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Abstract

The problem of time synchronization in dense wireless networks is considered. Well established synchro-

nization techniques suffer from an inherent scalability problem in that synchronization errors grow with

an increasing number of hops across the network. In this work, a model for communication in wireless

networks is first developed, and then the model is used to define a new time synchronization mechanism.

A salient feature of the proposed method is that, in the regime of asymptotically dense networks, it can

average out all random errors and maintain global synchronization in the sense that all nodes in the

multi-hop network can see identical timing signals. This isirrespective of the distance separating any

two nodes.

Index Terms

Cooperation in networks, large network asymptotics, relaynetworks, scalability, sensor networks, time synchro-

nization, wireless communications.

I. INTRODUCTION

A. Time Synchronization in Large Distributed Systems

The problem of time synchronization in large distributed systems consists of giving all the physically

disjoint elements of the system a common time scale on which to operate. This common time scale is

usually achieved by periodically synchronizing the clock at each element to a reference time source, so

that the local time seen by each element of the system is approximately the same. Time synchronization

plays an important role in many systems in that it allows the entire system to cooperate and function as

a cohesive group.
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Time synchronization is an old problem [26], but the question of scalability is not. Recent advances in

sensor networks show a clear trend towards the development of large scale networks with high node

density. For example, a hardware simulation-and-deployment platform for wireless sensor networks

capable of simulating networks with on the order of 100,000 nodes was recently developed [24]. As

well, for many years the Smart Dust project sought to build cubic-millimeter motes for a wide range of

applications [43]. Also, there is work in progress on the drastic miniaturization of power sources [27].

These developments (and many others) indicate that large scale, high density networks are on the horizon.

Large scale, high density networks have applications in a variety of situations. Consider, for example,

the military application of sniper localization. Large numbers of wireless nodes can be deployed to find

the shooter location as well as the trajectory of the projectile [1]. Since the effective range of a long-range

sniper rifle can be nearly2km, in order to fully track the trajectory of the projectile it may be essential

that our deployed network be tightly synchronized over distances of a few kilometers. Another example

might be the implementation of a distributed radio for communication. In extracting information from a

deployed sensor network, it may be beneficial for the nodes tocooperatively transmit information to a

far away receiver [6], [7], [20]. Such an application would require that nodes across the network be well

synchronized. As a result, a need for the synchronization oflarge distributed systems is very real and

one that requires careful study to understand the fundamental performance limits on synchronization.

B. Approaches to Synchronization and the Limitations

The synchronization of large networks has been studied in fields ranging from biology to electrical

engineering. The study of synchronous behavior has generally taken one of two approaches. The first

approach is to consider synchronization as an emergent behavior in complex networks of oscillators.

In that work, models are developed to describe natural phenomena and synchronization emerges from

these models. The second approach is to develop and analyze algorithms that synchronize engineering

networks. Nodes are programmed with algorithms that estimate clock skew and clock offset to achieve

network synchronization. However, both of these approaches have significant limitations.

1) The Emergence of Synchronous Behavior:Emergent synchronization properties in large populations

has been the object of intense study in the applied mathematics ([30], [41]), physics ([3], [4], [5], [9],

[12], [14], [16], [25]), and neural networks ([21], [37]) literature. These studies were motivated by a

number of examples observed in nature:

• In certain parts of south-east Asia, thousands of male fireflies congregate in trees and flash in

synchrony at night [2].
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• Pacemaker cells of the heart, which on average cause 80 contractions a minute during a person’s

lifetime [22].

• The insulin-secreting cells of the pancreas [35].

For further information and examples, see [32], [40], [31],[42], and the references therein.

A number of models have been proposed to explain the emergence of synchrony, but perhaps one of the

most successful and well known is the model ofpulse-coupled oscillatorsby Mirollo and Strogatz [32],

based on dynamical systems theory. Consider a functionf : [0, 1] → [0, 1] that is smooth, monotone

increasing, concave down (i.e.,f ′ > 0 andf ′′ < 0), and is such thatf(0) = 0 andf(1) = 1. Consider

also a phase variableφ such that∂φ/∂t = 1
T

, whereT is the period of a cycle. Then, each element in

a group ofN oscillators is described by a state variablexi ∈ [0, 1] and a phase variableφi ∈ [0, 1] as

follows:

• In isolation,xi(t) = f(φi(t)).

• If φi(t) = 0 thenxi(t) = 0, and if φi(t) = 1 thenxi(t) = 1.

• Whenxi(t0) = 1 for any of thei’s and some timet0, then for all other1 ≤ j ≤ N , j 6= i

φj(t
+
0 ) =







f−1(xj(φj(t0)) + εi), xj(φj(t0)) + εi ≤ 1

1, xj(φj(t0)) + εi > 1,

wheret+0 denotes an infinitesimal amount of time aftert0. That is, oscillatori reaching the end of

a cycle causes the state of all other oscillators to increaseby the amountεi, and the phase variable

to change accordingly.

The state variablexi can be thought of as a voltage. Charge is accumulated over time according to

the nonlinearityf and it discharges once it reaches full charge, resetting thecharging process. Upon

discharging, it causes all other charges to increase by a fixed amount ofεi, up to the discharge point. For

this model, it is proved in [32] that for allN and for almost all initial conditions, the system eventually

becomes synchronized.

For the network to converge into a synchronous state, one keyassumption is that the behavior of every

single oscillator is governed by the same functionf(·). This means that all oscillators must have the same

frequency. From the literature, it appears that this requirement is nearly always needed. As far as we are

aware, for a fully synchronous behavior to emerge, the oscillators need to have the same, or nearly the

same, oscillation frequencies.

The need for nearly identical oscillators presents a significant limitation for emergent synchronization.

This emergence of synchrony is clearly desirable and it has been considered for communication and sensor
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networks in [17], [18], [28]. However, whether or not these techniques can be adapted to synchronize

networks with nodes that have arbitrary oscillator frequencies (clock skew) is still unclear. Thus, in

order to overcome this limitation and find techniques capable of synchronizing a more general class of

networks, we turn to algorithms designed to estimate certain unknown parameters such as clock skew.

2) Estimation of Synchronization Parameters and the Scalability Problem: There have been many

synchronization techniques proposed for use in sensor networks. These algorithms generally allow each

node to estimate its clock skew and clock offset relative to the reference clock. Reference Broadcast

Synchronization (RBS) [8] eliminates transmitter side uncertainties by having a transmitter broadcast

reference packets to the surrounding nodes. The receiving nodes then synchronize to each other using

the arrival of the reference packets as synchronization events. Tiny-Sync/Mini-Sync [36] and the Timing-

sync Protocol for Sensor Networks (TPSN) [11] organize the network into a hierarchial structure and

the nodes are synchronized using pair-wise synchronization. In lightweight tree-based synchronization

(LTS) [13], pair-wise synchronization is also employed butthe goal of LTS is to reduce communication

and computation requirements by taking advantage of relaxed accuracy constraints. The Flooding Time

Synchronization Protocol (FTSP) [29] achieves one-hop synchronization by having a root node broadcast

timing information to surrounding nodes. These surrounding nodes then proceed to broadcast their

synchronized timing information to nodes beyond the broadcast domain of the root node. This process

can continue for multi-hop networks.

The problem with each of these traditional synchronizationtechniques is that synchronization error

will increase with each hop. Since each node is estimating certain synchronization parameters, i.e. clock

skew, there will be inherent errors in the estimate. As a result, a node multiple hops away from the node

with the reference clock will be estimating its parameters from intermediate nodes that already have

estimation errors. Therefore, this introduces a fundamental scalability problem: as the number of hops

across the network grows, the synchronization error acrossthe network will also grow.

Current trends in network technology are clearly moving us in the direction of large, multi-hop

networks. First, sensors are decreasing in size and this size decrease will most likely be accompanied by a

decrease in communication range. Thus, more hops will be required to traverse a network deployed over

a given area. Second, as we deploy networks over larger and larger areas, then for a given communication

range, the number hops across the network will also increase. In either case, the increased number of

hops required to communicate across the network will increase synchronization error. Therefore, it is

essential that we develop techniques than can mitigate the accumulation of synchronization error over

multiple hops.
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C. Spatial Averaging and Synchronization

1) Cooperation through Spatial Averaging:To decrease the error increase in each hop, we need to

decrease the estimation error. There are two primary ways ofachieving this. First, each node can increase

the amount of timing information it obtains from neighboring nodes. For example, from a received timing

packet, the node may be able to construct a data point tellingit the approximate time at the reference

clock and the corresponding time at its local clock. Using a collection of these data points, the node can

estimate clock skew and clock offset. So instead of using, say, five packets with timing information, a

node can wait for ten packets. More data points will generally give better estimates. The drawback to

such an approach is the increase in the number of packet exchanges.

The second way in which to reduce estimation error is to increase the quality of each data point

obtained by the nodes. This can be achieved through improving packet exchange algorithms and time

stamping techniques. However, we believe that there is one fundamentally new approach to improving

data point quality that has not be carefully studied. This isto use spatial averaging to improve the quality

of each data point.

The motivation for this approach is very simple. Assume thateach node has many neighbors. If all

nodes in the network are to be synchronized, then the neighbors of any given node will also have

synchronization information. Is it possible to simultaneously use information from all the neighbors to

improve the quality of a timing observation made by a node? Furthermore, it would seem to make

sense that with more neighbors, hence more available timinginformation, the quality of the constructed

data point should improve. If this is indeed the case, then achieving synchronization through the use of

spatial averaging will provide a fundamentally new trade-off in improving synchronization performance.

Network designers would simply be able to increase the number and density of nodes to obtain better

network synchronization. The study of cooperative time synchronization using spatial averaging is the

focus of this work.

2) Model and Technique:To obtain a model for developing cooperative synchronization in large

wireless networks, we begin by looking at the signals observed by a node in a network withN nodes

uniformly deployed over a fixed finite area. To start, we assume propagation delay to negligible (the

general case is considered in SectionV). All nodes transmit a pulsep(t) and a nodej will see a signal

Aj,N(t) which is the superposition of all these pulses,

Aj,N (t) =
N
∑

i=1

AmaxKj,i

N
p(t− τ0 − Ti).
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In this expression,p(t) is the basic pulse transmitted by each node (assumed to be thesame for all

nodes).τ0 is the ideal pulse transmit time, but since we assume imperfect time synchronization among

the nodes we haveTi modelling random errors in the pulse transmission time.Kj,i models the amplitude

loss in the signal transmitted by theith node.Amax is the maximum magnitude transmitted by a node.

We scale each node’s transmission byN so that as the network density grows, the total power radiated

does not grow unbounded. This model thus describes the received signal seen at a nodej for a network

with N nodes and this holds for anyN . IncreasingN will have two effects: (a) node density will increase

since the network area is fixed and (b) node signal transmission magnitude will decrease due to the1/N

scaling. Therefore, by increasingN this model allows us to study the scalability of networks as node

density grows and node size decreases.

Given that these are the signals observed at each node, we ask: is it possible forAj,N (t) to encode

a time synchronization signal that will enable all nodes in the network to synchronize their clocks with

bounded error, asN → ∞? The answer is yes, and the key to proving all our results is the law of large

numbers.

Our key idea is the following. If all nodes were able to determine when timeτ0 (in the reference

time) arrives, then by transmittingp(t) at time τ0, the signal observed at any nodej would bep(t −
τ0)

∑N
i=1

AmaxKj,i

N
, which is a suitably scaled version ofp(t) centered atτ0. In reality however, there

will be some error in the determination ofτ0, which we account for by allowing for a node-dependent

random errorTi. But, if the distribution ofTi satisfies certain conditions, then the effects of that timing

error can be averaged out. A pictorial representation of whythis should be the case is shown in Fig.1.
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Fig. 1. AssumeN square waves are transmitted (one by each node) at random times. These times have the properties

that they all have the same mean, a small variance compared tothe duration of the wave, and their distribution is

symmetric. Then, under the assumption ofN large, it follows from the Law of Large Numbers that the observed

signal is going to be a smoothed version of the square wave, inwhich the centerzero-crossingwill correspond to

the location of the mean of the random times.

February 12, 2006. DRAFT



7

Therefore, intuitively we can see how the technique ofcooperative time synchronizationusing spatial

averaging can average out the inherent timing errors in eachnode. Even though there is randomness

and uncertainty in each node’s estimates, by using cooperation among a large number of nodes it is

possible to recoverdeterministicparameters from the resulting aggregate waveform (such as the location

of certain zero-crossings) in the limit as node density grows unbounded. Thus more nodes will give us

better estimates. This is because the random waveform converges to a deterministic one as more and

more nodes cooperatively generate an aggregate waveform. At the same time, the average power required

by each node will decrease since smaller nodes send smaller signals. Therefore, by programming suitable

dynamics into the nodes, in this paper we show how it is possible to generate an aggregate output signal

with equispacedzero-crossings in the limit of asymptotically dense networks. Thus, the detection of

these zero-crossings plays the same role as that of an externally generated time reference signal based

on which all nodes can synchronize.

We develop this synchronization technique in three main steps. One, we set up the model forAj,N (t).

Two, we specify characteristics of the model (i.e. the distribution of Ti) that allow us to prove desirable

properties of the aggregate waveform (such as a center zero-crossing atτ0). Three, we develop the

estimators needed for our synchronization technique and show that the estimators give us the desired

characteristics.

D. Main Contributions and Organization of the Paper

The main contributions presented in this paper are the following;

• The definition of a probabilistic model for the study of the time synchronization problem in wireless

networks. This model does contain the classical Mirollo-Strogatz model as a special case, but its

formulation and the tools used to prove convergence resultsare of a completely different nature

(purely probabilistic, instead of based on the theory of dynamical systems).

• Using this model, we provide a rigorous analysis of a new cooperative time synchronization technique

that employs spatial averaging and has favorable scaling properties. As the density of nodes increases,

synchronization performance improves. In particular, in the limit of infinite density, deterministic

parameters for synchronization can be recovered.

• We show that cooperative time synchronization works perfectly for negligible propagation delay.

When propagation delay is considered, we find that asymmetries at the boundaries reveal some

limitations that need to be carefully considered in designing algorithms that take advantage of spatial

averaging.
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In analyzing the proposed cooperative time synchronization technique, our goal is to show that the pro-

posed technique can average out all random error and providedeterministic parameters for synchronization

as node density grows unbounded. This asymptotic result canbe viewed as aconvergence in scaleto

synchrony. The result serves as a theoretical foundation for allowing a new trade-off between node density

and synchronization performance. In particular, higher node density can yield better synchronization.

