 2 o8 > po|.  we have

wewil(i) —na —na
. Tr(pn —e on)ipn —e op >0} >0,
we focus on the following value:

which yields to
m —-—-
n

T —1
lim D (pasy,)llp o vn”) < 6}'Iifpn{pn —e Mg, >0} > e " Tro,{p, — e "0, >0}

Brr(e) := sup
{¥n}
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Thus, we have Lemma 15:We obtain the inequality

¢“(a) < n(a) +a. (69) sup{a — ¢(a)|¢(a) <} = sup{-n(a)la + n(a) <r},
Similarly, we can prove which is equivalent to another inequality
Tr(pn — e ™ on){pn — € "on = 0} inf{¢(a) — a|((a) < r} < inf{n(a)la + n(a) < r}.
>Tr(pp — e "op){pn — e "o, > 0}. Proof: We prove it by reduction to absurdity. Assume

. . that there exists a real numbey such that
By addinge~"“ Tr o,, to both sides, we have

ao +n(ag) <, (76)
—n(ao) > Sgp{a —¢(a)[¢(a) < r}. (77)

We will lead contradiction with the two cases, casexl:=
inf,{aln(a) = n(ag)} > ao, case 2u; = ay.

min{¢(a),a + n(a)} > min{¢(b),a+n®)}  (70) In case 1, for any real number_e (0, ap—a1), the inequality
- - - - n(a1 —€) > (a1 + €) holds. Using[(711), we have

Tr pp{pn — e "op >0+ e " Tro,{p, — e "o, <0}
> Tr pnf{pn — e "o, > 0} +e ™ Tron{pn — e "o, < 0}.

Taking the limitn — oo, we obtain

for any a and b[14]. When¢(a) = ¢(a) for any a, we can

replacen by 7. From inequality [Z0), We can derive the Clar —€) < mlar +€) + a1 +e=1ao) + a1 +e
following two formulas; <r+ (a1 —ap)+e<r

n(a) +a > ¢(b) if n(b) > n(a) (71) Thus,

¢(a) > a+n(b) if ¢(a) < (D), (72) sup{a — ¢(a)|¢(a) < 1} > ay — e — ((ar — €)
which play important roles in the following lemmas. As a Zala_ e— (a1 +€) —n(a1 +€) = —nlag) — 2e.

lower bound ofy(a), the following lemma holds. ) o )
Lemma 14:If there exists a real numbet, such that raking the limite — 0, we obtainsup{a — ¢(a)[¢(a) < 7} >

C(ao) < *(ap), the relations —n(ao), which cpntradic_:tsl]]?).

= = In case 2, the inequality(ag) < 7(ag—e) holds forve > 0.
n(a) > inf{¢(a’) —a'la" < a} (73) Using [71), we havg(ap — €) < n(ao) + ao < 7. Thus,

= inf{¢(a') —d'|a’ < a} (74) sup{a — ¢(a)|¢(a) <} > ag —e—((ag —€)
hold. >ag — € — ag — n(ap) = —€ — n(ao).
Proof: From [69), the relations This also contradictdTr7). -

C(ag) < ¢(ap) < n(ao) + ao Define the setd andI’ as

hold. Sincen(ag) > ¢(ao) — ao, We have I:={a eR|((a) >((a—¢€) Ve >0},

I' ={aeR|{(a+e€) > Ve > 0}.
la) 2 nf(g(a) — 'l < ao). o € Alare) > ol e = 0
B o - As upper bounds ofi(a), we have the following two lemmas.

For anya < ay, the relation¢(a) < ¢“(a) holds. Since;(a —
0) < ¢(a), the equation[{d4) holds. Similarly, we can prove Lemma 16:We have two inequalities
that a real numbed(< ag) satisfies[Z3).

: ! Ao

Next, we prove [[ZB) for any: > ao by the transfinite na) < ;fgfl{é(a ) —dla’ < a}, (78)
induction. Assume that the relatioi{73) holds for any real n(a) < inf {¢(a') —d'|a’ < a}. (79)

numberbd satisfyinga > b and - agl’ "=

n(a) < inf{¢(d) - a'ld’ < a}. (75) If {(a) = ((a) for any reala, we have two other inequalities

; 7i(a) < inf{((a") ~a'la’ <a}, (80)

For anye > 0, we have acl =~
7(a) < inf {((a") ~ a'la’ <a). (1)

acl’ —

. / / /
n(a) < %f{ﬁ(“ )—dla’ <a—ep <nla—e) Proof: First, we provel[#8). Let’ € I be a real number

From [Z1), we havey(a) > ((a — €) — a. Sincee is arbitrary, satisfyinga’ < a. From [Z2), we have

we obtain the inequality a —e+n(a) <((a"—e), Ve >0.
n(a) > inf{¢(a’) —d'la" < a}, Sincee > 0 is arbitrary, we obtain the relation
which contradicts assumptiof]75). n n(a) < nla’) <¢(a’ = 0) —d < ((d') —d.