The rest of this paper is organized as follows. The general model is presented in SectionII . Of particular

interest here is SectionII-E, where we show how our model contains the model of Mirollo andStrogatz

for pulse-coupled oscillators as a special case [32]. In Section III we specialize the general model for

our synchronization setup and develop waveform propertiesthat will be used in time synchronization.

In SectionIV we develop the cooperative time synchronization techniquefor no propagation delay. We

extend the cooperative synchronization ideas to the case ofpropagation delay in SectionV. The paper

concludes in SectionVI with a detailed discussion on the scalability issue and how the technique proposed

in this work lays the theoretical foundation for a general class of cooperative time synchronization

techniques that use spatial averaging.

II. SYSTEM MODEL

A. Clock Model

We consider a network withN nodes uniformly distributed over a fixed finite area. The behavior of

each nodei is governed by a clockci that counts up from0. The introduction ofci is important since

it provides a consistent timescale for nodei. By maintaining a table of pulse-arrival times, nodei can

utilize the arrival times of many pulses over an extended period of time.

The clock of one particular node in the network will serve as the reference time and to this clock we

wish to synchronize all other nodes. We will call the node with the reference clock node1 and the clocks

of other nodes are defined relative to the clock of node1. We never adjust the frequency or offset of the

local clockci because we wish to maintain a consistent time scale for nodei.

The clock of node1, c1, will be defined asc1(t) = t wheret ∈ [0,∞). Taking c1 to be the reference

clock, we now define the clock of any other arbitrary nodei, ci. We defineci as

ci(t) = αi(t− ∆̄i) + Ψi(t), (1)

where

• ∆̄i is an unknown offset between the start times ofci andc1.

February 12, 2006. DRAFT



9

• αi > 0 is a constant and for eachi, αi ∈ [αlow, αup] whereαup, αlow > 0 are finite. This bound on

αi means that the frequency offsets between any two nodes can not be arbitrarily large.

• Ψi(t) is a stochastic process modeling random timing jitter.

Thus, this model assumes that there is a bounded constant frequency offset between the oscillators of

any two nodes as well as some random clock jitter.

It is important to note that node1 does not have to be special in any way; its clock is simply a reference

time on which to define the clocks of the other nodes. This means that our clock model actually describes

the relative relationship of all the clocks in the network byusing an arbitrary node’s clock as a reference.

B. Pathloss Only Model

1) A Random Model for Pathloss:From SectionI-C.2, we see that we are interested in studying the

aggregate waveform observed at a nodej. As a result, we are only concerned with the aggregate signal

magnitude and do not care about the particular signal contribution from each surrounding node. With

this in mind, we can develop a random model for pathloss that,for dense networks, gives the appropriate

aggregate signal magnitude at nodej. Such a model is ideal for our situation since we are studying

asymptotically dense networks.

We start with a general pathloss modelK(d), where0 ≤ K(d) ≤ 1 for all distancesd ≥ 0, is non-

increasing and continuous.K(d) is a fraction of the transmitted magnitude seen at distanced from the

transmitter. For example, if the receiver nodej is at distanced from nodei, and nodei transmits a

signal of magnitudeA, then nodej will hear a signal of magnitudeAK(d). We deriveK(d) from a

power pathloss model since any pathloss model captures theaveragereceived power at a given distance

from the transmitter. This average received power is perfect for modelling received signal magnitudes

in our problem setup since we are considering asymptotically dense networks. Due to the large number

of nodes at any given distanced from the receiver, using the average received magnitude at distanced

as the contribution from each node at that distance will givea good modelling of the amplitude of the

aggregate waveform.

The random pathloss variableKj will be derived fromK(d). To understand howKj andK(d) are

related, we give an intuitive explanation of the meaning ofKj as follows: the Pr[Kj ∈ (k, k + ∆)]

is the fraction of nodes at distancesd from nodej such thatK(d) ∈ (k, k + ∆), where∆ is a small

constant. This means that, roughly speaking, for any given scaling factorKj = k, fKj
(k)∆ is the fraction

of received signals with magnitude scaled by approximatelyk, wherefKj
(k) is the probability density

function ofKj. Thus, if we scale the transmit magnitudeA from every nodei by an independentKj ,
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then as the number of nodes,N , gets large, nodej will seeNfKj
(k)∆ signals of approximate magnitude

Ak, and this holds for allk in the range ofKj. This is because taking a large number of independent

samples from a distribution results in a good approximationof the distribution.

Thus, this intuition tells us that scaling the magnitude of the signal transmitted from every nodei

by an independent sample of the random variableKj gives an aggregate signal at nodej that is the

same magnitude as if we generated the signal usingK(d) directly. Even though the signals from two

nodes at the same distance from a receiver have correlated magnitudes, we do not care about the signal

magnitude from any particular node but only that an appropriate number of all possible received signal

magnitudes contribute to the aggregate waveform. For a receiving nodej, we choose therefore to work

with the random variableKj instead of directly withK(d) because, for the goals of this paper, doing so

has two major advantages: (a) we can obtain desirable limit results by placing very minimal restrictions

on the distribution of theKj ’s (and hence onK(d)) and (b) we can apply tools from probability theory

(basically, the strong law of large numbers) to carry out ouranalysis.

2) Definition ofKj : From the above intuition we can define the cumulative distribution function of

Kj as

FKj
(k) = Pr(Kj ≤ k) =



















0 k ∈ (−∞, 0)

AT−A(j,r̄)
AT

= 1− A(j,r̄)
AT

k ∈ [0, 1]

1 k ∈ (1,∞)

(2)

where

• AT is the total area of the network,

• A(j, a) is the area of the network contained in a circle of radiusa centered at nodej,

• r̄ = sup{d : K(d) > k}.

From the above discussion we see that the distribution ofKj is only a function of nodej, the receiving

node. We illustrate the relationship among nodej, K(d), r̄, andFKj
(k) in Fig 2. We sometimes writeKj,i

with i used to index each node surrounding nodej. i is thus indexing a sequence of independent random

variablesKj,i for fixed j. Therefore, for a givenj, Kj,i’s are independent and identically distributed

(i.i.d.) with a cumulative distribution function given by (2) for all i.

We assume thatKj has the following properties:

• Kj is independent fromΨl(t) for all j, l, andt.

• 0 ≤ Kj ≤ 1, 0 < E(Kj) ≤ 1, and Var(Kj) ≤ 1.

The requirements on the random variableKj places restrictions on the modelK(d). Any functionK(d)

that yields aKj with the above requirements can be used to model pathloss.
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Fig. 2. An illustration of the cumulative distribution functionFKj
(k) is shown in the bottom-right figure. For a

given scaling valuek, FKj
(k) is defined to be1− (A(j, r̄)/AT ), where the relationship between̄r andk is shown

in the top-right figure. The areaA(j, r̄) and its relation to nodej is shown in the top-left figure.

C. Delay and Pathloss Model

In this section we develop a more complex model to simultaneously model propagation delay and

pathloss. This leads to the joint development of the delay random variableDj and a corresponding

pathloss random variableKj .

1) Correlation Between Delay and Pathloss:Since we want to develop a model for both pathloss

and time delay, we start by keeping the pathloss functionK(d) defined in SectionII-B. The general

delay model assumes a functionδ(d) that models the time delay as a function of distance.δ(d) describes

the time in terms ofc1 that it takes for a signal to propagate a distanced. For example, if nodei and

node j are distanced0 apart, then a pulse sent by nodei at time c1 = 0 will be seen at nodej at

time c1 = δ(d0). We make the reasonable assumption thatδ(d) is continuous and strictly monotonically

increasing ford ≥ 0.

As with the pathloss only model, we want to define a delay random variableDj for each receiving

nodej. Recall that this means that for every nodej there is a random variableDj associated with it

since, in general, each nodej will see different delays. There is a correlation between the delay random
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variableDj and the pathloss random variableKj . This correlation arises for two main reasons. First,

since in SectionII-B we defineK(d) to be monotonically decreasing and continuous, it is possible for

K(d) = 0 for d ∈ [R,∞), R > 0. This might be the case for a multi-hop network. In this situation,

there will be a set of nodes whose transmissions will never reach nodej (i.e. infinite delay) even though

according toδ(d) these nodes should contribute a signal with finite delay. Second, a smallKj value

would represent a signal from a far away node. As a result, thecorrespondingDj value should be large

to reflect large delay. Therefore, keeping these two points in mind, we proceed to develop a model for

both pathloss and propagation delay.

2) Definition ofDj andKj : We define the cumulative distribution function ofDj as

FDj
(x) = Pr(Dj ≤ x) =































0 x ∈ (−∞, 0)

A(j,r′)
AT

x ∈ [0, δ(R)]

a(x− δ(R)) + A(j,R)
AT

x ∈ (δ(R), δ(R +∆R)]

1 x ∈ (δ(R +∆R),∞)

(3)

wherer′ = sup{r : δ(r) ≤ x}, ∆R > 0 is a constant,R = sup{d : K(d) > 0}, and

a =
1− A(j,R)

AT

δ(R +∆R)− δ(R)
.

Recall thatA(j, a), defined in SectionII-B, is the area of the network contained in a circle of radiusa

centered at nodej andAT is the total area of the network. Note thatR can be infinite.

Using the delay random variableDj with the cumulative distribution function in (3), we defineKj as

Kj = K(δ−1(Dj)), (4)

whereK(·) is the deterministic pathloss function from SectionII-B and δ−1 : [0,∞) → [0,∞) is the

inverse function of the deterministic delay functionδ(·). Note thatδ−1(·) exists sinceδ(·) is continuous

and strictly monotonically increasing on[0,∞).

3) Intuition BehindDj andKj : To understand the distribution ofDj , we need to consider the definition

of Kj as well. Recall that a signal arriving with delayDj is scaled by the pathloss random variableKj .

Let us consider the cumulative distribution in two pieces,x ∈ [0, δ(R)] andx ∈ (δ(R),∞). The case

for x ∈ (−∞, 0) is trivial. First, for x ∈ [0, δ(R)], the probability thatDj takes a value less than or

equal tox is simply the fraction of the network area around nodej such that the nodes are at distances

d with δ(d) ≤ x. The intuition is the same as that for the development ofKj in SectionII-B. Second,

for x ∈ (δ(R),∞), the situation is more complex. Note that a transmitted signal from a node at distance

d ∈ (R,∞) from j will arrive at nodej with infinite delay sinceK(d) = 0 for d ∈ (R,∞). Since any
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delay values inx ∈ (δ(R),∞) correspond to distancesd = δ−1(x) ∈ (R,∞), the corresponding scaling

value will be zero becauseKj andDj are related by (4). As a result, it does not matter what delay values

we assign to the fraction of the network area outside a circleof radiusR centered at nodej as long as

their delay valuex is such thatδ−1(x) ∈ (R,∞). Thus, we can arbitrarily choose a constant∆R value

and construct a piecewise linear portion of the cumulative distribution function ofDj on x ∈ (δ(R),∞).

The probability thatDj ∈ (δ(R),∞) will be the fraction of the network area outside a circle of radiusR

around nodej. And sinceDj ∈ (δ(R),∞) will have a correspondingKj value that is zero, this fraction

of nodes will not contribute to the aggregate waveform at node j. It is clear that the correlatedDj andKj

random variables work together to accurately model a signalarriving with both pathloss and propagation

delay. An illustration of howK(d), δ(d), nodej, andFDj
(x) are related can be found in Fig.3.

∆R
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1

Pathloss Function

Delay FunctionNetwork Area
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1

d

d

K(d) x

Fig. 3. From the top-left and bottom-left figures, we can see howK(d) determines the set of nodes surrounding

nodej that will contribute to the aggregate waveform at nodej. This contributing set of nodes is related toFDj
(x)

throughδ(d) and this is illustrated in the top-right and bottom-right figures.

We require thatDj is bounded, has finite expectation, and has finite variance for all j. Note that

Dj ≥ 0 by the requirement thatδ(d) ≥ 0. As well, since the cumulative distribution in (3) is continuous,

and often absolutely continuous, we assume thatDj has a probability density functionfDj
(x). When we
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write Dj,i, the i indexes each node surrounding nodej. Thus, theDj,i’s are independent and identically

distributed in i for a given j and have a cumulative distribution given by (3). Using theKj andDj

developed in this section to simultaneously model pathlossand propagation delay, respectively, we will

be able to closely approximate the received aggregate waveform at any nodej asN → ∞.

To summarize, we see that our choice of the pathloss and delayrandom variables will depend on what

we want to model. If we only consider pathloss and not propagation delay, then we will use the random

variableKj defined in SectionII-B. If we account for both pathloss and delay, then we will use the delay

random variableDj in this section (SectionII-C) and the pathloss random variableKj defined by (4).

D. Synchronization Pulses and the Pulse-Connection Function

The exchange of pulses is the method through which the network will maintain time synchronization.

Each nodei will periodically transmit a scaled pulseAip(t), whereAi is a constant andp(t), in general,

can be any pulse. We call the interval of time during which a synchronization pulse is transmitted a

synchronization phase.

What each node does with a set of pulse arrival observations is determined by the pulse-connection

function Xci
n,i for node i. The pulse-connection function is a function that determines the time, in the

time scale ofci, when nodei will send itsnth pulse. It can be a function of the current value ofci(t)

and past pulse arrival times. This function basically determines how any nodei reacts to the arrival of

a pulse.

E. An Example: Pulse-Coupled Oscillators

The system model that we presented thus far is powerful because it is very general. In this section

we show that it is a generalization of the pulse-coupled oscillator model proposed by Mirollo and

Strogatz [32]. As a result, the results presented in that paper will hold under the simplified version

of our model.

1) Model Parameters for Pulse-Coupled Oscillators:In setting up the system model, Mirollo and

Strogatz make four key assumptions:

• Pathloss Model: The first assumption that is made is that there is all-to-all coupling among allN

oscillators. This means that each oscillator’s transmission can be heard by all other oscillators. Thus,

for our model we ignore pathloss, i.e.K(d) = 1, to allow any node’s transmission to be heard by

each of the otherN − 1 nodes.
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• Delay Model: The second assumption is that there is instantaneous coupling. This assumption is the

same as settingδ(d) = 0. In such a situation we would use our pathloss only model.

• Synchronization Pulses: The third key assumption made in [32] is that there is non-uniform coupling,

meaning that each of theN oscillators fire with strengthsǫ1, . . . , ǫN . We modify the parameters in

our model by making nodei transmit with magnitudeAi = ǫi. They also assume that any two pulses

transmitted at different times will be seen by an oscillatoras two separate pulses. In our model, we

may choose any pulsep(t) that has an arbitrarily short duration and each node will detect the pulse

arrival time and pulse magnitude.

• Clock Model: The fourth important assumption made by Mirollo and Strogatz is that the oscillators

are identical but they start in arbitrary initial conditions. We simplify our clock model in (1) by

eliminating any timing jitter, i.e.Ψi(t) = 0, and making the clocks identical by settingαi = 1 for

i = 1, . . . , N . We leave∆̄i in the model to account for the arbitrary initial conditions. We also

assume that the phase variable in the pulse-coupled oscillator model increases at the same rate as

our clock. That is, the time it takes the phase variable to go from zero to one and the time it takes

our clock to count from one integer value to the next are the same.

Now that we have identical system models, what remains is to modify our model to mimic the coupling

action detailed in [32]. This is accomplished by defining a proper pulse-connection functionXci
n,i.

2) Choice of Pulse-Connection Function:To match the coupling action in [32], we choose a pulse

transmit time functionXci
n,i(z

ci
k,i, z

ci
k−1,i, . . . , z

ci
1,i, x

ci
n−1,i) that is a function of pulse receive times and

also the time of nodei’s (n − 1)th pulse transmission time.zcik,i is the time in terms ofci that node

i receives itskth pulse since its last pulse transmission atxcin−1,i. In this case,Xci
n,i will be a function

that updates nodei’s nth pulse transmission time each time nodei receives a pulse. LetXci
n,i(k)

∆
=

Xci
n,i(z

ci
k,i, z

ci
k−1,i, . . . , z

ci
1,i, x

ci
n−1,i) where it is nodei’s nth pulse transmission time after observingk pulses

since its last pulse transmission. Nodei will transmit its pulse as soon asXci
n,i ≤ ci(t) whereci(t) is

nodei’s current time. As soon as the node transmits a pulse atXci
n,i the function will reset and become

Xci
n+1,i(0) = xcin,i + 1. The node is now ready to receive pulses and at its first received pulse, the next

transmission time will becomeXci
n+1,i(1). X

ci
n,i will thus be defined as

Xci
n,i(k) = Xci

n,i(k − 1)− [f−1(ǫj + f(zcik,i − xcin−1,i))− (zcik,i − xcin−1,i)], k > 0 (5)

Xci
n,i(0) = xcin−1,i + 1 (6)

where the pulse received atzcik,i is a pulse of magnitudeǫj and the functionf : [0, 1] → [0, 1] is the

smooth, monotonic increasing, and concave down function defined in [32].
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Equations (5) and (6) fundamentally say that each time nodei receives a pulse, nodei’s next trans-

mission time will be adjusted. This is in line with the behavior of the coupling model described by

Mirollo and Strogatz since each time an oscillator receivesa pulse, its state variable is pulled up byǫ

thus adjusting the time at which the oscillator will next fire. To see how equations (5) and (6) relate

to the coupling model in [32], let us consider an example withtwo pulse coupled oscillators. Consider

two oscillatorsA andB illustrated in Fig.4. In Fig. 4(a), we have that oscillatorA is at phaseq and

A

B
A

B

x
n-1,i

ci x
n-1,i

cix
n-1,i

+1
c i z

1,i

c i X
n,i

(1)
c iX

n,i
(0) =

c
i

X
n,i

(0)
ci

f(q) f(q)

(a) (b)

d

d

q q
0 01 1

11

Fig. 4. We illustrate the connection between the pulse-coupled oscillator coupling model and our clock model. In

(a), oscillatorB is just about to fire and oscillatorA has phaseq. In (b), oscillatorB fires and increases the phase

of oscillatorA by d. This d increase in phase effectively decreases the time at whichA will next fire. We capture

this time decrease by decreasing the firing time of our node byan amountd. Thus, oscillatorA and our node will

fire at the same time.

oscillatorB is just about to fire. Below the pulse-coupled oscillator model we have a time axis for nodei

corresponding to our clock model going from timexcin−1,i to xcin−1,i+1. Our time axis for nodei models

the behavior of oscillatorA, that is, we want nodei to behave in the same way as oscillatorA under the

influence of oscillatorB. If oscillatorB did not exist, then the phase variableq will match our clock in

that q reaches1 at the same time our clock reachesXci
n,i(0) = xcin−1,i + 1 and oscillatorA will fire at

the same time our model fires. In Fig.4(b), oscillatorB has fired and has pulled the state variable of

oscillatorA up byǫ. This coupling has effectively pushed the phase of oscillatorA to q+d and decreased

the time beforeA fires. In fact, the time until oscillatorA fires again is decreased byd. We can capture

this coupling in our model since we can calculate the lost time d. The time at which oscillatorB fires is

zci1,i and it is clear thatd = f−1(ǫ+ f(zci1,i − xcin−1,i)) − (zci1,i − xcin−1,i). Thus, if the time that oscillator

A will fire again is decreased by timed due to the pulse ofB, then we adjust our node firing time by
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decreasing the firing time toXci
n,i(1) = xcin−1,i + 1 − d. This is exactly the expression in (5) for k = 1.

This relationship between our model for calculating the node firing time and the pulse-coupled oscillator

coupling model can be easily extended toN oscillators.

We can see then that the pulse-coupled oscillator model proposed by Mirollo and Strogatz in [32] is

a special case of our model. Our model generalizes this pulse-coupled oscillator model by considering

timing jitter, pulses of finite width, propagation delay, non-identical clocks, and an ability to accommodate

arbitrary coupling functions.

III. C OOPERATIVE TIME SYNCHRONIZATION SETUP

Just as we could specialize our model to the pulse-coupled oscillator model of Mirollo and Strogatz,

we now specialize the model for our proposed synchronization technique. We start under the assumption

of no propagation delay and develop the synchronization technique for this case. Propagation delay is

considered in SectionV. We proceed in three steps. In SectionIII-B , we specify the model forAc1
j,N (t),

the received waveform at any nodej. Second, in SectionIII-C, we prove that given certain characteristics

of the model,Ac1
j,N (t) has very useful limiting properties. Third, we show in Section IV that estimators

(i.e., the pulse connection function) developed for our synchronization technique giveAc1
j,N (t) the desired

properties.

A. System Parameters

For our synchronization technique, we specialize the general model by making the following assump-

tions onαi andΨi(t) for i = 1 . . . N :

• A characterization of the{αi} is given by a known functionfα(s) with s ∈ [αlow, αup] that gives

the percentage of nodes with any givenα value. Thus, the fraction of nodes withα values in the

ranges0 to s1 can be found by integratingfα(s) from s0 to s1. We assume that|fα(s)| < Gα,

for some constantGα. We keep this function constant as we increase the number of nodes in the

network (N → ∞). Given any circle of radiusR that intersects the network, the nodes within that

circle will haveαi’s that are characterized byfα(s). R is the maximumd such thatK(d) > 0. This

means that the set of nodes that any nodej will hear from will have itsαi’s characterized by a

known function. Note thatR can be infinite, and in that case, any nodej hears from all nodes in

the network. Fundamentally,fα(s) means that as we increase node density, the new nodes haveα

parameters that are well distributed in a predictable manner.
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• Ψi(t) is a zero mean Gaussian process with samplesΨi(t0) ∼ N (0, σ2), for anyt0, and independent

and identically distributed samples for any set of times[t0, . . . , tk], k a positive integer. We assume

σ2 <∞ and note thatσ2 is defined in terms of the clock of nodei. We assume thatΨi(t) is Gaussian

since the RMS (root mean square) jitter is characterized by the Gaussian distribution [34].

We maintain the full generality of the pathloss model from Section II-B. Note that throughout this work

we assume no transmission delay or time-stamping error. This means that a pulse is transmitted at exactly

the time the node intends to transmit it. We make this assumption since there will be no delay in message

construction or access time [8] because our nodes broadcastthe same simple pulse without worrying about

collisions. Also, when a node receives a pulse it can determine its clock reading without delay since any

time stamping error is small and can be absorbed into the random jitter.

B. Signal Reception Model

For our proposed synchronization technique, the aggregatewaveform seen by nodej at any timet is

Ac1
j,N(t) =

N
∑

i=1

AmaxKj,i

N
p(t− τo − Ti), (7)

whereAc1
j,N (t) is the waveform seen at nodej written in the time scale ofc1 andAi = Amax/N for

all i. Amax is the maximum transmit magnitude of a node.Ti is the random timing offset suffered by

the ith node, which encompasses the random clock jitter and estimation error. This model says that

each nodei’s pulse transmission occurs at the ideal transmit timeτ0 plus some random errorTi. In the

next section, SectionIII-C, we find properties forTi that will give us desirable properties inAc1
j,N (t).

Then, in SectionIV, we show that our proposed steady-state synchronization technique and its associated

pulse-connection function will give us the desired properties.

There are two comments about (7) that we want to make. First, note that even though we sum the

transmissions from allN nodes in (7), we do not assume that nodej can hear all nodes in the network.

Recall from the pathloss model that if we have a multi-hop network, then there will be a nonzero

probability thatKj,i = 0. Thus, nodej will not hear from the nodes whose transmissions have zero

magnitude. Second, it may be possible that the nodes are toldthat there areN̄ = vN nodes in the

network while the actual number of functioning nodes isN . In which case, each node will transmit with

signal magnitudeAi = Amax/(vN) and (7) will have a factor of1/v. Other than for this factor, however,

the theoretical results that follow are not affected.

To model the quality of the reception ofAc1
j,N(t) by nodej, we model the reception of a signal by

defining a thresholdγ. γ is the received signal threshold required for nodes to perfectly resolve the pulse
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arrival time. If the maximum received signal magnitude is less thanγ then the node does not make any

observations and ignores the received signal waveform. We assume thatγ ≪ Amax.

In our work we will assume thatp(t) takes on the shape

p(t) =



















q(t) −τnz < t < 0

0 t = 0, t ≤ −τnz, t ≥ τnz

−q(−t) 0 < t < τnz

(8)

whereτnz > 0 is expressed in terms ofc1. We assumeq(t) > 0 for t ∈ (−τnz, 0), q(t) 6= 0 only on

t ∈ (−τnz, 0), supt|q(t)| = 1, and q(t) is uniformly continuous on(−τnz, 0). Thus, we see thatp(t)

has at most three jump discontinuities (att = 0,−τnz, τnz). τnz should be chosen large compared to

maxi σ
2
i , i.e. σ2i << τnz, whereσ2i is the value ofσ2 translated from the time scale ofci to c1. This

way, over each synchronization phase, with high probability a zero-crossing will occur. For each node,

the duration in terms ofc1 of a synchronization phase will be2τnz. Note that we assumeτnz is a value

that is constant in any consistent time scale. This means that even though nodes have different clocks,

identical pulses are transmitted by all nodes. We define a pulse to be transmitted at timet if the pulse

makes a zero-crossing at timet. Similarly, we define thepulse receive (arrival) timefor a node as the

time when the observed waveform first makes a zero-crossing.A zero-crossingis defined for signals that

have a positive amplitude and then transition to a negative amplitude. It is the time that the signal first

reaches zero.

For the exchange of synchronization pulses, we assume that nodes can transmit pulses and receive

signals at the same time. This simplifying assumption is notrequired for the ideas presented here to

hold, but simplifies the presentation. We mention a way to relax this assumption in SectionIV-D.1.

In (7) and in the discussions above, we have focused on characterizing the aggregate waveform for

any one synchronization phase. That is, (7) is the waveform seen by any nodej for the synchronization

phase centered around node1’s transmission att = τ0, τ0 a positive integer. We can, however, describe

a synchronization pulse train in the following form,

Āc1
j,N (t) =

∞
∑

u=1

N
∑

i=1

AmaxKj,i

N
p(t− τu − Ti,u), (9)

whereτu is the integer value oft at theuth synchronization phase, andTi,u is the error suffered by theith

node in theuth synchronization phase. We seek to create this pulse trainwith equispaced zero-crossings

and use each zero-crossing as a synchronization event. An illustration of such a pulse train is shown in

Fig. 5. For simplicity, however, most of the theoretical work is carried out on one synchronization phase.
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t=3t=2t=1 time

Fig. 5. An illustration of a pulse train with equispaced zero-crossings. The pulse at each integer value oft is

an instance ofAj,∞(t) = limN→∞Ac1
j,N (t) so we see three instances ofAj,∞(t) in the above figure with zero-

crossings att = 1, 2, 3. We can control the zero-crossings ofAj,∞(t) and choose to place it on an integer value of

t. As a result, we can use these zero-crossings as synchronization events since they can be detected simultaneously

by all nodes in the network.

C. Desired Structural Properties of the Received Signal

In this section, we characterize the properties ofTi that give us desirable properties in the aggregate

waveform. From (7), the aggregate waveform seen at each nodej in the network has the form

AN (t) =
1

N

N
∑

i=1

AmaxKip(t− τ0 − Ti) (10)

We have dropped thej and c1 for notational simplicity since in this section we deal solely with the

received waveform at a nodej in the time scale ofc1. As we let the number of nodes grow unbounded

(N → ∞), the properties of this limit waveform can be characterized by Theorem1. These properties

will be essential for asymptotic cooperative time synchronization. As a note, in Theorem1 we present the

case for Gaussian distributedTi but similar results hold for arbitrary zero-mean, symmetrically distributed

Ti with finite variance.

Theorem 1:Let p(t) be as defined in equation (8) andTi ∼ N (0, σ̄
2

α2
i

) with σ̄2 > 0 a constant and

σ̄2

α2
i

< B <∞ for all i, B a constant. Also, letKi be defined as in SectionII-B and be independent from

Ti for all i. Then,limN→∞AN (t) = A∞(t) has the properties

• A∞(τ0) = 0,

• A∞(t) > 0 for t ∈ (τ0 − τ, τ0), andA∞(t) < 0 for t ∈ (τ0, τ0 + τ) for someτ < τnz.

• A∞(t) is odd aroundt = τ0, i.e.A∞(τ0 + ξ) = −A∞(τ0 − ξ) for ξ ≥ 0

• A∞(t) is continuous. △
The properties outlined in Theorem1 will be key to the synchronization mechanism we describe. The

specific value of̄σ2 will be determined by our choice of the pulse-connection function. Before we prove

Theorem1 in SectionIII-C.2 we develop and motivate a few important related lemmas.
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1) Polarity and Continuity ofA∞(t): At time t = τ1 6= τ0, we have that

AN (τ1) =
N
∑

i=1

AmaxKi

N
p(τ1 − τ0 − Ti) =

N
∑

i=1

1

N
M̄i(τ1),

whereM̄i(τ1)
∆
= AmaxKip(τ1 − τ0 − Ti). We have the mean of̄Mi(τ1) being

E(M̄i(τ1)) = AmaxE(Ki)

∫

p(τ1 − τ0 − ψ)fTi
(ψ)dψ, (11)

wherefTi
(ψ) is the Gaussian pdf

fTi
(ψ) =

1
σ̄
αi

√
2π

exp

{

− (ψ)2

2 σ̄2

α2
i

}

.