The following lemma is another characterization of thg o, the arbitrariness aof’

the above relation implie 8).
lower bounds ofy(a). plies_(V8)

Similarly, we can prove[{30).
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Next, we prove[(#9). Let’ € I’ be a real number satisfyingB. Gartner-Ellis theorem

a’ < a. From [Z2), we have Here, for our proof of Theorefd 3, we discuss Gartner-Ellis

theorem [20]. LetX,, be a sequence of random variables.
! ! < ¢(ah). o S :
@ + (@ +€) < ((e) Then, the logarithmic moment function is defined as

If ¢ > 0 is small enough, An(t) == log Ex, etXn,
n(a) < nla’ +e€) < ((a') —a'. where Ex,, denotes the expectation concerning the random

From the arbitrariness af, the above inequality impliemg).z:;'ableX”' The logarithmic moment function,, (t) is con-

Similarly, we can provel{81). [ | An(t)

Lemma 17:Assume that a real numbersatisfies that Theorem 18:A§s.ume that the "m'?"(ﬂ = limp oo
exists. Then, defining the rate function

n

r <Sup{i(rll/f{£(a’)_a/‘a/ga}—i—a}. (82) A*(R) := suptR — A(t), (88)
e t
The maximuma, of we have
{a‘in/f {g(a’)—a"a’ﬁa}—i-a:r} (83) li_m_—llogPXn {& Za} > inf A*(R) (89)
@ n n R>a
exists. Moreover, the inequality o -1 log P {Xn - a} < inf A*(R) (90)
— X\ <
n n R>a
n(ar +¢) <inf {¢(a) —ala<a,}, Ve >0 (84) 1 e
‘ lim — log P, {—" < a} > inf A*(R)  (91)
n n <a

holds. When((a) = ((a) for anya, we can replace by 7 in . x
the above argument. Iim —logPyx, § —~ <ap < }i%nf A*(R). (92)
n n <a

Proof. Since  the function g : “ Using the above theorem, we can show the following theorem.

: ANV i ; . .
infor {Q(C_L) a.} o’ <aj +a is continuous and_ INCreaASC3since the functiom\,,(¢) is convex, theA(t) is convex, too.
monotonically, it follows from [[8R) that sef{B3) is bounde ence. when we choose the real numbBrSR». B and R

and closed. Thus the maximum of the $&fl (83) exists. : {342, fis 4

Next, we provel[(84). First we assume that as A) A)
C(ar) —ar zinf{ () ~ /| <0}, (8) o= g = fem e 69)
’ . AQ@) . A®)
Since the functiory increases monotonically ang + ¢ does Rs:= lim P Ry:= lim P (94)
not belong to the sef{B3), the relations the relations
_ - / 1o _
Q(a)<£(ar)—1£1,f{§(a)_a‘a Sar}+ar—T Ry <R3 <Ry <R, (95)
: !/ !/ !/
< lél,f {ga )—a ‘ @ < ar E} tarte<((arte) hold. Thus, as is proven latter, the equations
hold for a < a,. Applying (Z2) to the casé = a, + ¢, we .1 Xn ol Xn
obtain [E2). lim - logPx, - >a, =lim - logPx, - >a
Second, we assume the opposite inequality 0 if o <Ry
Clar) —ar <inf{((a)—d|d <a}. (86) =\ WKtE-AWM>0 TR <a<h (96)
N a’ "= 00 if Ri <a
There exists a sequenge,,} such that and
_ . N —1 X, -1 Xn
C(an) —an — 1¢r11/f{£(a )—a ’a <a,} lim — log Py, {_ < a} =lim — log Py, {_ < a}
n n n n
an < Q. .
0 if Rs<a
From the above relations, there exists an inteljesuch that — max tR—A(t)>0 if Ry<a<Rs (97)
¢(an) <(¢(a,), ¥Yn > N.Using [Z2), we have Og if o< Ry
n(ar) < C(an) — an. hold. Moreover, if the function\ is differentiable att, > 0,

) and if R2 < a < A'(to), we have
Thus, we obtain

. -1 Xn -1 Xn
nar) < inf { (@) —a'| ' < a,}, @7 ol {7 = } = lm = log P, {7 g }

_ R — A1), 08
which implies [5h). T (98)
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Proof of [96), [@F) and[{d8): First, we calculated the rate[10]
function A*(a). WhenRs < a < R,

[11]
A (a) = sup ta — A(t) = 0a — A(0) = 0. [12]

Assume thatRy, < a < Ry. Then, ife > 0 is sufficiently
small, [13]

A (a) = sup ta — A(t) > ea — A(€) = (a — Ra)e + Rae — A(e)

[14]
~ A
= (a—Rg)e—i—Rge—tl_l)IEO €= (a — Ra)e > 0. 115
Now, we choosé, # 0 such thatt,a = A(t,). The convexity
of A guarantees that ElG%
17
A (a) = sgp ta — A(t) = oax ta — A(t).
18
For a such thatR,; < a’ < q, sincet, > t,,, we have e
[19]
x/ 1\ o — o
A" (d') = 022(&/ ta’ — A(t) Jmax ta’ — A(t).
[20]

Hence, the function\* is continuoug Rz, a]. Thus, the func-

tion A* is continuous[Rsz, R;). in addition, whena > Ry, [21]

A*(a) = oo. Hence, wherw < Ry, we obtain 22
e
0 if a <Ry
InaxtR—A(t) >0 f Ro<a< Ry
>0
Whena > R,
zlegfaA (R) = ér;faA (R) = oc.

Therefore, we obtair {96). Similarly, we can profi€l(97).
Moreover, fora such thatR; < a < R;, we choose/,
argmax, ta — A(t). The convexity ofA guarantees that when
Ry < d' < a, we havet!, <t,. Therefore, we provd (98)m
Finally, in order prove[{I6) an@{lL7) in our proof of Theorem
B, we focus on the probability distributions, = {p,, ;}, and
apply the above discussion to the random variablegp,, ;.

Using [@8), [@¥) and{38), we obtaii{16) ahdl(17).
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