It is clear that theM̄i(τ1)’s, for different i’s, do not have the same mean and do not have the same

variance since the two quantities depend on theαi value. Since theαi’s are characterized byfα(s)

(defined in SectionIII-A ), we write the Gaussian distribution forT as

fT (ψ, s) =
1

σ̄
s

√
2π

exp

{

− (ψ)2

2 σ̄2

s2

}

.

and M̄i(τ1) is in fact a function ofs as well, denotedM̄i(τ1, s). Using fT (ψ, s) and M̄i(τ1, s), the

notation makes it clear that we can average over theαi’s that are characterized byfα(s). We use the

results of Lemmas1 and2 to prove the polarity result forA∞(t) in SectionIII-C.2.

Lemma 1:Given the sequence of independent random variablesM̄i(τ1) with τ1 < τ0, E(M̄i(τ1)) = µi,

and Var(M̄i(τ1)) = σ2i . Then, for alli,

γ2 > µi > γ1 > 0 (12)

σ2i < γ3 <∞, (13)

for some constantsγ1, γ2, andγ3 and

lim
N→∞

1

N

N
∑

i=1

M̄i(τ1) = η(τ1) > 0

almost surely, where

η(τ1) =

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds

= AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(τ1 − τ0 − ψ)fT (ψ, s)dψfα(s)ds. △
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Lemma 2:Given the sequence of independent random variablesM̄i(τ1) with τ1 > τ0, E(M̄i(τ1)) = µi,

and Var(M̄i(τ1)) = σ2i . Then, for alli,

γ2 < µi < γ1 < 0 (14)

σ2i < γ3 <∞, (15)

for some constantsγ1, γ2, andγ3 and

lim
N→∞

1

N

N
∑

i=1

M̄i(τ1) = η(τ1) < 0

almost surely, where

η(τ1) =

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds. △

The results of Lemma1 and Lemma2 are intuitive since given thatp(t) is odd and the Gaussian noise

distribution is symmetric, it makes sense forA∞(t) to have properties similar to an odd waveform. Since

the proofs of the two lemmas are very similar, we only prove Lemma1. The proof can be found in the

appendix.

Knowing only the polarity ofA∞(t) is not entirely satisfying since we would also expect that the

limiting waveform be continuous. The proof of Lemma3 is once again left for the appendix.

Lemma 3:Using p(t) in (8),

A∞(t) = lim
N→∞

1

N

N
∑

i=1

AmaxKip(t− τ0 − Ti) = lim
N→∞

1

N

N
∑

i=1

M̄i(t) = η(t)

is a continuous function oft, where

η(t) =

∫ αup

αlow

E(M̄i(t, s))fα(s)ds

= AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(t− τ0 − ψ)fT (ψ, s)dψfα(s)ds. △
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2) Proof of Theorem1: We can proceed in a straightforward manner to show thatA∞(τ0) = 0. For

t = τo,

AN (τ0) =

N
∑

i=1

AmaxKi

N
p(τ0 − τ0 − Ti) =

1

N

N
∑

i=1

AmaxKip(−Ti) =
1

N

N
∑

i=1

Mi,

whereMi , −AmaxKip(Ti).

Since our goal is to apply some form of the strong law of large numbers, we first examine the mean

of Mi. We have thatE(Mi) = −AmaxE(Ki)E(p(Ti)). Furthermore,

E(p(Ti)) =

∫ ∞

−∞
p(ψ)fTi

(ψ)dψ = 0,

sincep(ψ) is odd andfTi
(ψ) is even because it is zero-mean Gaussian. Thus,E(Mi) = 0.

We next consider the variance ofMi:

Var(Mi) = E(M2
i )−E2(Mi) = A2

maxE(K2
i p

2(Ti))

= A2
maxE(K2

i )E(p2(Ti)) < A2
max <∞,

where we have used the fact thatE(K2
i ) ≤ 1 and |p(t)| ≤ 1.

From the preceding discussion we see that theMi’s are a sequence of zero mean, finite (but possibly

different) variance random variables. From Stark and Woods[38], we know that if
∑∞

i=1 Var(Mi)/i
2 <∞,

then we have strong convergence of theMi’s:

1

N

N
∑

i=1

Mi → E(Mi),

with probability-1 asN → ∞. But it is easy to see that
∞
∑

i=1

Var(Mi)

i2
<

∞
∑

i=1

A2
max

i2
= A2

max

π2

6
<∞,

so the condition is satisfied. As a result,

AN (τ0) =
1

N

N
∑

i=1

Mi → 0,

asN → ∞.

We have thatA∞(t) is continuous from Lemma3. Thus, next we need to show thatA∞(t) > 0

for t ∈ (τ0 − τ, τ0), andA∞(t) < 0 for t ∈ (τ0, τ0 + τ) for someτ < τnz. We show the case for

t = τ1 ∈ (τ0 − τ, τ0) by simply applying Lemma1. Since Lemma1 holds for all τ1 < τ0, there clearly

exists aτ suchA∞(t) > 0 for t ∈ (τ0 − τ, τ0). The case fort ∈ (τ0, τ0 + τ) comes similarly from

Lemma2.
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Lastly, it remains to be shown thatA∞(t) is odd aroundt = τ0. This, however, is evident from the

form of η(t). SincefT (ψ, s) is even inψ about0 andp(ψ) is odd about0, it is clear that
∫∞
∞ p(t− τ0−

ψ)fT (ψ, s)dψ as a function oft is odd aboutτ0. Thus,η(t) is odd aroundτ0. This then completes the

proof for Theorem1. △

IV. A SYMPTOTIC TIME SYNCHRONIZATION

A. The Use of Estimators in Time Synchronization

In this work we want to show that as we letN → ∞ then we can recover deterministic parameters

that allow for time synchronization. Such a result would provide rigorous theoretical support for a new

trade-off between network density and synchronization performance. To simplify the study, we focus

on the steady-state time synchronization properties of asymptotically dense networks. In particular, we

develop a cooperative technique that constructs a sequenceof equispaced zero-crossings seen by all nodes

which allows the network to maintain time synchronization indefinitely given that the nodes start with

a collection of equispaced zero-crossings. Starting with afew equispaced zero-crossings allows us to

avoid the complexities of starting up the synchronization process but still allows us to show that spatial

averaging can be used to average out timing errors. If we are able to maintain indefinitely a sequence

of equispaced zero-crossing using cooperative time synchronization, then it means that spatial averaging

can average out all uncertainties in the system as we let nodedensity grow unbounded. This recovery of

deterministic parameters is our desired result. Here, we overview the estimators needed for cooperative

time synchronization.

Let tckn,i be the time, with respect to clockck, that theith node sees itsnth pulse. In dealing with the

steady-state properties, we start by assuming that each node i in the network has observed a sequence

of m pulse arrival times,tcin−1,i, . . . , t
ci
n−m,i, that occur at integer values oft, m is an integer. Recall

that tcin−1,i, . . . , t
ci
n−m,i is defined as a set ofm pulse arrival times in the time scale ofci. Therefore,

even thoughtcin−1,i, . . . , t
ci
n−m,i occur at integer values oft (the time scale ofc1), these values are not

necessarily integers since they are in the time scale ofci. Note also that in our model the pulse arrival

time is a zero-crossing location. Using thesem pulse arrival times, each nodei has two distinct, yet

closely related tasks. The first task is time synchronization. To achieve time synchronization, nodei

wants to use thesem pulse arrival times to make an estimate of when the next zero-crossing will occur.

If it can estimate this next zero-crossing time, then it can effectively estimate the next integer value of

t. This estimator can then be extended to estimate arbitrary times in the future which gives nodei the

ability to synchronize to node1. The second task is that nodei needs to transmit a pulse so that the
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sum of all pulses from theN nodes in the network will create an aggregate waveform that,in the limit

asN → ∞, will give a zero-crossing at the next integer value oft. This second task is very significant

because if the aggregate waveform gives the exact location of the next integer value oft, then each

nodei in the network can use this new zero-crossing along withtcin−1,i, . . . , t
ci
n−m+1,i to form a set of

m zero-crossing locations. This new set can then be used to predict the next zero-crossing location as

well as nodei’s next pulse transmission time. Recall that determining the pulse transmission time is

the job of the pulse-connection functionXci
n,i. With such a setup, synchronization would be maintained

indefinitely. The zero-crossings that always occur at integer values oft would provide nodei a sequence

of synchronization events and also illustrate how cooperation is averaging out all random errors.

The waveform properties detailed in Theorem1 play a central role in accomplishing the nodes’ task

of cooperatively generating an aggregate waveform with a zero-crossing at the next integer value oft.

From (10), if the arrival time of any pulse at a nodej is a random variable of the formτ0+Ti, whereτ0

is the next integer value oft andTi is zero-mean Gaussian (or in general any symmetric random variable

with zero-mean and finite variance), then Theorem1 tells us that the aggregate waveform will make a

zero-crossing at the next integer value oft. This idea is illustrated in Fig.6.
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Fig. 6. Theorem1 is key in explaining the intuition first illustrated in Fig.1. The pulsep(t) is shown on the left

figure, with τ0 = 1 andAmax = 1. On the right we have a realization ofAN (t) (N = 400), and we assume that

Kj,i = 1 (no path loss) andTi ∼ N (0, 0.01) for all i. As expected from Theorem1, we notice that the zero-crossing

of the simulated waveform is almost exactly att = 1.

Thus, for achieving time synchronization in an asymptotically dense network we need to address two

issues. First, we need to develop an estimator for the next integer value oft given a sequence ofm pulse

arrival times that occur at integer values oft. We will call this thetime synchronization estimatorand let

us writeV ci
n,i as the time synchronization estimator that determines the time, in the time scale ofci, when
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nodei predicts it will see itsnth zero-crossing. Two, we need to develop the pulse-connection function

Xci
n,i such that nodei’s transmitted pulse will arrive at a nodej with the random properties described in

Theorem1.

B. Time Synchronization Estimator Performance Measure

Here we establish the conditions for estimating the next pulse arrival time, or equivalently the next

integer value oft, givenm pulse arrival times. These conditions apply most directly to the time syn-

chronization estimatorV ci
n,i since we want to synchronize in some desired manner. The problem of

synchronization is the challenge of having theith node accurately and precisely predict when the next

integer value oft will occur. In our setup, the reception of a pulse by nodei tells it of such an event.

Let us explicitly model the time at an integer value oft in terms of the clock of nodei. Assumeτ0

is an integer value oft and at this time, nodei will observe itsnth pulse. Thus, from (1) we have that

tcin,i = αi(τ0 − ∆̄i) + Ψi(τ0). (16)

The equation makes use of the clock model of nodei (1) to tell us the time at clockci when node1 is

at τ0, whereτ0 is an integer in the time scale ofc1. We are also starting with the assumption that the

zero-crossing that occurs at an integer value oft is observed by nodei at this time.

From (16) we see that the pulse receive time at nodei, tcin,i, is a Gaussian random variable whose mean

is parameterized by the unknown vectorϑ = [αi, τ0, ∆̄i]. Thus, to achieve synchronization nodei will try

to estimate the random variabletcin,i using a series ofm pulse receive times as observations (recall that

m is known). Note that the observations are also random variables with distributions parameterized

by ϑ. We want the time synchronization estimator of nodei to make an estimate oftcin,i, denoted

t̂cin,i(t
ci
n−1,i, t

ci
n−2,i, . . . , t

ci
n−m,i) which is a function of past observationstcin−1,i, t

ci
n−2,i, . . . , t

ci
n−m,i, that

meets the following criteria:

Eϑ

[

t̂cin,i(t
ci
n−1,i, t

ci
n−2,i, . . . , t

ci
n−m,i)

]

= Eϑ(t
ci
n,i) (17)

argmin̂tcin,i
Eϑ

[

(t̂cin,i(t
ci
n−1,i, t

ci
n−2,i, . . . , t

ci
n−m,i)− tcin,i)

2
]

(18)

for all ϑ. The subscriptϑ means that the expectation is taken over the distributions involved given any

possibleϑ. The first condition comes from the fact that given a finitem, it is reasonable to want the

expected value of the estimate to be the expected value of therandom variable being estimated for all

ϑ. As in the justification for unbiased estimators, this condition eliminates unreasonable estimators so

that the chosen estimator will perform well, on average, forall values ofϑ [33]. The second condition is
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the result of seeking to minimize the mean squared error between the estimate and the random variable

being estimated for allϑ.

C. Time Synchronization Estimator

For the time synchronization estimator, nodei will seek to estimatetcin,i given tcin−1,i, . . . , t
ci
n−m,i.

From (16), we see thatT = [tcin−m,i, . . . , t
ci
n−1,i]

T is a jointly Gaussian random vector parameterized

by ϑ. Recall that we assumeΨi(t) is a zero mean Gaussian process with independent and identically

distributed samplesΨi(t) ∼ N (0, σ2), for any t. Also, since we’re assuming that the zero-crossings at

nodei occur at consecutive integer values oft, the random variabletcin−m,i is Gaussian withtcin−m,i ∼
N (αi(τ0 −m− ∆̄i), σ

2) for someϑ = [αi, τ0 −m, ∆̄i]. We also notice that

Eϑ(t
ci
n−m+1,i) = αi(τ0 −m+ 1− ∆̄i) = αi(τ0 −m− ∆̄i) + αi.

Since each noise sample is independent, we see that the distribution of T parameterized byϑ can be

written asT ∼ N (M,Σ) where

M =























αi(τ0 −m− ∆̄i)

αi(τ0 −m− ∆̄i) + αi

αi(τ0 −m− ∆̄i) + 2αi

...

αi(τ0 −m− ∆̄i) + (m− 1)αi























andΣ = σ2I.

As a result, for anym consecutive observations, we can simplify notation by using the model

Y = Hθ +W, (19)

whereY = [Y1 Y2 . . . Ym]T = [tcin−m,i tcin−m+1,i . . . t
ci
n−1,i]

T and

θ =





θ1

θ2



 =





αi(τ0 −m− ∆̄i)

αi





with

H =





1 1 1 . . . 1

0 1 2 . . . m− 1





T

andW = [W1 . . .Wm]T . SinceΨi(t) is a Gaussian noise process,W ∼ N (0,Σ) with Σ = σ2I.
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Using the simplified notation in (19), we want to estimateYm+1, whereYm+1 is jointly distributed

with Y as




Y

Ym+1



 ∼ N (





M

θ1 +mθ2



 ,





Σ 0

0 σ2



).

Using this notation, we can rewrite the synchronization criteria as:

Eθ

[

Ŷm+1(Y1, Y2, . . . , Ym)
]

= Eθ(Ym+1) (20)

argmin̂
Ym+1

Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− Ym+1)
2
]

, (21)

whereŶm+1 is the estimator forYm+1.

Condition (20) implies that our estimate must be unbiased. Condition (21) is equivalent to

argmin̂
Ym+1

Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− (θ1 +mθ2))
2
]

.

To see this equivalence, note that

Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− Ym+1)
2
]

= Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− (θ1 +mθ2)−Wm+1)
2
]

= Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− (θ1 +mθ2))
2
]

+ E
[

W 2
m+1

]

, (22)

where the last inequality follows from the independence ofWm+1 from all other noise samples. Since

the distribution of ofWm+1 is independent ofθ,

argmin̂
Ym+1

Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− Ym+1)
2
]

= argmin̂
Ym+1

Eθ

[

(Ŷm+1(Y1, Y2, . . . , Ym)− (θ1 +mθ2))
2
]

.

With these two conditions, from [33] we see that the desired estimate forYm+1 will be the uniformly

minimum variance unbiased (UMVU) estimator forEθ(Ym+1) = θ1 +mθ2.

Using the above linear model, from [23] we know the maximum likelihood (ML) estimate ofθ, θ̂ML,

is given by

θ̂ML = (HTΣ−1
H)−1

H
TΣ−1

Y = (HT
H)−1

H
T
Y. (23)

This estimate achieves the Cramer Rao lower bound, hence is efficient. The Fisher information matrix is

I(θ) = H
T
H

σ2 and θ̂ML ∼ N (θ, σ2(HT
H)−1). This means that̂θML is UMVU.

Again from [23], the invariance of the ML estimate tells us that the ML estimate forφ = g(θ) =

θ1 +mθ2 is φ̂ML = θ̂1ML + mθ̂2ML. First, it is clear thatφ̂ML = Cθ̂ML, whereC = [1 m]. As a
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result, we first see thatEθ(φ̂ML) = CEθ(θ̂ML) = θ1 +mθ2 so φ̂ML is unbiased. Next, to see thatφ̂ML

is also minimum variance we compare its variance to the lowerbound.

Varθ(φ̂ML) = Cσ2(HT
H)−1

C
T =

2σ2(2m+ 1)

m(m− 1)
.

The extension of the Cramer Rao lower bound in [23] to a function of parameters tells us that

Eθ(‖ĝ − g(θ)‖2) ≥ G(θ)I−1(θ)GT (θ)

with G(θ) = (∇θg(θ))
T . In this case,G(θ) = [1 m] so the lower bound to the mean squared error is

G(θ)I−1(θ)GT (θ) =
2σ2(2m+ 1)

m(m− 1)
.

As a result, we see that̂φML is UMVU. Since φ̂ML is the desired estimate of where the next pulse

arrival time will be, it is the time synchronization estimator. Thus,

V ci
n,i(Y) = C(HT

H)−1
H

T
Y. (24)

Note that

V ci
n,i(Y) = φ̂ML ∼ N

(

φ,
2σ2(2m+ 1)

m(m− 1)

)

. (25)

has a variance that goes to zero asm→ ∞.

D. Time Synchronization with No Propagation Delay

We now need to develop the pulse-connection function so thatthe conditions forTi in Theorem1 are

satisfied. Recall we are developing the synchronization technique under the assumption of no propagation

delay, i.e.δ(d) = 0. Given a sequence ofm pulse arrival times, the time synchronization estimatorV ci
n,i

given in (24) gives each node the ability to predict the next integer value of t. What remains to be

considered is the second part of the synchronization process: developing a pulse-connection function

Xci
n,i such that the aggregate waveform seen by a nodej will have the properties described in Theorem1.

Let us first consider the distribution ofV ci
n,i. From (25), we have that

V ci
n,i(Y) ∼ N

(

αi(τ0 −m− ∆̄i) +mαi,
2σ2(2m+ 1)

m(m− 1)

)

.

Using (1), we can translateV ci
n,i(Y) into the time scale ofc1 as

V ci
n,i(Y) = αi(V

c1
n,i(Y)− ∆̄i) + Ψi

which gives

V c1
n,i(Y) =

(V ci
n,i(Y)−Ψi)

αi
+ ∆̄i.
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This means that

V c1
n,i(Y) ∼ N

(

τ0,
σ2

α2
i

(

1 +
2(2m+ 1)

m(m− 1)

))

. (26)

Under our assumption ofδ(d) = 0, any transmission by nodei will be instantaneously seen by any node

j. As a result, the random variableV c1
n,i(Y) will be seen as the pulse arrival time at nodej, in the time

scale ofc1.

Due to the assumption of no propagation delay, definingXc1
n,i(Y)

∆
= V c1

n,i(Y) will give us the desired

properties in the aggregate waveform. To see this, let us compare the distribution ofXc1
n,i(Y) to the

assumptions of Theorem1. Sinceτ0 is the ideal crossing time in the time scale ofc1, we have

Xc1
n,i(Y) = τ0 + Ti.

Therefore, we see that

Var(Ti) =
σ2

α2
i

(

1 +
2(2m+ 1)

m(m− 1)

)

=
σ̄2

α2
i

, (27)

whereσ̄2 from Theorem1 is

σ̄2 = σ2
(

1 +
2(2m+ 1)

m(m− 1)

)

.

We have shown that using the pulse connection functionXc1
n,i(Y)

∆
= V c1

n,i(Y) satisfies the conditions of

Theorem1. Thus, all the results of the theorem apply.

As a result, we have established a time synchronization estimator V c1
n,i(Y) and a pulse-connection

functionXc1
n,i(Y). In the case ofδ(d) = 0, we have thatXc1

n,i(Y)
∆
= V c1

n,i(Y), or in the time scale ofci,

Xci
n,i(Y)

∆
= V ci

n,i(Y). When each node in the network uses the pulse-connection functionXci
n,i(Y) we have

a resulting aggregate waveform that has a zero-crossing at the next integer value oft asN → ∞. This

fact follows from applying Theorem1. Thus, we have an asymptotic steady-state time synchronization

method that can maintain a sequence of equispaced zero-crossings occurring at integer values oft. An

interesting feature of this synchronization technique is that no node needs to know any information about

its location or its surrounding neighbors.

1) Cooperation without Simultaneous Transmission and Reception: Before ending this section, let us

comment on the assumption of simultaneous transmission andreception. One way to relax this assumption

is to divide the network into two disjoint sets of nodes, say the odd numbered nodes and the even numbered

nodes, where each set is still uniformly distributed over the area. Then, the odd nodes and the even nodes

will take turns transmitting and receiving. For example, the odd numbered nodes can transmit pulses at

odd values oft and the even numbered nodes will listen. The even numbered nodes will then transmit

pulses at the even values oft and the odd numbered nodes will listen. With such a scheme, nodes do
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not transmit and receive pulses simultaneously, but can still take advantage of spatial averaging. The odd

numbered nodes will see an aggregate waveform generated by asubset of the even numbered nodes and

the even numbered nodes will receive a waveform cooperatively generated by the odd numbered nodes.

Let us take a more detailed look at this scheme.

τ 0 −5 τ 0 −3 τ 0 −1 τ 0

Aggregate signals generated by even numbered nodesAggregate signals generated by odd numbered nodes

Fig. 7. In the above figure, we assumeτ0 is an even integer value oft andm = 3. Therefore, each even numbered

node will turn on its receiver to receive the aggregate signal arriving at timesτ0−5, τ0−3, andτ0−1. Using these

three received times, it can then estimate the time ofτ0. Thus, the aggregate signal occurring atτ0 is cooperatively

generated by the even numbered nodes and is received by the odd numbered nodes.

In Fig. 7 we assume thatτ0 is an even integer value oft and usem = 3. Each even numbered node

will use the aggregate signals occurring atτ0− 5, τ0− 3, andτ0− 1 to estimateτ0 and cooperatively the

even nodes will generate the aggregate signal atτ0. The odd numbered nodes will then use the aggregate

signals occurring atτ0 − 4, τ0 − 2, and τ0 to generate the aggregate signal atτ0 + 1. Therefore, the

odd and even numbered nodes can take turns transmitting and receiving signals and nodes never need to

simultaneously transmit and receive.

Of course, such a setup would require a modification of the estimators used by the nodes. Nodes

will receive a vector ofm observationsY with Y[l + 1] = αi(τ0 + 1 − 2(m − l) − ∆̄i) + Ψi for

l = 0, 1, . . . ,m− 1. With such a mechanism, theH matrix in equation (19) would change to

H =





1 1 1 . . . 1

0 2 4 . . . 2(m− 1)





T

andθ becomes

θ =





θ1

θ2



 =





αi(τ0 + 1− 2m− ∆̄i)

αi



 .

To estimate the locationτ0 in the time scale ofci, we can proceed as in SectionIV-C:

θ̂ML = (HTΣ−1
H)−1

H
TΣ−1

Y = (HT
H)−1

H
TY
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will be distributedθ̂ML ∼ N (θ, σ2(HT
H)−1) and θ̂ML is UMVU. This leads to the UMVU estimate

φ̂ML = Cθ̂ML, whereC = [1 2m − 1], andE(φ̂ML) = CE(θ̂ML) = θ1 + (2m − 1)θ2. In this case,

the variance of̂φML will be Varθ(φ̂ML) = Cσ2(HT
H)−1

C
T , and thus we have that

V ci
n,i(Y) = φ̂ML ∼ N

(

αi(τ0 + 1− 2m− ∆̄i) + (2m− 1)αi,
σ2(2m+ 1)(2m − 1)

m(m− 1)(m+ 1)

)

.

Converted to the time scale ofc1 we have

V c1
n,i(Y) ∼ N

(

τ0,
σ2

α2
i

(

1 +
(2m+ 1)(2m − 1)

m(m− 1)(m+ 1)

))

. (28)

Comparing equations (26) and (28), we see that they have the same form. As a result, we can againset

Xci
n,i(Y)

∆
= V ci

n,i(Y) and achieve cooperative time synchronization.

V. T IME SYNCHRONIZATION WITH PROPAGATION DELAY

We now extend the ideas of cooperative time synchronizationto the situation where signals suffer not

only from pathloss but also propagation delay. It turns out that the effect of propagation delay can also

be addressed using the concept we have been using throughoutthis paper — averaging out errors using

the large number of nodes in the network.

In this section, we use the pathloss and propagation delay model detailed in SectionII-C. We introduce

a time delay functionδ(d). For generality, we explicitly model a multi-hop network where we have a

K(d) function that is zero ford greater than some distanceR, i.e.K(d) = 0 for d > R. Such a model

implies that the aggregate signal seen at any nodej is influenced only by the set of nodes inside a

circle of radiusR centered at nodej. With this we can effectively divide the network into two disjoint

sets, a set ofinterior nodesand a set ofboundary nodes. An interior nodej is defined to be a node

whose distance from the nearest network boundary is greaterthan or equal toR. A boundary node is

thus defined to be a node that is a distance less thanR away from the nearest network boundary.

We make this distinction since the synchronization technique for each set of nodes is different. Please

note that if a pathloss function whereK(d) = 0 for d > R is unreasonable, then we simply chooseR to

be infinite and consider all nodes in the network to be boundary nodes.

Using the propagation delay model,Dj,i will obviously modify the general received aggregate wave-

form seen at any nodej. In fact, equation (7) will now be written as

Ac1
j,N(t) =

N
∑

i=1

AmaxKj,i

N
p(t− τo − Ti −Dj,i). (29)

ForN large, this model will give an accurate characterization ofthe aggregate waveform seen at nodej.
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A. Conceptual Motivation

From equation (29), it is clear that the aggregate waveform will not have a zero-crossing atτ0 for every

nodej because of the presence of theDj,i random variables. Therefore, to average out propagation delay,

the idea we employ is to have each node introduce arandomartificial time shift that counteracts the effect

of the time delay random variable. More precisely, we want tointroduce another random variableDfix

such thatDfix+Dj will have zero mean and a symmetric distribution. At the sametime, we assume each

node knowsK(·) and δ(·) and will also introduce an artificial scaling factorKfix = K(δ−1(−Dfix))

to simplify the analysis of the aggregate waveform. This means that instead of using the scaling factor

Ai = Amax/N , each nodei will scale its transmitted pulse byAi = AmaxKfix/N . For the motivation

in this section, let us assume that nodej is an interior node.

To find the distribution ofDfix, we consider the following.Dj has densityfDj
(x) and letfDfix

(x) be

the density ofDfix. SinceDj andDfix are independent, we know that the density ofDT = Dfix+Dj,i,

fDT
(x), will be the convolution offDj

(x) andfDfix
(x). Therefore, by the properties of the convolution

function, if we setfDfix
(x)

∆
= fDj

(−x), then we have thatfDT
(x) is symmetric, i.e.fDT

(x) = fDT
(−x).

As well, sinceDj has finite expectation, it is easy to see thatE(DT ) = 0.

Given a sequence ofm zero-crossings that we know to be occurring at integers oft, we can still use

V c1
n,i(Y) (from (24) in the time scale of node1) as the time synchronization estimator. However, with

propagation delay, the pulse-connection function will nowbeXc1
n,i(Y) = V c1

n,i(Y)+Dfix = τo+Ti+Dfix.

With Dfix andKfix included, we can rewrite equation (29) as

Ac1
j,N(t) =

N
∑

i=1

AmaxKfixKj,i

N
p(t− τo − Ti −Dfix −Dj,i). (30)

It is important to see that sinceDj has the same distribution forall interior nodesj, equation (30) holds

for every nodej that is an interior node. This means that for the network to cooperatively generate

the waveform in (30) each transmit nodei needs to have the following additional knowledge: (1) the

distribution ofDfix whose density isfDfix
(x)

∆
= fDj

(−x), where j is an interior node, and (2) the

functionsK(·) and δ(·) to generateKfix. With this knowledge, we can use equation (30) to study the

aggregate waveform seen at any interior nodej. In fact, we find that the aggregate waveform has limiting

properties that are similar to those outlined in Theorem1. These properties are described in Theorem2.

Theorem 2:Let p(t) be as defined in equation (8) andTi ∼ N (0, σ̄
2

α2
i

) with σ̄2 > 0 a constant and

σ̄2

α2
i

< B < ∞ for all i, B a constant.Kj,i andDj,i are defined as in SectionII-C andDfix with

density fDfix
(x)

∆
= fDj

(−x) is independent fromDj,i. Kfix = K(δ−1(−Dfix)) and letDj,i, Dfix,
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andTi be mutually independent for alli. Then, for any interior nodej with Ac1
j,N(t) as defined in (30),

limN→∞Ac1
j,N(t) = Ac1

j,∞(t) has the properties

• Ac1
j,∞(τ0) = 0,

• Ac1
j,∞(t) is odd aroundt = τ0, i.e.Ac1

j,∞(τ0 + ξ) = −Ac1
j,∞(τ0 − ξ) for ξ ≥ 0. △

The proof of Theorem2 is left for the appendix.

From the arguments so far, it seems that time synchronization with delay, at least for interior nodes,

can be solved simply by modifying the pulse-connection function Xc1
n,i(Y) and changing the scaling

factor toAi = AmaxKfix/N . Theorem2 tells us that the limiting aggregate waveform makes a zero-

crossing at the next integer value oft and the waveform is odd. Thus, we can use this zero-crossing as

a synchronization event and maintain synchronization in a manner identical to the technique used in the

situation without propagation delay. This, however, unfortunately is not the case. In order to implement

the above concept, we need to find the random variable,Dci
fix, in the time scale ofci, that corresponds

to Dfix such that

(V ci
n,i(Y) +Dci

fix)
c1 =

V ci
n,i(Y) +Dci

fix −Ψi

αi

+ ∆̄i

= V c1
n,i(Y) +

Dci
fix

αi

= V c1
n,i(Y) +Dfix.

This means that we needDci
fix/αi = Dfix. However, each nodei cannot findDci

fix that satisfies this

since it does not know itsαi.

B. Time Synchronization of Interior Nodes

Since theith node does not know its own value ofαi, to do time synchronization with propagation

delay we can have each node estimate itsαi value. However, this estimate will not be perfect and we may

no longer have the symmetric limiting aggregate waveform described by Theorem2. This means that the

center zero-crossing might occur someǫ away fromτ0, τ0 an integer value oft. However, steady-state

time synchronization can be maintained if the network can use a sequence ofm equispaced zero-crossings

that occur att = τ0 − m + ǫ, τ0 −m + 1 + ǫ, τ0 − m + 2 + ǫ, . . . , τ0 − 1 + ǫ, whereτ0 is an integer

value of t, to cooperatively generate a limiting aggregate waveform that has a zero-crossing atτ0 + ǫ.

In such a situation, the network will be able to construct a sequence of equispaced zero-crossings and

maintain the occurrence of these zero-crossings indefinitely. The idea is the same as in the case without

propagation delay, but the only difference here would be that the zero-crossings do not occur at integer

values oft. Let us give a more formal description of this idea.
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Using notation from SectionIV-C, we start with the assumption that each interior nodei has a sequence

of m observations that has the form

αi(τ0 −m+ l + ǫ− ∆̄i) + Ψi, (31)

wherel = 0, 1, . . . ,m − 1 and ǫ is known. To develop the time synchronization estimatorV ci
n,i(Y) and

the pulse-connection functionXci
n,i(Y), we consider the observations made by each node. If we assume

that each node knows the value ofǫ, the vector of observations can be written as in (19)

Y = H̄θ +W,

where the matrixH̄ in this case is

H̄ =





1 1 1 . . . 1

ǫ 1 + ǫ 2 + ǫ . . . m− 1 + ǫ





T

.

Using this model, we can follow the development in SectionIV-C to find the the time synchronization

estimator

V ci
n,i(Y, ǫ) = C(H̄T

H̄)−1
H̄

T
Y, (32)

whereC = [1 m]. This estimator will give each node the ability to optimallyestimate the next integer

value of t. Note that the variance of the time synchronization estimator is

Varθ(V
ci
n,i(Y, ǫ)) = Cσ2(H̄T

H̄)−1
C

T = σ2
(

2(2m + 1)

m(m− 1)
+

12ǫ(ǫ− 1−m)

(m− 1)m(m+ 1)

)

. (33)

Using the time synchronization estimator, we can choose thepulse-connection function as

Xci
n,i(Y) = V ci

n,i(Y, ǫ) + α̂iDfix = V ci
n,i(Y, ǫ) +Dci

fix, (34)

where each time nodei makes the estimateV ci
n,i(Y, ǫ) it also estimateŝαi as

α̂i = C̄(H̄T
H̄)−1

H̄
T
Y,

C̄ = [0 1]. We find thatα̂i ∼ N (αi, 12σ
2/((m − 1)m(m + 1))). Since, from SectionV-A, we know

we wantDci
fix/αi = Dfix, we have setDci

fix

∆
= α̂iDfix. Notice that sinceDci

fix is simply a realization

of Dfix multiplied by nodei’s estimate ofαi, nodei can use the realization ofDfix and findKfix =

K(δ−1(−Dfix)).

With our choice ofXci
n,i(Y) in (34), we see that

(V ci
n,i(Y, ǫ) +Dci

fix)
c1 = V c1

n,i(Y, ǫ) + ZiDfix = τ0 + Ti + ZiDfix,
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whereZi ∼ N (1, 12σ2/(α2
i (m− 1)m(m+1))), andτ0+Ti = V c1

n,i(Y, ǫ). Because of the random factor

Zi, we see thatDT = ZiDfix + Dj,i is no longer a symmetric distribution. As a result, the limiting

aggregate waveform

Ac1
j,∞(t) = lim

N→∞
Ac1

j,N (t) = lim
N→∞

N
∑

i=1

AmaxKfixKj,i

N
p(t− τo − Ti − ZiDfix −Dj,i) (35)

may not have a zero-crossing att = τ0.

Thus, if we can find anǫ such that each nodei using a set of observations of the form (31) allows the

network to cooperatively generate the waveform in (35) that has its zero-crossing occurring att = τ0+ǫ (in

the time scale ofc1), then we have steady-state time synchronization. This is because the network would be

able to use a sequence ofm observations to generate the next observation that gives the same information

as any of the previous observations. Thus, by always taking them most recent observations, the process

can continue forever and maintain synchronization. Each nodei would need to know distribution ofDfix,

the value ofǫ, and the functionsK(·) andδ(·). Therefore, we find that steady-state time synchronization

of the interior nodes is possible under certain conditions.As a note, no interior node needs to know any

location information.

C. Time Synchronization of Boundary Nodes

Before we consider the synchronization of boundary nodes, we note that the key requirement for each

boundary nodei is to have a pulse-connection function given in equation (34). The reason that this must

be the pulse-connection for every boundary nodei is because the analysis for the interior nodes assumes

that the aggregate waveform seen by any interior nodej is created by pulse transmissions occurring at a

time determined by (34). Since the aggregate waveform seen by some interior nodes are created by pulse

transmissions from boundary nodes, each boundary node musthave the appropriate pulse-connection

function. This requirement, however, proves to be extremely problematic and reveals a limitation of the

elegant technique of averaging out timing delay when we cometo boundaries of the network.

The problem comes becauseDfix + Dj,i already does not have a symmetric distribution ifj is a

boundary node. Recall thatfDfix
(x) = fDj

(−x) whenj is an interior node andfDj
(x) = fDl

(x) when

j andl are both interior nodes. However,fDj
(x) 6= fDl

(x) whenj is an interior node andl is a boundary

node. As a result,Dfix+Dj,i is no longer symmetric ifj is a boundary node. In fact, it is clear that the

distribution ofDfix+Dj,i is a function of nodej’s location near the boundary. Because of this additional

asymmetry, let us assume for a moment that the sequence of zero-crossings observed by boundary node

i occurǫi away from an integer value oft. That is, if every node in the network, including the boundary
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nodes, transmitted a sequence of pulses where each pulse wassent according to (34), then boundary node

i would observe the sequence of observations

αi(τ0 −m+ l + ǫi − ∆̄i) + Ψi, (36)

wherel = 0, 1, . . . ,m− 1 andǫi is known.

This boundary nodei could then use the time synchronization estimator given by (32) but where the

matrix H̄ is now replaced withH̄i

H̄i =





1 1 1 . . . 1

ǫi 1 + ǫi 2 + ǫi . . . m− 1 + ǫi





T

.

Thus, for this boundary nodei we have

V ci
n,i(Y, ǫi) = C(H̄T

i H̄i)
−1

H̄
T
i Y, (37)

In this case, however, the variance of the time synchronization estimator depends onǫi

Varθ(V
ci
n,i(Y, ǫi)) = σ2

(

2(2m+ 1)

m(m− 1)
+

12ǫi(ǫi − 1−m)

(m− 1)m(m+ 1)

)

. (38)

The fact that the variance depends onǫi is the root of the problem. The pulse-connection function

Xci
n,i(Y) = V ci

n,i(Y, ǫi) + α̂iDfix, (39)

is not the same as that given by (34).

To correct for this, we can make the strong assumption that each boundary nodei knows is ownαi.

We address the reasoning behind this assumption in SectionV-D. If we use this assumption, then each

boundary nodei can get an observation sequence of the form (31) simply by addingαi(ǫ− ǫi) to each

of the m observations of the form given in (36), where we assume that nodei knows bothǫ and ǫi.

With such an observation sequence, boundary nodei will have the time synchronization estimator (32)

and, more importantly, the pulse-connection function (34). Thus, maintaining time synchronization for

the case of propagation delay would be possible.

What we have then is that boundary node synchronization would require only the boundary nodes

to know theirαi parameters. With this strong assumption only for the boundary nodes, the network

is effectively synchronized. Even though the boundary nodes do not see the same zero-crossing as the

interior nodes, they can calculate this time and thus have all the required synchronization information.
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D. The Boundary Node Assumption

The assumption that each boundary nodei knowsαi is a strong assumption. Even though the fraction of

nodes that are boundary nodes is small for multi-hop networks requiring many hops to send information

across the network, we believe that the assumption is still very artificial. There are two reasons that we

make the assumption for the presentation of results on time synchronization with propagation delay.

First, the assumption allows us to give an elegant presentation of the main concept of this paper which

is to use high node density to average out errors in the network. Throughout this work we have used high

node density to average out inherent errors present in the nodes. We were able to average out random

timing jitter that is present in each node and provide the network with a sequence of zero-crossings

that can serve as synchronization events. We then applied this technique to averaging out the errors

introduced by time delay. To this end we were partially successful in that the interior nodes can average

out these errors assuming the boundary nodes have additional information. But this is of interest since

the goal of this paper is to understand the theory of spatial averaging for synchronization and discover

its fundamental advantages and limitations.

Second, the problem encountered at the boundaries is one that opens up an entirely new area of study

which is the target of our future work. The issue that we encounter is that the waveform seen by some

nodes in the network will have a zero-crossing that is shifted from the ideal location. This implies that

different nodes will observe different zero-crossings. Furthermore, these zero-crossings will now evolve

in time since we do not have the same observations over the entire network. This problem is similar

to what we encounter if we consider finite sized networks. Forfinite N , the zero-crossing location will

be random and thus introduce another source of error. As well, different nodes will see different zero-

crossing locations. Therefore, we will turn our attention to the case of finiteN and develop a different

set of tools that will be needed to understand what types of synchronization are achievable under the

situation where zero-crossing locations evolve in time. Using this understanding, we hope to return to

the issue of propagation delay in asymptotically dense networks and characterize the behavior of the

network.

VI. CONCLUSIONS

To conclude, we revisit the scalability issue under the light of work developed in this paper.
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A. The Scalability Problem Revisited

In the Introduction (SectionI-B.2), we mentioned that most existing proposals for time synchronization

suffer from an inherent scalability problem. The problem with those existing proposals lies in the fact that

synchronization errors accumulate: if node 2 can synchronize to node 1 with some small error, and node

3 can synchronize to node 2 with the same small error, these errors accumulate, and the synchronization

of node 3 to node 1 is worse. Therefore, synchronization error increases with the number of hops in the

network, and this problem is especially apparent in the regime of high densities. To make these ideas

precise, we first determine the maximum number of hops over which synchronization information must

travel and then study how the error in a generic pairwise synchronization mechanism depends on this

number of hops.

1) An Estimate of the Maximum Number of Hops:To obtain an estimate for the maximum number

of hops ℓN in a network in the regime of high densities (fixed area,N → ∞), we approximate the

transmission range of a node by the minimum required transmission distance,dN , to maintain a fully

connected network with high probability. From [15], we havethat for N nodes uniformly distributed

over a [0, 1] × [0, 1] square, the graph is connected with probability-1 asN → ∞ if and only if each

node’s transmission distancedN is such that

πd2N =
logN + ǫN

N
,

for someǫN → ∞. Let us, therefore, approximatedN as

dN ≈
√

1

π

logN

N
.

Thus,ℓN = 1/dN = O
(

√

N
logN

)

, and thusℓN → ∞ asN → ∞.

2) Synchronization Error Over Multiple Hops:Now, we assume there areℓN nodes arranged in a

linear ordering, numbered1 to ℓN . To synchronize, each nodei forms an estimate of its ownαi, based

onm pulses transmitted from nodei− 1. As before, node1 will have the reference clockc1(t) = t.

Node 1 starts by sendingm pulses at timesτ1 + l for l = 0, 1, . . . ,m − 1. As a result, node2 will

get a vector of observationsY2, whereY2[1] = α2(τ1 − ∆̄2) + Ψ2 and the(l + 1)th element ofY2 is

Y2[l+1] = α2(τ1− ∆̄2)+ lα2+Ψ2. This is similar to the situation we had in (19) and we can therefore

estimateα2 using

α̂2 = C̄(HT
H)−1

H
T
Y2,

whereC̄ = [0 1]. We find thatα̂2 ∼ N (α2, 12σ
2/((m − 1)m(m+ 1))).
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Node2 will now transmitm pulses at times, in terms ofc2, τ̄2 + lα̂2, for l = 0, 1, . . . ,m − 1. Note

that α̂2 is now a fixed value since node2 has estimatedα2. In terms ofc1, these pulses occur at

(τ̄2 + lα̂2)
c1 =

τ̄2 + lα̂2 −Ψ2

α2
+ ∆̄2 = τ2 + l

α̂2

α2
− Ψ2

α2
,

for l = 0, 1, . . . ,m− 1, whereτ2 = (τ̄2/α2) + ∆̄2. Thus, if we translate these times into the time scale

of c3, we will have the vector of observations,Y3, made by node3. We find that the(l + 1)th element

of Y3 is

Y3[l + 1] = α3((τ2 + l
α̂2

α2
− Ψ2

α2
)− ∆̄3) + Ψ3 ∼ N

(

α3(τ2 − ∆̄3) + lα3
α̂2

α2
, σ2

(α2
3

α2
2

+ 1
)

)

.

This vector of observations is of the form

Y3 = Hθ̄ + W̄, (40)

where

θ̄ =





θ̄1

θ̄2



 =





α3(τ2 − ∆̄3)

α3
α̂2

α2





with

H =





1 1 1 . . . 1

0 1 2 . . . m− 1





T

andW = [W1 . . .Wm]T . W ∼ N (0,Σ) with Σ = σ2
(α2

3

α2
2

+ 1
)

I.

With this vector of observations, we can use the estimator

α̂3 = C̄(HT
H)−1

H
T
Y3,

whereC̄ = [0 1]. We find that

α̂3 ∼ N
(

α3
α̂2

α2
,

12σ2

((m− 1)m(m+ 1))

(α2
3

α2
2

+ 1
)

)

.

If we continue this reasoning, we find that

α̂ℓN ∼ N
(

αℓN

α̂ℓN−1

αℓN−1
,

12σ2

((m− 1)m(m+ 1))

( α2
ℓN

α2
ℓN−1

+ 1
)

)

will be the estimate of nodeℓN .

From the above analysis, we see that each nodei’s estimate suffers from jitter variance of the same

form. However, there is an accumulation of error because node i’s estimate has a mean that is dependent

on nodei−1’s estimate. As a result, if nodei−1 has some small error, then that error will propagate to the

estimate of nodei. A good way to see this is if we consider the special case whereα2 = α3 = . . . αℓN = 1.
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This is the case where the clock frequencies are the same, butnodes do not know this. In this case, we

find that nodeℓN ’s estimate can be written as

α̂ℓN = α̂2 +

ℓN
∑

i=3

Wi, ℓN ≥ 2

whereWi ∼ N (0, 24σ2/((m − 1)m(m + 1))). This is intuitively obvious because nodei’s estimateα̂i

will be the mean of the Gaussian random variableα̂i+1. Therefore, it is obvious that the error variance

grows linearly with the number of hops. In fact, this behavior is observed in experimental work. With

Reference Broadcast Synchronization (RBS), from [8] the authors find that the synchronization error

variance of anℓN hop path is approximatelyσ2ℓN , whereσ2 is the one hop error variance. Therefore,

we have that the synchronization error between our two nodeswill grow linearly asℓN = 1/dN , which

is strictly monotonically increasing. As a result, asN → ∞, we have that synchronization error will

grow unbounded.

This scalability problem, however, can potentially be avoided using cooperative time synchronization

asN → ∞. This is because in the limit of infinite density, the cooperative time synchronization technique

allows every node in the network to see a set of identical equispaced zero-crossings. As a result, in steady-

state the synchronization error does not grow across the network. This comes about by using the high

node density to average out random timing errors. Thus, we find that cooperative time synchronization

has very favorable scalability properties in the limit asN → ∞.

B. Network Density and Synchronization Performance Trade-Off

The cooperative synchronization technique described in this paper provides us deterministic parameters

that we can use for time synchronization in the limit as node density grows unbounded. In fact, as the

node density grows, the observations that can be used for synchronization improve. This means that

our cooperative synchronization technique provides an effective trade-off between network density and

synchronization performance. Such a trade-off has not existed before and will provide network designers

an additional dimension over which to improve network synchronization performance.

The fundamental idea behind cooperative time synchronization is that by using spatial averaging, the

errors inherent in each node can be averaged out. By using observations that are an “average” of the

information from a large number of surrounding nodes, synchronization performance can be improved

due to the higher quality observations.

From this point of view, it is clear that the particular technique described in this paper is but one

example of using spatial averaging to improve synchronization. Other techniques can also be developed
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using spatial averaging. For example, nodes may not necessarily have to send odd-shaped pulses and

use zero-crossing observations. Even though this setup takes advantage of the superposition of pulses, it

has its drawbacks. To keep the signals in phase, the jitter variance will limit the maximum frequency at

which signals can be sent. Instead, nodes may transmit ultrawideband pulses. If the nodes surrounding

a particular nodej each transmit an impulse at their estimate of an integer value of t, then due to timing

errors in the surrounding nodes, nodej will see a cluster of pulse arrivals around this integer value of

t. Node j can then take the sample mean of this cluster of pulses and usethat as an observation, just

like we used the zero-crossing as an observation in this paper. This idea is illustrated in Fig.8. Such

a technique based on ultra wideband pulses will also providesimilar scalability properties. As a result,

cooperative time synchronization really describes a classof techniques that can take advantage of spatial

averaging to improve synchronization performance.

t=3t=2t=1 time

time

Aggregate waveform

Pulse cluster

Fig. 8. Clusters of ultra wideband pulses can be used for cooperative time synchronization. In the the top figure,

we illustrate the clusters of pulses around integer values of t. As the number of nodes increase, the sample mean

will converge to the integer value of the reference time. This idea is parallel to the use of zero-crossings shown in

the bottom figure.

C. Future Work

With the goal of developing practical cooperative synchronization mechanisms, two keys areas of

interest are cooperative synchronization in finite-sized networks and algorithm development. First, the

analysis of performance for finite-sized networks is very important. Determining when the asymptotic

properties presented in this work are good predictors of performance in networks that may be large but

still finite in size is important in terms of bridging the gap between our proposed ideas and practical

systems. Preliminary, simulation-based work along these lines can be found in [19]. Second, developing

practical techniques for cooperative time synchronization is essential for implementing spatial averaging
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in real networks. Along these lines, one area of interest is determining what types of pulses should be

used, i.e. odd-shaped pulses or ultra wideband pulses.

Furthermore, the ideas in this paper suggest a few other areas of interest for future work. One is the

issue of distributed modulation methods. If we have the ability to generate an aggregate waveform with

equispaced zero-crossings, by controlling the location ofthese crossings we can modulate information

onto this waveform and use it to communicate with a far receiver. Preliminary work along these lines

can be found in [20]. Another issue is to study how the idea of spatial averaging that is so prevalent in

this work contributes to synchronization that is observed in nature.
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APPENDIX

Proof of Lemma 1. To show (12), we consider

E(AmaxKip(τ1 − τ0 − Ti)) = AmaxE(Ki)E(p(τ1 − τ0 − Ti))

= AmaxE(Ki)

∫

p(τ1 − τ0 − ψ)fTi
(ψ)dψ

= −AmaxE(Ki)

∫

p(ψ − (τ1 − τ0))fTi
(ψ)dψ

Sinceτ1 < τ0, we have thatτ1 − τ0 < 0 implying thatp(ψ) is shifted to the left and the zero-crossing

of p(ψ) occurs at a negative value.p(ψ) is odd about its zero-crossing andfTi
(ψ) is symmetric about

zero and strictly monotonically increasing on(−∞, 0] for all positive finite variance values. Thus, it is

clear that
∫

p(ψ − (τ1 − τ0))fTi
(ψ)dψ < 0 which makesE(AmaxKip(τ1 − τ0 − Ti)) > 0.

Now, the expectation will vary with the variance ofTi and the variance will range from a positive

upper bound of̄σ2/α2
low < B to a positive lower bound of̄σ2/α2

up, where recall that̄σ2 is a value

determined by our choice of the pulse connection function. If we consider
∫

p(ψ− (τ1−τ0))fTi
(ψ)dψ to

be a function of the variance ofTi, then we see that it is bounded and continuous on the compact domain

[σ̄2/α2
up, σ̄

2/α2
low]. Since we showed in the previous paragraph thatE(AmaxKip(τ1 − τ0 − Ti)) > 0

wheneverTi has a nonzero finite variance, clearlyE(AmaxKip(τ1 − τ0 − Ti)) > 0 when Var(Ti) ∈
[σ̄2/α2

up, σ̄
2/α2

low]. Thus, it is clear thatγ1 andγ2 exist and (12) is shown.

To show (13), we consider

Var(AmaxKip(τ1 − τ0 − Ti)) = E(A2
maxK

2
i p

2(τ1 − τ0 − Ti))− E2(AmaxKip(τ1 − τ0 − Ti))

≤ A2
maxE(K2

i )E(p2(τ1 − τ0 − Ti))

≤ A2
maxE(K2

i )

≤ A2
max

where the second to last inequality follows from the fact that E(p2(τ1 − τ0 − Ti)) is upper bounded by

1. The last inequality follows sinceE(K2
i ) ≤ 1 by the fact that0 ≤ Ki ≤ 1. Thus, we have shown (13).

Next we defineSn = M̄1(τ1) + · · ·+ M̄n(τ1) andmn = E(Sn) = µ1 + . . .+ µn. From [10] we have

the following theorem

Theorem 3:The convergence of the series

∑ σ2i
i2
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implies that the strong law of large numbers will apply to thesequence of independent random variables

M̄i(τ1). That is, again from [10], for every pairǫ > 0, δ > 0, there corresponds anN such that

Pr

{ |Sn −mn|
n

< ǫ; n = N,N + 1, . . . , N + r

}

> 1− δ

for all r > 0. △
We have shown (13) so we haveσ2i < γ3 <∞. Thus

lim
N→∞

N
∑

i=1

σ2i
i2

≤ lim
N→∞

N
∑

i=1

γ3
i2

= γ3
π2

6
.

and we have convergence by the direct comparison test. Therefore, we can apply Theorem3 and get that

for any pairǫ > 0, δ > 0, we can find anN such that

Pr

{
∣

∣

∣

∣

Sn
n

− mn

n

∣

∣

∣

∣

< ǫ; n = N,N + 1, . . . , N + r

}

> 1− δ (41)

for all r > 0.

By (12) we have thatγ2 > µi > γ1 > 0. Thus, we can clearly see that

mn

n
> γ1.

Furthermore, since we keep the functionfα(s) constant as we increase the number of nodes in the

network we get thatmn/n converges to a constantη(τ1) given by

η(τ1) = AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(τ1 − τ0 − ψ)fT (ψ, s)dψfα(s)ds

=

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds.

The above expression comes from the fact that since eachµi = E(M̄i(τ1)) is a function ofαi, mn/n will

converge to the average of theµi over fα(s), the function that characterizes the set ofαi’s. Therefore,

given anyǫ, we can find anN ′ such that
∣

∣

∣

∣

mn

n
− η(τ1)

∣

∣

∣

∣

< ǫ (42)

for all n > N ′. Note that since(mn/n) > γ1, we have thatη(τ1) ≥ γ1. Since
∣

∣

∣

∣

Sn
n

− η(τ1)

∣

∣

∣

∣

<

∣

∣

∣

∣

Sn
n

− mn

n

∣

∣

∣

∣

+

∣

∣

∣

∣

mn

n
− η(τ1)

∣

∣

∣

∣

,

using (41) and (42) we have

Pr

{∣

∣

∣

∣

Sn
n

− η(τ1)

∣

∣

∣

∣

< 2ǫ; n = N ′′, N ′′ + 1, . . . , N ′′ + r

}

> 1− δ.
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for all r > 0, whereN ′′ = max{N,N ′}. Thus, we have

lim
N→∞

1

N

N
∑

i=1

M̄i(τ1) = η(τ1) > 0

almost surely. This completes the proof of Lemma1. △
Proof of Lemma 3. First, we start by finding an analytical expression for|A∞(t)−A∞(to)|. From

the proof of Lemma1 we have that

A∞(t) = AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(t− τ0 − ψ)fT (ψ, s)dψfα(s)ds.

Therefore,|A∞(t)−A∞(to)| can be written as

|A∞(t)−A∞(to)|

= |AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
[p(t− τo − ψ)− p(to − τo − ψ)]fT (ψ, s)fα(s)dψds|

≤ Amax

∫ αup

αlow

∫ ∞

−∞
|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)fα(s)dψds

= Amax

∫ αup

αlow

∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|
|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)fα(s)dψds,

whereE(Ki) ≤ 1. The change in the limits of integration in the last equalitycomes from the fact that

p(t− τo − ψ) − p(to − τo − ψ) = 0 outside ofψ ∈ [−τnz + to − τ0 − |t− to|, τnz + to − τ0 + |t− to|].
This is the maximum interval over whichp(t− τo − ψ) − p(to − τo − ψ) can be non-zero. There is no

need to take the absolute value offT (ψ, s) andfα(s) since they are always non-negative.

Our second step is to bound the inner integral. Before doing so, we first show that the inside integral is

in fact Riemann integrable. For any givent andto, the inside integral is taken over a closed interval. Over

a closed interval, we know from Strichartz [39] that any bounded function that is continuous except at a

finite number of points is Riemann integrable. Furthermore,also from [39] we know that the sums and

products of continuous functions are continuous. As well, if a function is continuous then the absolute

value of that function is also continuous.p(t) has at mostD = 3 locations at which it is discontinuous

and over any open interval not containing a discontinuity,p(t) is uniformly continuous sinceq(t) is

uniformly continuous.fT (ψ, s) hasD′ = 0 discontinuities inψ for an givens since it is Gaussian for

any s. And sinces ∈ [αlow, αup], |fT (ψ, s)| ≤ GT for all ψ and s (GT occurring whenψ = 0 and

s = αup). Thus, sincep(t) andfT (ψ, s) are continuous except at a finite number of points, we see that

for given s, t, andt0

|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)
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is also continuous inψ except at a finite number of points (at mostD′+2D points). This function is also

bounded since the product of two bounded functions is bounded. As a result, we see that the integral is

Riemann integrable over any closed interval.

We now proceed to bound from above the value of this integral by first bounding the maximum value

of the integral assuming no discontinuities and then introducing another term that bounds the maximum

area contributed by the discontinuities. If we ignore the discontinuities and assumep(t) is uniformly

continuous, for anym1 > 0 there exists an > 0 such that

|t− to| <
1

n
⇒ |p(t)− p(to)| <

1

m1
,

for all t andto. As a result,p(t− τo −ψ)− p(to − τo−ψ) can be made as small as desired by choosing

the propern thus giving usp(t− τo − ψ)− p(to − τo − ψ) < 1/m1 for all ψ for an appropriate choice

of n.

Furthermore, we note that|p(t− τo−ψ)|fT (ψ, s) ≤ GT because|p(t)| ≤ 1 and|fT (ψ, s)| ≤ GT . The

maximum possible jump at a discontinuity in the function|p(t− τo−ψ)−p(to− τo−ψ)|fT (ψ, s) is thus

2GT and for any|t− to|, the maximum area contributed by each discontinuity is2GT |t− to|. As a result,

for all D′+2D discontinuities, the maximum area contribution will be no more than2GT |t−to|(D′+2D).

We can, therefore, bound the inner integral as
∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|
|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)dψ

≤
∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|

GT

m1
dψ + 2GT |t− to|(D′ + 2D)

=
GT

m1
(2τnz + 2|t− to|) + 2GT |t− to|(D′ + 2D)

= 2
GT

m1
τnz + 2

GT

m1
|t− to|+ 2GT |t− to|(D′ + 2D),

where|t− to| < 1/n.

What we have is that if|t− t0| < 1/n then

|A∞(t)−A∞(to)|

≤ Amax

∫ αup

αlow

(

2
GT

m1
τnz + 2

GT

m1
|t− to|+ 2GT |t− to|(D′ + 2D)

)

fα(s)ds

≤ AmaxGα(αup − αlow)

(

2
GT

m1
τnz + 2

GT

m1
|t− to|+ 2GT |t− to|(D′ + 2D)

)

since|fα(s)| < Gα (defined in SectionIII-A ). We defineĀ as

Ā = AmaxGα(αup − αlow).
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Now, for the third step of our proof we make

|A∞(t)−A∞(to)|

≤ Ā

(

2
GT

m1
τnz + 2

GT

m1
|t− to|+ 2GT |t− to|(D′ + 2D)

)

<
1

m
,

for any choice ofm > 0. We do this by making each of the three terms less than1/(3m).

For the first term we want
2ĀGT τnz

m1
<

1

3m
.

We solve and get

m1 > 6mĀGT τnz.

Since for any value ofm1 > 0 we can find ann > 0, this condition can be satisfied.

For the third term we want

2ĀGT (D
′ + 2D)|t− to| <

1

3m
.

This gives us

|t− to| <
1

6ĀGT (D′ + 2D)m
.

Since the only requirement is|t− to| < 1/n for n chosen by any givenm1 > 0, we can always choose

|t− to| as small as desired. Thus, this condition can be satisfied.

With the second term we want the condition

2ĀGT

m1
|t− to| <

1

3m

which means that
|t− to|
m1

<
1

6mĀGT

.

Again, this condition can be satisfied since we can choosem1 as large as we want and|t− to| as small

as we want as long as|t− to| < 1/n for a givenm1.

Thus, for anym > 0, we first choosem1 > 6mĀGT τnz. Then, we find ann′ > 0 such that|t− to| <
1/n′ implies that|p(t) − p(to)| < 1/m1 for all t and to if we remove the discontinuities inp(t). Then,

if necessary,n′ is increased ton so that|t − to| < 1/n implies that|t − to| < 1/(6ĀGT (D
′ + 2D)m)

and |t − to|/m1 < 1/(6mĀGT ). If no increase is necessary, thenn = n′. With this choice ofn > 0,

|A∞(t) − A∞(to)| < 1/m. As a result, for anym, we can find ann such that|t − to| < 1/n implies

that |A∞(t)−A∞(to)| < 1/m. Thus,A∞(t) is continuous.
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This completes the proof for Lemma3. △
Proof of Theorem 2. Let us start by writing (30) as

Ac1
j,N(t) =

N
∑

i=1

AmaxKfixKj,i

N
p(t− τo − Ti −Dfix −Dj,i) =

N
∑

i=1

1

N
M̃i(t, s),

whereM̃i(t, s)
∆
= AmaxKfixKj,ip(t − τo − Ti −Dfix −Dj,i). Recall that the dependence ons comes

from the fact that the density ofTi is a function ofαi which is characterized byfα(s). This notation is

analogous to the notation used in SectionIII-C. Following the steps in the proof of Lemma1, we can

quickly show that the limiting aggregate waveform at nodej will take on the form

η(t) =

∫ αup

αlow

E(M̃i(t, s))fα(s)ds, (43)

where

E(M̃i(t, s))

= Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0
g(−y)g(x)p(t − τ0 − ψ − y − x)fDj

(x)fDfix
(y)fT (ψ, s)dxdydψ,

with g(·) = K(δ−1(·)). Therefore, we can prove Theorem2 in two steps:

• To show thatη(t) is odd aboutτ0, we need to show thatE(M̃i(t, s)) is odd in t about τ0, i.e.

E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0.

• To show a zero-crossing atτ0, show thatE(M̃i(τ0, s)) = 0.

These two steps come directly from the form ofη(t) in (43).

We first show thatE(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0. Using the fact thatKfix =

K(δ−1(−Dfix)) = g(−Dfix) andKj,i = g(Dj,i), we have the following:

E(M̃i(τ0 + ξ, s))

= E
(

Amaxg(−Dfix)g(Dj,i)p(ξ − [Ti +Dfix +Dj,i])
)

(a)
= −E

(

Amaxg(−Dfix)g(Dj,i)p(−ξ + [Ti +Dfix +Dj,i])
)

= −Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0
g(−y)g(x)p(−ξ + [ψ + y + x])fDj

(x)fDfix
(y)fT (ψ, s)dxdydψ

(b)
= Amax

∫ −∞

∞

∫ 0

∞

∫ −∞

0
g(z)g(−u)p(−ξ − [w + z + u])fDj

(−u)fDfix
(−z)fT (−w, s)dudzdw

(c)
= −Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0
g(−u)g(z)p(−ξ − [w + u+ z])fDj

(z)fDfix
(u)fT (w, s)dzdudw

= −E
(

Amaxg(−Dfix)g(Dj,i)p(−ξ − [Ti +Dfix +Dj,i])
)

= −E(M̃i(τ0 − ξ, s)),
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where (a) follows becausep(t) = −p(−t) and at (b) we did a change of variables withu = −x,

w = −ψ, andz = −y. (c) follows from fT (x, s) = fT (−x, s) andfDj
(x) = fDfix

(−x). We thus have

E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0.

E(M̃i(τ0, s)) = 0 can now be shown as follows. Using the just proven fact thatE(M̃i(τ0 + ξ, s)) =

−E(M̃i(τ0 − ξ, s)) for ξ ≥ 0, settingξ = 0 gives usE(M̃i(τ0, s)) = −E(M̃i(τ0, s)). This implies that

E(M̃i(τ0, s)) = 0.

This completes the proof for Theorem2. △
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[14] X. Guardiola, A. Dı́az-Guilera, M. Llas and C. J. Pérez. Synchronization, Diversity, and Topology of Networks of Integrate

and Fire Oscillators.Physical Review E, 62(4):5565-5570, 2000.

[15] P. Gupta and P. R. Kumar. Critical Power for Asymptotic Connectivity in Wireless Networks. In W. M. McEneany, G. Yin,

and Q. Zhang, editors,Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W. H. Fleming.

Birkhauser, 1998.

February 12, 2006. DRAFT



51

[16] A. Herz and J. J. Hopfield. Earthquake Cycles and Neural Reverberations: Collective Oscillations in Systems with Pulse-

Coupled Threshold Elements.Physical Review Letters, 75(6):1222-1225, 1995.

[17] Y. Hong and A. Scaglione. A Scalable Synchronization Protocol for Large Scale Sensor Networks and its Applications.

IEEE Journal on Selected Areas in Communications (JSAC), 23(5):1085-1099, May 2005.

[18] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-Inspired Sensor Network Synchronicity with

Realistic Radio Effects. InProc. SenSys’05, San Diego, CA, November 2005.

[19] A. Hu and S. D. Servetto. Algorithmic Aspects of the TimeSynchronization Problem in Large-Scale Sensor Networks.

ACM/Kluwer Mobile Networks and Applications. Special Issue on Wireless Sensor Networks. 10:491-503, 2005.

[20] A. Hu and S. D. Servetto. dFSK:Distributed Frequency Shift Keying Modulation in Dense Sensor Networks. In Proc.

IEEE Int. Conf. Commun. (ICC), Paris, France, 2004.

[21] E. M. Izhikevich. Weakly Pulse-Coupled Oscillators, FM Interations, Synchronization, and Oscillatory Associative Memory.

IEEE Trans. Neural Networks, 10(3):508-526, 1999.

[22] J. Jalife. Mutual Entrainment and Electrical Couplingas Mechanisms for Synchronous Firing of Rabbit Sinoatrial Pacemaker

Cells. J. Physiol., 356:221-243, 1984.

[23] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. PTR Prentice Hall, Inc., 1993.

[24] C. Kelly IV, V. Ekanayake, and R. Manohar. SNAP: A SensorNetwork Asynchronous Processor. InProc. 9th Int. Symp.

Async. Circ. Syst., Vancouver, BC, 2003.

[25] Y. Kuramoto. Collective Synchronization of Pulse-Coupled Oscillators and Excitable Units.Physica D, 50:15-30, 1991.

[26] L. Lamport. Time, Clocks, and the Ordering of Events in aDistributed System.Comm. ACM, 21(4):558–565, 1978.

[27] H. Li, A. Lal, J. Blanchard, and D. Henderson. Self-Reciprocating Radioisotope-Powered Cantilever.J. Applied Phys.,

92(2):1122–1127, 2002.

[28] D. Lucarelli and I. Wang. Decentralized Synchroniztion Protocols with Nearest Neighbor Communication. InProc.

SenSys’04, Baltimore, Maryland, 2004.

[29] M. Maroti, B. Kusy, G. Simon and A. Ledeczi. The FloodingTime Synchronization Protocol. InProc. 2nd International

Conference on Embedded Neteworked Sensor Systems, Baltimore, MD, November 2004.

[30] R. Mathar and J. Mattfeldt. Pulse-Coupled Decentral Synchronization.SIAM Journal on Applied Mathematics, 56(4):1094-

1106, 1996.

[31] M. K. McClintock Menstrual Synchrony and Suppression.Nature, 229:244-245, 1971.

[32] R. E. Mirollo and S. H. Strogatz. Synchronization of Pulse-Coupled Biological Oscillators.SIAM J. Appl. Math.,

50(6):1645–1662, 1990.

[33] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-Verlag, 1994.

[34] N. Roberts. Phase Noise and Jitter: A Primer for DigitalDesigners.http://www.eedesign.com/showArticle.

jhtml?articleID=16501598, 2003.

[35] A. Sherman, J. Rinzel and J. Keizer. Emergence of Organized Bursting in Clusters of Pancreatic Beta-Cells by Channel

Sharing.Biophys. J., 54:411-425, 1988.

[36] M. L. Sichitiu and C. Veerarittiphan. Simple, AccurateTime Synchronization for Wireless Sensor Networks. InProc.

IEEE Wireless Communication and Networking Conference (WCNC 2003), New Orleans, LA, March 2003.

[37] L. S. Smith, D. E. Cairns and A. Nschwitz. Synchronization of Integrate-and-Fire Neurons with Delayed Inhibitory Lateral

Connections. InProc. International Conference on Artificial Neural Networks (ICANN), 1994.

February 12, 2006. DRAFT



52

[38] H. Stark and J. Woods.Probability, Random Processes, and Estimation Theory for Engineers. Prentice Hall, Inc., 2nd

edition, 1994.

[39] R. S. Strichartz.The Way of Analysis. Jones and Bartlett Publishers, 2000.

[40] S. Strogatz.Sync: The Emerging Science of Spontaneous Order. Theia, 2003.

[41] C. Vanvreeswijk and L. F. Abbott. Self-Sustained Firing in Populations of Integrate-and-Fire Neurons.SIAM Journal on

Applied Mathematics, 53(1):253-264, 1993.

[42] T. J. Walker. Acoustic Synchrony: Two Mechanisms in theSnowy Tree Cricket.Science, 166:891-894, 1969.

[43] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart Dust: Communicating with a Cubic-Millimeter Computer.

IEEE Computer Mag., 34(1):44–51, 2001.

February 12, 2006. DRAFT



53

PLACE

PHOTO

HERE

An-swol Hu was born in New York State and grew up in California. He received his B.S. in Electrical

Engineering from Stanford University in 2002. Currently heis a Ph.D. candidate in the School of Electrical

and Computer Engineering at Cornell University. His research interests include applied statistics and

statistical signal processing, with applications to sensor networks.

PLACE

PHOTO

HERE

Sergio D. Servetto was born in Argentina, on January 18, 1968. He received a Licenciatura en Informatica

from Universidad Nacional de La Plata (UNLP, Argentina) in 1992, and the M.Sc. degree in Electrical En-

gineering and the Ph.D. degree in Computer Science from the University of Illinois at Urbana-Champaign

(UIUC), in 1996 and 1999. Between 1999 and 2001, he worked at the Ecole Polytechnique Federale

de Lausanne (EPFL), Lausanne, Switzerland. Since Fall 2001, he has been an Assistant Professor in the

School of Electrical and Computer Engineering at Cornell University, and a member of the field of Applied

Mathematics. He was the recipient of the 1998 Ray Ozzie Fellowship, given to “outstanding graduate students in Computer

Science,” and of the 1999 David J. Kuck Outstanding Thesis Award, for the best doctoral dissertation of the year, both from the

Dept. of Computer Science at UIUC. He is also the recipient ofa 2003 NSF CAREER Award. His research interests are centered

around information theoretic aspects of networked systems, with a current emphasis on problems that arise in the context of

large-scale sensor networks.

February 12, 2006. DRAFT


	Introduction
	Time Synchronization in Large Distributed Systems
	Approaches to Synchronization and the Limitations
	The Emergence of Synchronous Behavior
	Estimation of Synchronization Parameters and the Scalability Problem

	Spatial Averaging and Synchronization
	Cooperation through Spatial Averaging
	Model and Technique

	Main Contributions and Organization of the Paper

	System Model
	Clock Model
	Pathloss Only Model
	A Random Model for Pathloss
	Definition of Kj

	Delay and Pathloss Model
	Correlation Between Delay and Pathloss
	Definition of Dj and Kj
	Intuition Behind Dj and Kj

	Synchronization Pulses and the Pulse-Connection Function
	An Example: Pulse-Coupled Oscillators
	Model Parameters for Pulse-Coupled Oscillators
	Choice of Pulse-Connection Function


	Cooperative Time Synchronization Setup
	System Parameters
	Signal Reception Model
	Desired Structural Properties of the Received Signal
	Polarity and Continuity of A(t)
	Proof of Theorem ??


	Asymptotic Time Synchronization
	The Use of Estimators in Time Synchronization
	Time Synchronization Estimator Performance Measure
	Time Synchronization Estimator
	Time Synchronization with No Propagation Delay
	Cooperation without Simultaneous Transmission and Reception


	Time Synchronization with Propagation Delay
	Conceptual Motivation
	Time Synchronization of Interior Nodes
	Time Synchronization of Boundary Nodes
	The Boundary Node Assumption

	Conclusions
	The Scalability Problem Revisited
	An Estimate of the Maximum Number of Hops
	Synchronization Error Over Multiple Hops

	Network Density and Synchronization Performance Trade-Off
	Future Work

	Appendix
	References
	Biographies
	An-swol Hu
	Sergio D. Servetto


